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Nonlocal thermoelectricity in quantum wires as a signature of Bogoliubov-Fermi points
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We study nonlocal thermoelectricity in a superconducting wire subject to spin-orbit coupling and a magnetic
field with a relative orientation θ between them. We calculate the current flowing in a normal probe attached
to the bulk of a superconducting wire, as a result of a temperature difference applied at the ends of the wire.
We focus on the linear response regime, corresponding to a small temperature bias. We find that the nonlocal
thermoelectric response is strongly dependent on the angle θ and occurs in ranges which correspond to the
emergence of Bogoliubov-Fermi points in the energy spectrum of the superconducting wire.
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I. INTRODUCTION

Superconducting quantum wires have garnered significant
attention in various research fields, such as materials science,
quantum physics, and condensed matter physics. The appeal-
ing features of these systems rely on three crucial ingredients:
resilient induced superconductivity, strong spin-orbit coupling
(SOC), and a large gyromagnetic factor. The goal of achieving
a topological phase featuring Majorana zero modes [1,2] was
the driving force for numerous theoretical and experimental
studies into superconducting InAs wires [3–11]. An equally
fascinating phenomenon is the emergence of Bogoliubov-
Fermi surfaces, whose signatures have been recently observed
in InAs two-dimensional systems with an applied in-plane
magnetic field proximitized by superconductors [12]. The
energetic stability and the topological properties of this pe-
culiar phase have been the motivation of several theoretical
studies [13–20].

In this paper, we show that the emergence of Bogoliubov-
Fermi points in a superconducting wire with SOC and a
magnetic field can lead to a strong nonlocal thermoelectric
signature. These wires exhibit a topological phase across a
range of chemical potentials (μ), pairing amplitudes (�), and
Zeeman energies (�B) subject to the condition that the angle
(θ ) between the directions of the SOC and the magnetic field
satisfies | cos(θ )| < �/�B < 1 [21–25]. Bogoliubov-Fermi
points emerge as the gap in the spectrum of the topological
phase is partially closed by a twist beyond the critical an-
gles defined by this condition. This nonlocal thermoelectric
response bears similarities to that recently proposed to take
place in Josephson junctions of two-dimensional topological
insulators [26–28]. In that case, such an intriguing effect is
rooted in the helical nature of the Kramers pairs of edge
states present in the system, and it is induced by a Doppler
shift generated by a magnetic flux threading the junction [29].

*Contact author: jherreramateos@unsam.edu.ar

Instead, in the case of the quantum wire, the pivotal role is
played by the twist of the magnetic field giving rise to the
Bogoliubov-Fermi points.

We consider the setup sketched in the top panel of Fig. 1,
where a quantum wire is proximitized with local s-wave su-
perconductivity and has SOC and a magnetic field acting in
the directions �nλ and �nB, respectively, with �nλ · �nB = cos(θ ).
A temperature difference (TL �= TR) is imposed between the
left (L) and the right (R) portions of the wire. A third terminal
consisting of a normal-metal probe (N) is contacted at some
point along the length of the wire with a tunnel-coupling td .
The nonlocal thermoelectric effect corresponds to an electrical
current Je generated at the normal probe as a response to the
transversal thermal bias. We study this effect in the linear
response regime, corresponding to a small temperature bias
TL − TR.

The paper is organized as follows. The analysis of the
spectral properties of the wire is presented in Sec. II.
Section III is devoted to the evaluation of the current in the
normal terminal and the definition of the local and nonlocal
thermoelectric coefficients. Results are presented in the linear
regime in Sec. IV. Section V is devoted to conclusions. Some
technical details are explained in Appendixes.

II. SPECTRAL PROPERTIES OF THE WIRE

The wire is described by the Hamiltonian Hw =
( 1

2 )
∑

k c†
kHk, ck , which is expressed in the Nambu ba-

sis ck = (ck↑, ck↓, c†
−k↓,−c†

−k↑)T , and the Bogoliubov–de
Gennes (BdG) Hamiltonian matrix is given by [1,2]

Hk = τ z ⊗ [
ξkσ

0 − λk �nλ · �σ
] − �Bτ 0 ⊗ �nB · �σ + �τ x ⊗ σ 0.

(1)

The Pauli matrices �σ = (σ x, σ y, σ z ) and �τ = (τ x, τ y, τ z ) act
in the spin and particle-hole degrees of freedom, respectively,
while σ 0, τ 0 are the identity matrices. Here, ξk =
−2t cos(ka) − μ is the kinetic dispersion relation relative
to the chemical potential μ, where t is the nearest-neighbor
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FIG. 1. Top: Sketch of the setup. Bottom: Spectrum of the
Bogoliubov–de Gennes Hamiltonian describing the wires with
t = 5 meV,�B = 0.5 meV, λ = 0.25 meV, � = 0.2 meV, and μ =
−9.9 meV, for different values of the angle θ between the direction of
the spin-orbit coupling (SOC) and the magnetic field. For θ = π/2,
the spectrum is fully gapped with two cones symmetrically aligned
to k = 0. For 0 < θ < π/2 (−π/2 < θ < 0), the cone with k > 0
(k < 0) crosses zero energy, defining Bogoliubov-Fermi points with
right-moving electrons and left-moving holes (right-moving elec-
trons and left-moving holes). These states account for the nonlocal
thermoelectric response.

hopping, and a is the lattice constant. The SOC is described
by λk = 2λ sin(ka), while �B = gμBB is the Zeeman splitting
due to the magnetic field B, and � is the local s-wave pairing
potential.

In the results shown hereafter, we consider parameters
of this Hamiltonian that are representative of reported ex-
perimental research in InAs wires [4,5]. We assign t =
5 meV, which fits the continuum model for the wires for
a =

√
h̄2/2mt ≈ 15 nm. We consider λ = 0.25 meV for the

SOC, � = 0.2 meV for the pairing potential, and a g fac-
tor g = 18, which corresponds to a Zeeman splitting energy
�B = 0.5 meV for a magnetic field B ≈ 0.48 T.

The eigenspectrum corresponding to the Hamiltonian of
Eq. (1) is shown in the bottom panel of Fig. 1 for different
values of θ . We can identify two bands generated by the
Zeeman splitting, which are doubled in the BdG representa-
tion. When the magnetic field is perpendicular to the SOC
(θ = ±π/2), the spectrum is fully gaped for all values of k.
Due to the combination of the SOC and B, the effective pairing
has s-wave as well as p-wave components [1,2,24,30]. The
latter is the dominant one when the system is in the topologi-
cal phase for 0 � μ + 2t �

√
�2

B − �2. This is precisely the
situation illustrated in the figure. When the orientation of the
magnetic field is twisted, such that θ overcomes the critical
values defined by the condition | cos(θ )| < �/�B < 1, the
superconducting gap is partially closed. In fact, the cones of
the spectrum cross zero energy from positive (negative) ener-
gies defining Bogoliubov-Fermi points for k > 0 (k < 0). The
right (left) bottom panels of Fig. 1 correspond to θ = ±π/4.

The aim of this paper is to show that the scenario
of Bogoliubov-Fermi points illustrated in Fig. 1 hosts the
fundamental ingredients to have a nonlocal thermoelectric
response. It is well known that a necessary condition for
the phenomenon of thermoelectricity to take place is for the
transmission probabilities not to be even in energy [31]. This
condition usually relies on the implementation of energy fil-
ters in two-terminal configurations and is difficult to realize in
superconductors since these systems are intrinsically particle-
hole symmetric [32–41]. In fact, we see that the three spectra
shown in Fig. 1 have this symmetry. The key ingredient
for nonlocal thermoelectricity in the setup we are studying
is to generate an imbalance between left-moving electrons
(thermalized with the right reservoir) and right-moving holes
(thermalized with the left reservoir). Hence, as a consequence
of an applied temperature difference at the superconducting
reservoirs, the fluxes associated with the two types of quasi-
particles into the normal probe are not compensated, and
a net current is generated. In the spectrum of Fig. 1 with
θ = ±π/2, the low-energy cone with k > 0 (k < 0) corre-
sponds to a right-moving electron (hole) and a left-moving
hole (electron). Importantly, the spectrum is symmetrical to
k = 0, implying identical velocities and densities of states of
the left and right movers. In the twisted case, we can identify
a low-energy branch of bogoliubons forming Fermi points
with electrons moving to the right and holes moving to the
left (see plots with θ = ±π/4). The opposite situation takes
place for θ = ±3π/4. This mechanism may display a thermo-
electric response since it produces the necessary particle-hole
imbalance.

In Sec. IV, we show explicit calculations of the thermo-
electric current that confirm this picture. It is interesting to
compare with the situation discussed in Ref. [26] for a device
where the Kramers pair of helical edge states of a topological
insulator in a Josephson junction. In that case, the imbal-
ance between electrons and holes was induced by a Doppler
shift generated by the magnetic flux threading the junction.
Although different, both systems share common features. In
fact, in both cases, the low-energy spectrum hosts a pair of
left-right movers with different spin orientations in contact
with a s-wave superconductor. Because of the broken SU(2)
symmetry, in both systems, superconducting pairing is in-
duced in both s- and p-wave channels. The effect of the twisted
magnetic field in our case and the Doppler shift in the case of
Ref. [26] is to introduce asymmetry into the spectrum so that a
single pair of particle-hole quasiparticles moving in opposite
directions dominate the quantum energy transport.

III. THERMOELECTRIC TRANSPORT

We now present the theoretical approach to calculate the
expression for the current in terms of nonequilibrium Green’s
function formalism (see Refs. [30,42,43]).

A. Model of the device

The full Hamiltonian reads

H = 1
2 [Hw + Hd + HN + Hcont], (2)
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where the Hamiltonian for the superconducting wire Hw is the
same defined in Eq. (1). It is convenient here to express it in
real space as follows

Hw = −
∞∑

j=−∞
[c†

jτ
z ⊗ (tσ 0 + iλ �nλ · �σ )c j+1 + H.c.]

+
∞∑

j=−∞
c†

j [�τ x ⊗ σ 0 − �Bτ 0 ⊗ �nB · �σ

− μτ z ⊗ σ 0]c j, (3)

with c j = (c j,↑, c j,↓, c†
j,↓,−c†

j,↑).
The Hamiltonian for the normal probe is a one-dimensional

tight-binding Hamiltonian with hopping tN :

HN = −tN

∞∑
j=1

(b†
jτ

z ⊗ σ 0b j+1 + H.c.), (4)

where we are using the notation b†
j = (b†

j,↑, b†
j,↓, b j,↓,−b j,↑)

for the Nambu spinor within the normal lead. This system is
assumed to be at temperature TN and voltage V . The interface
is modeled by an intermediate site d, which plays the role of a
quantum dot:

Hd = −d†εdτ
z ⊗ σ 0d, (5)

where d = (d↑, d↓, d†
↓,−d†

↑)T is the Nambu spinor that de-
scribes the degrees of freedom in the quantum dot, and εd is a
local energy representing a barrier.

The last term of Eq. (2) is the tunneling contact between
the quantum dot and the wire and the normal probe. It reads

Hcont = −[(td c†
0 + tN b†

1)τ z ⊗ σ 0d + H.c.], (6)

where the label 
 = 0, 1 denotes the sites of the wire and
normal chains that are tunnel-coupled to the interface, respec-
tively. Notice that, for εd = 0, the quantum dot is assimilated
to the normal lead.

In the calculation, we split the wire into a central segment
containing Nw lattice sites, which is contacted to left (L) and
right (R) to semi-infinite wires described by the same lattice
Hamiltonian. These play the role of reservoirs with tempera-
tures TL and TR, respectively.

B. Current in the normal lead

The current flowing between the connecting site d and the
normal lead reads

Je = e

h
Re

{∫
dεTr[τ z ⊗ σ 0 tN G<

Nd (ε)]

}
, (7)

where tN = tNτ z ⊗ σ 0, and we have introduced the lesser
Green’s function:

G<
Nd (t, t ′) = −i〈d†(t ′)b1(t )〉, (8)

as well as the Fourier transform t − t ′ → ε.
Using properties of the Green’s functions presented in

Appendix A and following the details developed in

Appendix B, the current can be expressed as follows:

Je = e

2h

∫
dε

{ ∑
j=L,R

[( f j− f +
N )T (p)

j (ε)

− ( f j− f −
N )T (h)

j (ε)] + 2[ f −
N − f +

N ]RA(ε)

}
. (9)

The first terms describe the normal transmission for the parti-
cle (p) and holes (h) and read

T (p)
j (ε) =

∑

=1,2

{
�N (ε)Gr

d j (ε)� j (ε)Ga
jd (ε)

}

,


,

T (h)
j (ε) =

∑

=3,4

{
�N (ε)Gr

d j (ε)� j (ε)Ga
jd (ε)

}

,


, (10)

while the last term of Eq. (9) describes the Andreev reflection
and reads

RA(ε) =
∑


=1,2,
=3,4

�N (ε)Gr
dd (ε)
,
� j (ε)Ga

dd (ε)
,
. (11)

The functions T (p)
j (ε) and T (h)

j (ε) are, respectively, the
transmission probabilities for electronlike and holelike quasi-
particles starting from the superconducting lead j = L, R to
go in lead N , while RA(ε) is the Andreev reflection probability
for an electron starting from lead N to be reflected as a hole.

We have introduced the hybridization matrices � j (ε), the
nonlocal retarded/advanced Green’s functions Gr/a

jd (ε), with
j = L, R, N , as well as the local ones Ga

dd (ε). The calculations
of all these quantities are explained in Appendix A. We have
also introduced the Fermi functions f j (ε) = 1/(eβ jε + 1) and
f ±
N (ε) = fN (ε ∓ eV ), where β j is the inverse temperature of

the reservoir j. Notice that only the normal lead is biased with
a voltage V .

Some properties of these transmission functions are dis-
cussed in Appendix C.

C. Linear response

We particularly focus on the linear-response regime and
on a range of temperatures below the critical temperature
of the superconductor. We consider the general case where
the temperatures for a normal probe and the left and right
terminals of the wire are, respectively,

TN = T,

TL = T + �T

2
, (12)

TR = T + r
�T

2
, −1 � r � 1,

with �T � T being infinitesimal. Notice that, when r = −1,
the temperature bias at the superconducting wire is perfectly
symmetric with respect to the reference temperature of the
normal probe. In the opposite case, where r = 1, only one of
the terminals of the wire is thermally biased with respect to
the normal probe.

We consider that the ends of the wire are grounded (μL =
μR = 0), while the normal terminal may have an electri-
cal bias μN = eV . We define the affinities XV = V/T and
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XT = �T/(2T 2) and assume they are small enough to justify
treating them in the linear response. Expanding the differences
of Fermi functions entering Eq. (9) up to first order in these
affinities, we get

Je = LeeXV +
[

1 + r

2
Lloc

eq + 1 − r

2
Lnl

eq

]
XT . (13)

The Onsager coefficients read

Lee = −e2 T

2h

∫
dε[T +

L (ε) + T (+)
R (ε) + 4RA(ε)]

df (ε)

dε
,

Lloc
eq = −eT

2h

∫
dε[T −

L (ε) + T −
R (ε)]ε

df (ε)

dε
,

Lnl
eq = −eT

2h

∫
dε[T −

L (ε) − T −
R (ε)]ε

df (ε)

dε
, (14)

where T ±
j (ε) = T (p)

j (ε) ± T (h)
j (ε). The Fermi function is

evaluated at the base temperature T . The derivative of this
function entering the coefficients of Eq. (15) defines the rele-
vant transport window |ε| � kBT .

Notice that Lee and Lloc
eq are local quantities, which cor-

responds to the convergence of the transport channels of the
two superconducting terminals into the N one. Instead, Lnl

eq
is a nonlocal quantity, corresponding to the difference in
the thermoelectrical transport between the L and R terminals
and the N one, and we have stressed this property with the
label nl. In Appendix C, we show that these functions satisfy
T (p/h)

L (ε, θ ) = T (p/h)
R (ε, θ + π ), which implies a change of

sign of Lnl
eq(θ ) at θ = ±π/2.

The relevant transport coefficients we discuss next are the
conductance G and the nonlocal (local) Seebeck coefficient
Snl(Sloc). These are defined from the Onsager parameters as

G = Lee

T
, Snl/loc = Lnl/loc

eq

TLee
. (15)

IV. NUMERICAL RESULTS

In the calculations, we evaluate the Green’s functions of
the semi-infinite wires representing the reservoirs at the tem-
peratures TL and TR with a recursive method [44]. In linear
response, the results do not depend on either the length of
the central wire or the position of the contact with the normal
probe but the tunneling coupling td between the normal probe
and the wire. For simplicity, we consider td = tN and εd = 0.

A. Nonlocal thermoelectric response

In Fig. 2, we present the resulting conductance and
Seebeck coefficient as functions of the chemical potential μ

and relative SOC-magnetic field angle θ . We can identify in
the top panel of the figure regions where the Seebeck coeffi-
cient takes large positive and negative values. These are the
nonlocal thermoelectric features anticipated from the analysis
of the spectrum with Bologiubov-Fermi points. In fact, notice
that the value of μ corresponding to the spectrum of Fig. 1
is precisely the one for which the largest values of Snl are
achieved. We can verify the vanishing nonlocal thermoelec-
tric response for θ = 0,±π/2,±π for which the spectrum
is symmetric with respect to k = 0. In addition, the opposite

FIG. 2. Snl and G as functions of θ and μ for the same param-
eters of the wire as in Fig. 1. Other parameters are td = 2.5 meV
and kBT/� = 0.25. The topological phase is within the rectangles
indicated in dashed lines. Bottom panel: Spectrum corresponding to
the point (θP, μP ) for which the nonlocal thermoelectric response is
weak.

signs of Snl for given angles θ and θ + π are consistent with
the interchange of right-moving particlelike and left-moving
holelike quasiparticles observed in the spectra of Fig. 1 and
with the symmetry properties of the functions T (p/h)

L (ε, θ ). In
the bottom panel of Fig. 2, we show for comparison the spec-
trum for the parameters (θP, μP ) indicated in the top panel
where the thermoelectric response is weaker albeit nonvanish-
ing. For μ + 2t �

√
�2

B − �2, the dominant superconducting
pairing is an s-wave type, and four quasiparticle cones emerge
at low energy in the spectrum (two for k > 0 and two for
k < 0). For θ �= π/2, four Bogoliubov-Fermi points emerge
at each side of k = 0. Focusing at k > 0, we can identify
an electron-hole cone crossing zero energy from above along
with a hole-electron cone crossing zero energy from below.
The nature of these low-energy quasiparticles is consistent
with a pair of left-moving electrons and right-moving holes
partially compensated by a pair of right-moving electrons and
left-moving holes. Consequently, there is a partial cancella-
tion of the nonlocal thermoelectric transport. In conclusion,
the nonlocal thermoelectrical effect is much stronger when a
single Bogoliubov-Fermi cone is present. This is precisely the
case for emerging Fermi points within the topological phase.

The behavior of the conductance is affected by the density
of states of the wire and the coupling td between the wire and
the normal probe. It achieves a maximum close to μ + 2t ∼√

�2
B − �2, just above the boundary for the topological phase.

This is because the density of states of the wire is large for
this value of μ, and the two spin channels contribute to the
transport.

A complementary and helpful perspective can be obtained
by fixing the angle and changing the magnetic field. In Fig. 3,
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FIG. 3. Snl and G as functions of �B and μ for θ = π/4. Other
parameters are the same as the previous figures. The topological
phase is inside the small triangle highlighted in a dashed line in
the upper panel. It is defined by 0 � μ + 2t �

√
�2

B − �2 and
|cos(θ )| � �/�B (vertical gray line).

we focus on θ = π/4 and show again Snl and G as functions
of �B and μ. In the behavior of these quantities, we can
identify the gap ∼�B (see the blue region in the upper panel),
within which G is minimal while the nonlocal thermoelectric
response is strongest. The small triangle with the dashed line
in the upper panel of this figure defines the boundary for the
topological phase. As in the previous figure, we see that the
maximal response in Snl is associated with the emergence of
the Bogoliubov-Fermi points. Such an effect occurs as the
magnetic field is twisted beyond the critical value defined
by |cos(θ )| < �/�B. From the experimental point of view,
it is important to notice that Snl remains close to the maximal
values across a wide range of μ and �B, which facilitates the
exploration of this effect by varying the magnetic field.

Finally, in Fig. 4, we show Snl and G obtained for different
couplings td between the normal probe and the wire as a
function of the temperature T . We focus on low enough T so
that we can neglect the dependence of � on T . It is, however,

FIG. 4. Snl and G as functions of temperature for the same pa-
rameters as the previous figures and different values of coupling
with the normal reservoir td . Solid (dashed) lines correspond to
μ = −9.38 meV (μ = −9.9 meV).

FIG. 5. Nonlocal and local Seebeck coefficient as a function of
θ , for a system with t = 5 meV, �B = 0.5 meV, λ = 0.25 meV, � =
0.2 meV, td = 2.5 meV, and μ = −9.9 meV, for different values of
r, the factor that quantifies the asymmetry of temperatures between
the superconducting reservoirs L and R. r = −1 corresponds to the
purely nonlocal case and r = 1 to the purely local case.

easy to numerically introduce the self-consistent temperature
correction of the gap in the case if needed. The amplitude of
the nonlocal Seebeck coefficient Snl decreases as a function
of the temperature. This is consistent with the fact that, for
increasing temperature, high-energy regions of the spectrum
play a role. Such excitations contain electrons and holes trav-
eling in opposite directions, with the concomitant suppression
of the nonlocal thermoelectric response. This thermoelectric
behavior is anomalous. It strongly differs from the standard
behavior of the Seebeck coefficient which typically scales
with the temperature. The effect of temperature is clearly
weaker in the conductance. In addition, the thermoelectric
response is not strongly affected by the coupling td , while the
opposite is true regarding the conductance.

B. Nonlocal vs local thermoelectric response

Depending on how symmetrical the temperature differ-
ence between the superconducting reservoirs is, we have a
nonlocal, local thermoelectric response, or a combination
of both.

Given the temperatures as defined in Eq. (13), we see
that the thermoelectric response is purely nonlocal when the
temperature bias at the superconducting wire is perfectly sym-
metric with respect to the reference temperature of the normal
probe, which corresponds to r = −1. In the opposite limit,
where r = 1, the temperature bias is completely asymmetric
since only one of the terminals of the wire is thermally biased
with respect to the normal probe, and in this limit, only the lo-
cal component contributes. Intermediate situations correspond
to −1 < r < 1, and the two components contribute.

The behavior of the local and nonlocal components of the
Seebeck coefficient are shown in Fig. 5 as functions of θ for
different values of the factor r. We see the high sensitivity of
the nonlocal thermoelectric effect to the angle θ in contrast
with the local one, which depends mildly on this angle. This
figure highlights the importance of implementing a symmetric
temperature bias (r = −1) to cleanly observe the nonlocal
thermoelectric effect.
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V. SUMMARY AND CONCLUSIONS

We have shown the existence of a nonlocal thermoelectric
response in a superconducting wire hosting SOC with twisted
orientations of a magnetic field with respect to the wire SOC
main axis. We focused on the linear response regime, corre-
sponding to a small temperature bias. We predict this effect to
take place in systems akin to those typically used in the search
for Majorana zero modes [3–7].

The possible impact of Majorana zero modes in thermo-
electric effects has been explored in structures with quantum
dots [45–55]. In contrast, the nonlocal effect addressed here
is related to the emergence of Bogoliubov-Fermi points. This
takes place when the gap of the topological phase is partially
closed by a twist of the magnetic field with respect to the SOC
beyond a critical alignment and has been recently observed in
two-dimensional samples of these materials [12].

The estimate of the Seebeck coefficient, albeit small, is
compatible with measured thermovoltages in other systems
[56–58], assuming temperature differences of 10–100 mK. Its
behavior is strongly sensitive to the relative orientation of the
magnetic field and the SOC, providing a valuable hallmark of
this fundamental property.

ACKNOWLEDGMENTS

L.T. acknowledges the Georg Forster Fellowship from
the Humboldt Stiftung. L.A., L.T., and J.H.M. are grateful
for support from CONICET as well as FonCyT, Argentina,
through Grants No. PICT-2018-04536 and No. PICT 2020-
A-03661. L.A. would also like to thank the Institut Henri
Poincaré (UAR 839 CNRS-Sorbonne Université) and the
LabEx CARMIN (ANR-10-LABX-59-01) for their support.
A.B. and F.T. acknowledge the MUR-PRIN 2022, Grant No.
2022B9P8LN, (PE3)-Project NEThEQS “Non-equilibrium
coherent thermal effects in quantum systems” in PNRR
Mission 4, Component 2, Investment 1.1 “Fondo per il Pro-
gramma Nazionale di Ricerca e Progetti di Rilevante Interesse
Nazionale (PRIN)” funded by the European Union, Next
Generation EU, and the Royal Society through the Inter-
national Exchanges between the UK and Italy (Grant No.
IEC R2 192166). A.B. acknowledges the EU’s Horizon 2020
Research and Innovation Framework Programme Grants No.
964398 (SUPERGATE) and No. 101057977 (SPECTRUM)
and CNR project QTHERMONANO.

APPENDIX A: CALCULATION OF GREEN’S FUNCTIONS

We present here the Dyson’s equations leading to the cal-
culation of the retarded Green’s functions.

1. Retarded/advanced

The Dyson equation for the Fourier-transformed retarded
Green’s functions Gr

α,γ (t, t ′) = −iθ (t − t ′)〈{ψα (t ), ψ†
γ (t ′)}〉

corresponding to the different Nambu spinors ψα,γ (t ) ≡
c j (t ), b(t ), d(t ) reads

Gr
d0(ε) = Gr

dd (ε)tdgr
00(ε),

Gr
dd (ε) = g̃r

dd (ε) + Gr
d0(ε)td g̃r

dd (ε) + Gr
dN (ε)tN g̃r

dd (ε),

Gr
dN (ε) = Gr

dd (ε)tN gr
NN (ε),

Gr
Nd (ε) = gr

NN (ε)tN Gr
dd (ε), (A1)

where we have introduced the definition of the retarded
Green’s function of the quantum dot isolated from the rest of
the subsystems:

g̃r
dd (ε) = [ετ 0 ⊗ σ 0 + εdτ

z ⊗ σ 0 + Bdτ
0 ⊗ �nB · �σ ]−1,

(A2)

as well as the Green’s function of the wire connected to the
two superconducting reservoirs but disconnected from the
quantum dot and the normal lead, evaluated at the connecting
site 0. It reads

gr
00(ε) = [

g̃r (ε)−1 − �r
1(ε) − �r

2(ε)
]−1|00, (A3)

where g̃r (ε) is the Green’s function of the free wire. Substitut-
ing in Eq. (A1) the first equation into the second one, we get

Gr
dd (ε) = [

g̃r
dd (ε)−1 − �r

S (ε) − �r
N (ε)

]−1
. (A4)

We have also introduced the self-energies:

�r
S (ε) = td gr

00(ε)td ,
(A5)

�r
N (ε) = tN g̃r

NN (ε)tN ,

(notice that this is a 4(Nw + 1) × 4(Nw + 1) matrix), while
�r

j (ε), j = L, R are the self-energies describing the coupling
of the wire to the superconducting leads L, R. These can
be also represented as 4(Nw + 1) × 4(Nw + 1) matrices with
nonvanishing 4 × 4 submatrices associated with the spacial
coordinates −Nw/2 (for j = L) and Nw/2 (for j = R), respec-
tively. The nonvanishing self-energy matrices read

�r
j (ε) = t j g̃r

S (ε)t†
j , (A6)

where t j is the matrix element representing the contact be-
tween the wire and the reservoirs. This contains the hopping
as well as the spin-orbit terms, and g̃r

S (ε) is the Green’s
function for the semi-infinite superconducting wire represent-
ing the reservoir. This is calculated by means of a recursive
algorithm [44].

The self-energy describing the contact to the normal lead
reads �r

N (ε) = t2
N g̃r

N (ε), where g̃r
N is the Green’s function

of the normal lead, which is also calculated by a recursive
algorithm.

The advanced functions can be calculated from

Ga
i j (ε) = [

Gr
ji(ε)

]†
. (A7)

2. Lesser

The lesser Green’s functions can be calculated from the
retarded/advanced ones by recourse to Langreth’s rule:

G<
d0(ε) = G<

dd (ε)td ga
00(ε) + Gr

dd (ε)td g<
00(ε),

G<
dN (ε) = G<

dd (ε)tN ga
NN (ε) + Ga

dd (ε)tN g<
NN (ε),

G<
dd (ε) = Gr

dd (ε)[�<
S (ε) + �<

N ]Ga
dd (ε),

g<
00(ε) = gr

0,−Nw/2(ε)�<
L (ε)ga

−Nw/2,0(ε)

+ gr
0,Nw/2(ε)�<

R (ε)ga
Nw/2,0(ε). (A8)
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The different self-energies are

�<
α (ε) = fα (ε)

[
�a

α (ε) − �r
α (ε)

]
, α = L, R, N,

�<
S (ε) =

∑
j=L,R

�r
j (ε)�<

j (ε)�a
j (ε), (A9)

where

�r
1(ε) = td gr

0,−Nw/2(ε), �r
2(ε) = td gr

0,Nw/2(ε), (A10)

with �a
j (ε) = [�r

j (ε)]†.
Substituting, we get

G<
dd (ε) =

∑
j=L,R

Gr
d j (ε)�<

j (ε)Ga
jd (ε) + Gr

dd (ε)�<
N Ga

dd (ε),

(A11)
where

Gr
d j (ε) = Gr

dd (ε)�r
j (ε) = [

Ga
jd (ε)

]†
. (A12)

3. Identities

The following identity can be shown:

Ga
dd (ε) − Gr

dd (ε) = Gr
dd (ε)

[
�a

T (ε) − �r
T (ε)

]
Ga

dd (ε),

�
r/a
T (ε) = �

r/a
S (ε) + �

r/a
N (ε). (A13)

Another important identity can be derived by noticing that
the current defined in Eq. (7) should be zero in equilibrium.
This implies

2Re
[
�r

N G<
d,d (ε) + �<

N Ga
d,d (ε)

] = 0. (A14)

Substituting the definitions of all these quantities, we get

fN�N (ε)
[
Ga

d,d (ε) − Gr
d,d (ε)

]
− fN�N (ε)

{ ∑
j=1,2

Gr
d j (ε)� j (ε)Ga

jd (ε)

+ Gr
dd (ε)�N (ε)Ga

dd (ε)

}
= 0, (A15)

where fN is the Fermi-Dirac distribution function correspond-
ing to the equilibrium system. Since this function is a common
factor in all the terms, this identity is zero for any argument
of fN . We have introduced the definition � j (ε) = �a

j (ε) −
�r

j (ε), with j = L, R, N .

APPENDIX B: DETAILS ON THE CALCULATION OF J

Using Eq. (A8), we can rewrite the argument of Eq. (7) as
follows:

tN G<
Nd (ε) = tN g<

NN (ε)tN Ga
dd (ε) + tN gr

NN (ε)tN G<
dd (ε)

= �<
N Ga

dd (ε) + �r
N G<

dd (ε). (B1)

Similarly, using Eqs. (A9) and (A11), we can write

2Re
[
�<

N Ga
dd (ε)

] = fN�N (ε)
[
Ga

dd (ε) − Gr
dd (ε)

]
= [

fN − f +
N 1

]
�N (ε)

[
Ga

dd (ε) − Gr
dd (ε)

]
+ f +

N �N (ε)
[
Ga

dd (ε) − Gr
dd (ε)

]
, (B2)

2Re
[
�r

N G<
dd (ε)

] = �N (ε)

{ ∑
j=L,R

( f j − f +
N )Gr

d j (ε)� j (ε)

× Ga
jd (ε) + f +

N

∑
j=L,R

Gr
d j (ε)� j (ε)Ga

jd (ε)

+ Gr
dd (ε)[fN − f +

N 1]�N (ε)Ga
dd (ε)

+ Gr
dd (ε) f +

N �N (ε)Ga
dd (ε)

}
. (B3)

where

fα (ε) = fα (ε)τ 0 ⊗ σ 0, α = L, R,

fN (ε) =
(

f +
N (ε)σ 0 0

0 f −
N (ε)σ 0

)
. (B4)

Calculating the sum over the elements of these matri-
ces, we notice that

∑

=1,2[fN − f +

N 1] = 0 and
∑


=3,4[fN −
f −
N 1] = 0.

On the other hand, using the identity of Eq. (A15), we get

2Re
[
�r

N G<
dd (ε) + �<

N Ga
dd (ε)

]
= [fN − f +

N 1]�N (ε) × [
Ga

dd (ε) − Gr
dd (ε)

] − �N (ε)

×
{ ∑

j=L,R

( f j − f +
N )Gr

d j (ε)� j (ε)Ga
jd (ε)

+ Gr
dd (ε)[fN − f +

N 1]�N (ε)Ga
dd (ε)

}
. (B5)
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FIG. 6. Transmissions and Andreev reflection functions for
a system with t = 5 meV, �B = 0.5 meV, λ = 0.25 meV, � =
0.2 meV, td = 2.5 meV and (a) μ = −9.9 meV, θ = π/2;
(b) μ = −9.9 meV, θ = π/4; or (c) μ = −8.5 meV, θ = π/4.
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FIG. 7. Difference in transmission functions �T (p) = T (p)
L −

T (p)
R and �T (h) = T (h)

L − T (h)
R involved in the calculation of Lnl

eq

for a system with t = 5 meV, �B = 0.5 meV, λ = 0.25 meV, � =
0.2 meV, td = 2.5 meV and top: μ = −9.9 meV; bottom: μ =
−8.5 meV.

APPENDIX C: PROPERTIES OF THE TRANSMISSION
FUNCTIONS

The behavior of the particle and hole transmission func-
tions defined in Eq. (10) are illustrated in Fig. 6 for the left
reservoir, along with the Andreev reflection for the same pa-
rameters. The functions corresponding to the other reservoir
exhibit similar features.

We can verify that these functions satisfy

T (p)
j (ε, θ ) = T (h)

j (−ε, θ ),

T (p)
L (ε,±|θ |) = T (p)

R [ε,±(|θ | + π/2)],

T (h)
L (ε,±|θ |) = T (h)

R [ε,±(|θ | + π/2)],

T (p)
L (ε, θ ) = T (p)

R (ε, θ ± π ),

T (h)
L (ε, θ ) = T (h)

R (ε, θ ± π ). (C1)

In Fig. 7, we show the difference between the transmis-
sion functions associated with the L and R superconductors.
This combination of transmission functions determines the
nonlocal thermoelectric response and illustrates the symmetry
properties mentioned above.
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