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Photonic nanoparticle arrays present a unique platform for exploring optical topological phenomena. In this
study, we incorporate the concept of synthetic dimensions into the plasmonic system, which allows us to
investigate Weyl physics within a chain of metallic nanoparticles. By introducing two extra periodic positional
parameters into the chain, we construct a synthetic three-dimensional space that gives rise to synthetic Weyl
points (WPs). Our findings reveal that the chain maintains topologically protected edge modes even when the
inversion symmetry of the chain is broken. The topological properties of these edge modes are intrinsically linked
to the WPs within the synthetic three-dimensional space. However, degenerate edge modes emerge exclusively
in chains possessing inversion symmetry. Furthermore, we uncover the bulk-edge correspondence in the chains,
yielding a deeper understanding of the topological nature of edge modes in systems without symmetry. Our
research not only clarifies the topological origin of a class of edge states within asymmetric nanoparticle chains
but also provides perspectives for realizing higher-dimensional topological effects in nanoparticle arrays.
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I. INTRODUCTION

Over the past decade, topological electronic materials
and topological classical wave systems have attracted con-
siderable attention due to their ability to support localized
edge modes that are resilient to backscattering from disor-
der and impurities [1–19]. The phenomenon of topological
protection, which leads to these edge modes, is generally as-
sociated with the inherent symmetries of the materials [3–9].
For instance, in one-dimensional (1D) Hermitian systems,
the presence of inversion symmetry guarantees the existence
of a quantized Zak phase [6–9], which plays an important
role in the prediction and characterization of edge modes
through the established principle of bulk-edge correspondence
[8–10]. Extending beyond the realm of symmetry-protected
edge modes, topological edge states have been identified in
numerous systems that do not conform to a conventional
quantized topological index, such as n-root topological insu-
lators [11–16] and 1D trimer lattices with broken inversion
symmetry [17,18,20]. In the former case, the topological
nature of n-root topological insulators is derived from the
squared parent Hamiltonian [11,14], while the latter’s topol-
ogy emerges from the associated two-dimensional (2D) parent
system [17].

In recent years, the concept of synthetic dimension has
been extensively employed to realize higher-dimensional
topology in low-dimensional structures [21–31], offering a
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new perspective for understanding the origins of topology
in asymmetric systems. In particular, Weyl physics has been
investigated in 1D and 2D symmetry-broken structures using
synthetic dimensions, where the emergence of edge states is
attributed to the topology of synthetic Weyl points (WPs)
[25–29]. A WP is a nodal degenerate point in a three-
dimensional (3D) reciprocal space, characterized by linear
dispersion in all directions near it [32–37]. Each WP is identi-
fiable as a monopole, i.e., a source or sink of Berry flux in the
reciprocal space or synthetic parameter space, and possesses
a nonzero topological charge [32,38]. The WP can be anni-
hilated only by merging two WPs with opposite topological
charges [32,36]. As a result, WPs are protected by the un-
derlying topology and are stable against small perturbations
[36,39]. Numerous fascinating phenomena associated with
topologically protected WPs have been theoretically predicted
and experimentally observed in both real and synthetic 3D
systems [25–29,40–42], including Fermi arc surface states and
chiral anomalies.

In this study, we explore synthetic Weyl physics within
a particular kind of metal nanoparticle chain. Light-excited
metal nanoparticles couple with neighboring particles due
to localized surface plasmons [43–47]. The electromagnetic
coupling between metal nanoparticles can be modulated by
their spatial distance [45,47]. By appropriately contracting or
expanding the unit cells, various topological phases can be
achieved in the plasmonic system, providing an ideal platform
for exploring topological effects at the nanoscale [47–54].
Incorporating synthetic dimensions into the plasmonic sys-
tem further enriches the ways to explore their topological
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properties and opens new avenues for the engineering of low-
dimensional nanoscale topological states.

To study synthetic Weyl physics in the nanoparticle chain,
we utilize the positional parameters of nanoparticles as
an additional degree of freedom to create a synthetic di-
mension. Unlike layered crystals [25,26,30], the synthetic
positional parameter dimensions are periodic and closed, al-
lowing synthetic WPs with opposite topological charge to
coexist in the parameter space of the chain, mimicking real
3D Weyl systems [40–42,55–57]. This setup facilitates the
investigation of the bulk-edge correspondence in synthetic
Weyl systems, which is currently underexplored. Further-
more, the chain exhibits either inversion symmetry or broken
symmetry as the positional parameters vary. The bulk-edge
correspondence associated with synthetic WPs ensures the
existence of edge states in both inversion-symmetric and
inversion-symmetry-broken chains, enabling us to explore the
relationships between edge states in these scenarios. The re-
sults are examined using the coupled dipole approximation
method (CDM) [46,54] and verified through full-wave simu-
lations with a commercial solver (COMSOL MULTIPHYSICS) of
the finite-element method (FEM).

II. SYNTHETIC WEYL POINTS IN THE PLASMONIC
CHAIN

The plasmonic chain under consideration comprises four
silver ellipsoidal nanoparticles (ENPs) within each unit cell.
The permittivity of silver is characterized by the Drude model.
The ENPs have a major axis length of 20 nm and a minor
axis length of 10 nm. We focus solely on the major axis
dipole resonance mode (near f = 690 THz), as the minor axis
dipole resonance (near f = 850 THz) is sufficiently separated
in the frequency domain from the former [51,54]. More details
regarding the optical response of such individual ENPs are
provided in Appendix A. Figure 1(a) illustrates the relative
positions of the four ENPs, labeled A, B, C, and D within a
unit cell. The major axes of the ENPs are arranged in the xy
plane and aligned at the same 45◦ angle with respect to the
positive x axis. The horizontal distances between the centers
are maintained as

xAB = d0 + �x,

xBC = d0 − �x,

xCD = d0 + �x,

(1)

where �x = 3 nm, d0 = d/4, and d = 160 nm is the unit-cell
length. It can be inferred that the intercellular distance equals
xBC. The vertical positions of the ENPs are given by

yA = hcos(pπ ), yC = −h cos(pπ ),

yB = h cos(qπ ), yD = −h cos(qπ ),
(2)

where h = 5 nm and p and q are the periodic parameters,
which naturally play the role of the synthetic dimensions.
The parameters p and q, in conjunction with the Bloch wave
vector kx of the chain, construct a synthetic 3D space, provid-
ing an appropriate platform for investigating Weyl physics in
the plasmonic system. An alternative strategy that warrants
consideration involves oscillating the ENPs in the horizon-
tal direction; however, our computational analyses indicate
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FIG. 1. (a) Top: Schematic of the ENP chain with d0 = 40 nm
and �x = 3 nm. Bottom: ENP chain with different (p, q). (b) and
(c) Plasmonic band structures calculated by CDM and FEM, respec-
tively, with (p, q) = (±0.5, ±0.5).

that the range of coupling variation between ENPs in such
a scenario is remarkably narrower. More comprehensive com-
parisons are provided in Appendix B.

Within the dipole approximation, the optical responses
of such a chain can be described by the CDM equations
[43,45–47,54],

1

α(ω)
pn = E0(rn) + ω2

c2

∑
m �=n

M(rn − rm, ω)pm, (3)

where pn,m and rn,m represent the dipole moments and posi-
tions of the (n, m)th ENP in the chain, respectively. In Eq. (3)
α, ω, c, and E0 are the polarizability of the ENP (see Ap-
pendix A), the angular frequency, the speed of light in free
space, and the external incident field, respectively. Here M
describes the interaction between the nth and mth ENPs and
is given by

M(rn − rm, ω) = [
↔
G(rn − rm, ω) · Im]T · In, (4)

where In,m represents the unit vector in the direction of the
major axis of the ENP and T denotes the transpose operation.

The free space dyadic Green’s function
↔
G reads

↔
G(r, ω) = eikr

r

[(
1 + i

kr
− 1

k2r2

)↔
I

−
(

1 + 3i

kr
− 3

k2r2

)
n ⊗ n

]
, (5)

where r is the position vector, with r = |r| and n = r/r. Here
↔
I and k = ω/c are the identity matrix and the free space wave
number, respectively.
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To obtain the plasmonic band structure, we consider an
infinite periodic chain with zero incident field. By applying
Bloch’s theorem, the coupled dipole equations can be trans-
formed into the following eigenvalue equation:

[α−1
↔
I −

↔
H]P = 0, (6)

where P = [pA, pB, pC, pD]T . The 4 × 4 effective Hamilto-

nian
↔
H has

Hδη =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ω2

c2

∑
n∈Z

M(nd + rδ − rη, ω)eikxnd δ �= η,

ω2

c2

∑
n∈Z,n �=0

M(nd, ω)eikxnd δ = η,

(7)

where δ, η ∈ [A, B, C, D] and kx is the Bloch momentum. The
band structure can be obtained by sweeping kx across the first
Brillouin zone. The blue solid lines in Fig. 1(b) show the band
structure for the specific parameters (p, q) = (±0.5,±0.5). In
these situations, the ENPs are exactly aligned in a line with
staggered spacings in the x direction. Note that in this case
particles C and D can be obtained by simply translating A
and B by d/2 towards the +x direction, respectively. And
now the plasmonic chain can be considered to be analogous
to a Su-Schrieffer-Heeger (SSH) model [48,50], and the band
structure of the chain is equivalent to folding the Brillouin
zone of the primitive unit cell containing two ENPs, as il-
lustrated in Fig. 1(b). Consequently, linear crossing emerges
between the first (third) and second (fourth) bands at the
Brillouin zone boundary. Complete band structures are given
in Appendix C. These results are corroborated by the FEM
simulations presented in Fig. 1(c). It is important to note that
the CDM band structure exhibits a pronounced divergence
near the light line. This divergence arises because the lattice
summation in Eq. (7) contains terms that diverge at the light
line [50,58]. However, in our scenario, the diverging singular-
ity does not influence the synthesized WPs, as it is situated far
from the band structure crossings, as discussed later.

The band degeneracy at the Brillouin zone boundary is pro-
tected by translational symmetry within the unit cell, which
appears only when (p, q) = (±0.5,±0.5). Consequently, any
deviation of (p, q) from the values of (±0.5, ±0.5) results
in the lifting of this degeneracy and a band gap. This is a
critical feature that guarantees the presence of WPs within
the parameter space (p, q, kx ). Figures 2(a) and 2(b) illustrate
the band dispersion in the p-q space when kx = π/d . The
ideal WPs appear at (±0.5, ±0.5), as expected. To verify the
linear dispersion in all directions near the WPs, we have also
calculated the band dispersion in the kx-q space at a fixed p,
as shown in Figs. 2(c) and 2(d). In addition, we have derived
an effective Hamiltonian around the WP which possesses a
standard type-I Weyl Hamiltonian form [32]. More details are
given in Appendix D. The stability of the WPs is demonstrated
by introducing weak perturbations to the transverse shifts of
ENPs, as shown in Appendix E. The topological charge of
the WPs is determined by the Berry curvature over a closed
surface that encloses the WP [25,36,38]. Figure 2(e) depicts a
spherical surface surrounding a WP in the 3D synthetic space.
The topological charge of WPs can be deduced by tracking the
evolution of the Berry phase from the north pole to the south
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FIG. 2. (a) and (b) The dispersion of the chain in the p-q space
with kx = π/d . (c) and (d) The dispersion of the chain in the kx-q
space with p = 0.5. (e) Left: spherical surface centered at a WP in
the 3D synthetic space. Middle and right: the positions of WPs in
the p-q space appearing in (a) and (b), respectively. (f) Berry phases
defined on the spherical surface with fixed θ , where blue and red
lines represent Berry phases on the lower band and the upper band,
respectively. The insets represent the corresponding WPs as marked
in (e). The charges of WPs in the left and right panels are −1 and 1,
respectively.

pole of the sphere [25,36]. Note that here the Berry phase
was calculated under the quasistatic approximation, a method
widely used for characterizing the topology of plasmonic
arrays [48,49,52–54]. Figure 2(f) presents the calculation re-
sults. It is observed that the topological charges of the WPs
associated with the same bands at (−0.5,−0.5) and (0.5, 0.5)
are opposite to those at (−0.5, 0.5) and (0.5,−0.5), with a
net charge of zero in the synthetic space. This outcome is
consistent with real 3D Weyl crystals [40–42], as the synthetic
dimensions we consider are both periodic and self-consistent
within the synthetic space.

III. EDGE STATES AND BULK-EDGE CORRESPONDENCE
IN THE SYNTHETIC 3D SYSTEM

To elucidate the Weyl topology physics of the synthetic
3D system, we now examine the eigenmodes of a finite plas-
monic chain comprising 20 unit cells calculated using Eq. (3)
under zero incident field. Figure 3(a) outlines the synthetic
p-q space, in which the red (blue) circles denote the WPs
that emerge between the first band and second band with

075420-3



HUIZHOU WU, Z. Z. LIU, AND JUN-JUN XIAO PHYSICAL REVIEW B 110, 075420 (2024)

0 

690 

692 

R
e 

( f
 ) 

(T
H

z)

686 

688 

0      0.5     1.0     1.5     2

(a)

(c)

(b)

(d)

p

q

φ (�)

690 

692 

R
e 

( f
 ) 

(T
H

z)

686 

688 

690 

692 

R
e 

( f
 ) 

(T
H

z)

686 

688 

0      0.5     1.0     1.5     2 0      0.5     1.0     1.5     2
φ (�) φ (�)

(-1,-1) (1,-1)

(-1,1) (1,1)

689
688 
687
686 R

e 
( f

 ) 
(T

H
z)

690 

0 -1 -1 1 1 
p 

q 0 0 
-1 -1 

1 1 
p q 

689 

690 

691

692 

R
e 

( f
 ) 

(T
H

z)

(e) (f)

FIG. 3. (a) Synthetic p-q space; the red and blue circles represent
the WPs. The closed loops labeled I, II, and III are the paths described
by polar coordinate elliptic equations with angle parameter ϕ. The
black dot marks the starting point of the path, e.g., ϕ = 0. The
diagonal cyan lines are p = q. The yellow shaded area and unshaded
area correspond to the presence and absence of the edge states in
the first gap, respectively. (b)–(d) Eigenmode spectrum evolution for
a chain with 20 unit cells with p and q changing along the paths I,
II, and III, respectively. The gray shaded areas are for bulk bands.
The orange, pink, and blue solid (dashed) lines show the evolution of
edge states with ϕ. (e) and (f) Edge states (transparent gray surfaces)
appearing in the first and third gaps of the chain, respectively. The red
and blue curves are the equifrequency contours connecting different
WPs. The colored surfaces are band structures, which indicate the
position of WPs and bulk gaps.

a topological charge of +1 (−1). The topological charge
of these WPs endows the system with topological protected
Weyl edge states, as ensured by the bulk-edge correspondence
[32,34,35]. To identify the nontrivial Weyl topology of the
chain, we can detect edge states along closed paths in the
p-q space. We initially consider a path involving only one of
the WPs, as indicated by path I in Fig. 3(a). In this instance,
the net topological charge of the closed loop is +1, which
dictates the number of edge states traversing the bulk band
gap in accordance with the bulk-edge correspondence. Fig-
ure 3(b) displays the eigenspectrum of the finite chain with
parameters p and q following path I. It clearly reveals a pair of
gapless edge states bridging the first and second bulk bands,
with solid and dashed orange lines representing edge states
localized on the left and right of the finite chain, respectively.
Notably, similar gapless edge states with inverted slopes are

observed between the third and fourth bulk bands, as shown by
the blue lines in Fig. 3(b). This phenomenon occurs because
the WPs appearing between the first and second bands have
charge opposite to those between the third and fourth bands,
as illustrated in Figs. 2(c) and 2(d).

To further elucidate the bulk-edge correspondence in the
synthetic 3D system, we now consider paths that encompass
multiple WPs. Figure 3(c) presents the eigenspectrum with
parameters p and q evolving along path II, which includes
two WPs with a charge of −1, as shown in Fig. 3(a). The net
charge of path II is −2, corresponding to two pairs of gapless
edge states that connect the first and second bulk bands [see
Fig. 3(c)]. In contrast, path III, shown in Fig. 3(a), contains
two WPs with charges that cancel each other out, resulting in
zero net charge. As a result, the edge states between the first
and second bulk bands in this scenario do not traverse the bulk
band gap, as observed in Fig. 3(d). Similar patterns of edge
state behavior are also evident in the gap between the third and
fourth bulk bands. Figures 3(e) and 3(f) show the edge states
that appear in the first and third band gaps, respectively. The
red and blue curves are the equifrequency contours connecting
WPs with opposite charges, which represent the Fermi arcs in
the synthetic space (p, q).

In addition to the bulk-edge correspondence, Fig. 3 actually
provides further insights. We now concentrate on the edge
states that appear in the first gap, as indicated by the orange
lines in Figs. 3(b)–3(d). In Fig. 3(b), the two edge states
intersect at ϕ = π and gradually descend into the bulk bands
as ϕ moves away from π . The transformation of the edge
states into the bulk states is also observed in paths II and III,
as illustrated by the orange lines in Figs. 3(c) and 3(d), re-
spectively. Furthermore, the p-q space can be partitioned into
two regions based on the existence of edge states in the first
gap. As shown in Fig. 3(a), the yellow shaded and unshaded
areas in the p-q space correspond to the presence and absence
of the edge states in the first gap, respectively. It is evident
that these two regions are centered around (0, 0) and (±1,
±1), respectively. It is also noteworthy that the intersection
points of these paths with the lines p = ±q [the cyan lines
in Fig. 3(a)] within the yellow shaded area correspond to the
degenerate points of the edge states in the first gap.

To deeply understand the topological origin of the edge
states in the synthetic 3D system, we have computed the Zak
phase of the plasmonic chain. Despite the spatial symmetries
of the chain being broken in most regions of p-q space, the in-
version symmetry can be maintained when p = q or p = −q.
In these cases, the Zak phase can be quantized, serving as a
topological invariant for the chain. The Zak phase is given
by [54]

γ =
∑

occupied

∫
dkxAn, (8)

where the integral is taken over the first Brillouin zone. The
Berry connection is defined as An = i 〈ukx,n| ∇kx |ukx,n〉, where
n represents the band under the gap and ukx is the periodic
part of the Bloch wave function [6,48]. The gray solid line
in Fig. 4(a) shows the Zak phase of the first gap for p =
±q. It is worth noting that the Zak phases are identical for
both p = q and p = −q, as Eq. (2) is an even function. The
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FIG. 4. (a) and (c) Zak phase of the first and second gaps when
p = q with �x = 3 nm and �x = −3 nm, respectively. (b) Eigen-
spectrum of the 20 unit-cell plasmonic chain when p = q with �x =
3 nm. The colored lines represent the doubly degenerate edge states.
(d) Eigenspectrum of the 20 unit-cell plasmonic chain with p and q
changing along path I with �x = −3 nm.

Zak phase of the first gap is π (0) when p ∈ (−0.5, 0.5)
[p ∈ (−1,−0.5) ∪ (0.5, 1)], indicating that the first gap of the
chain is in a topological nontrivial (trivial) phase. Figure 4(b)
shows the eigenspectrum of a finite plasmonic chain with
p = q. The edge states in the first gap are doubly degenerate
due to the nontrivial Zak phase of the chain with the inversion
symmetry. Topological phase transitions of the first gap occur
at (p, q) = (±0.5,±0.5), coinciding with the locations of the
WPs in the synthetic 3D system. Notably, the degenerate
points of the edge states observed in Figs. 3(b)–3(d) can be
attributed to the quantized nontrivial Zak phase of the chain,
while the absence of the edge states near (p, q) = (±1,±1)
is due to the trivial phase of the chain. These analyses are
also applied to the edge states appearing in the third gap
because the Zak phase of the third gap is consistent with the
first gap according to our calculations. These findings reveal
the intrinsic connection between the topology of the synthetic
3D WPs and the 1D plasmonic chain, providing a deeper
understanding of the topological nature of the edge states in
the system.

The edge states that appear in the second gap [indicated by
the purple dotted lines in Figs. 3(b)–3(d)] exhibit distinct char-
acteristics compared to the Weyl edge states. The red dashed
line in Fig. 4(a) represents the Zak phases of the second gap
when p = ±q. It is observed that the nontrivial topological
phase of the second gap is near (p, q) = (±0.5,±0.5), where
the chain is dimerized, akin to the conventional SSH model
depicted in Fig. 1(a). The topological phase of the second
gap can be manipulated by the competition between the intra-
and intercoupling of the chain [50,58]. To distinguish the
edge states appearing in the second gap and those in the first
(third) gap, we consider the scenario where p = ±q and �x =
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FIG. 5. FEM full-wave simulations. (a) Eigenmodes of a 10-unit-
cell chain with different (p, q). (b) Electric field intensity distribution
of the edge states labeled in (a).

−3 nm. In this case, the second gap of the plasmonic chain
is in a topological trivial phase when (p, q) = (±0.5,±0.5)
due to the interchange between the intra- and intercoupling.
Figure 4(c) shows the Zak phases for this case, indicating that
the second gap has transitioned to a trivial phase. However,
the Zak phase of the first gap remains unchanged compared
to the case of �x = 3 nm. This is attributed to the synthetic
WPs arising from the artificial band folding, which are not
influenced by perturbations in �x. Figure 4(d) shows the
eigenmodes of a finite plasmonic chain with p and q varying
along path I with �x = −3 nm. As expected, no edge states
are observed in the second gap, while the edge states and the
bulk-edge correspondence around the WP persists in the first
(third) gap.

To further verify the theoretical analysis based on CDM
presented above, we conducted full-wave simulations using
the FEM solver (COMSOL). Figure 5(a) shows the simulated
eigenspectrum of a finite chain with various (p, q) parame-
ters, where the edge states are encircled by the dashed ovals.
We observe that the edge states at (p, q) = (0.4, 0.4) exhibit
degeneracy across the three bulk gaps. This is a consequence
of the inversion symmetry protecting these states in the chain.
However, this degeneracy is absent at (p, q) = (0.4, 0.5) and
(p, q) = (0.6, 0.5), where the inversion symmetry is bro-
ken. Additionally, the absence of edge states in the first and
third gaps for (p, q) = (0.6, 0.5) is noted. These results are
consistent with our CDM analysis. Figure 5(b) shows the
electric field intensity distribution of the edge states marked in
Fig. 5(a). States S3 and S4 are conventional SSH edge states,
with fields concentrated at the B and D and A and C ENPs,
respectively. In contrast, states S1, S2, S5, and S6 are edge
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cells with (p, q) = (0.4, 0.4) on the right. (a) Eigenmodes of the
chain. (b) Electric field intensity distribution of the edge states
labeled in (a).

states linked to the synthetic WPs in the chain. The fields of
S1 and S6 (S2 and S5) are located at the B, C, and D (A, B,
C) ENPs, which is a distinct departure from the edge states
observed in a typical SSH chain [50,58].

Finally, we examine the interface states between the chains
with different (p, q). We consider a chain composed of two
types of unit cells [left: (p, q) = (0.6, 0.6); right: (p, q) =
(0.4, 0.4)]. Interestingly, the interface states (S1 and S6 in
Fig. 6) appear only in the first and third gaps. This is because
the left and right unit cells are topologically opposite for both
the first and third gaps, as shown in Fig. 4(a), even though
they are close to the same WP, (p, q) = (0.5, 0.5). On the
contrary, the second gaps of both the left and right unit cells
are topologically nontrivial, so the in-gap states appearing in
the second gap are localized at the edges of the chain, as
shown in Fig. 6, S3 and S4.

IV. CONCLUSION

In conclusion, we explored the Weyl physics in a chain
of metallic ENPs. By introducing two additional positional
parameters, we constructed a synthetic 3D space that allows
for the realization of synthetic WPs within the 1D nanoscale
system. As the parameters vary, the chain experiences tran-
sitions among phases with and without inversion symmetry.
The topological properties of WPs ensure the existence of pro-
tected edge modes in the first and third bulk gaps, even when
the chain’s inversion symmetry is compromised. However, we

demonstrated that degenerate edge modes are present in only
the inversion-symmetric structures. Furthermore, by mapping
the edge states along enclosed trajectories in the parameter
space, we scrutinized the bulk-edge correspondence of the
synthetic Weyl system, uncovering a striking resemblance to
the characteristics of a genuine 3D Weyl system. The presence
of edge modes in the chain was verified through comprehen-
sive full-wave simulations, which revealed notable disparities
when compared to the edge states in a typical SSH chain. Our
results pave the way for manipulating topologically protected
edge modes in low-dimensional plasmonic systems.
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APPENDIX A: THE OPTICAL RESPONSE
OF AN INDIVIDUAL ENP

In this Appendix, we give a detailed description of the
silver ENP used in the main text. The polarizability of the
ENP has the following tensor form [54]:

↔
α (ω) =

⎡
⎣αa(ω) 0 0

0 αb(ω) 0
0 0 αc(ω)

⎤
⎦, (A1)

where ω represents the angular frequency and αl (l ∈ [a, b, c])
are the projections of the polarizability tensor in the directions
of the axes of the ENP. The quasistatic polarizability is given
by [59]

αs
l (ω) = V

4π

ε(ω) − εb

εb + Ll [ε(ω) − εb]
, (A2)

where V is the ENP volume, εb = 1 is the background di-
electric constant, and Ll are static geometrical factors, with
La = 0.1736 for the major axis and Lb(c) = 0.4132 for the
minor axis [60]. Here ε(ω) is the dielectric function of the
ENP, which is given by the Drude model,

ε(ω) = ε∞ − ω2
p

ω2 + iω/τ
, (A3)

with ε∞ = 5, ωp = 1.36 × 1016 rad/s, and 1/τ = 5.88 × 1013

rad/s [61]. i represents the imaginary unit.
Considering the radiative effects, we employ the modified

long-wavelength approximation to describe αl as [60]

αl (ω) = αs
l (ω)

1 − Dk2

l αs
l (ω) − i 2k3

3 αs
l (ω)

, (A4)

where D, l, k = ω/c0 and c0 are the dynamic geometrical
factor, axis half-length, wave number, and speed of light in
free space, respectively.
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FIG. 7. Extinction cross sections of a silver ENP with major axis
half-length a = 10 nm and minor axis half-length b = c = 5 nm,
calculated by LUMERICAL FDTD. Red and black curves represent the
extinction cross section of the ENP subjected to a field polarized
parallel to and vertical to the major axis, respectively.

To analyze the optical response of the ENPs, we calculated
the extinction cross section of a single ENP using LUMERICAL

FDTD, as shown in Fig. 7. Red and black curves represent the
response to a field polarized parallel and vertical to the major
axis, respectively. It is seen that the ENP shows obvious res-
onance near f = 690 THz and f = 850 THz for the parallel
and vertical polarized fields, respectively. In particular, the
resonance is separated enough in the spectrum that one can
use αa as the polarizability of the ENP when the operating
frequency is near f = 690 THz. Therefore, the polarizability
of the ENP is set to α = αa in the main text.

APPENDIX B: COMPARISON OF DIFFERENT SCHEMES
FOR ENP DISPLACEMENT

In the main text, the ENPs oscillate in the vertical direc-
tion. The vertical positions of the ENPs are used as the extra
degrees of freedom for creating synthetic dimensions. Case I
in Fig. 8(a) shows the relative position of two ENPs. The cou-
pling between particles A and B calculated by Eq. (4) is shown
by the red line in Fig. 7(b). Cases II–IV in Fig. 8(a) show other
schemes for ENP displacement. The corresponding couplings
between particles A and B are plotted in Fig. 8(b). Clearly, the
relative variation range of the coupling in scheme I is greater
than that of the other schemes. Therefore, the topological
properties of an ENP chain in scheme I will change more
significantly as the positional parameters evolve.
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FIG. 8. (a) Different schemes for ENP displacement. A is fixed
but B oscillates in the vertical (I) or horizontal (II–IV) direction
around point o with 5 nm amplitude. The distance between the center
of A and o is 40 nm. (b) The coupling between A and B under
schemes I–IV, normalized by their minimum values. �d is the offset
of B relative to point o.
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FIG. 9. Plasmonic band structures and spectrum of Im(αeig ) of
the chain with (p, q) = (±0.5, ±0.5). (a) For the unit cell containing
two ENPs. (b) For the unit cell containing four ENPs.

APPENDIX C: BAND STRUCTURES AND EFFECTIVE
EIGEN-POLARIZABILITY

In this Appendix, we give the complete band structures
of the plasmonic chain. As analyzed in Sec. II, the chain
is analogous to a SSH model when (p, q) = (±0.5,±0.5),
which contains two ENPs within the primitive unit cell, as
shown in the top panel in Fig. 9(a). The band structures can
be obtained by solving

det[α−1(ω)
↔
I −

↔
H(kx, ω)] = 0, (C1)

where
↔
H is the corresponding effective Hamiltonian. To

reduce computational complexity, we take the approxima-
tion ω = ωsp in the effective Hamiltonian, where ωsp =
ωp/

√
ε∞ − 1 + La is the surface plasmon frequency. The

black circles in the bottom panel in Fig. 9(a) show the band
structures of the primitive unit cell. Furthermore, we cal-
culated the effective eigenpolarizability αeig of the chain,
which is defined as αeig = λ−1, with λ being the eigenvalue

of [α−1(ω)
↔
I −

↔
H(kx, ω)]. In eigenresponse theory [62], the

imaginary part of αeig exhibits a peak in the presence of a
resonance. By sweeping both ω and kx, the peaks of Im(αeig)
outline the band structures of the plasmonic chain. As shown
in Fig. 9(a), the peaks of Im(αeig) are consistent with the band
structures.

The top panel in Fig. 9(b) shows the unit cell containing
four ENPs. The corresponding band structures and spectrum
of Im(αeig) are plotted in the bottom panel in Fig. 9(b).

APPENDIX D: EFFECTIVE HAMILTONIAN NEAR WPs

In this Appendix, we derive the effective Hamilton around
the WPs. Considering only the nearest-neighbor coupling, the
Hamiltonian of the chain is

H =

⎡
⎢⎢⎣

0 mAB 0 mADe−ikxd

mAB 0 mBC 0
0 mBC 0 mCD

mADeikxd 0 mCD 0

⎤
⎥⎥⎦, (D1)
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FIG. 10. The dispersion near the WP. The black lines are obtained with (D1), and the blue circles are the results from the effective
Hamiltonian.

where mδη represents the coupling between two ENPs. Taking
the quasistatic limit, we have

mδη =
[(

− 1

r3
δη

↔
I + 3

r3
δη

nδη ⊗ nδη

)
· Iδ

]T

· Iη. (D2)

We carry out a Taylor expansion of mδη at the WP, and by
neglecting higher-order infinitesimal terms, we obtain

mAB = a1 + a2(�p − �q),

mBC = b1 + b2(�p + �q),

mCD = a1 + a2(�q − �p),

mAD = b1 − b2(�p + �q),

e±ikxd = −1 ∓ i�k

(D3)

where �p = p − 0.5, �q = q − 0.5, and �k = kx − π/d .
The coefficients are a1 = 1

2x3
AB

, a2 = 3hπ

x4
AB

, b1 = 1
2x3

BC
, and

b2 = 3hπ

x4
BC

.

H near the WPs can be block diagonalized into the follow-
ing form:

U −1HU =
[

H+ 0
0 H−

]
, (D4)

where U is a unitary matrix composed of eigenvectors at the
WP. H+ (H−) is the effective Hamiltonian around the upper
(lower) band-crossing point and has the following elements:

H+
11 = α1 − (α2�p − α3�q),

H+
12 = β1�p + β2�q − iβ3�k,

H+
21 = β1�p + β2�q + iβ3�k,

H+
22 = α1 + (α2�p − α3�q),

(D5)

where α1 = u1a1 + u2b1, α2 = u1a2 + u2b2, α3 = u1a2 −
u2b2, β1 = u1b2 − u2a2, β2 = u1b2 + u2a2, and β3 = u1b1

2 ,
with u1 = 0.53725 and u2 = 0.84343. Then we can rewrite
the effective Hamiltonian around (�p,�q,�k) = (0, 0, 0) as

H+ = α1σ0 + v1σ1 + v2σ2 + v3σ3, (D6)

where v1 = β1�p + β2�q, v2 = β3�k, and v3 = α2�p −
α3�q. σ0 and σi in (D6) are the identity matrix and
Pauli matrices, respectively. The eigenvalues of H+ are

given by

E+ = α1 ±
√

v2
1 + v2

2 + v2
3, (D7)

which takes a cone-shaped band structure around the WP [33].
Similarly, the eigenvalues of H− are

E− = −α1 ±
√

v2
1 + v2

2 + v2
3 . (D8)

To verify the effective Hamiltonian, we plot the dispersion
along three directions in Fig. 10. The results obtained with
(D1) and the effective Hamiltonian agree very well near
the WP.
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FIG. 11. (a) and (b) Band structure of the chain in the p-q space
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APPENDIX E: THE ROBUSTNESS OF THE WPs
TO PERTURBATIONS

To demonstrate the stability of the WPs, we reset the verti-
cal positions of the ENPs as

yA = h cos(pπ ) + �yA, yC = −h cos(pπ ) + �yC,

yB = h cos(qπ ) + �yB, yD = −h cos(qπ ) + �yD,
(E1)

where �yη are the perturbation terms. More specifically, we
set �yA = 3 nm, �yB = −2.5 nm, �yC = 2 nm, and �yD =
3 nm. Under these perturbations, the plasmonic chain still
takes a cone-shaped band structure, but with the WPs mov-
ing from (p, q) = (±0.5,±0.5) to (p, q) = (±0.52,±0.32),
as shown in Figs. 11(a) and 11(b). Figure 11(c) shows the
eigenmodes of a finite chain with (p, q) = (0.2, 0.1). The
edge states, as shown in Fig. 11(d), still exist in the first and
third bulk gaps, despite such perturbations.
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