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Lévy flight for electrons in graphene in the presence of regions with enhanced spin-orbit coupling
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In this work, we propose an electronic Lévy glass built from graphene nanoribbons in the presence of
regions with enhanced spin-orbit coupling. Although electrons in graphene nanoribbons present a low spin-orbit
coupling strength, it can be increased by a proximity effect with an appropriate substrate. We consider graphene
nanoribbons with different edge types, which contain circular regions with a tunable Rashba spin-orbit coupling,
whose diameter follows a power-law distribution. We find that spin-orbital clusters induce a transition from su-
perdiffusive to diffusive charge transport, similar to what we recently reported for nanoribbons with electrostatic
clusters [Phys. Rev. B 107, 155432 (2023)]. We also investigate spin polarization in the spin-orbital Lévy glasses,
and show that a finite spin polarization can be found only in the superdiffusive regime. In contrast, the spin
polarization vanishes in the diffusive regime, making the electronic Lévy glass a useful device whose electronic
transmission and spin polarization can be controlled by its Fermi energy. Finally, we apply a multifractal analysis
to charge transmission and spin polarization, and find that the transmission time series in the superdiffusive
regime are multifractal, while they tend to be monofractal in the diffusive regime. In contrast, spin polarization
time series are multifractal in both regimes, characterizing a marked difference between mesoscopic fluctuations
of charge transport and spin polarization in the proposed electronic Lévy glass.
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I. INTRODUCTION

With the advent of graphene, two-dimensional materials
became one of the most promising research areas in physics
and material science [1–7]. This prominence is primarily at-
tributed to their exceptional mechanical, optical, electrical,
and magnetic properties. Graphene has also been identified as
a promising material for spintronics because, given its long
spin-relaxation length, it can act as an ideal spin transport
channel. However, its low spin-orbit coupling (SOC) strength
makes manipulating spin challenging [2,4].

The key ingredient for spintronic devices and to spintron-
ics in general is the SOC, a relativistic effect in solid-state
physics [8,9]. Spintronics seeks to introduce, control, and
identify spins within electronic devices. The fundamental re-
quirement for developing a spintronic device is generating a
spin-polarized or purely spin-based current [10–22]. However,
in pristine graphene, the intrinsic SOC strength is small, only
tens of microelectronvolts [23]. This can be overcome by
depositing graphene on Ni(111) intercalated with a Au layer
[24], or by deposition on transition-metal dichalcogenides
[2–4], such as MoS2 or WSe2, and topological insulators [25],
such a s Bi2Te3, which possess strong SOC. The former can
increase the extrinsic SOC strength up to 13 meV [24], and
in some cases, ≈100 meV [26]. The latter give rise to van der
Waals heterostructures [2–4], which, through the proximity-
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induced SOC, have an active extrinsic SOC strength on the
millielectronvolts scale that can be controlled by a transverse
electric field.

Beyond that, graphene is a unique platform for mim-
icking wave optics through electronic phenomena. This is
due to the linear dispersion relation of electrons at low ex-
citation energies, forming the so-called Dirac cone, which
aligns qualitatively with the dispersion of photons. In this
context, electronic analogs of some optical phenomena and
devices have already been reported. For instance, electronic
Mie scattering in a graphene ribbon imbibed in a cylindrical
electrostatic potential was reported in Refs. [27,28] and ex-
perimentally measured in Ref. [29]. In fact, inspired by this
experiment, we proposed in Ref. [30] an electronic analog for
an optical Lévy flight device [31,32], dubbed an electronic
Lévy glass.

The optical Lévy glass is built with microspheres whose
diameter follows a heavy-tailed distribution, which induces
light to have a superdiffusive (or Lévy) dynamic instead of
the standard diffusive one [31]. Therefore, we proposed the
electronic Lévy glass as a graphene nanoribbon with circu-
lar electrostatic clusters whose radii follow a heavy-tailed
distribution, which induces electrons to a superdiffusive be-
havior [30]. We showed that the proposed electronic Lévy
glass presents a transition from a superdiffusive to a diffusive
transport regime, which has not yet been observed in the
optical case. Since the position of the microspheres and of the
electrostatic clusters are fixed in the respective Lévy glasses,
subsequent scattering is correlated, in contrast to a typical
Lévy walk where the scattering is uncorrelated [31,33].
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FIG. 1. Illustration of (a) AGNR and (b) ZGNR connected to
two leads (red). Circular light yellow regions represent the graphene
proximity-coupled to a high SOC material. (c) Histogram of cluster
radii (symbols); the dashed line is a fit obtained from Eq. (7) with
β = 1.22 ± 0.01.

In general, the transport regime through a Lévy glass can
be characterized by the dependence of the average transmis-
sion coefficient with the device length L, such that [31,33,34]

〈T 〉 = 1

1 + (L/�)γ
, (1)

where � is the mean free path. When γ = 1, the usual behavior
gives rise to regular diffusive transport. Whereas, when γ <

1, we have a slow decay of the transmission characterizing a
superdiffusive (i.e., Lévy) transport regime.

Intending to extend the application of the electronic Lévy
glass to spintronics, in the present work we investigate a spin-
tronic device built from a graphene nanoribbon in the presence
of circular clusters with tunable SOC, whose radii follow a
power law distribution, as illustrated in Fig. 1. We analyze
the impact of the spin-orbital clusters on charge transmission
and spin polarization through the Lévy electronic glass using
the Landauer-Büttiker formalism. Our results show that spin-
orbital clusters can induce a transition from superdiffusive to
diffusive transport regime as we vary the Fermi energy, similar
to the one reported in Ref. [30] with electrostatic clusters.
Furthermore, we show that an electronic Lévy glass with
spin-orbital clusters only presents a finite spin polarization
in the superdiffusive regime, and that the spin polarization

can be improved when a weak electrostatic potential is also
included in the sites of the spin-orbital cluster. In contrast, the
spin polarization vanishes in the diffusive regime, indicating
that this electronic Lévy glass could be useful on a future
spintronics device.

In order to better understand the superdiffusive-to-diffusive
transport transition, we also analyze the mesoscopic fluctu-
ations of charge transmission and spin polarization. More
specifically, we apply a multifractal analysis to charge trans-
mission and spin polarization via a fictional times series,
where the Fermi energy plays the role of a fictional time
[35–40]. We find that charge transmission time series in the
superdiffusive regime are multifractal, while they tend to be
monofractal in the diffusive regime. However, between su-
perdiffusive and diffusive regimes, the charge transmission
time series shows a significant increase in multifractality,
which signals a phase transition [41]. Thus, the transition
from superdiffusive to diffusive charge transport can be in-
terpreted as a phase transition, probably associated with a
chiral symmetry breaking [42,43]. In contrast, spin polariza-
tion time series are multifractal in both regimes and do not
indicate a phase transition, characterizing a marked difference
between mesoscopic fluctuations of charge transport and spin
polarization.

This work is organized as follows: in Sec. II, we intro-
duce the graphene tight-binding model, the steps to build
the electronic Lévy glass, and a brief review of Multifractal
Detrended Fluctuation Analysis [44]. Section III presents our
results for charge transmission and spin polarization through
the electronic Lévy glass. In Sec. IV, we discuss the origin
of the superdiffusive-to-diffusive charge transport transition.
Finally, we present our conclusions in Sec. V.

II. METHODOLOGY

We investigate charge transmission and spin polarization
through an electronic Lévy glass with spin-orbital clusters.
The latter is built from a graphene nanoribbon proximity
coupled to a high SOC material, as illustrated in Figs. 1(a)
and 1(b). The circular regions illustrate a high SOC material
in contact with the graphene nanoribbon. Thus, the interface
proximity effect induces a Bychkov-Rashba SOC in the cir-
cular areas, giving rise to spin-orbital clusters. The circle
positions are randomly distributed while their radii follow a
power-law distribution, as shown in Fig. 1(c).

First, we will introduce the microscopic graphene tight-
binding model with Bychkov-Rashba SOC, and the steps to
build the electronic Lévy glass. After that, we briefly present
the Multifractal Detrended Fluctuation Analysis (MF-DFA)
methodology used to [44] analyze the mesoscopic fluctuations
of charge transport and spin polarization induced by spin-
orbital clusters in the electronic Lévy glass.

A. Microscopic Model

Charge transport and spin polarization through graphene
nanoribbons in the presence of spin-orbital clusters can be
described by the scattering matrix, which is given by [45]

S =
[

r t ′
t r′

]
, (2)
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where t (t ′) and r(r′) are the transmission and reflection matrix
blocks, respectively. The charge transmission coefficient can
be calculated from the Landauer-Büttiker relation

T = Tr[tt†], (3)

which is valid in the linear response regime and for low
temperatures.

In the case of spin-dependent transport, Eq. (3) is com-
monly represented without the trace operator acting on spin
space [11,12]

T =
[

T11 T12

T21 T22,

]
, (4)

where the charge transmission is T = T11 + T22 with T11 =
T↑↑ + T↑↓ and T22 = T↓↑ + T↓↓. Such that it is possible to
define individual spin polarizations for each of the directions
denoted by the x, y, and z-axes

Px = 2Re[T21]

T11 + T22
,

Py = 2Im[T21]

T11 + T22
,

Pz = T11 − T22

T11 + T22
. (5)

Eq. (5) is only valid when there is no SOC in the leads shown
in red in Fig. 1(a). Therefore, we can write the input and
output wave modes of the scattering region, shown in black
in Fig. 1(a), on the basis of orthogonal Bloch states. The spin
polarization arises due to scattering by the spin-orbit clusters
in the scattering region.

Numerical calculations of the transmission coefficients
were performed with KWANT [46], which implements a
Green’s function–based algorithm within the tight-binding ap-
proach. The tight-binding Hamiltonian for graphene is given
by [47–49]

Ĥ = −t0
∑

〈i, j〉,σ
c†

iσ c jσ −
∑

〈i, j〉,σ,σ ′
ıλi, j c†

i,σ ([s]σσ ′ × r̂i j )zc j,σ ′ ,

(6)

where the indices i and j run over all lattice sites and 〈i, j〉
denotes first nearest neighbors, ci,σ (c†

i,σ ) are annihilation (cre-
ation) operators that remove (add) electrons to site i with spin
σ =↑,↓. s is a vector of Pauli matrices and r̂i j is the unit
vector along the line segment connecting sites i and j. The
first term in Ĥ represents the usual electron hopping between
lattice sites and t0 is the hopping energy, which has a typical
value of 2.7 eV [50]. The second term is the nearest-neighbor
hopping term describing the Bychkov-Rashba SOC induced
by the interface proximity effect, which explicitly violates
�z → −�z symmetry. Therefore, the Rashba interaction λi j will
be λi j = λ when the sites i and j are inside one of the circular
regions with spin-orbit coupling, and λi j = 0 otherwise.

Figures 1(a) and 1(b) depict two electronic Lévy glasses
based on armchair (AGNR) and zigzag (ZGNR) graphene
nanoribbons in the presence of spin-orbital clusters, which
originate from proximity-induced SOC due to a substrate not
explicitly shown in the illustration. The construction of the
electronic Lévy glass involves four key steps: (1) random

selection of a point on the lattice to be the center of the circular
spin-orbital cluster, as well as its radius R; (2) assignment of a
constant Rashba interaction λi j = λ for all neighboring sites i
and j within the circular region; (3) random selection of a new
lattice point and radius for the next circular region. If the cir-
cular region overlaps with others already placed, repeat step 3
until a non-overlapping configuration is achieved; then, go to
step 2; and (4) conclude the procedure after 5000 consecutive
failed attempts to introduce a new circular region. We limit
the maximum radius of the circular regions to one-eighth
of the lattice width without loss of generality. Due to the
divergence of the second moment of Lévy distributions, in-
troducing a cutoff in the radius of the circular regions is a
necessity [51].

Building the graphene nanoribbons with spin-orbital clus-
ters results in a power law radii distribution, as illustrated in
Fig. 1(c), which shows the histogram of the radii distribu-
tion. The probability density P(r) of the random variable r is
given by

P(r) ∝ 1

rβ+1
, (7)

where 0 < β < 2. If 0 < β < 1, the first and second moments
of P(r) diverge because of heavy tails, while for 1 � β < 2,
only the second moment diverges. The histogram was ob-
tained from 104 samples of AGNR with width WA = 49.5a0

and length LA = 51.4a0, where a0 = 2.49 Å is the graphene
lattice constant. The clusters occupy 42.24% ± 0.03 of the lat-
tice area. These results remain unchanged for different device
lengths L and AGNR or ZGNR widths.

B. Multifractal Analysis

In this section, we briefly review the Multifractal De-
trended Fluctuation Analysis (MF-DFA), proposed in Ref.
[44] to measure correlations, as well as the multifractal
characteristics of charge transmission and spin polarization
fictional time series, where the Fermi energy plays the role of
a fictional time [35–40]. Let Tn ≡ T (n�E ) be the nth trans-
mission value (be it charge or spin polarization), where �E
is the fictional time step and n = 1, 2, ..., M, where M is the
number of steps. Thus, E = M�E is the range of values for
the Fermi energy, and {Tn} is the transmission to be analyzed.
In order to perform the MF-DFA, we first define the profile of
{Tn} as

T̃ (i) =
i∑

n=1

(Tn − 〈T 〉), (8)

where 〈T 〉 is the average transmission defined as 〈T 〉 =
(1/M )

∑M
n=1 Tn.

We divide the profile series {T̃ (i)} into Ns = int(M/s) non-
overlapping windows of size s, which we denote by {T̃j (i)},
j = 1, 2, ... Ns, and fit each window j to a linear function
f j (i). With the latter, we can compute the variance of each
window of the detrended profile series as

F 2
s ( j) = 1

s

s∑
i=1

{T̃ [( j − 1)s + i] − f j (i)}2, (9)
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where j = 1, 2, ..., Ns, and carry out a detrending in the win-
dow by fitting the corresponding interval to a linear function
f j (i), j = 1, 2, ..., Ns. Finally, we compute the q-th order
fluctuation function as

Fq(s) =
⎛
⎝ 1

2Ns

2Ns∑
j=1

[
F 2

s ( j)
]q/2

⎞
⎠

1/q

(10)

for a set of real values of q. Once we have obtained the set
of functions Fq(s), we study their scaling behavior with the
window size s according to the relation

Fq(s) ∼ sh(q), (11)

where h(q) is the generalized Hurst exponent. If h(q) is q-
dependent, then the corresponding time series is said to be
multifractal, while if h(q) is independent of q, the time series
is monofractal. We also define

τ (q) = qh(q) − 1, (12)

such that the multifractal singularity spectrum f (α) is given
by a Legendre transform of τ (q), defined as

f (α) = αq − τ (q), (13)

where α = dτ/dq. From the point of view of the singularity
spectrum f (α), we know that multifractal time series are
characterized by a broad f (α), while monofractal ones present
narrow f (α). In other words, the strength of the multifractality
can be inferred from the width of f (α), �α = αmax − αmin,
such that as �α → 0, we have a loss of multifractality and a
consequent tendency to monofractal behavior.

III. RESULTS

Figure 2 shows the electronic charge transmission, calcu-
lated from Eq. (3), as a function of Fermi energy. Dotted
lines represent the transmission through pristine AGNR and
ZGNR of width WA = 49.5a0 and WZ = 49.6a0 and length
LA = 1050.7a0 and LZ = 1050.5a0, respectively. We selected
a semiconducting AGNR and a metallic ZGNR, although we
verified that our results are not dependent on such choices.
Next, we calculated the charge transmission through nanorib-
bon with SOC in all sites, i.e., including leads and scattering
region. The transmission is slightly shifted, as shown by the
solid lines in Fig. 2(a) with λ = 0.07t0. On the other hand,
when we introduce SOC only in the sites of the scattering
region, the charge transmission undergoes a slight decrease
followed by mesoscopic fluctuations, as shown by the solid
lines in Fig. 2(b). Finally, Fig. 2(c) shows the charge transmis-
sion through the electronic Lévy glass, i.e., in the presence of
spin-orbital clusters. The spin-orbital clusters induce an over-
all decrease in transmission relative to the others, along with
significant mesoscopic fluctuations, which we will analyze in
detail below. The data set in Fig. 2(c) corresponds to a single
configuration of spin-orbital clusters, but it is representative
of other configurations.

To understand the effect of the spin-orbital clusters on
the charge transmission through the electronic Lévy glass,
we plot the average charge transmission 〈T 〉 as a function of
the device length L for Rashba interactions λ = 0.07t0 and
0.1t0, as shown in Fig. 3. We conveniently normalized the
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FIG. 2. Electronic charge transmission through pristine AGNR
and ZGNR (dotted lines) as a function of Fermi energy. Continuous
lines represent the charge transmission through nanoribbons with
Rashba spin-orbit interaction λ = 0.07t0 (a) in all sites including
leads and scattering region, (b) only in the scattering region, and
(c) only in the circular regions, i.e., the electronic Lévy glass. The
data set in (c) corresponds to a single configuration of spin-orbital
clusters, but it is representative of other configurations.

average transmission to be between 0 and 1. We obtained the
average charge transmissions (data points), by averaging the
charge transmission time series of a single spin-orbital cluster
configuration, where the Fermi energy E plays the role of a
fictional time. We have verified that no significant changes
are observed if we perform the same procedure on a different
cluster configuration. The Fermi energy range is defined by
the pristine AGNR and ZGNR transmission steps shown
in Fig. 2, which coincide with the number of propagating
modes on each ribbon N . The integer parameter N is directly
proportional to the width W and the Fermi wave vector kF

through the relationship N = kFW/π . Thus, each N value has
a different energy range where we numerically calculate a
charge transmission time series with 5000 time steps. Finally,
we use the latter to obtain the average charge transmission.

Figure 3(a) shows the average transmission 〈T 〉 as a func-
tion of L for AGNR with Rashba interaction λ = 0.07t0 for
N = 2 (circles), 3 (squares), and 30 (diamonds). We can
fit the data with Eq. (1) and obtain the scaling exponent
γ associated with N . The exponent characterizes the trans-
port regime, diffusive if γ = 1 or superdiffusive if γ < 1.
For N = 2, which corresponds to the low Fermi energy
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FIG. 3. Average transmission through electronic Lévy glasses as a function of their length L, with Rashba interaction (a), (b) λ = 0.07t0

and (c), (d) λ = 0.1t0. The left-hand-side panels (a), (c) are for AGNR with N = 2 (circles), 3 (squares), and 30 (diamonds), while the
right-hand-side panels (b), (d) are for ZGNR with N = 3 (circles), 5 (squares), and 31 (diamonds). The solid lines are fits obtained from
Eq. (1). The data was obtained from a single configuration of spin-orbital clusters, but it is representative of other configurations.

regime, the exponent is γ = 0.30. It increases to γ = 0.94 for
N = 30, which corresponds to a higher Fermi energy. Fig-
ure 3(c) shows a similar behavior for AGNR with λ = 0.1t0,
i.e., when N = 2 (low energy) the exponent is γ = 0.4, and it
increases to γ = 0.92 for N = 30 (high energy). Figures 3(b)
and 3(d) show 〈T 〉 as a function of L for ZGNR with λ =
0.07t0 and 0.1t0, respectively, and N = 3 (circles), 5 (squares),
and 31 (diamonds). Similarly to what happens in the AGNR,
when N = 3 we have γ ≈ 0.6, and it increases to 0.95 for
N = 31.

Analyzing Fig. 3, we notice that when N is large, i.e., at
higher energies, the scaling exponent is close to one, γ  1,
indicating a diffusive transport regime. Conversely, when N
is small, i.e., at low energies (also close to Dirac point), the
exponent γ  0.5, which indicates a superdiffusive transport
regime. These findings indicate that the presence of spin-
orbital clusters can induce Lévy charge transport in graphene
nanoribbons. Furthermore, the electronic Lévy glass with
spin-orbital clusters shows a transition from superdiffusive
to diffusive charge transport, as the Fermi energy varies. We
also stress that those results are independent of whether the
electronic Lévy glass is built with an AGNR or a ZGNR, and
independent of the configuration of the spin-orbital clusters.

The superdiffusive-to-diffusive charge transport transition
can be further investigated by plotting the scaling exponent as
a function of the number of propagating modes. Figure 4(a)
shows γ as a function of N for AGNR and ZGNR electronic
Lévy glasses with Rashba interactions λ = 0.07t0, 0.1t0, and
0.8t0. For N > 10, the data exhibit stable values around γ =

FIG. 4. (a) Scaling exponent γ and (b) the mean free path � from
Eq. (1) as a function of N for AGNR- and ZGNR-based electronic
Lévy glasses in the presence of spin-orbital clusters with Rashba
interaction strength λ = 0.07t0, 0.1t0, and 0.8t0.
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FIG. 5. Charge transmission T and spin polarization Pz as a function of Fermi energy E . The left-hand-side column is for AGNR with
N = 2 (red lines) and N = 30 (blue lines), and the right-hand-side is for ZGNR with N = 3 (red lines) and N = 31 (blue lines). Dashed and
solid lines refer to λ = 0.07t0 and λ = 0.1t0, respectively.

1, which means a regular diffusive transport. Meanwhile, for
N < 10, the scaling exponent γ � 1, which indicates a change
to a superdiffusive transport regime. Notably, the results are
independent of the Rashba interaction strength and of the
type of ribbon edge, which asserts that spin-orbital clusters
induce a Lévy-type electronic transport at low energies. Fig-
ure 4(b) shows the mean free path � as a function of N . The
� is independent of the Fermi energy in the diffusive regime
and decreases with increasing Rashba interaction strength be-
cause the spin-orbit cluster plays the role of a disorder. In
contrast, in the superdiffusive regime, � appears to increase
and rapidly becomes ill-defined, as expected in superdiffusive
systems [51].

Aside from its charge transport properties, the electronic
Lévy glass in the presence of spin-orbital clusters is also
expected to exhibit spin polarization transport. In order to
investigate the effect of the clusters on the spin polarization,
we analyze the polarizations defined in Eq. (5), as a function
of device length, Fermi energy (i.e., number of propagating
modes N), and Rashba interaction strength. As the spin-orbital
cluster distribution breaks the transverse reflection symmetry
[11,52], the spin polarization is not expected to vanish in all
three directions: x, y, and z.

Figure 5 shows the charge transmission T and spin
polarization Pz as a function of Fermi energy E . The behavior
of Px and Py is qualitatively equivalent to Pz. Dashed and solid
lines refer to λ = 0.07t0 and λ = 0.1t0, respectively. Panels
on the left-hand-side correspond to AGNR with N = 2 (red
lines, bottom axis) and N = 30 (blue lines, top axis), while
the right-hand-side ones are for ZGNR with N = 3 (red lines,

bottom axis) and N = 31 (blue lines, top axis). The widths
of the ribbons are WA = 49.5a0 and WZ = 49.6a0 and lengths
LA = 1050.7a0 and LZ = 1050.5a0. It is important to keep in
mind that, according to the data in Fig. 4(a), regular diffusive
transport happens for N > 10, and superdiffusive transport
for N < 10.

As shown in the top panels of Fig. 5, the transmission is
practically constant in the diffusive transport regime (blue
lines), i.e., without significant mesoscopic fluctuations. At
the same time, the spin polarization is approximately null
(bottom panels), independently of Rashba interaction strength
and edge type. Thus, the presence of spin-orbital clusters
do not induce any spin polarization in the diffusive regime.
On the other hand, charge transmission shows large meso-
scopic fluctuations in the superdiffusive transport regime (red
lines), which gives rise to spin polarization with large meso-
scopic fluctuations for both edge types, and increases with
the Rashba interaction strength. Thus, the presence of spin-
orbital clusters is capable of inducing a spin polarization in
the superdiffusive regime only.

Figure 6 shows the average spin polarization 〈Px,y,z〉 as a
function of device length L. Dashed and solid lines refer to
λ = 0.07t0 and λ = 0.1t0, respectively, and serve as an eye
guide. Panels on the left-hand-side are for AGNR with N = 2
(red symbols) and N = 30 (blue symbols), while the right-
hand-side panels are for ZGNR with N = 3 (red symbols)
and N = 31 (blue symbols). The results of Fig. 6 agree with
the ones of Fig. 5. When the transport is in a diffusive regime
(blue symbols), the average spin polarization is approximately
null, independently of device length, Rashba interaction, and
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FIG. 6. Average spin polarization 〈Px,y,z〉 as a function of device
length L. The left column is for AGNR with N = 2 (red symbols)
and N = 30 (blue symbols), and the right column is for ZGNR with
N = 3 (red symbols) and N = 31 (blue symbols). Dashed and solid
lines refer to λ = 0.07t0 and λ = 0.1t0, respectively, and work as an
eye guide.

edge type. On the other hand, when the transport is in a
superdiffusive regime (red symbols), the average spin polar-
ization is significant for all device lengths.

The spin polarization behavior shown in Figs. 5 and 6
can be rationalized by looking at the spin-polarized density
of states. Figure 7 shows 〈Sz〉 for AGNR electronic Lévy
glasses with λ = 0.1t0 for N = 1, 3, 5, 9, and 30 from top
to bottom. The presence of spin-orbital clusters induce an ef-
ficient spin-up and spin-down separation in the superdiffusive
regime. In practice, this spin segregation means that electrons
are submitted to a low magnetoresistivity, which gives rise to

high charge transport T and spin polarization Pz, as shown
in Fig. 5. Conversely, in the diffusive regime, spin-up and
spin-down electrons are not segregated, which originate a
large magnetoresistivity, decreasing the charge transport T
and suppressesing spin polarization Pz. This feature makes the
electronic Lévy glass in the presence of spin-orbital clusters
an efficient spin filter, which can be tuned by its Fermi energy.

However, depositing graphene on a substrate can introduce
other effects, such as electrostatic potential and strain, in
addition to increasing SOC [2,4]. As previously mentioned,
we have already shown that electrostatic clusters also give
rise to a superdiffusive-diffusive transition [30]. Hence, both
electrostatic and spin-orbital clusters tend to improve the
transition in charge transport, see Fig. 4(a). Conversely, the
effects of electrostatic and spin-orbital clusters on the spin
transport are unclear. Therefore, we calculated the spin po-
larization introducing a constant on-site energy U in all sites
of the spin-orbital cluster, i.e., all sites in the circular light
yellow regions of Fig. 1. Figure 8 shows the spin polarization
Pz through a spin-orbital Lévy glass as a function of Fermi
energy E for λ = 0.1t0 and different on-site energy values
U = 0, 0.01t0, 0.02t0, 0.05t0, and 0.1t0. In the superdiffusive
regime (upper panels), we observe an increase in spin po-
larization for weak on-site energies U = 0.01t0 and 0.02t0
compared to the case U = 0. After that, the spin polariza-
tion decreases with increasing U , as expected. In contrast,
in the diffusive regime (bottom panels), the spin polarization
remains close to zero independent of U . Thus, we find that
a weak electrostatic potential induced by the substrate can
increase the spin polarization through the spin-orbital Lévy
glass in the superdiffusive regime.

IV. DISCUSSION

According to Fig. 4(a) the electronic Lévy glass with
spin-orbital clusters show a superdiffusive-to-diffusive charge
transport transition as the Fermi energy increases. This means

FIG. 7. Spin-polarized density of states 〈Sz〉 for AGNR electronic Lévy glass with λ = 0.1t0 for N = 1, 3, 5, 9, and 30 from top to bottom.
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FIG. 8. Spin polarization Pz as a function of Fermi energy
E for λ = 0.1t0 and different site cluster energy values U =
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that for low energies (N < 10), the charge transport is su-
perdiffusive, while for high energy (N > 10), it is diffusive.
We have recently reported a similar transition on an electronic
Lévy glass with electrostatic clusters but without SOC in Ref.
[30]. Thus, we conclude that electrostatic clusters and spin-
orbital clusters can independently induce Lévy-like electronic
transport in graphene nanoribbons.

Furthermore, the electronic Lévy glass with spin-orbital
clusters presents spin polarization in the superdiffusive
regime, while in the diffusive regime it does not. In other
words, we have high spin polarization efficiency for low
Fermi energy (close to Dirac point) and low efficiency for
high energy. High spin polarization efficiency is related to
more significant mesoscopic fluctuations induced by the spin-
orbital clusters in the superdiffusive regime in contrast with
weak mesoscopic fluctuations in the diffusive regime, as
shown in Fig. 5. These features make the electronic Lévy
glass a candidate for spintronics applications because its spin
polarization can be tuned using its Fermi energy, making it an
efficient spin filter as shown in Fig. 7.

As in the case of the electrostatic clusters, the breaking
of chiral symmetry is the most compelling explanation for
the transport regime transition observed in our calculations
[30], as well as for the change in spin polarization efficiency.
The chiral symmetry is preserved at low energies (close
to the Dirac point) while it is broken in the high energy
limit [53], which could induce the transition from the Lévy
transport regime to the diffusive one. Hence, the observed
superdiffusive-to-diffusive transition can be understood as a
signature of chiral symmetry breaking. In fact, Refs. [42,43]
have shown that chiral symmetry breaking can be associated
with a non-equilibrium phase transition. Thus, a multifractal
analysis of charge transport and spin polarization time series
is fundamental because it can identify such phase transitions.
As shown in Ref. [41], when we approach a phase transition,
there is an increase in multifractality, i.e., an increase in the

variation of the generalized Hurst exponent as a function of q
and, therefore, an increase in width of �α.

Figure 9 shows the multifractal analysis of charge trans-
mission T and spin polarization Pz time series for AGNR
(left panels, (a)–(d) and ZGNR (right panels, (e)–(h) for λ =
0.07t0 and different N values. Figures 9(a) and 9(e) show
the generalized Hurst exponent h(q) as a function of q while
Figs. 9(b) and 9(f) show the multifractal singularity spectra
f (α) as functions of α obtained from the charge transmission
time series. For AGNR, when N = 2 and 5, h(α) varies with
q, indicating a multifractal time series in the superdiffusive
regime; when N = 30, the variation decreases indicating a
multifractality weakening (tendency to monofractality) in the
diffusive regime, see Fig. 9(a). This result is supported by
Fig. 9(b) where �α is large when N = 2 and 5, and decreases
when N = 30. The same analysis is valid for the ZGNR with
N = 3 and N = 31 in Figs. 9(e) and 9(f). This tendency to
lose multifractality with an increase in N agrees with recent
experimental and theoretical studies [36,37], which developed
the multifractal analysis of magnetoconductance time series
in graphene ribbons with standard Anderson disorder. On the
other hand, for electronic Lévy glasses when N = 10 and
N = 7 for AGNR and ZGNR, respectively, we see a signifi-
cant increase in the amplitude of h(q) and the width of �α,
which is an indication that we are close to a non-equilibrium
phase transition. This result supports the hypothesis that the
superdiffusive-to-diffusive transition is a signature of chiral
symmetry breaking.

Figures 9(c) and 9(g) show h(q) and Figs. 9(d) and 9(h)
show f (α) obtained from the spin polarization Pz time series.
h(α) varied significantly with q independent of N and edge
type. This is supported by the width of �α that is large.
This indicates that the spin polarization time series is always
multifractal, in contrast with the charge transport time series,
which is multifractal for N < 10 and tends to be monofractal
for N > 10. Although the multifractal analysis of the spin po-
larization time series does not provide information about the
breaking of chiral symmetry, it shows that the multifractality
of the spin polarization time series is not lost in the diffusive
regime, i.e., high energy limit, as opposed to what happens
in the case of charge transport. This is a notable feature of
mesoscopic fluctuations of spin polarization in contrast to
mesoscopic fluctuations of charge transport. Furthermore, the
findings of Fig. 9 are qualitatively equivalent to what we find
for λ = 0.1t0 and spin polarization directions Px,y.

Finally, we must discuss the possible origin of the mul-
tifractality in the time series of charge transport and spin
polarization reported in our results. As one might recall, the
density of states is sensible to Fermi energy variations. When
we change the energy, it changes the density of states, which
can induce correlations in the time series. The correlations are
robust for charge transport time series when N < 10, increas-
ing further as we approach the phase transition, leading to the
multifractal time series. However, the correlations weaken as
N increases, leading to a loss of multifractality in the time
series for N > 10. On the other hand, the correlations induced
by the density of states in the spin polarization time series
are always robust, making its time series multifractal for all
values of N . Furthermore, this persistent multifractal polar-
ization behavior for all values of N could also be associated
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FIG. 9. Multifractal analysis of charge transmission T and spin polarization Pz time series of AGNR (left panels, (a)–(d)) and ZGNR (right
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singularity spectrum f (α) as a function of α obtained from charge transmission time series. (c) and (g) h(q) and (d) and (h) f (α) obtained
from spin polarization Pz time series.

with spin-flip processes. This confirms that spin polarization
is more sensible to variations in the density of states, when
compared to pure charge transport.

V. CONCLUSIONS

In summary, we proposed an electronic Lévy glass com-
posed of graphene nanoribbons in the presence of regions
with enhanced spin-orbit coupling. We considered nanorib-
bons with armchair and zigzag edges containing circular
regions with a tunable Rashba spin-orbit coupling, whose
diameter follows a power-law distribution. We found that
spin-orbital clusters induce a transition from superdiffusive to
diffusive charge transport, similar to our recent investigation
on nanoribbons with electrostatic clusters [30]. We also in-
vestigated spin polarization in the spin-orbital Lévy glasses
and observed that a finite spin polarization can be found
only in the superdiffusive regime. Furthermore, our findings
indicate that a weak electrostatic potential possibly induced
by a substrate can also increase spin polarization in the su-
perdiffusive regime. In contrast, the spin polarization vanishes
in the diffusive regime, making the electronic Lévy glasses a
useful spintronics device whose electronic transmission and
spin polarization can be controlled by its Fermi energy.

Finally, we applied a multifractal analysis to charge transmis-
sion and spin polarization and found multifractal transmission
time series in the superdiffusive regime, while they tend
to be monofractal in the diffusive regime. In contrast, spin
polarization time series are multifractal in both regimes,
characterizing a marked difference between mesoscopic fluc-
tuations of charge transport and spin polarization in our
electronic Lévy glass.
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