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Quasiperiodic potential induced corner states in a quadrupolar insulator
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We systematically investigate the topological and localization properties of a quadrupolar insulator represented
by the celebrated Benalcazar-Bernevig-Hughes model in the presence of quasiperiodic (QP) disorder instilled in
its hopping amplitude. While disorder can be detrimental to the existence of the topological order in a system,
we observe the emergence of a disorder-driven topological phase where the original (clean) system demonstrates
trivial behavior. This phenomenon is confirmed by the re-emergence of zero-energy states in the band structure
together with a nonzero bulk quadrupole moment, which in turn establishes the bulk-boundary correspondence
(BBC). Furthermore, the distribution of the excess electronic charge shows a pattern that is reminiscent of the
bulk quadrupole topology. To delve into the localization properties of the midband states, we compute the
inverse participation and normalized participation ratios. It is observed that the in-gap states become critical
(multifractal) at the point that discerns a transition from a topological localized to a trivial localized phase.
Finally, we carry out a similar investigation to ascertain the effect of the QP disorder on the quadrupolar insulator
when the model exhibits topological properties in the absence of disorder. Again, we note a multifractal behavior
of the eigenstates in the vicinity of the transition.
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I. INTRODUCTION

Topological insulators (TIs) have represented an area of
supreme interest in the field of condensed matter physics for
over a decade, being the cradle of exotic phenomena like
anomalous quantum Hall and quantum spin Hall phases [1–4].
TIs correspond to systems in d dimensions that exhibit in-
sulating properties in the bulk while hosting robust metallic
surface states at the (d − 1)-dimensional boundary. The field
of topology has been extensively explored from both theo-
retical and experimental fronts, providing numerous material
candidates that vividly exhibit robust boundary features. Ex-
amples include the seminal work by Bernevig et al. [5] and
König et al. [6] on the quantum spin Hall effect in CdTe/HgTe
quantum wells, followed by several works on Dirac and Weyl
semimetals [7–10], topological superconductors [11,12], and
topological crystalline insulators [13,14].

Currently, higher-order TIs (HOTIs) have garnered con-
siderable interest, as a noteworthy extension to the field of
conventional first-order TIs [15–20]. HOTIs feature robust
topological states at boundaries of dimensions less than d − 1
for a topologically nontrivial d-dimensional bulk, leading to
the formation of corner states in two-dimensional (2D) and
corner/hinge states in three-dimensional (3D) systems. While
experimental evidence of real material candidates featuring
higher-order states in 2D remains absent, evidence of second-
order topology has been found in 3D in bismuth [21] and
stacked bismuth halide chains [22].

TIs with quantized quadrupole moments require a special
mention in the field of higher-order topology. The quadrupolar
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TIs (QTIs) have attracted significant interest as prime exam-
ples of HOTIs, where the bulk invariant (quadrupole moment)
leads to the accumulation of quantized charge at the zero-
dimensional (0D) corners of a 2D supercell [23–25]. These
0D corner modes act as signatures of the unconventional bulk-
boundary correspondence specific to the higher-order phase.
While classical electromagnetic theory dictates an equality
in the magnitude of the edge dipole moment, corner charge,
and bulk quadrupole moment in the absence of free dipoles
in the system, it was shown in Ref. [26] that quadrupole
topology that violates the classical relation can also exist [27].
Such systems are referred to as type-II QTIs. Additionally,
authors of a recent work have described a quadrupolar in-
sulator that does not show zero-energy states in its energy
spectrum but does exhibits midgap states in the spectra cor-
responding to the entanglement [28]. It is to be noted that the
quadrupole moment is a direct extension to the higher order
of the Berry phase machinery that classifies band topology.
QTIs have been explored extensively under several backdrops,
namely, periodic drive, non-hermiticity, and random disorder.
Floquet QTIs, which exhibit the presence of corner modes
characterized by a quantized Floquet quadrupole moment,
have been recently studied [29,30]. Furthermore, trivial lat-
tices, when subjected to intricate external losses can give rise
to quadrupole topology characterized by biorthogonal nested
Wilson loop spectra [31]. Additionally, in a pioneering work
by Li et al. [32], it was shown that quadrupole topology can be
successfully defined in the presence of disorder provided the
system satisfies chiral symmetry. This opened up a plethora
of research on the interplay of disorder and topology in tight-
binding systems including the work done by Yang et al.
[33,34], where random on-site disorder revived the higher-
order topological phase in a quadrupolar insulator beyond its
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topological regime. Motivated by this interplay caused by the
conjunction between random disorder and topology, we study
the Benalcazar-Bernevig-Hughes (BBH) model, which is a
prototypical example of a quadrupolar insulator hosting 0D
corner modes, under the action of quasiperiodic (QP) disor-
der introduced into the hopping potential. Incommensurate
or QP potential constitutes a bridge between the completely
periodic and completely random regime, thus manifesting a
manifold of phases not exhibited by either limit [35,36]. While
clean systems possessing translational invariance host peri-
odic Bloch states, the presence of completely random disorder
leads to absolute localization of states for arbitrarily small
disorder strength in one dimension (1D) and 2D. However
in 3D, the existence of a mobility edge is possible that rep-
resents a critical point of separation in energy between the
localized and the extended states [37]. QP systems, on the
other hand, can achieve such a transition even in 1D. This
was beautifully exhibited in the Aubry-André (AA) model,
which represents one of the most popular examples of a
QP lattice [38,39]. It introduces an incommensurate on-site
potential in a tight-binding 1D chain with nearest-neighbor
hopping amplitudes. The 1D AA model exhibits a complete
localization-delocalization transition at a specific value of the
disorder strength which was unforeseen in 1D system with
random disorder. It should be mentioned here that, while
higher-order topology in a 2D Aubry-André-Harper model
has been studied [40], the complete effect of the QP disorder
on the topology of the system, including its capacity to restore
a topological phase in the otherwise trivial regime, has not
been explored in detail. Our primary motivation in this paper
was therefore to address the effect of QP on the BBH model,
which is a well-known quadrupolar insulator, and study the
different topological phases that emerge due to this interplay.

The paper is structured as follows. In Sec. II, we introduce
the Hamiltonian of the original BBH model followed by a
discussion on its topology and boundary modes. In Sec. III,
we study the effect of the QP disorder on the topology of the
model, starting from a regime where the system is trivial in
the clean limit. In Sec. IV, a similar analysis is done on the
system, this time residing within the regime that is topological
in the clean limit. We also explore several indicators of the
localization phenomena to decipher the confinement of the
topological states. Finally, we conclude in Sec. IV.

II. BBH MODEL

The existence of a QTI requires at least two occupied
bands in addition to the presence of crystalline symmetries
that quantize the quadrupole moment [24]. The BBH model,
which is a four-band insulator, abiding by the aforementioned
criteria, is one of the most well-studied examples of a QTI.
The Hamiltonian for the BBH model is given as

H (kx, ky) = [γ + λ cos(kx )]τ1σ0 − λ sin(kx )τ2σ3

− [γ + λ cos(ky)]τ2σ2

− λ sin(ky)τ2σ1 + δτ3σ0. (1)

The unit cell comprises four sublattices, as shown in Fig. 1.
A magnetic field penetrates the system, uniformly bestowing
a total of π flux per plaquette. Here, γ and λ correspond

FIG. 1. A schematic diagram of the Benalcazar-Bernevig-
Hughes (BBH) model is shown. Each unit cell consists of four
sublattices marked as A, B, C, and D. The intracellular hopping
amplitude is shown by γ , whereas λ represents the intercellular hop-
ping. The dotted lines correspond to a negative hopping amplitude
pertaining to a flux of magnitude π that penetrates each plaquette.

to the intracell and intercell hoppping, respectively, and δ

corresponds to the on-site potential and is kept infinitesimally
∼0. Furthermore, the Pauli matrices τ and σ correspond to
the orbital degrees of freedom. The band structure of the BBH
model shows the existence of zero-energy modes (Fig. 2) char-
acterized by a topological quadrupole moment for | γ

λ
| < 1

[Fig. 3(a)]. The quadrupole moment is protected by the dual
mirror symmetry Mx and My such that

MαH (kx, ky)M†
α = H (Mαk), α ∈ x, y, (2)

where Mxk = (−kx, ky) and Myk = (kx,−ky). At δ = 0 and
| γ

λ
| < 1, four degenerate zero-energy in-gap corner states

FIG. 2. The band structure of the original Benalcazar-Bernevig-
Hughes (BBH) model is plotted as a function of γ

λ
. Robust midband

states, affixed at zero energy, are observed for | γ

λ
| < 1. The size

of the lattice has been considered 40 × 40. The black lines denote
the quadrupolar topological regime, whereas the red lines mark
the points γ

λ
= 1.05 and 0.5, for which the effect of disorder on the

topology of the system is studied.
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FIG. 3. (a) The quadrupole moment Qxy plotted as a function
of γ

λ
shows a nontrivial value of 0.5, for | γ

λ
| < 1. This confirms

the bulk-boundary correspondence in the second-order quadrupole
topological insulator phase. (b) The excess charge distribution in the
system for | γ

λ
| < 1, shows a unique pattern with an excess and deficit

of charge accumulation at the alternate corners. More specifically,
here, γ = 0.5, and λ has been taken to be 1 throughout.

emerge. On increasing the value of δ slightly, the degeneracy
of the zero-energy states is lifted, and the system exhibits
a unique charge density pattern at the corners of a square
supercell which is reminiscent of the bulk quadrupole moment
[Fig. 3(b)].

We now elaborate on the evaluation of the charge dis-
tribution, as it corresponds to the most vital signature of
second-order topology in the BBH model. The site-resolved
charge distribution is evaluated from the eigenvectors of the
real-space Hamiltonian written in the basis of the lattice sites.
On exact diagonalization of the real-space Hamiltonian, the
charge distribution over the lattice can be evaluated by sum-
ming over the probability distributions of the eigenvectors
within the occupied subspace. Furthermore, any orbital or spin
degree of freedom pertaining to individual lattice sites for
each eigenvector must be summed over. The charge excess
at different lattice sites is now obtained by calculating the
difference between the charge distribution at individual sites
and the average charge distribution. This accumulated charge
at the corners of the BBH supercell is quantized to a value of
± e

2 . In the regime | γ

λ
| > 1, however, the zero-energy corner

states vanish, and the second-order topology in the system
is lost. It should be mentioned here that, for the emergence
of a quantized quadrupole moment (and hence a quantized

amount of excess charge at the corners), it is necessary for
the reflection operators, that is, Mx and My, to anticommute.
To calculate the quadrupole moment Qxy, we now resort to
the formalism prescribed in Ref. [41], which provides an
alternative approach to the nested Wilson loop method. In
this method, the real-space charge distribution is employed to
evaluate Qxy as follows [32]:

Qxy = 1

2π
Im ln[det(U †q̂U )

√
det(q̂†)]. (3)

Here, q̂ = exp[2π iQ̂xy], where Q̂xy = x̂ŷ
LxLy

, and x̂(ŷ) and
Lx(Ly) correspond to the position operator and the length
of the system, respectively, in the x(y) direction. Addition-
ally, the matrix U is constructed by columnwise packing
all the occupied eigenstates of the BBH Hamiltonian under
periodic boundary conditions (PBCs). It is observed that the
quadrupole moment exhibits a quantized value of 1

2 , for the
regime | γ

λ
| < 1, while becoming trivial for | γ

λ
| > 1. It should

be mentioned here that a direct manifestation of Q = 1
2 at

the boundary is the accumulation of excess corner charges
of magnitude ± e

2 . This establishes the refined bulk-boundary
correspondence (BBC) in the second-order topological phase.

III. DISORDERED BBH MODEL

A. Clean limit: Trivial phase

1. Topological properties of the model

Disorder possesses the capacity to generate topological
phases when introduced in suitable systems. To explore this
interplay, we introduce QP disorder in the intracellular hop-
ping amplitude of the BBH model such that

γxn = γ + W cos(2πβxn + φ),

γyn = γ + W cos(2πβyn + φ). (4)

Here, γxn (xn) and γyn (yn) correspond to the hopping am-
plitude (position coordinate) along the x and y directions,
respectively, for the nth lattice site. The intercellular hopping
amplitude λ is, however, kept fixed at 1, and W corresponds to
the strength of the disorder. We have kept β equal to 1√

2
, which

is responsible for the introduction of incommensurability into
the system, and φ corresponds to the phase of the disorder
which is kept 0 throughout. It may be noted that different vari-
ants of the QP potential exist in the literature; however, the one
considered here is the most common. We plot the quadrupole
moment Qxy as a function of the disorder amplitude W and
the intracellular hopping amplitude γ (Fig. 4). The invariant
has been calculated on a 40 × 40 lattice, and a comparison
between different system sizes is done later. It should be men-
tioned here that the QP disorder has been introduced into the
model such that the original chiral symmetry of the system,
which is given by τ3 ⊗ σ0, is kept intact. This is crucial for
the quantization of the quadrupole moment, as mentioned in
Ref. [32]. Furthermore, the nested Wilson loop approach fails
here, owing to the lack of translational symmetry in the crystal
due to the inclusion of disorder potential. We observe in Fig. 4
that the system undergoes a transition into the second-order
topological phase characterized by the quadrupole moment in
the regime γ

λ
> 1 (which is completely trivial in the clean
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FIG. 4. The variation of the quadrupole moment Qxy as a func-
tion of the disorder strength W and the intracellular hopping
parameter γ is plotted. The vertical dotted line corresponds to γ =
1.05, which represents the trivial limit in the clean case. The horizon-
tal lines mark the regime where the system enters a disorder-driven
second-order topological phase.

case), for a finite nonzero value of the disorder strength.
This implies that the QP disorder restores the second-order
topology in the BBH model for a finite range of the disorder
strength prior to completely trivializing the system. We now
fix the value of the ratio γ

λ
at 1.05, which corresponds to

the trivial limit (Qxy = 0) in the clean case. Figure 5 shows
the plot of the quadrupole moment solely as a function
of the disorder strength. The plot shows a nontrivial value
of Q for W ranging roughly from 0.6 to 1.75. The band
structure of the disordered BBH model under open boundary
conditions (OBCs) also shows the formation of zero-energy
states in this region (Fig. 6). The agreement between the
quadrupole moment and emergence of zero-energy states thus
confirms the restoration of the refined BBC in the disorder-
induced second-order topological phase. Furthermore, the

FIG. 5. The quadrupole moment Qxy indicates a nontrivial topol-
ogy in the regime W ∈ (0.6, 1.75), thus proving the restoration of
bulk-boundary correspondence (BBC) by the quasiperiodic disorder.
Here, we have taken γ

λ
= 1.05, which corresponds to the trivial limit

in the clean case.

FIG. 6. The energy eigenvalues of the midband states are plotted
as a function of W . The dotted lines correspond to W = 0.6 and
1.75, which demarcate the disorder-driven topological phase from
the trivial one. We observe that the midband states are affixed at zero
energy in the topological regime. Here, γ

λ
= 1.05.

excess charge density is plotted for different values of the
disorder strength corresponding to the trivial and topological
phases (Fig. 7). It is observed that the accumulation of charge
densities at the corners of a square supercell is negligible
when W > 1.75 and W < 0.6, indicative of a trivial topol-
ogy. However, for 0.6 < W < 1.75, the distribution of excess
charge at the corners shows a pattern which is suggestive of
the inherent bulk quadrupole topology.

2. Localization study

In this section, we embark upon the localization properties
of the disordered BBH model. For this purpose, two diag-
nostic quantities, namely, the inverse participation ratio (IPR)
and the normalized participation ratio (NPR), are investigated.
The IPR can be mathematically represented as [42]

IPRm =
N∑

i=1,α

∣∣um
i,α

∣∣4
, α ∈ A, B,C, D, (5)

where m denotes the band index, and N denotes the total
number of lattice sites in the square supercell. Here, |um〉
corresponds to the mth eigenstate of the disordered BBH
Hamiltonian under OBCs. IPR represents an important signa-
ture of localization in condensed matter systems which tends
to 0 for extended states while being finite for localized states
(approaches 1 in the thermodynamic limit). The NPR, on the
other hand, can be represented as [43]

NPR = 1

N

1∑N
i=1,α

∣∣um
i,α

∣∣4 , α ∈ A, B,C, D, (6)

where the symbols represent the same quantities as mentioned
earlier. The NPR assumes a finite nonzero value in the ex-
tended case while tending to 0 in the thermodynamic limit
for the localized case. More precisely, the behavior of IPR in
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FIG. 7. The excess charge distribution has been plotted for (a) W = 0.3, (b) W = 1.0, (c) W = 1.2, and (d) W = 2.1, respectively. The
distribution shows no quadrupolar pattern in the trivial regime, that is, W < 0.6 and W > 1.75, as shown in (a) and (d). However, a distribution
pattern like Fig. 3(b) is seen in the topological regime [(b) and (c)].

localized and extended systems can be given as [44]

IPR ∼
{

1
LD , extended systems,

O(1), localized systems,
(7)

However, NPR shows a contrasting feature in the two
regimes:

NPR ∼
{

O(1), extended systems,
1

LD , localized systems,
(8)

We plot the average value of IPR and NPR (denoted by 〈IPR〉
and 〈NPR〉) for the four degenerate zero-energy states (Fig. 8).
It is observed that the values of 〈IPR〉 remain ∼0 until roughly
W = 0.6, beyond which it assumes a finite nonzero value.
Around W = 1.75, the value of 〈IPR〉 decreases, before finally
increasing again. This indicates that the four midband states
are delocalized when W < 0.6, which is like what happens
in the clean case for | γ

λ
| > 1. Beyond W = 0.6, the disorder-

driven quadrupole phase affixes these midband states at zero
energy and localizes them. For higher values of the disorder
strength (beyond W = 1.75), the states are no longer at zero
energy and are not topological. The decrease in the value of
IPR around W = 1.75 indicates a delocalization caused by the
phase transition that destroys the quadrupole topology in the
system. Much beyond W = 1.75, localization sets in due to
the larger values of the disorder strength. The system is then
in a trivial Anderson localized phase. The variation of 〈NPR〉
as a function of W [Fig. 8(b)] provides similar information.

Another widely investigated concept in the study of lo-
calization is the fractal dimension. Despite IPR and NPR
being excellent signatures of localization/delocalization in
a system, they are not individually efficient indicators of
multifractality. Therefore, to investigate the existence of pos-
sible multifractality in the system, we calculate the fractal
dimension D2 which assumes a value close to D in the ther-
modynamic limit for the extended states, while being 0 for
the localized states. However, in the multifractal phase, D2 ∈
(0, D). Here, D refers to the physical dimensionality of the
system, which is 2 in our case. The mathematical representa-
tion of D2 can be given as [43]

D2 = − lim
L→∞

ln(IPR)

ln(L)
. (9)

FIG. 8. Averages of Inverse Participation Ratio (IPR) and Nor-
malized Participation Ratio (NPR), namely, (a) 〈IPR〉 and (b) 〈NPR〉
are plotted as a function of the disorder strength. Below W = 0.6,
the midgap states are extended while being localized above that.
However, around W = 1.75, both 〈IPR〉 and 〈NPR〉 exhibit finite
nonzero values, indicating a possible multifractal state during phase
transition. The two dotted lines demarcate the regime where the
quadrupole moment is nontrivial.
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FIG. 9. The average fractal dimension 〈D2〉 exhibits a value close
to D = 2, for W < 0.6, representing a trivial delocalized phase.
In the topological regime, however, it approaches 0. During the
phase transition (around W = 1.75), 〈D2〉 assumes a value between 0
and 2, thus providing concrete evidence of a multifractal phase.
The calculations have been repeated for different system sizes to
eliminate any possible finite-size effect, as shown in the figure.

Here, L = Lx = Ly refers to the length of the system along the
x or y direction. We again plot the average value of D2 for
the four midgap states as a function of the disorder strength
in Fig. 9. Here, 〈D2〉 shows a value ∼2 and 0 for the regimes
W < 0.6 and W > 0.6, respectively, which is consistent with
the extended and localized nature of the mid-gap states. How-
ever, around W = 1.75, where the topological phase transition
occurs, the value of 〈D2〉 lies distinctly between the two ex-
tremes, that is, 0 < D2 < D. Thus, it is evident that, close
to the transition from a topological to a trivial phase, the
zero-energy states acquire a fractal nature before getting com-
pletely localized again. The calculations have been repeated
for various system sizes, and they provide robust evidence for
the inferences made above.

B. Clean limit: Topological phase

1. Topological properties

We now focus on the effect of disorder on the topological
properties of the BBH model, starting within a regime which
is nontrivial in the clean limit. We fix the value of γ

λ
at 0.5,

which originally corresponds to a quadrupolar TI [Fig. 2(a)].
The bulk band structure is similarly plotted as a function
of the disorder strength W (Fig. 10). We observe that the
in-gap states remain confined to zero energy until W = 1.5,
beyond which they shift, indicating a possible destruction of
the topological feature due to the imposed disorder. This is
further confirmed by the quadrupole moment, which shows
a transition to triviality at W = 1.5 (Fig. 11). Furthermore,
the distribution of the excess charge at W = 1.0 shows charge
accumulation of ± e

2 at alternate corners like the previous case
[Fig. 12(a)]. Beyond W = 1.5 [as shown in Fig. 12(b) for
W = 2.1], there is negligible charge accumulation in the sys-
tem, which is expected from a system with trivial quadrupole
moment (Fig. 12). All the calculations have been done on a
40 × 40 square supercell.

FIG. 10. The band structure of the Benalcazar-Bernevig-Hughes
(BBH) model as a function of the disorder strength W for γ

λ
= 0.5.

It is observed that the in-gap states that are depicted in red remain
confined at zero energy if W � 1.5.

2. Localization properties

To study the localization of the in-gap states, we again
resort to a study of IPR and NPR as a function of W (Fig. 13).
Interestingly, the system persists in a localized regime deep
within the topological as well as the trivial phase. However,
near the transition point, the states tend toward delocalization.
This is exhibited by a sudden dip (spike) in the value of 〈IPR〉
(〈NPR〉) around the transition point at W = 1.5. Furthermore,
finite and nonzero values of both 〈IPR〉 and 〈NPR〉 around
the transition point indicate that the in-gap states might show
possible multifractality. To confirm this, we resort to the eval-
uation of the fractal dimension D2 [Eq. (9)]. We observe that
D2 exhibits a value ∼0.4, indicating a localized phase on
both sides away from the transition point (Fig. 14). However,

FIG. 11. The quadrupole moment Qxy shows a behavior that ac-
curately reciprocates the behavior of the band structure in Fig. 10.
Here, Qxy remains affixed at 0.5, indicating a topological phase, for
the regime W � 1.5. Beyond this point, the system gets trivialized.
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FIG. 12. The distribution of excess charge on a square super-
cell of size 40 × 40 for (a) W = 1.0 and (b) W = 1.8. Evidently,
for W � 1.5, the system persists in the second-order quadrupolar
phase.

around the transition point, D2 ∈ (0, 2); more specifically,
D2 ∼ 1.0 near W = 1.5, thus indicating a multifractal phase.

IV. CONCLUSIONS

We observe a topological phase transition induced purely
by QP disorder inculcated in the hopping amplitude of the
BBH model. The quadrupole moment shows a restored
topological phase as a function of the disorder strength in
the regime where the clean system shows completely trivial
behavior. The band structure of the BBH model under OBC
also shows the emergence of zero-energy in-gap states in
exact correspondence with the quadrupole moment, thus
providing clear evidence of a second-order topological phase.
Furthermore, the distribution of charge at the corners of the
square supercell also shows a pattern that is suggestive of
the bulk quadrupole topology. A localization study done on
the midband states shows three different phases, namely,
trivial delocalized, topological localized, and Anderson
localized phases. The fractal dimension D2 shows that,
near the transition from the topological to the trivial
localized phase, the system becomes multifractal, which

FIG. 13. The variation of (a) 〈IPR〉 and (b) 〈NPR〉 shows that the
system is localized both in the topological (W � 1.5) and in the triv-
ial (W > 1.5) phase. However, the dip(spike) in the value of 〈IPR〉
(〈NPR〉) around W = 1.5 hints at a topological phase transition.

is characterized by a value of D2 between 0 and D. A similar
phenomena occurs when we study the system as a function
of disorder starting from a clean limit that is topological.
Here, the disorder drives the in-gap states from being

FIG. 14. The fractal dimension D2 shows that the in-gap states
exhibit a multifractal nature near the transition point W = 1.5
while being localized both in the trivial and the topological
phases.
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topologically localized to Anderson localized, corresponding
to higher values of the disorder strength W . The point of
transition is again host to a multifractal phase characterized
by finite nonzero values of both 〈IPR〉 and 〈NPR〉. The fractal
dimension D2 provides further concrete evidence for this
multifractality.
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