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Hybrid light-matter states in topological superconductors coupled to cavity photons
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We consider a one-dimensional topological superconductor hosting Majorana bound states at its ends coupled
to a single mode cavity. In the strong light-matter coupling regime, electronic and photonic degrees of freedom
hybridize resulting in the formation of polaritons. We find the polariton spectrum by calculating the cavity
photon spectral function of the coupled electron-photon system. In the topological phase, the lower in energy
polariton modes are formed by the bulk-Majorana transitions coupled to cavity photons and are also sensitive
to the Majorana parity. In the trivial phase, the lower polariton modes emerge due to the coupling of the bulk-
bulk transitions across the gap to photons. Our work demonstrates the formation of polaritons in topological
superconductors coupled to photons that contain information on the features of the Majorana bound states.
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I. INTRODUCTION

Cavity embedding provides a promising avenue to probe
and control quantum materials and devices. On the one hand
there is the tantalizing possibility of controlling phase tran-
sitions and phase diagrams by coupling to a cavity mode, an
idea which has received theoretical and experimental attention
[1,2]. Another source of cavity control can arise from the
hybridization with finite-frequency modes, leading to new hy-
brid quasiparticles—polaritons [3], which can be then probed
and controlled in novel ways. A wide range of polaritonic
modes have been proposed and observed, classified depending
on the type of charged particles in the matter component [4].

A particularly appealing scenario arises when the material
has a nontrivial topological character, a feature which can
then be enhanced or suppressed [5–11] or even generated by
the coupling with a cavity and thus transmitted to the emer-
gent polariton excitations [12]. Among topological phases
of matter, topological superconductors hosting zero-energy
Majorana bound states [13–16] hold a specially interesting
place for their potential for quantum computing [17]. The pro-
totype system for topological superconductivity is the Kitaev
chain model [13] describing a one-dimensional p-wave su-
perconductor with Majorana bound states emerging at its op-
posite ends in the topological phase. Promising platforms for
the Majorana bound states are superconductor-semiconductor
nanowires [18,19], graphenelike systems [20,21], and chains
of magnetic atoms [22–24]. Signatures of the Majorana bound
states in the form of zero-bias peak have been experimentally
observed in superconductor-semiconductor nanowire plat-
forms [25–31]. However, theoretical works have demonstrated
that the zero-bias peak could arise due to non-Majorana mech-
anisms [32–40].

The idea of using cavities to probe and manipulate the
Majorana bound states has been explored in different set-
tings [41–49]. In these cases, the cavity plays mainly the
role of noninvasive spectroscopic tool to probe the physics
of these modes. A different scenario arises potentially in

the strong or ultrastrong light-matter coupling regime where
polariton modes are formed, which in the case of a topo-
logical superconductor could take the form of the Majorana
polaritons [50,51].

In this work, we study the hybrid light-matter states that
emerge by coupling topological superconductors to a sin-
gle mode cavity. We consider two models of topological
superconductors hosting the Majorana bound states: a proto-
type Kitaev chain model [13] and a more realistic nanowire
model [18,19]. Hybridization between electronic and photonic
states results in formation of polaritons. We focus specifically
on the signatures of these polaritonic modes which emerge
in the cavity photon spectral function [9,52–55], which is
directly measurable in a transmission/reflection experiment
[42,56]. We find that the polariton spectrum is sensitive to the
Majorana parity in the topological phase. Moreover, the en-
ergies of the polariton modes are different in the trivial and
topological phases that could be used to probe the emergence
of zero modes in topological superconductor.

The paper is organized as follows. In Sec. II, we introduce
two tight-binding models for topological superconductors and
derive how to couple them to a single mode cavity. Then,
in Sec. III, we calculate the polariton spectrum of the cou-
pled electron-photon system. Finally, Sec. IV is devoted to
conclusions.

II. COUPLING TOPOLOGICAL
SUPERCONDUCTORS TO LIGHT

We start by discussing how to couple topological super-
conductors described by a tight-binding model to a single
mode cavity. We consider two models for topological su-
perconductors: (1) a prototype Kitaev chain [13] and (2)
an experimentally relevant nanowire with spin-orbit inter-
action and proximity-induced superconductivity subject to
magnetic field [18,19]. Contrary to previously studied tight-
binding models for nonsuperconducting systems [9,54], the
Kitaev chain (nanowire) models contain p-wave (s-wave)
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superconducting pairing term that pairs two neighboring sites
(opposite spins) in the chain.

A. Kitaev chain coupled to cavity

The Hamiltonian for the Kitaev chain reads [13]

HK = −μ

N∑
j=1

c†
j c j − t

N−1∑
j=1

(c†
j c j+1 + H.c.)

+ �

N−1∑
j=1

(c jc j+1 + H.c.), (1)

where c†
j (c j) are fermionic creation (annihilation) operators

at site j, N is the total number of sites in the chain, μ is
the chemical potential, t is the hopping amplitude, and �

is a p-wave superconducting pairing potential. The Kitaev
chain is in the topological (trivial) phase if |μ| < 2t (|μ| > 2t)
hosting two Majorana bound states described by the opera-
tors γL(R) = γ

†
L(R). These two Majorana operators form a full

fermionic state with cM = (γL − iγR)/2 that gives rise to the
Majorana occupation nM = 〈c†

McM〉 that determines its parity.
The Majorana occupation nM can be 0 or 1 corresponding to
the even (odd) parity.

Next, we couple the Kitaev chain to a single mode cavity
given by the Hamiltonian Hph = ωc(a†a + 1/2), where a† (a)
is the photonic creation (annihilation) operator and ωc is the
cavity frequency. The Kitaev chain Hamiltonian HK is cou-
pled to the electromagnetic field described by a homogeneous
photonic vector potential A = ux(g/e)(a + a†) via the Peierls
substitution, which is equivalent to applying a unitary trans-
formation U to the electronic Hamiltonian (6) only [9,54],
HK−ph = Hph + U †HKU , with

U = ei g√
N

(a+a† )
∑

j R j c
†
j c j . (2)

Here, Rj = j − l0, where l0 = (N + 1)/2 chosen such that
R1 = −RN . Using that

U †cmU = ei g√
N

(a+a† )Rm cm, (3)

we find that the superconducting pairing term acquires a site-
dependent phase and the full light-matter Hamiltonian reads

HK−ph = − μ

N∑
j=1

c†
j c j −

N−1∑
j=1

(
tei g√

N
(a+a† )c†

j c j+1 + H.c.
)

+
N−1∑
j=1

(
�ei g√

N
(2Rj+1)(a+a† )c jc j+1 + H.c.

)

+ ωc

(
a†a + 1

2

)
. (4)

Moreover, we note that coupling the superconducting pair-
ing term to light is equivalent to dressing � with a phase,
� → �eiϕ [43,57,58]. The phase ϕ could be found under the
assumption that the p-wave pairing term in HK is inherited
from the bulk s-wave superconductor underneath the wire.
In this case, we consider that the instantaneous supercurrent

flowing through the bulk superconductor vanishes,

Js = 2e

m
|ψ |2(∇ϕ − 2eA) ≡ 0. (5)

Here, m, |ψ |2, and ϕ are the electronic mass, the density of
superconducting electrons in the s-wave superconductor, and
its phase, respectively. The solution of the differential equa-
tion ∇ϕ = 2eA gives us ϕ j = 2g(a + a†)( j − l0 + 1/2)

√
N .

Here, ϕ j is chosen such that ϕ1 = −ϕN−1 [56]. We note
that these two approaches result in the same light-matter
Hamiltonian given by Eq. (4). Alternatively, light-matter cou-
pling could be included in the problem by starting with a
semiconducting nanowire tunnel coupled to a bulk s-wave
superconductor and assuming that the tunneling hopping is
dressed with the Peierls phase [42].

B. Superconductor-semiconductor nanowire coupled to cavity

We now consider a more realistic model of a topological
superconductor coupled to a photonic cavity. The tight-
binding Hamiltonian composed of N sites that describes a
semiconducting nanowire with Rashba spin-orbit interaction
and proximity-induced superconductivity subject to magnetic
field reads [59]

Hnw =
∑
j,σ,σ ′

[
c†

j+1,σ (−tδσσ ′ + iασ
y
σσ ′ )c j,σ ′ + �c†

j,↑c†
j,↓

+ 1

2
c†

j,σ [(2t − μ)δσσ ′ + VZσ x
σσ ′]c j,σ ′ + H.c.

]
, (6)

where c†
j,σ (c j,σ ) is the creation (annihilation) operator acting

on electrons with spin σ located at site j, σx(y) is the x (y)
Pauli matrix acting in the spin space, and t = h̄2/(2m∗a2

l )
is the hopping amplitude, with m∗ the effective mass and
al lattice constant. Here, α is the spin-orbit coupling, � is
the proximity-induced superconducting pairing potential, μ

is the chemical potential, and VZ = g∗μBB/2 is the Zeeman
energy, with g∗ the g-factor of the nanowire and μB the Bohr
magneton. The nanowire hosts Majorana bound states emerg-
ing at the opposite ends of the one-dimensional system if
VZ >

√
�2 + μ2 [18,19].

Similarly to the Kitaev chain, the light-matter Hamiltonian
for the nanowire coupled to a single mode cavity could be
obtained by performing the unitary transformation Hnw−ph =
Hph + U †HnwU , with

U = ei g√
N

(a+a† )
∑

jσ χ j c
†
jσ c jσ . (7)

Here, χ j = j − j0 is chosen such that χ1 = −χN [56], with
j0 = (N + 1)/2 for even N . Using that

U †cmσ ′U = ei g√
N

(a+a† )χm cmσ ′ , (8)

we find that total light-matter coupling Hamiltonian becomes

Hnw−ph =
∑
j,σ,σ ′

[
c†

j+1,σ

( − te−i g√
N

(a+a† )
δσσ ′

+ iαe−i g√
N

(a+a† )
σ

y
σσ ′

)
c j,σ ′

+ �e−2i g√
N

χ j (a+a† )c†
j,↑c†

j,↓

075416-2



HYBRID LIGHT-MATTER STATES IN TOPOLOGICAL … PHYSICAL REVIEW B 110, 075416 (2024)

+ 1

2
c†

j,σ [(2t − μ)δσσ ′ + VZσ x
σσ ′]c j,σ ′ + H.c.

]

+ ωc

(
a†a + 1

2

)
. (9)

In the next section, we will discuss the cavity photon spectral
function for the two models in Eqs. (4) and (9) and highlight
the emergence of polariton excitations and their topological
signatures.

III. POLARITON SPECTRUM

In the strong light-matter coupling regime, the electronic
and photonic degrees of freedom get entangled and hybridize
giving rise to polaritons, new hybrid excitations of mixed
light-matter character. In conventional cavity-QED systems,
such as for the example in the prototypical Dicke model
[60–62], the cavity couples to a collective matter excitation
and the resulting theory can be described in a harmonic ap-
proximation, from which polariton spectrum follows from
direct diagonalization of coupled bosonic modes. In the solid-
state context of interest here the cavity couples to many
electronic modes through a highly nonlinear Peierls phase,
such that a direct diagonalization of the polariton spectrum
cannot be obtained. An alternative way to access the polariton
spectrum is however by looking at the cavity photonic spectral
function, defined as

A(ω) = − 1

π
Im

∫
dte−iωt (−iθ (t ))〈[a(t ), a†]〉, (10)

where a(t ) is the photonic annihilation operator at time t . To
compute this quantity we follow Refs. [9,52–54] and write
down the imaginary-time action associated to the electron-
photon Hamiltonian from which we proceed by integrating
out the electronic degrees of freedom to obtain a photon-only
effective problem, which we evaluate at the saddle point plus
Gaussian fluctuations in the cavity field (see Appendix A for
more details). Due to gauge invariance, the photon remains
incoherent in presence of a uniform vector potential [54,
63–66]. The light-matter coupling however gives rise to a
self-energy correction for the cavity spectral function arising
from current-current fluctuations of the electronic system. As
a result the cavity spectral function takes the form [9,54]

A(ω) = − 1

π

χ ′′(ω)(ω + ωc)2

(ω2 − ω2
c − 2ωcχ ′(ω))2 + (2ωcχ ′′(ω))2

, (11)

where χ (ω) = K (ω) − 〈Jd〉 ≡ χ ′(ω) + iχ ′′(ω) is the current-
current correlation function that can be separated into real
χ ′(ω) and imaginary χ ′′(ω) parts, with

K (t − t ′) = −iθ (t − t ′)〈[Jp(t ), Jp(t ′)]〉. (12)

Here, Jp (Jd ) are paramagnetic (diamagnetic) current opera-
tors that could be defined from the second-order expansion in
g [9,54]

HK (nw)−ph ≈ ωca†a + HK (nw) + (a + a†)Jp − (a + a†)2

2
Jd

(13)

and θ (t − t ′) is the Heaviside step function. We see that
Eq. (11) describes the spectrum of single particle excitations
in the photonic sector and in absence of any light-matter
coupling it reduces to a sharp delta-function at the cavity
frequency. Due to light-matter coupling we see from the above
expression that the cavity mode acquires a renormalization to
its frequency and a finite lifetime, both effects being due to
the electronic self-energy correction χ (ω). The poles of the
cavity spectral functions A(ω), given by the solutions of the
equation [54,65]

ω2 ≈ ω2
c + 2ωcχ

′(ω). (14)

give direct access to the excitations of the coupled system,
which as mentioned describe polaritons. In Refs. [9,54], we
had shown indeed that for cases in which the polariton spec-
trum could be computed by diagonalising an effective bosonic
problem, the identification with the poles of the photonic spec-
tral function is meaningful and captures the essential physics.
This is ultimately because the cavity mode retains a finite
overlap with the polariton excitations.

Going back to Eq. (11), we see that for g = 0 the topolog-
ical superconductor and cavity photons are fully decoupled
and there is a single solution of Eq. (14) given by ω = ωc.
For finite light-matter coupling g 
= 0, electrons and photons
are coupled resulting in multiple solutions that depend both
on cavity frequency ωc and parameters of the electronic sys-
tem through the real part of the current-current correlation
function χ ′(ω). Therefore the resulting polariton energies are
sensitive to the properties of the topological superconductor.

A. Current-current correlation function

We start by deriving the general expression for the
current-current correlation function χ (ω). Coupling between
topological superconductor and cavity photons induces tran-
sitions between the Majorana and bulk states in the chain
[42,48,49]. These Majorana-bulk transitions could be directly
seen as peaks in the imaginary part of the correlation function
K (ω) Eq. (12). To evaluate K (ω), we rewrite the fermionic op-
erators c j (c†

j ) in terms of the annihilation (creation) operators
c̃n (c̃†

n) for the Bogoliubov quasiparticles [42,48]

c j =
∑

n

(u j,nc̃n + v j,nc̃†
n ), (15)

so that the electronic Hamiltonian (1) (6) becomes diagonal
H̃el = ∑

n εn(c̃†
nc̃n − 1/2). Here, u j,n (v j,n) are the electron

(hole) components of the eigenvectors and εn are the cor-
responding eigenvalues of the electronic Hamiltonian, with
n = 1, . . . , N for the Kitaev chain Hamiltonian (1) and n =
1, . . . , 2N for the superconductor-semiconductor nanowire
Hamiltonian (6). To calculate the expectation value of the
diamagnetic current operator 〈Jd〉 over a bare electronic
Hamiltonian (1) (6) we rewrite Jd in terms of c̃n (c̃†

n) operators
and use that 〈c̃†

nc̃m〉 = f (εn)δn,m, with f (εm) being the Fermi
distribution function. Assuming zero temperature, f (εm) re-
duces to the occupation number nm that can take values 0 or 1
for empty or occupied state. Under this assumption, we arrive
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(a) (b) (c)

FIG. 1. (a) Energy spectrum of the Kitaev chain (1) as a function of the chemical potential μ/t (red solid lines). Vertical blue solid arrow
indicates the effective gap in the energy spectrum �g. Vertical black dashed arrows indicate the transition frequencies ωb and ωe(o). For the
chosen set of parameters Majorana energy εM/t = 7.44 × 10−7 and ωe ≈ ωo ≈ �g. (b) Real part of the current-current correlation function
χ ′(ω) as a function of frequency ω/t . Red solid (black dashed) lines correspond to even (odd) Majorana parity. The transition frequencies ωe

are shown in gray vertical dotted lines. (c) Imaginary part of the current-current correlation function χ ′′(ω) as a function of frequency ω/t
for even (odd) Majorana parity shown in red solid (black dashed) lines. Gray vertical dotted lines correspond to the transition frequencies and
indicate the position of the peaks. Parameters are chosen as N = 100, �/t = 1, μ/t = −1.75 [except in (a)], η/t = 4 × 10−3.

at the following expression:

〈Jd〉 =
∑

m

jd
mnm, (16)

where jd
m is the diagonal matrix element for the diamag-

netic current operator between eigenstates corresponding to
the eigenvalues εm. Defining the Fourier transformation as
K (ω) = ∫

eiωt K (t ) and using that c̃m(t ) = c̃m(0)e−iεmt , we
find the general expression for the paramagnetic current cor-
relation function at zero temperature

K (ω) =
∑
l,m

∣∣ j p
l,m

∣∣2 nl − nm

ω + εl − εm + iη
. (17)

Here, j p
l,m are the matrix elements of the paramagnetic

current and η > 0 is the linewidth of the energy levels. While
Eq. (17) is general, here for the sake of clarity we make
explicit reference to the spectrum of the Kitaev model and its
current-current correlation function depicted in Fig. 1.

At zero temperature, only bulk states with negative en-
ergies are occupied, while nl ≡ nM = 0, 1 for the Majorana
states. We note that K (ω) = 0 for l = m making it fully
off-diagonal in contrast to 〈Jd〉. When the system is in the
topological phase the paramagnetic current correlation func-
tion given by Eq. (17) can be rewritten as a sum of three
contributions K (ω) = KBB(ω) + KBM (ω) + KMM (ω), corre-
sponding respectively to transitions between bulk states only
(KBB), between Majorana and bulk states (KBM ) and between
Majorana states only (KMM) [see Fig. 1(a)]. We note that
KMM (ω) = 0 since Majorana parity remains conserved in the
presence of coupling to photons [42]. The bulk only contribu-
tion in the topological phase (or the total paramagnetic current
correlation function in the trivial phase) could be further sim-
plified to

KBB(ω) =
∑

εl 
=m>0

(
1

ω − ωb + iη
− 1

ω + ωb + iη

)

× ∣∣ j p
l,−m

∣∣2
, (18)

where ωb = εl + εm is the transition frequency between the
bulk states l and m, and j p

l,−m is the matrix element between
the bulk states with energies εl and −εm. The peaks in the

imaginary part of the bulk contribution appear at transition
frequencies ωb > 2�g, where �g is the effective gap in the
electronic energy spectrum [see Fig. 1(a)].

Furthermore, the bulk-Majorana transitions are included in
KBM (ω) term given by

KBM (ω) =
∑
εl >0

(
1

ω − ωe(0) + iη
− 1

ω + ωe(0) + iη

)

×
[∣∣ j p

l,o

∣∣2
(nM − nl ) + ∣∣ j p

l,e

∣∣2
(1 − nl − nM )

]
,

(19)

where ωe(0) = εl ± εM is the transition frequency between
bulk state with occupation number nl = 0 and Majorana state
with occupation number nM = 0(1) corresponding to even
(odd) parity, and j p

l,e(o) is the matrix element between bulk
state l and even e (odd o) parity Majorana state. The imaginary
part of the paramagnetic current correlation function K ′′

BM (ω)
calculated for even parity with nM = 0 has multiple peaks at
frequency ωe > �g with the amplitude given by | j p

l,e|2, while
for nM = 1 the peaks are at ωo with the amplitude given
by | j p

l,o|2 [see Fig. 1(c)]. Moreover, even in the absence of
the overlap between two Majorana bound states εM ≈ 0 the
correlation function KBM (ω) distinguishes between different
Majorana parities through the matrix elements j p

l,e(o) [48].
In the topological phase the cavity spectral function A(ω)

given by Eq. (11) depends on the Majorana parity through
the different matrix elements entering in the current-current
correlation function χ (ω) and, therefore, polariton spectrum
could be used to probe Majorana properties. Comparing the
denominators in Eqs. (19) and (18) we note that the lowest-
energy peaks in the current-current correlation function in the
topological [shown in Figs. 1(b) and 1(c)] and trivial phases
appear at frequencies ωe(o) ≈ �g and ωb ≈ 2�g, respectively,
suggesting that the cavity spectral function could be also used
to differentiate between two phases, as we are going to discuss
next for the two specific models of interest.

B. Polaritons in Kitaev chain coupled to photons

We start discussing the cavity spectral function for the
Kitaev chain, Eq. (4). In this case, the paramagnetic and
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diamagnetic current operators could be found from Eq. (4):

Jp = i
g√
N

∑
j

[−tc†
j c j+1 + 2�(Rj + 1/2)c jc j+1 − H.c.]

(20)

and

Jd = g2

N

∑
j

[−tc†
j c j+1 + 4�(Rj + 1/2)2c jc j+1 + H.c.],

(21)

where we see that in addition to the usual contribution from
single particle hopping there is also a term coming from the
superconducting pairing. We emphasize that this current is not
associated with a conserved charge in the Kitaev model, which
only enjoys a discrete Z2 parity symmetry. However, it is the
natural object entering the response of the system to the cavity
vector potential, see Eq. (13).

To find the cavity spectral function we first calculate the
current-current correlation function using Eqs. (16) and (17).
In Fig. 1(b), we plot the real part of correlation function χ ′(ω)
as a function of frequency ω. Vertical dotted lines indicate
the bulk-Majorana transition frequencies ωe(o). For the Kitaev
chain in the topological phase, εM ≈ 0 and therefore ωe ≈ ωo.
We find that χ ′(ω) has different oscillation amplitudes for
even and odd Majorana parities stemming from the difference
in the matrix elements j p

l,e. Next, we numerically evaluate
the imaginary part of the correlation function χ ′′(ω) [see
Fig. 1(c)]. The function χ ′′(ω) has multiple peaks at resonant
frequencies ωe(o) that differ for two parities, similarly to the
features present in χ ′(ω). Therefore the current-current corre-
lation function χ (ω) is a good marker to distinguish between
two Majorana parities in the topological phase.

Given the above results for the current-current correlator
we can now focus on the cavity photon spectral function
(11). We plot A(ω) as a function of frequency in Fig. 2(a)
at a fixed light-matter coupling g for different parities in the
topological phase. The current-current correlation function
is calculated for a finite-length Kitaev chain and has many
resonances [see Fig. 1(b)], therefore, Eq. (14) has multiple
solutions for polariton energies corresponding to peaks in
A(ω). Moreover, the polariton spectrum in the topological
phase depends on the Majorana parity through χ ′(ω). The
cavity spectral function has different patterns for two parities
and can distinguish between the parities. We further compute
the cavity spectral function in the trivial phase [see Fig. 2(b)]
for the same light-matter coupling strength g and the effec-
tive gap �g. We find that A(ω) has a sharp peak around the
cavity frequency ωc as in the topologically nontrivial phase.
However, we note that contrary to the topological case small
peaks emerge at frequencies larger than 2�g corresponding to
bulk-bulk transition across the gap in the system.

In Fig. 3(a), we plot the cavity spectral function for the
Kitaev chain in the topological phase as a function of
frequency and light-matter coupling. We consider a cavity fre-
quency in resonance with the first bulk-Majorana transition for
the even parity (ωc = ωe). We see that for low frequency there
is a broad peak which shifts towards lower frequencies upon
increasing g. At higher frequencies, on the other hand, we
recognize sharp features associated with transitions between

(a)

(b)

FIG. 2. Cavity spectral function A(ω) as a function of frequency
ω/t for g = 0.1. (a) In the topological phase (μ/t = −1.75), the red
solid (black dashed) line corresponds to even (odd) Majorana parity.
The vertical gray dotted line indicates the cavity frequency ωc= ωe

fixed to be in resonance with the first bulk-Majorana transition. The
vertical blue solid line indicates the effective gap in the Kitaev chain
spectrum �g ≈ ωe (εM/t = 7.44 × 10−7). (b) In the trivial phase
(μ/t = −2.25), there is a large peak that emerges at ωc (vertical gray
dotted line) for g = 0 and shifts to smaller frequencies at finite g.
Smaller peaks appear at frequencies larger than 2�g shown in vertical
blue solid line. The pink dot-dashed line indicates the first bulk-bulk
transition at frequency ωb > 2�g. Other parameters are the same as
in Fig. 1.

Majorana and bulk states. Next, we calculate A(ω) for the
Kitaev chain in the trivial phase [see Fig. 3(b)]. As dis-
cussed for the topological phase there is a broad peak that
originates at ω = ωc for g = 0 and further broadens as the
light-matter coupling strength is increased. However, in the
trivial phase, the current-current correlation function χ (ω)
that enters Eq. (11) has resonances only at frequencies ωb >

2�g. Therefore other polariton modes appear only at ω >

2�g. Comparing the cavity spectral function calculated in the
topological phases we note the distinct features between the
two, namely that the sharp features of the transitions between
Majorana (bulk)-bulk states appear at different energy scales
of �g (2�g). Therefore the polariton spectrum could be poten-
tially used as a way to probe zero-energy states in topological
superconductors.

C. Polaritons in nanowire coupled to photons

We now move to the superconductor-semiconductor
nanowire model, Eq. (9), for which the paramagnetic and
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(a)

(b)

FIG. 3. Spectral function A(ω) as a function of g and ω/t . The
horizontal black dashed line corresponds to frequency ωc chosen to
be equal to first bulk-Majorana transition frequency and horizontal
pink dot-dashed line corresponds to ωb in the trivial phase. (a) In
the topological phase with μ/t = −1.75, the lowest polariton branch
originating at ω = ωc for g = 0 goes down as g is increased. White
horizontal lines corresponding to bulk-Majorana transitions coupled
with photons appear at frequencies ω > �g. (b) In the trivial phase
with μ/t = −2.25, the lowest polariton branch appears at ω = ωc. In
contrast to the topological phase, white horizontal lines correspond
to bulk-bulk transitions and appear at ω > 2�g. In two phases, white
horizontal lines corresponding to bulk-Majorana (a) and bulk-bulk
(b) transitions emerge at different frequencies signaling the presence
of zero-energy states in the topological phase. Other parameters are
the same as in Fig. 1.

diamagnetic current operators read respectively

Jp = i
g√
N

∑
j

[t (c†
j+1↑c j↑ + c†

j+1↓c j↓)

+α(c†
j+1↑c j↓−c†

j+1↓c j↑)−2�χ jc
†
j↑c†

j↓−H.c.] (22)

(a)

(b)

FIG. 4. Cavity spectral function A(ω) of the nanowire as a func-
tion of frequency ω/t for light-matter coupling strength g = 0.05.
(a) Red solid (black dashed) lines correspond to nM = 0 (nM =
1) in the topological phase with VZ/� = 1.8. The gray vertical
dotted line indicates the cavity frequency ωc resonant with the first
bulk-Majorana transition at ωe ≈ ωo (εM/t = 10−6). (b) A(ω) for the
nanowire in the trivial phase with VZ/� = 0.2. The vertical gray
dotted line indicates ωc and pink dot-dashed line signals the position
of the first bulk-bulk transition frequency ωb. Other parameters are
fixed as N = 100, �/t = 0.1, μ = 0, α/t = 0.4, and η/t = 10−3.

and

Jd = g2

N

∑
j

[−t (c†
j+1↑c j↑ + c†

j+1↓c j↓)

+α(c†
j+1↑c j↓ − c†

j+1↓c j↑) + 4�χ2
j c†

j↑c†
j↓ + H.c.].

(23)

To find the cavity spectral function of the nanowire model,
we proceed in the same way as for the Kitaev chain. The real
and imaginary part of χ (ω) has similar structure to Fig. 1, but
the position and amplitude of the peaks are less homogeneous
due to more involved energy spectrum of the nanowire.

In Fig. 4, we plot the cavity spectral function for the
nanowire model as a function of frequency ω for a fixed
value of the light-matter coupling g. In the topological phase,
we consider different parities depicted in solid red and black
dashed lines in the absence of the Majorana overlap, with
εM/t = 10−6. Moreover, in the presence of the Majorana over-
lap, the dependence of A(ω) on the Majorana parity becomes
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FIG. 5. Cavity spectral function A(ω) of the nanowire as a func-
tion of the light-matter coupling g and frequency ω/t . The black
dashed line indicates the value of cavity frequency ωc = ωe (reso-
nant with the first bulk-Majorana transition for even parity). White
horizontal lines correspond to bulk-Majorana transitions and emerge
at frequencies ω > �g. Other parameters are the same as in Fig. 4.

even more pronounced, see Appendix B. The cavity spectral
function has a large peak around the cavity frequency ωc

resonant with the lowest bulk-Majorana transition frequency
ωe ≈ ωo and multiple smaller peaks corresponding to higher
in energy bulk-Majorana transitions appearing at ω > �g [see
Fig. 4(a)]. Considering the superconductor-semiconductor
nanowire in the trivial phase coupled to photonic cavity, we
find that the cavity spectral function has a sharp peak orig-
inating at the frequency ωc and multiple smaller peaks at
frequencies ω > 2�g that stem from the bulk-bulk transitions
in the nanowire [see Fig. 4(b)]. Similar features were found
for the Kitaev chain [see Fig. 2(b)] and allow one to probe the
presence of zero-energy modes in the topological supercon-
ductor.

Finally, we present A(ω) for the nanowire in the topological
phase as a function of frequency and light-matter coupling
strength in Fig. 5. By choosing the cavity frequency to be
equal to the first bulk-Majorana transition frequency, we find
the appearance of a broad low-frequency polariton mode that
goes down in ω with increasing g. Higher-frequency polariton
modes appear due to coupling between higher bulk-Majorana
transitions and photons showing a dense pattern of modes.
Similar behavior was found for the Kitaev chain (see Fig. 3).

IV. CONCLUSIONS

In this work, we studied a one-dimensional topological
superconductor coupled to cavity photons. We calculated the
cavity spectral function of the electron-photon system that
revealed the polariton spectrum of the hybrid system. The
peaks in cavity spectral function appear at different energy
scales for the electronic chain in the trivial and topological
phase. Moreover, in the topological phase associated with the
presence of the Majorana bound states the polariton spectrum

has a different pattern for two Majorana parities. While the
peaks in the cavity spectral function appearing at low energies
could be attributed to non-Majorana zero energy states, the de-
pendence on the Majorana parity remains a unique property of
a topological superconductor. We note that our findings could
be generalized to 2D and 3D topological systems hosting
Majorana bound states. The dependence of the polariton spec-
trum on the Majorana parity stems from the bulk-Majorana
transitions that are also present in a 3D system and could
be used to probe Majorana parity, as was demonstrated in
Ref. [49]. Therefore a cavity spectral function could be used
to probe topological properties of the electronic chain.
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APPENDIX A: DERIVATION OF CAVITY
SPECTRAL FUNCTION

In this section, we provide details on the derivation of the
expression (11) for the cavity spectral function. Following
Refs. [9,52–54], we write down the action corresponding to
the topological superconductor coupled to cavity, S = Sel +
Sel-ph + Sph, with Sel containing only electronic fields, Sel-ph

describing the electron-photon coupling part, and

Sph = −
∫ β

0
dτdτ ′φ∗(τ )d−1

0 (τ − τ ′)φ(τ ′). (A1)

Here, (φ∗(τ ), φ(τ )) are the photonic fields at the imaginary
time τ and d−1

0 (τ − τ ′) = −δ(τ − τ ′)(∂τ + ωc) is the bare
photon Green’s function.

In order to obtain the cavity spectral function, we first
derive a cavity-only effective action by integrating out the
electronic degrees of freedom. This can be done by rewrit-
ing the partition function of the topological superconductor
coupled to cavity Z = ∫

D[φ, φ∗,C,C∗]e−S as

Z =
∫

D[φ, φ∗]e−Seff ≡
∫

D[φ, φ∗]e−(Sph−ln Z0 ), (A2)

where

Z0[φ, φ∗] =
∫

D[C,C∗]e−Sel [C,C∗]−Sel-ph[φ,φ∗,C,C∗]. (A3)

By expanding the effective action to second order in photonic
fields φ(τ ), we obtain

S̃eff = 1

2

∫
dτdτ ′�†(τ )

[
D−1

0 (τ − τ ′) − �(τ − τ ′)
]
�(τ ′),

(A4)

where D−1
0 (τ − τ ′) is the bare photon Green’s function

written in the Nambu basis �†(τ ) = (φ∗(τ ), φ(τ )), and
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(a)

(b)

FIG. 6. (a) The Majorana probability density |ψM |2 as a function
of the lattice site j. Majorana bound states overlap resulting in the
finite Majorana energy εM/t = 0.002. (b) Cavity spectral function
A(ω) of the nanowire as a function of frequency ω/t for light-
matter coupling strength g = 0.05. Red solid (black dashed) lines
correspond to the Majorana parity nM = 0 (nM = 1). Gray verti-
cal dotted line indicates the cavity frequency ωc resonant with the
first bulk-Majorana transition at ωe/t = 0.025. Other parameters are
fixed as N = 100, VZ/� = 1.77, �/t = 0.1, μ = 0, α/t = 0.04, and
η/t = 10−3.

�(τ − τ ′) is the polarization given by

�(τ − τ ′) =
⎛
⎝ δ2 ln Z0[�,�∗]

δφ∗(τ )δφ(τ ′ )
δ2 ln Z0[�,�∗]
δφ∗(τ )δφ∗(τ ′ )

δ2 ln Z0[�,�∗]
δφ(τ )δφ(τ ′ )

δ2 ln Z0[�,�∗]
δφ(τ )δφ∗(τ ′ )

⎞
⎠

∣∣∣∣∣
�=0

. (A5)

From the above equation for the effective action one can im-
mediately read off the cavity Green’s function D−1(τ − τ ′) =
D−1

0 (τ − τ ′) − �(τ − τ ′) from which the spectral function
given in the main text follows after analytic continuation. We
note that all four components of the polarization are equal to
χ (ω) defined in the main text.

APPENDIX B: CAVITY SPECTRAL FUNCTION
FOR OVERLAPPING MAJORANA BOUND STATES

In this section, we consider the case of overlapping
Majorana bound states in the nanowire model coupled to a sin-
gle mode cavity (9). We plot the Majorana probability density
at the lattice site j in Fig. 6(a). Two Majorana bound states
are no longer localized at the opposite ends of the nanowire
and overlap with each other along the nanowire length. This
overlap of the wave functions gives rise to the finite energy

(a)

(b)

FIG. 7. Cavity spectral function A(ω) of the nanowire as a func-
tion of the light-matter coupling g and frequency ω/t . Horizontal
black dashed line indicates the value of cavity frequency ωc/t =
ωe/t = 0.025 (resonant with the first bulk-Majorana transition for
even parity). Majorana bound states overlap resulting in the finite
Majorana energy εM/t = 0.002. (a) A(ω) for even Majorana parity.
(b) A(ω) for odd Majorana parity. Other parameters are fixed as N =
100, VZ/� = 1.77, �/t = 0.1, μ = 0, α/t = 0.04, and η/t = 10−3.

splitting between two Majorana bound states, εM/t = 0.002.
We note that the transition frequencies for even and odd
Majorana parities are no longer equal, ωe 
= ωo. We first cal-
culate the cavity spectral function for overlapping Majorana
bound states at a fixed value of the light-matter coupling
strength g [see Fig. 6(b)]. We find that the dependence of A(ω)
on the Majorana parity nM becomes even more pronounced in
the presence of the Majorana overlap compared to nonover-
lapping case shown in Fig. 4(a).

In Fig. 7, we plot the cavity spectral function for the
nanowire in the topological phase as a function of frequency
and light-matter coupling for even [panel (a)] and odd [panel
(b)] Majorana parities. The amplitude and position of the
peaks in the cavity spectral function is different for two
parities.
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