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Imaginary gauge transformation (IGT) provides a clear understanding of the non-Hermitian skin effect by
transforming the non-Hermitian Hamiltonians with real spectra into Hermitian ones. In this paper, we extend this
approach to the complex spectrum regime in a general nonreciprocal lattice model. We unveil the validity of IGT
hinges on a class of pseudo-Hermitian symmetry. The generalized Brillouin zone of Hamiltonians respect such
pseudo-Hermiticity is demonstrated to be a circle, which enables easy access to the continuum bands, localization
length of skin modes, and relevant topological numbers. Furthermore, we investigate the applicability of IGT
and the underlying pseudo-Hermiticity beyond nearest-neighbor hopping, offering a graphical interpretation.
Our theoretical framework is applied to establish bulk-boundary correspondence in the nonreciprocal trimer
Su-Schrieffer-Heeger model and to analyze the localization behaviors of skin modes in the two-dimensional
Hatano-Nelson model.
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I. INTRODUCTION

Non-Hermitian physics has emerged as a rapidly growing
field of study over the past few years [1–6]. The non-
Hermiticity of the Hamiltonian arises when a system couples
with its surroundings. Such systems encompass optical sys-
tems with gain and loss [7–10], open systems with dissipation
[11], and electron systems with finite-lifetime quasiparticles
[12–14]. A unique feature of the non-Hermitian system is the
non-Hermitian skin effect (NHSE) [15,16], namely the bound-
ary localization of the majority of eigenstates. The existence
of NHSE can lead to novel physical phenomena, which have
no Hermitian counterparts, including unidirectional physi-
cal effects [17–19], critical phenomena [20–23], geometrical
related effects in higher dimensions [24–28], and so on. Ex-
perimental efforts to simulate non-Hermitian Hamiltonian and
examine the corresponding physical effects have also made
great progress [29–44]. An important consequence of NHSE
is the sensitivity of the spectra to the boundary conditions;
for example, the open boundary spectra differ dramatically
from the periodic boundary spectra [45]. In this case, the
traditional bulk-boundary correspondence (BBC) no longer
holds [46]. Alternative solutions to recover BBC with the
existence of NHSE have become a main focus, and differ-
ent approaches have been proposed [47–56]. Among which
the non-Bloch band theory [15,51,52] provides a standard
approach to deal with the non-negligible difference between
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periodic boundary conditions (PBCs) and open boundary con-
ditions (OBCs) by introducing the concept of generalized
Brillouin zone (GBZ). Systematic research on the topological
modes and other novel effects in non-Hermitian systems has
been conducted with the concept of GBZ [57–66]. Moreover,
NHSE itself has its topological origin [67–70], which gives
a different meaning of BBC and enriches the topological
phases[71–76].

On the other hand, the energy spectrum may be complex
for a general non-Hermitian Hamiltonian. However, assum-
ing the system exhibits η-pseudo-Hermitian symmetry, the
eigenvalues are either real numbers or complex conjugate
pairs [77]. An example of such a system is a nonreciprocal
lattice where all hopping matrix elements are real. An elegant
method named imaginary gauge transformation (IGT) [78,79]
has been employed for specific nonreciprocal lattice models
to connect non-Hermitian Hamiltonians under OBCs to their
Hermitian counterparts when the energy spectra are purely
real. This technique provides an intuitive framework for un-
derstanding the significant difference between the spectrum
under OBC and PBC, as well as the existence of NHSE. In the
simplest Hatano-Nelson (HN) model [78], IGT is employed to
obtain the OBC spectrum and localization length of the skin
modes. In the Su-Schrieffer-Heeger (SSH) model [80], IGT
helps to understand the breaking of conventional BBC with
the existence of nonreciprocal hopping [15]. Other research
utilizes the technique for certain models to shed light on
the transition between real and complex spectrum [81], and
further extends it to the momentum space to address non-
Hermiticity arising from complex potential [82].

So far, most investigations involving IGT have been con-
fined to the 1D nearest-neighbor (NN) hopping models within
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FIG. 1. (a) The logical relationship between the main concepts
in this paper. The application of IGT in previous paper is limited to
the shadowed area, which stands for the NN hopping models with
entirely real spectra. With the help of ηI-pseudo-Hermiticity, we
extend it to the complex spectra regime and beyond NN hopping. We
further demonstrate that it can also be extended to complex hopping
models since the GBZ of the system is circular. (b) The generic
nonreciprocal model with NN hoppings

the real spectra regime [the shadowed area in Fig. 1(a)],
where the non-Hermitian Hamiltonians can be transformed
into their Hermitian counterparts. A comprehensive explo-
ration of the relationship between the η-pseudo-Hermiticity
and IGT in both real and complex spectra regimes remains
to be undertaken. Additionally, while a generic nonreciprocal
Hamiltonian with long-range hoppings cannot be transformed
into a Hermitian counterpart even if its spectrum is entirely
real [83], it is worth investigating the explicit condition that
the IGT and relevant results are applicable with the existence
of long-range hoppings. Considering the GBZ formalism as
the standard approach in analyzing non-Hermitian Hamilto-
nians under OBCs, and the connection between IGT in real
space and GBZ rescaling, the shape of GBZs in systems
amenable to IGT is also of interest.

In this paper, we address the aforementioned questions
and extend the results of IGT to more general nonre-
ciprocal lattice Hamiltonians with complex spectra and
long-range hoppings [the large circle in Fig. 1(a)]. We
first elucidate the precise relationship between the IGT and
pseudo-Hermiticity. While such nonreciprocal Hamiltonians
are inherently η-pseudo-Hermitian, we demonstrate that the
underlying reason for the applicability of IGT lies in the
pseudo-Hermiticity characterized by a specific metric, namely
ηI in this paper. Subsequently, we prove that the GBZ of
such an ηI-pseudo-Hermitian system is always a perfect circle
in both real and complex spectra regimes, which cannot be
directly obtained with IGT. Furthermore, we establish the suf-
ficient and necessary condition of ηI-pseudo-Hermiticity in
the presence of long-range hopping terms. This condition can
be interpreted as a simple picture that the product of asymmet-
ric ratios between any two sites should be path independent.
Leveraging this condition, we can effortlessly extend the IGT
technique to certain two-dimensional (2D) cases.

The key insight of this paper is that ηI is valid in both
the symmetry exact phase and symmetry broken phase,

suggesting the presence of shared characteristics across these
phases. From a detailed analysis of the characteristic equation,
we summarize these characteristics as the circular GBZ. The
characteristic of circular GBZ can even be generalized to sys-
tems with complex hoppings, where η-pseudo-Hermiticity no
longer holds. This allows for the parametrizing of GBZ with
radius r as β = reik , enabling the calculation of the continuum
band spectrum, wave function, and relevant topological
numbers using the same approach employed for the Hermitian
case, where similar calculations are performed in the Brillouin
zone (BZ) β = eik . The important aspect of our paper lies in
the applicability of this result in both phases and Hamiltonians
with complex hoppings, ensuring the effectiveness of the
procedure even when the spectrum is complex and the system
cannot be transformed into a Hermitian counterpart via IGT.

The rest of the paper is organized as follows: In Sec. II,
we first give an overview of the NHSE and how it can be
understood from IGT. Then we introduce the theory of η-
pseudo-Hermiticity [77] and derive the relation between IGT
and the ηI metric. We give a detailed discussion of the be-
havior of ηI in both symmetry exact and broken phase. In
Sec. III, we prove the GBZ of ηI-pseudo-Hermitian Hamil-
tonian is a perfect circle, with the radius only relevant to the
modulus of hopping strength. In Sec. IV, we derive the general
condition for ηI-pseudo-Hermiticity, which extends the IGT
to nonreciprocal lattices with long-range hopping terms. In
Sec. V, we apply our theoretical results to establish the BBC
for non-Hermitian trimer SSH model and obtain the NHSE of
2D HN model.

II. IMAGINARY GAUGE TRANSFORMATION
AND η-PSEUDO-HERMITICITY

A. Imaginary gauge transformation and NHSE

The IGT provides an intuitive way to understand the
NHSE. A simple example of applying the IGT to HN mod-
els with real spectra to obtain the NHSE can be found in
Appendix A. In this section, we briefly review the IGT gener-
alized to nonreciprocal lattices with more than one sublattice
in a unit cell as shown in Fig. 1(b) [15,81]. Consider a general
one-dimensional (1D) OBC nonreciprocal lattice with N unit
cells and M sublattices in each unit cell. The Hamiltonian with
only NN hoppings is given by

HNN =
N∑

n=1

M−1∑
i=1

(
tRi a

†
n,i+1an,i + tLi a

†
n,ian,i+1

)
+

N−1∑
n=1

(
tRM a†

n+1,1an,M + tLM a†
n,Man+1,1

)
, (1)

where a†
n,i (an,i) are the creation (annihilation) operators for

the ith sublattice in the nth unit cell. tRi/Li ∈ R, i = 1, · · · , M
are the hopping amplitudes and i = M (i �= M) stand for the
intercell (intracell) hopping. If tLi tRi > 0 for all hopping am-
plitudes, HNN can be related to a Hermitian Hamiltonian H ′

NN

via an IGT, which is given by the following diagonal matrix

SNN = diag
{
rM, r2

M, · · · , rN
M

}⊗ diag{r0, r1, · · · , rM−1}
(2)
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with ri =
√ tR1 ···tRi

tL1 ···tLi
for i = 1, · · · , M and r0 = 1, or symboli-

cally,

H ′
NN = S−1

NN HNNSNN. (3)

Although H ′
NN and HNN share the same spectrum, their

eigenstates exhibit distinct localization behavior. The bulk
eigenstates of H ′

NN are extended because of Bloch’s theorem,
while the majority eigenstates of HNN are localized at the
boundary when rM �= 1, namely they feature the NHSE. Be-
sides, the NHSE of HNN is determined by rM . All skin modes
are localized at the left (right) edge when rM < 1 (rM > 1)
with the same localization length | ln rM |−1. While the local-
ization length for different skin modes is generally different,
the system that IGT is applicable has a unified localization
length for all skin modes because every bulk state in the
Hermitian counterpart is modulated by the same exponential
envelope.

B. η-pseudo-Hermiticity and imaginary gauge transformation

The aforementioned IGT is closely connected to the η-
pseudo-Hermiticity of Hamiltonian. The definition of the
η-pseudo-Hermitian [77] H is that there exists an invertible
Hermitian operator η satisfies

ηH = H†η. (4)

This definition can be regarded as a generalization of
Hermiticity since the η-pseudo-Hermitian Hamiltonian is self-
adjoint under the inner product defined by η. We provide
a brief explanation of the main conclusions in η-pseudo-
Hermitian Hamiltonians proposed by [77] in Appendix B. In
this section, we utilize these conclusions to draw an exact map
between η-pseudo-Hermiticity and IGT. While η-pseudo-
Hermitian Hamiltonians have similar properties as Hermitian
ones, they possess some unique properties [77]. The most
important one is the eigenvalues come in either real values
or complex conjugate pairs (this is a necessary and sufficient
condition for η-pseudo-Hermiticity), which can be understood
from the fact that the inner product defined by η can be either
positive definite or indefinite. There may also exist more than
one distinct η operator for a pseudo-Hermitian Hamiltonian
with certain symmetry (see Appendix C for an example).

Since the orthogonality of eigenstates is no longer guar-
anteed because od the non-Hermiticity, the bi-orthonormal
basis is typically employed. This basis comprises the right
eigenstates |ψi〉 and left eigenstates |φi〉, satisfying the
eigenequations

H |ψi〉 = Ei|ψi〉, H†|φi〉 = E∗
i |φi〉, (5)

with the completeness and bi-orthogonal relations∑
i

|ψi〉〈φi| = 1, 〈ψi|φ j〉 = δi j . (6)

These conditions hold when the system is not at the excep-
tional points (EPs), where eigenstates coalesce [84]. In the
following discussion, we focus on the cases where Eq. (6)
holds.

We shall focus on the positive definite η first. Any positive
definite ηP operator can be decomposed as

ηP = �†�, (7)

where � can be regarded as the “square root” of ηP. By intro-
ducing the metric operator �, the η-pseudo-Hermitian Hamil-
tonian H can be transformed into a Hermitian Hamiltonian H ′
through the relation H ′ = �H�−1. Let the orthonormal basis
of H ′ be {|ψ ′

i 〉}i=1,··· ,N . Then the bi-orthonormal basis of H
and H† can be constructed as |ψi〉 = �−1|ψ ′

i 〉, |φi〉 = �†|ψ ′
i 〉.

The completeness of {|ψ ′
i 〉}i=1,··· ,N leads to

ηP =
∑

i

|φi〉〈φi|. (8)

Reference [85] numerically verified this formula in a NN
hopping lattice in the real spectrum regime to show that it
is η-pseudo-Hermitian. Here we can give a clear theoretical
explanation that the aforementioned IGT is just the inverse
matrix of � in Eq. (7). More specifically, the positive definite
metric generated by the IGT is given by

ηI = S−2
NN

= diag
{
Rm, R2

m, · · · , RN
M

}
⊗ diag{R0, R1, · · · , RM−1}, (9)

with Ri = r−2
i = tL1 ···tLi

tR1 ···tRi
for i = 1, · · · , M and R0 = 1. Such ηI

has a diagonal form, providing an intuitive understanding of
its effect. The Hamiltonian becomes “Hermitian” after a sim-
ple rescaling of the inner-product space, and the exponentially
growing weight repels the distribution of eigenstates to the
other edge. Figures 2(a)–2(c) show an example of the NHSE
of NN hopping nonreciprocal lattice with three sublattices in
one unit cell in the PT-exact phase. The energy spectrum is
purely real, as the IGT can map it to its Hermitian counterpart.
The majority of the eigenstates exhibit exponential decay from
the edge with the same decay rate, which is well predicted
by the theoretical envelope. Note that four isolated energy
levels are away from the continuum bands, which correspond
to the conventional topological boundary states [73]. We only
focus on the non-Hermitian skin modes in this section, and
the conventional topological boundary states are not shown
in the plot of eigenstates. In Sec. V A, we will discuss those
conventional topological boundary states in detail.

Before going to the indefinite η case, we remember that
PT-symmetric Hamiltonians [86] are all η-pseudo-Hermitian
[77]. Since the PT operator can be generalized to any anti-
unitary operator [87], the general nonreciprocal Hamiltonians
with real hopping terms exhibit the generalized PT symmetry
because they are invariant under the complex conjugate oper-
ation, or symbolically H = KHK . We will use the PT-exact
phase and PT-broken phase to distinguish the real or complex
spectrum in the following discussion.

C. ηI-pseudo-Hermiticity in the PT-broken phase

The procedure in Sec. II A is only valid in the PT-exact
phase, where ηI is positive definite. More precisely, for a
general Hamiltonian with NN hopping defined in Eq. (1), the
new Hamiltonian H ′

NN generated by the IGT is Hermitian, and

075411-3



QI, PI, WU, LIN, ZHENG, AND LONG PHYSICAL REVIEW B 110, 075411 (2024)

FIG. 2. (a) The energy spectra of SSH3 model in the PT-exact phase, the PT-broken phase, and with complex hoppings. The system size
is N = 40. Apart from the continuum band spectrum composed of the majority of eigenvalues, some isolated discrete energy levels exist.
(b) The GBZs correspond to the energy spectra in (a), which are obtained by numerically solving the characteristic equations (discrete points)
and analytically calculating the assisted GBZs (solid lines) [73]. The shape of each GBZ is shown to be a circle and the radius is only
relevant to the modulus of hopping strength. The corresponding squared modulus of continuum band eigenstates in the PT-exact phase (c), the
PT-broken phase (d), and with complex hoppings (e); the red lines represent the theoretical exponential envelopes. Inset plots are the results
on a logarithmic scale.

ηI is positive definite provided that tRi tLi > 0 holds for all
i = 1, 2, · · · , M. However, the fact that ηI is not necessarily
positive definite indicates that ηI-pseudo-Hermiticity can be
used to explore the NHSE in the PT-broken phase. Although
no Hermitian counterpart exists in the PT-broken phase, the
ηI-pseudo-Hermitian symmetry is still respected. The only
difference is that ηI has negative eigenvalues, i.e., there ex-
ists some i such that Ri < 0. In this case, the ηI operator is
indefinite and Eq. (8) is not applicable.

However, we can find a general expression of the η operator
no matter if it is positive definite or not. We use i+ and i− to
denote the eigenstates with complex conjugate eigenvalues,
while i0 represents eigenstates with real eigenvalues. If the
energy spectrum is nondegenerate, we have η|ψi+〉 is propor-
tional to |φi−〉 and vice versa. This can be expressed as [77]

η|ψi±〉 = ci±|φi∓〉, η|ψi0〉 = ci0 |φi0〉, (10)

where ci± and ci0 are the proportional coefficients. We can
diagonalize the superposition coefficients in the characteristic
subspace for the degenerate energy spectrum to get the above
relation. If all ci0 ∈ R+, we can simultaneously adjust the
normalization coefficients of |ψ〉 and |φ〉 to ensure that all
coefficients ci± and ci0 are equal to one while preserving the
bi-orthonormal condition. Otherwise, some ci0 may take the
value −1 (see Appendix D). Thus, by substituting Eq. (10)
into the completeness of bi-orthonormal basis described by
Eq. (6), we can express the η operator formally as

η =
∑

i±

|φi±〉〈φi∓| +
∑

i0

ci0 |φi0〉〈φi0 |, (11)

where ci0 can take the values ±1. Note that Eq. (11)
allows for the construction of different η operators by varying
the i-dependent normalization coefficients in the substitution
|φi〉 → ai|φi〉. Thus, the η operator is not unique for a given
Hamiltonian. While a positive definite η operator ensures an
entirely real spectrum, as shown in Sec. II B, an indefinite η

operator does not guarantee the presence of complex eigenval-
ues. An example is shown in Appendix C. The reason is that
even for an entirely real spectrum, it is possible to construct
an indefinite η operator using Eq. (11) by setting ci0 = −1
for some i0. The ηI operator we discuss here is positive
definite in the PT-exact phase and indefinite in the PT-broken
phase.

The unified expression for ηI in the two phases also in-
dicates that the NHSE in the PT-broken phase, which cannot
be straightforwardly shown by the IGT, may have the same
behavior as in the PT-exact phase. As shown in Fig. 2(d), all
skin modes share the same decay behavior, more precisely, the
same localization length, in the PT-broken phases, just like in
the PT-exact phase shown in Fig. 2(c), although the energy
spectrum has significant differences.

III. ANALYSIS FROM THE GBZ

The non-Bloch band theory [52,54,55] provides a system-
atic approach to analyzing the spatial periodic non-Hermitian
system under OBC utilizing the GBZ (see Appendix E). In this
section, we demonstrate the unified property in both PT-exact
and PT-broken phases using the concept of GBZ. The real-
space Hamiltonian of a tight-binding model can be expressed
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as the block form

HTB =
∑

n

p∑
m=−p

∑
i j

T i j
m a†

n+m,ian, j, (12)

where p is the longest hopping range related to the unit cell.
The matrix T i j

m describes the hopping strength between the ith
and jth sublattice of nth and (n + m)th unit cell. In the non-
Bloch theory, the generalization of the wave vector is taken as
eik → β [52]. Then, analogous to the bulk Hamiltonians H (k)
in Hermitian cases, the generalized Bloch Hamiltonian H (β )
can be formally expressed as

HTB(β ) =
p∑

m=−p

Tmβ−m. (13)

The fundamental result of non-Bloch theory for 1D non-
Hermitian systems without symmetry is that the GBZ is
defined by the condition |βp| = |βp+1|, where βp and βp+1

represent the pth and (p + 1)th β values respectively, when
sorted in ascending order of magnitude by |β1| � |β2| �
· · · � |β2p| [52]. The GBZ is formed by tracing the trajectory
of these βp and βp+1 values across different energy levels
within the continuum bands.

Here we show that the GBZ of the aforementioned ηI-
pseudo-Hermitian Hamiltonian is indeed a circle. To establish
this, we first show that the similarity transformation defined
by the matrix

S(a, A) = diag{a, a2, · · · , aN } ⊗ A, (14)

where A is arbitrary invertible matrix and a ∈ C, can trans-
form every β to β/a of a tight-binding Hamiltonian given by
Eq. (12). This transformation can be interpreted as a rescaling
of the GBZ. The proof is straightforward

H ′
tb = S(a, A)−1HtbS(a, A)

=
∑

n

P∑
m=−P

∑
i j

a−m(A−1TmA)i ja†
n+m,ian, j, (15)

which implies that the hopping matrix is transformed as Tm →
a−mA−1TmA. Thus, the transformation for Htb(β ) is

H ′
tb(β ) = A−1

(
P∑

m=−P

Tm(aβ )−m

)
A. (16)

Since eigenvalues are invariant under similarity transforma-
tion, the β in the GBZ of Htb corresponds to aβ of H ′

tb. Hence,
the transformation for GBZ is β → β/a.

We note that the IGT in Eq. (2) can be represented as
S(rM, diag{r0, · · · , rM−1}). In the PT-exact phase, the IGT can
transform the Hamiltonian into a Hermitian matrix. The GBZ
after the transformation is the unit circle because of Hermitic-
ity, so the GBZ of the original Hamiltonian is a circle with
radius

|βPT| = rM =
√

tR1 · · · tRM

tL1 · · · tLM

. (17)

The question arises as to whether this circular GBZ persists
in the PT-broken phase. To address this, we first present an
intuitive analysis from the perspective of real space, followed

by a rigorous proof in the β space. Notably, the ηI operator
can be expressed as S(r−2

M , diag{r−2
0 , · · · , r−2

M−1}). This implies
that the GBZ for Htb and H†

tb are linked by the transformation
β ↔ β/r2

M . Furthermore, utilizing Eqs. (12) and (13), we
derive the generalized Bloch Hamiltonian for H†

tb as

H†
tb(β ) =

p∑
m=−p

T †
mβm. (18)

Since the eigenvalues of Htb and H†
tb are complex conjugate

pairs, the solutions for β that satisfy the characteristic equa-
tion |Htb(β ) − E | = 0 and |H†

tb(β ) − E∗| = 0 are related
by the transformation β ↔ 1/β∗. This relationship, along
with β ↔ β/r2

M resulting from ηI, suggests that the GBZ
for generic Hamiltonians, which respect ηI-pseudo-Hermitian
symmetry should be a circle with radius

|β| = |rM | =
√∣∣∣∣ tR1 · · · tRM

tL1 · · · tLM

∣∣∣∣. (19)

This holds regardless of whether the PT symmetry is broken
or not. To rigorously prove Eq. (19) in both the PT-exact
and PT-broken phase, we can utilize the straightforward rela-
tion given by the similarity transformation of the generalized
Bloch Hamiltonian

S−1
η H

(
r2

Mβ−1
)
Sη = HT(β ), (20)

where HT(β ) denotes the transpose of H (β ), and

Sη = diag
{
1, r2

1 , · · · , r2
M−1

}
(21)

is just the second part of Eq. (9). Since HT(β ) shares the
same spectrum with H (β ), and that the spectrum remains in-
variant under similarity transformation, we can conclude that
for every solution for β that satisfies |H (β ) − E | = 0, r2

Mβ−1,
satisfies |H (r2

Mβ−1) − E | = 0. In other words, the solution for
β forms pairs (β, r2

Mβ−1). Combining this with the condition
for GBZ |βp| = |βp+1|, the GBZ is determined by |β| = |rM |,
leading to Eq. (19) in both phases. This result rigorously
demonstrates the duality of NHSE in the PT-broken and the
PT-exact phases. Since the GBZ is a circle with a radius solely
dependent on the absolute value of hopping strengths, every
Hamiltonian in the PT-broken phase has a counterpart in the
PT-exact phase sharing the same GBZ. Notably, the localiza-
tion length of the skin modes equals | ln |β||−1, implying that
the localization behavior of the skin modes in the PT-broken
phase mirrors their counterparts in the PT-exact phase. We
emphasize that the invertibility is the only requirement for
Sη in the above derivation. Even when the complex hopping
breaks the ηI-pseudo-Hermiticity, the above derivation is still
valid. Thus, the conclusion can be generalized to the case
tLi/Ri ∈ C.

The circular GBZ deforms to abnormal shapes with zero
or infinite radius at EPs, which marks the transition between
the PT-exact and PT-broken phases. This can be understood
from the fact that the geometric origin of EPs is the existence
of cusps in the GBZ [88]. Since there is no cusp in a circular
GBZ, the EPs only exist in abnormal cases with zero or in-
finite radius. At EPs, at least one hopping term reaches zero.
The IGT and corresponding ηI operator deforms to zero or
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infinite matrix. Therefore, the IGT cannot deal with systems
with EPs.

In Fig. 2, we verify our conclusion by numerically ob-
taining the spectra, GBZs, and the distribution of continuum
band states in different parameter regimes. We can see that
the GBZs are always circular in Fig. 2(b), and all skin modes
exhibit the same localization length in Figs. 2(c)–2(e). This
result transcends the limitations of the real spectrum inherent
in the conventional IGT approach. The simple shape of the
GBZ facilitates the determination of the continuum bands in
the thermodynamic limit and the relevant topological numbers
defined in the GBZs.

IV. IMAGINARY GAUGE TRANSFORMATION
BEYOND NN HOPPING

Previous paper has only applied IGT to Hamiltonians with
NN hoppings, as other hopping terms with longer ranges
cannot be effectively balanced together with the NN hoppings
in general. In this part, we explore the condition under which
IGT remains valid in the presence of long-range hoppings,
enabling its application to more complex scenarios.

Without loss of generality, we introduce long-range non-
reciprocal hoppings between the ith sublattice of the nth unit
cell and the jth sublattice of (n + m)th unit cell with hopping
strengths t ′

R and t ′
L, respectively (the concept NN in this paper

refers to the nearest sublattice, not the nearest unit cell). Then,
the Hamiltonian can be expressed as

HLong = HNN +
∑

n

(t ′
Ra†

n+m, jan,i + t ′
La†

n,ian+m, j ). (22)

The effect of IGT on the creation and annihilation operators is
given by

c†
n,i = ri−1rn

Ma†
n,i, cn,i = r−1

i−1r−n
M an,i. (23)

For a Hermitian counterpart of HLong (in the PT-exact phase)
to exist, the IGT must satisfy the necessary and sufficient
condition,

t ′
R

t ′
L

=
(

r j−1rm
M

ri−1

)2

. (24)

Furthermore, it serves as a necessary and sufficient condition
for the underlying ηI-pseudo-Hermiticity defined in Eq. (9) in
both the PT-exact and PT-broken phases.

This condition can be interpreted as a path-independence
requirement for the product of asymmetric hopping strength
ratios between any two sites. In systems with only NN hop-
ping, the path between any two sites is unique, allowing
for the application of the IGT. When longer-range hoppings
exist, different hopping paths with the same beginning and
ending points interfere, and ηI-pseudo-Hermiticity is only
preserved when the nonreciprocity along different paths is the
same. A simple example is a HN model with an additional
hopping term between nth and (n + 3)th unit cell shown in
Fig. 3(a), where the path-independence condition implies that
the asymmetric ratio t ′

R/t ′
L equals to the product of asymmetric

ratios of three NN hoppings (tR/tL)3. Numerical verification
of the condition is performed in this example as shown in
Fig. 3(b). When the asymmetric ratio of long-range hopping
equals the product of NN asymmetric ratios, the GBZ is a

n+4 n+5n n+1 n+2
R R

L L

L′/ R′ = ( L/ R)
3(a)

n+3

L

R

L L

R R

(b)

FIG. 3. The GBZ of HN model with long-range hopping between
the nth and (n + 3)th unit cells. (a) The schematic diagram of the
model. (b) The GBZ of such a system. The red line represents
the GBZ of a system that satisfies the path-independent condition,
and the yellow dashed line represents the GBZ of a system that
violates the path-independent condition. The parameters are taken as
N = 40, tR = 0.35, tL = 0.25. The long-range hopping strength are
taken as t ′

R = 0.1 and t ′
L = t ′

R(tL/tR)3 to fulfill the path-independent
condition. An additional 0.014 is added on t ′

L to display the
violated case.

circle, and the skin modes exhibit the same localization length
that is described by the theoretical exponential envelope, a
consequence of ηI-pseudo-Hermiticity. However, when the
condition is not satisfied, as shown by the yellow line in
Fig. 3(b), the GBZ is no longer circular, and therefore, the lo-
calization length is no longer unified for different skin modes.
This condition also applies in higher dimensions. An example
of a 2D square lattice shown in Fig. 6(b) will be discussed in
detail in Sec. V B.

Here we provide a physical interpretation of the above
condition. When the IGT was first proposed in Ref. [78],
its physical meaning was explained as an imaginary vector
potential. Consider applying an IGT to a Hermitian Hamil-
tonian to obtain a non-Hermitian one. The imaginary phases
introduced by the IGT are the logarithms of asymmetric ratios
(see Appendix A). Since the nonreciprocity (the imaginary
phase angle) is induced by an imaginary vector potential, the
difference in wavefunction before and after the IGT should
only differ by an imaginary phase angle dependent on posi-
tion. This imaginary phase of wavefunction gained between
different sites should be path independent as a result of the
single-value nature of wavefunction, which leads to our result
that the product of asymmetric ratios between different sites
should be path independent.

In addition, even when the system lacks spatial peri-
odicity or when local perturbations disrupt periodicity, a
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similarity transformation of the diagonal form (which no
longer exhibits exponential form because of the broken pe-
riodicity) can still be applied using the same procedure,
provided that the aforementioned path-independent condition
holds.

V. APPLICATIONS

A. BBC in non-Hermitian SSH3 model

In the context of non-Hermitian systems, BBC refers to
two distinct concepts: the correspondence between the NHSE
and energy topology in BZ, the correspondence between
conventional topological boundary states and the wave func-
tion topology in GBZ [73]. This section focuses on the
latter, as the behavior of the NHSE has already been inves-
tigated through IGT. The result that the GBZ is always a
circle with radius |β| = | tR1 ···tRM

tL1 ···tLM β
| facilitates the calculation

of the topological number in GBZ. We propose a nonrecip-
rocal NN hopping model with three sublattices in one unit
cell, referred to as the non-Hermitian trimer SSH (SSH3)
model, and determine the topological number correspond-
ing to the number of conventional topological boundary
states.

Unlike the well-known SSH model with chiral symmetry,
where the topological phase transition occurs at the band
touching point and can be well described by the change of
Zak’s phase [89], the SSH3 model does not respect chiral
symmetry in general and, therefore, cannot be described by
topological number defined with Zak’s phase. However, dis-
crete energy levels whose eigenstates are boundary states
indeed exist [90], indicating a similar topological origin to
topological boundary states in the SSH model. The presence
or absence of topological boundary states in the SSH3 model
depends on the relative values of the intercell and intracell
hopping parameters. When the intercell hopping t3 is less than
the intracell hopping t1, t2, there are no boundary states; when
t3 > t1, t3 > t2, there are two boundary states developed from
the middle band and one boundary state each developed from
the other two bands; when t1 < t3 < t2 or t2 < t3 < t1, there is
one boundary state each developed from the top and bottom
band [91].

Reference [91] unveils the point chiral symmetry in the
SSH3 model and establishes the BBC for the Hermitian SSH3
model with the topological number named normalized sublat-
tice Zak’s phase (NS Zak’s phase), which is defined as

Zλ = −
∮
BZ

dk〈ψ̃λ(k)|∂kψ̃λ(k)〉 = −
∮
BZ

∂θλ

∂k
dk, (25)

where λ labels the energy band, |ψ̃λ(k)〉 is the projection of
wavefunction on the first sublattice divided by the normaliza-
tion factor (namely, the normalized sublattice wave function),
and θλ is the relative phase of PBC wavefunction of band λ

between the first and last sublattices. The number of conven-
tional (Hermitian) boundary states equals the sum of NS Zak’s
phase over all the bands divided by 2π .

The non-Hermitian generalization of the SSH3 model cor-
responds to the M = 3 case in Sec. II A. To determine the
number of conventional topological boundary states, the NS

Zak’s phase is redefined as

Zλ
nH = −

∮
GBZ

dk〈φ̃λ(k)|∂kψ̃λ(k)〉

= −1

2

∮
GBZ

(
∂θλ

R

∂k
+ ∂θλ

L

∂k

)
dk

= −
∮
GBZ

∂θλ
R

∂k
dk, (26)

where |φλ(k)〉 denotes the left vector corresponding to
|ψλ(k)〉, respectively (see Appendix F for details). The only
difference between the final expression and the Hermitian case
lies in calculating the NS Zak’s phase within the GBZ.

We apply Eq. (26) to calculate the NS Zak’s phase and the
energy spectrum for the non-Hermitian SSH3 model in the
PT-broken phase, as depicted in Fig. 4. We define the topo-
logical number as the NS Zak’s phase divided by 2π , which
takes integer values. For simplicity, we assume symmetric
intercell hopping with positive values, i.e., tR3 = tL3 = t3 > 0.
As t3 increases, discrete energy levels appear at the point t3 =√|tL1tR1 | and t3 = √|tL2tR2 |, which is correctly predicted by the
change of NS Zak’s phase at these points. The phase diagrams
of the non-Hermitian and Hermitian SSH3 models are shown
in Fig. 5. We take the product tL1tR1 and tL2tR2 in unit of t2

3
as the axes in the phase diagram of non-Hermitian case since
different parameter sets with same product are connected by
the IGT (a detailed explanation is provided in Appendix F).
The main difference between non-Hermitian and Hermitian
cases is that there exist EPs depicted by blue-dashed lines in
Fig. 5(a). The PT-exact phase lies in the first quadrant, and the
PT-broken phase lies in the remaining three quadrants. The
parameters of Fig. 4 are chosen in the fourth quadrant.

B. Corner-skin effect in 2D HN model

A distinguishing feature of 2D nonreciprocal Hamiltonians
compared to 1D nonreciprocal Hamiltonians is the absence
of Hermitian counterparts in general, even when there are
only NN hoppings and the Hamiltonian has an entirely real
spectrum. This can be attributed to the condition established
in Sec. IV. Unlike in 1D chains, where the path between
any two sites is unique within the NN hopping range, 2D
systems allow for multiple paths between arbitrary two sites.
Our conclusions derived in 1D chains are valid as long as the
product of asymmetric ratio along different paths is unified;
otherwise, the ηI-pseudo-Hermiticity is violated.

In this section, we use the simplest HN model in a 2D
square lattice with OBC as an example to present the nu-
merical results and theoretical predictions of the NHSE. The
Hamiltonian of such a system reads

H2D
HN =

M−1∑
m=1

N∑
n=1

(tRa†
m+1,nam,n + tLa†

m,nam+1,n)

+
M∑

m=1

N−1∑
n=1

(tUa†
m,n+1am,n + tDa†

m,nam,n+1), (27)

where tL, tR are hoppings along x axis and tU, tD are hoppings
along y axis. The product of asymmetric ratio between two
arbitrary sites (i, j) and (m, n) is (tU/tD)m−n/(tR/tL)n− j , which
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(a)

(b)

(c)

FIG. 4. Numerical result of the topological number obtained
from the NS Zak’s phase and corresponding energy spectrum.
The parameters are taken as N = 40, tL1 = 2.025, tR1 = 0.4, tL2 =
−0.4, tR2 = 0.9, and tL3 = tR3 = t3, such that the theoretical transi-
tion point locates at t3 = 0.6 and t3 = 0.9. The real and imaginary
parts of the energy spectrum under different t3 are plotted in (b) and
(c). The discrete energy levels are marked by the red line. The
emergence of discrete levels agrees with the change of topological
number displayed in (a).

is path independent. Hence, we can apply the IGT (in the PT-
exact phase)

c†
m,n = rm

x rn
y a†

m,n, cn = r−m
x r−n

y an, (28)

where rx = √
tR/tL, ry = √

tU/tD, to obtain the Hermitian
counterpart as well as the energy spectrum. The NHSE can
be interpreted as the bulk state modulated by the exponential
envelope rx

x ry
y , which repels all the eigenstates to the corner.

1 1

1

1

2

0

0 0

0

(a)

01

12

(b)

FIG. 5. The phase diagrams in both (a) non-Hermitian SSH3 and
(b) Hermitian SSH3 model. The red lines display the boundary, and
the numbers of edge states at the left edge are labeled in the plot. The
blue-dashed line in (a) displays the EPs.

The localization lengths along two axes are

l−1
x = 1

2

∣∣∣∣ln ∣∣∣∣ tRtL
∣∣∣∣∣∣∣∣, l−1

y = 1

2

∣∣∣∣ln ∣∣∣∣ tUtD
∣∣∣∣∣∣∣∣. (29)

While the energy spectrum is no longer straightforwardly
accessible in the PT-broken phase, our theoretical analysis
demonstrates that the localization length of skin modes of the
PT-broken phase is the same as in the PT-exact phase. Since
the generalized Bloch Hamiltonian

H2D
HN (βx, βy) = tRβ

−1
x + tLβx + tUβ

−1
y + tDβy (30)

has the form of separation of variables. The GBZ of such a
system can be constructed analogously to the 1D case, as the
characteristic equation |H2D

HN (βx, βy) − E | = 0 also exhibits
the form of separation of variables [92]. Consequently, our
findings regarding the unified behavior of skin modes and
the identical shape of GBZ in both PT-exact and PT-broken
phases, derived from the 1D GBZ theory, remain valid. This
facilitates the straightforward acquisition of the continuum
bands of the 2D HN model in both phases.

IGT can be applied to more complicated 2D systems, such
as the square lattice with next-nearest-neighbor (NNN) hop-
pings on the diagonal line shown in Fig. 6(a), as long as the
path-independent condition of asymmetric ratio is satisfied.
In Fig. 6(b), we plot the numerical result for the probability
distribution of the eigenstates, which agrees well with the
theoretical exponential envelope in Fig. 6(c). Note that in
such a system with NNN hopping, the characteristic equation
|H (βx, βy) − E | = 0 no longer has the form of separation of
variables, so we cannot obtain the GBZ directly by decompos-
ing into two 1D systems. However, the IGT approach remains
valid even if the GBZ is difficult to obtain.

VI. DISCUSSION AND OUTLOOK

In this paper, we conduct a systematic study on IGT and the
underlying ηI-pseudo-Hermiticity. By elucidating the unique
characteristics of ηI, we extend the conclusion that all skin
modes share the same localization length in the PT-exact
phase resulting from IGT to the PT-broken phase. We prove
that the GBZ of ηI-pseudo-Hermitian Hamiltonian is a perfect
circle, which paves the way to obtain the continuum band
properties and investigate the wave function topology in GBZ.
This conclusion is still valid when the hopping strength takes
a complex value. We apply our result to the non-Hermitian
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FIG. 6. (a) Schematic diagram of 2D HN model with diagonal
hopping. The probability distribution of eigenstates is shown in (b)–
(e), and the system size is taken as N = 40, M = 30. (b) The 2D
probability distribution of eigenstates. To get all eigenstates in one
plot, the plotted distribution is the average of all eigenstates. (c) The
theoretical exponential envelope obtained from IGT conforms to the
numerical result shown in (b). [(d),(e)] The 1D slice of eigenstates
obtained at y = 1 (x = 1) is represented by blue lines, and the theo-
retical exponential envelope is represented by the red line. The inset
plot shows the result on a logarithmic scale. Throughout (b)–(e), tL =
0.4, tR = 0.2, tD = 0.65, tU = 0.35, t1 = 0.5, and t2 = t1(tDtL)/(tUtR).

SSH3 model and obtain the non-Hermitian generalization of
NS Zak’s phase to establish BBC and obtain the whole phase
diagram. We further generalize the condition of ηI-pseudo-
Hermiticity from NN hopping to the path independence of the
product of asymmetric ratio. We exemplify the 2D HN model
to present the application of IGT in 2D systems that satisfy
such conditions.

Here we highlight several potential directions for future
work, some relevant experimental realizations, and observable
effects. The procedure of establishing the BBC for the non-
Hermitian SSH3 model based on the generalization of NS
Zak’s phase can be extended to a more general SSHm model.
A rigorous theoretical proof for such a generalization is also
needed. Another topic is applying IGT to 2D systems, which
satisfy the path-independent condition. Since the GBZ theory
for general 2D systems is still unclear, the straightforward
approach of similarity transformation can help investigate the

energy spectra, boundary states, and GBZs when the 2D sys-
tems cannot be regarded as two separable 1D systems.

The nonreciprocal lattice has been realized in mechanical
[29–34], electrical [35–37], and optical [38–42] systems. By
tuning the nonreciprocal parameter, our result of unified lo-
calization lengths in both phases can be verified. Since these
systems are generally extendable to models with more sub-
lattices, we expect experimental investigation of the NHSE
in generic nonreciprocal models with multiple sublattices and
the BBC in the nonreciprocal SSH3 model established in
this paper. Besides classical realizations, the analog quantum
simulation of non-Hermitian models has been realized in ul-
tracold atomic platforms to investigate the interplay between
NHSE and many-body physics [43,44,76]. Although the be-
havior of systems investigated in this paper is simple as a
result of circular GBZ, it would be interesting to investigate
the behaviors with the existence of interactions. Furthermore,
the digital quantum simulation of non-Hermitian systems is
also a topic of interest. The main difficulty in simulating
a non-Hermitian system is the implementation of nonuni-
tary evolution, which is usually realized by postselection
[93–100]. The digital quantum simulation may experimen-
tally demonstrate our results in models beyond NN hopping
by specifically designing nonreciprocity to satisfy the path-
independent condition.

We also note recent paper on the Aharonov-Bohm effect
for imaginary magnetic fields [101], in which the imaginary
vector potential amplifies or decays the amplitude of the
wavefunction after winding a close loop. For generic lattice
Hamiltonian amenable to the IGT, the physical explanation
of such IGT is adding an imaginary vector potential. Thus,
we expect to observe this effect in the 2D HN model with
diagonal hoppings.
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APPENDIX A: APPLYING IGT TO HN MODELS
WITH REAL SPECTRA

The IGT was first applied in the HN model [78], which can
be expressed as

HHN =
N−1∑
n=1

(tRa†
n+1an + tLa†

nan+1), (A1)

where a†
n (an) are the creation (annihilation) operators at site

n, the parameters tR, tL ∈ R are the asymmetric hopping am-
plitudes and N is the system size. It can be transformed to
a Hermitian Hamiltonian H ′ with reciprocal hopping term
t ′ = √

tLtR when tRtL > 0, by taking an imaginary phase an-
gle θ = i ln(

√
tR/tL) in the following gauge transformation

[15,78],

c†
n = e−inθ a†

n, cn = einθ an. (A2)
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Or alternatively, we have H ′ = S−1HNHS, where S is a diago-
nal matrix whose diagonal elements are {r, r2, · · · , rN } with
r = √

tR/tL. The non-Hermitian Hamiltonian HNH has an en-
tirely real spectrum as this similarity transformation does not
change the spectrum. Since the IGT is no longer unitary, it acts
as a rescaling of the eigenstates, which leads to the NHSE. To
be more concrete, a bulk eigenstate |ψ̄l〉 of Hermitian H ′ is an
extended Bloch wave due to the discrete translation symmetry
of the bulk sites; therefore, H ′

NHs eigenstate |ψl〉 = S|ψ̄l〉 is
exponentially localized at the left (right) edge of the chain
for r < 1 (r > 1) with localization length | ln r|−1. The above
IGT is limited at the parameter region tLtR > 0, which corre-
sponds to the PT-exact phase.

APPENDIX B: IMPORTANT CONCLUSIONS
ON η-PSEUDO-HERMITIAN HAMILTONIANS

In this section, we give a brief explanation of the conclu-
sions on η-pseudo-Hermitian Hamiltonians used in Sec. II B.
The detailed derivation of these results can be found in
Ref. [77]. The Hermitian operator η can define a new inner
product as

〈φ|ψ〉η = 〈φ|η|ψ〉, (B1)

where |ψ〉, |φ〉 are arbitrary vectors in the Hilbert space. The
η-pseudo-Hermitian Hamiltonians are equal to their adjoints
under this new inner product. When η is the identity opera-
tor, Eq. (4) reduces to the standard definition of Hermiticity.
Therefore, η-pseudo-Hermiticity can be regarded as a gener-
alization of Hermiticity.

The η-pseudo-Hermiticity means H = η−1H†η, hence the
eigenstates of H and H† with same eigenvalues are connected
by the η transform. To be more explicit, η|ψi〉 is the eigenstate
of H† with energy Ei if |ψi〉 is the eigenstate of H with
the same energy. Note that for every |ψi〉 with energy Ei,
there exists a corresponding |φi〉 with energy E∗

i . Therefore,
we conclude that the eigenvalues come in either real values
or complex conjugate pairs if and only if the Hamiltonian is
η-pseudo-Hermitian. Such spectrum property differs from the
Hermitian case, where all eigenvalues are real. The difference
can be understood because the inner product defined by η can
be indefinite.

Another key conclusion in Ref. [77] is the relationship be-
tween η-pseudo-Hermiticity and the widely utilized concept
of PT symmetry [86]. A Hamiltonian respects PT symmetry
if it is invariant under the PT transformation, where P is the
parity operator, and T is the time-reversal operator, respec-
tively. A PT-symmetric system is classified as belonging to the
PT-exact phase if all its eigenvalues are real or the PT-broken
phase if at least one complex conjugate pair exists. Since the
eigenvalues of PT-symmetric Hamiltonians are either real or
complex-conjugate pairs, PT-symmetric Hamiltonians are all
η-pseudo-Hermitian.

APPENDIX C: SYMMETRY GENERATED
BY THE η-PSEUDO-HERMITICITY

If there exists two distinct η operators in a system, η1H =
H†η1 and η2H = H†η2, then it can be straightforwardly

shown that [η−1
1 η2, H] = 0, which means η−1

1 η2 is a sym-
metry of the systems [77]. This property can be utilized
to uncover hidden symmetries in non-Hermitian systems.
As an illustration, consider the SSH model with reciprocal
hopping,

HSSH =
N∑

n=1

t1b†
nan +

N−1∑
n=1

t2a†
n+1bn + H.c., (C1)

where a†
n (an) and b†

n (bn) are the creation (annihilation) oper-
ators for the two sublattices in the nth unit cell. Such a model
respects mirror reflection symmetry in real space, as described
by the matrix

R̃ =

⎛⎜⎜⎝
1

. .
.

1
1

⎞⎟⎟⎠. (C2)

The non-Hermitian SSH model with nonreciprocal hopping
terms, corresponding to the M = 2 case of our general non-
reciprocal Hamiltonian, breaks the above mirror reflection
symmetry. More precisely, the reflection operation R̃ applied
to the general model results in the transformation tLi ↔ tRM−i

for i = 1, · · · , M − 1 and tLM ↔ tRM . The Hermitian SSH
Hamiltonian, which is the M = 2 and tL = tR case, remains
invariant under this transformation, with t1 ↔ t1 and t2 ↔ t2.
However, the nonreciprocal SSH Hamiltonian is transformed
to its Hermitian conjugate under this transformation, with
tL1 ↔ tR1 and tL2 ↔ tR2 . Consequently, R̃ no longer acts as a
symmetry operator but instead becomes an η operator. No-
tably, the eigenvalues of R̃ are ±1, rendering it indefinite. This
exemplifies the existence of indefinite η for the real spectrum.
Since we now have two η operators with different physical
meanings, one ηI that describes the exponential rescaling
of inner-product space and the other R̃ that describes the
reflection along the middle point, a new symmetry can be
generated as

gSSH = R̃N · diag{r−2
2 , r−4

2 , · · · , r−2N
2

}⊗
(

0 r−2
1

r−2
0 0

)
,

(C3)

where RN represents the N by N reflection matrix. This novel
symmetry for the nonreciprocal SSH model is intimately
linked to the broken mirror reflection symmetry induced by
the nonreciprocal term, facilitated by ηI generated through
the IGT.

The presented procedure can be extended to encompass
general models with multiple sublattices. By decomposing
the hopping terms into reciprocal and nonreciprocal com-
ponents, we can express them as tLi = ti − γi, tRi = ti + γi,
respectively. If the reciprocal component exhibits reflection
symmetry, i.e., ti = tM−i, and the nonreciprocal part com-
ponent adheres to the same constraint, γi = γM−i, then the
reflection operator R̃ fulfills the definition of η, and therefore
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yields the new symmetry g as

g = R̃MNηI. (C4)

APPENDIX D: DETAILS ON THE GENERAL
EXPRESSION OF η

In this section, we provide more details on the expression
of the η operator given in Eq. (11). Note that it is differ-
ent from Eq. (22) in Ref. [77] since ci0 can take ±1. The
HN model is first examined in both PT-exact and PT-broken
phases to illustrate the applicability of Eq. (11). The OBC
eigenstate for the HN model takes the form

|ψ〉 =
N∑

n=1

(
aβn

1 + bβn
2

)|n〉, (D1)

where β1, β2 are two points in the GBZ corresponding to the
same energy, and a, b denote the superposition coefficients de-
termined by the boundary condition 〈0|ψ〉 = 〈N + 1|ψ〉 = 0.
Since the GBZ is a circle with radius r = √|tR/tL|, it can
be parameterized as β(k) = reik with k ∈ [0, 2π ). To obtain
β1 and β2, the model needs to be analyzed separately in the
PT-exact and PT-broken phases. The system is in the PT-exact
phase when ω ≡ tLtR > 0 and in the PT-broken phase when
ω < 0. The energy spectrum is either real or imaginary, which
has the form

E (k) =
{

2r cos k ω > 0,

2ir sin k · sgn(tL ) ω < 0.
(D2)

Hence, the parameters k1 and k2 corresponding to the same
energy in the PT-exact phase fulfill k1 = −k2, while in the PT-
broken phase, they satisfy k1 + k2 = π . The expression of the
eigenstates corresponding to Eq. (D2) is given by

|ψ (k)〉 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

√
2

N + 1

N∑
n=1

rnsin(nk)|n〉 ω > 0,√
1

�N/2�
N∑

n=1

rn(eink − e−in(k+π ) )|n〉
ω < 0,

(D3)

where �N/2� is defined as the greatest integer less than or
equal to N/2. The possible values for k are determined by the

boundary condition, which reads

k =

⎧⎪⎨⎪⎩
jπ

N + 1
ω > 0,

jπ

N + 1
+ π

2
ω < 0,

j = 1, 2, · · · , N. (D4)

Similarly, the eigenstates of H†
NH can be expressed as

|φ(k)〉 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√

2
N+1

∑N
n=1 r−nsin(nk)|n〉 ω > 0,√

1
�N/2�

∑N
n=1 r−n(eink − e−in(k+π ) )|n〉

ω < 0.

(D5)

We can verify the energies corresponding to the eigenstates
|ψ (k)〉 and |φ(k)〉 are complex conjugates. This implies the
bi-orthonormal condition 〈φ(k)|ψ (k′)〉 = δkk′ , which can also
be confirmed by directly calculating their inner product.
Note that the normalization coefficients are not unique, i.e.,
we can take |ψ (k)〉 → a(k)|ψ (k)〉 and |φ(k)〉 → |φ(k)〉/a(k)
while the bi-orthonormal condition is still fulfilled. Therefore,
Eq. (11) can lead to different metrics. Now we substitute
|φ(k)〉 expressed as Eq. (D5) into Eq. (11) to confirm that
it indeed produces ηI. In the PT-exact phase, the result is
given by

η =
∑

k

|φ(k)〉〈φ(k)|

= 2

N + 1

∑
m,n,k

r−(m+n)sin(mk)sin(nk)|m〉〈n|. (D6)

Only terms with m = n in Eq. (D6) take nonzero values. This
can be easily understood in the thermodynamic limit, where
the summations over k are replaced by integrals. Then, the
expression can be simplified as

η = 2

N + 1

∑
n,k

r−2nsin2(nk)|n〉〈n|

=
∑

n

r−2n|n〉〈n|, (D7)

which equals to ηI. The above derivation shows that ηI satis-
fies Eq. (8) in PT-exact phase, which we theoretically proved
in the main text by the fact ηI is positive definite.

In the PT-broken phase, we need to choose the eigenstates
|φ(k)〉 and |φ(k′)〉 with conjugate energies. From Eq. (D2) and
Eq. (D4), we have E (k) = E (k′)∗ for k + k′ = 2π . Therefore,
η can be expressed as

η = 1

�N/2�
∑

k

(|φ(k)〉〈φ(2π − k)| + |φ(2π − k)〉〈φ(k)|)

= 1

�N/2�
∑
j,m,n

[r−2(m+n)(r2cos(2n − 1)θ j cos(2m − 1)θ j |2m − 1〉〈2n − 1| − sin2nθ j sin2mθ j |2m〉〈2n|)

+ ir−2(m+n)+1(cos(2n − 1)θ j sin2mθ j |2m〉〈2n − 1| + cos(2m − 1)θ j sin2nθ j |2m − 1〉〈2n|)], (D8)
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where θ j = jπ/(N + 1). Similarly to Eq. (D6), the summation in every off-diagonal term equals zero. The remaining diagonal
terms yield

η = 1

�N/2�
∑

j,n

r−2(2n−1)cos2(2n − 1)θ j |2n − 1〉〈2n − 1| − r−4nsin22nθ j |2n〉〈2n| =
∑

n

r−2n|n〉〈n|, (D9)

which also equals to ηI. Since the spectrum is entirely imag-
inary for the HN model in the PT-broken phase, we do not
need to consider the values of ci0 . For a general lattice model,
the spectrum in the PT-broken phase is not always entirely
imaginary, hence the values of ci0 need to be considered.
In the subsequent analysis, we show that any η operator
can be expressed in the form of Eq. (11) by appropriate
selection of ci0 .

After verifying that Eq. (11) leads to ηI in the HN model,
we give a theoretical explanation of how an arbitrary η oper-
ator can be expressed by Eq. (11). Equation (11) is obtained
by substituting the relations η|ψi±〉 = ci±|φi∓〉 and η|ψi0〉 =
ci0 |φi0〉 into completeness of bi-orthonormal basis∑

i±

|ψi±〉〈φi±| +
∑

i0

∣∣ψi0

〉〈
φi0

∣∣ = 1 (D10)

and taking ci± = 1. To achieve this for an arbitrary bi-
orthonormal basis, we need to adjust the normalization
coefficients. After attempting to normalize all ci± and ci0 to
unity, we demonstrate that only ci± = 1 can be consistently
set to 1, while ci0 can only take values of 1 or −1. To main-
tain the bi-orthonormal condition, the transformation of the
eigenstates should have the form of∣∣ψ̃i±,0

〉 = ai±,0

∣∣ψi±,0

〉
,

∣∣φ̃i±,0

〉 = ∣∣φi±,0

〉/
a∗

i±,0
, (D11)

where ai± and ai0 denote the adjustment on normalization
coefficients. Then we substitute Eq. (D11) into Eq. (10) and
try to obtain

η|ψ̃i±〉 = |φ̃i∓〉, η
∣∣ψ̃i0

〉 = ∣∣φ̃i0

〉
(D12)

which straightforwardly leads to

ci± = 1

ai±a∗
i∓

, ci0 = 1∣∣ai0

∣∣2 . (D13)

The former relation requires that ci± = c∗
i∓ and the latter

relation requires that ci0 ∈ R+. On the other hand, by sub-
stituting the completeness of bi-orthonormal basis Eq. (D10)
into Eq. (10), we obtain another expression for ci±,0 and ci0 ,
given by

ci± = 〈ψi∓|η|ψi±〉, ci0 = 〈
ψi0

∣∣η∣∣ψi0

〉
, (D14)

Due to the Hermiticity of η, we have

ci± = c∗
i∓ , ci0 ∈ R. (D15)

The condition ci± = c∗
i∓ is always satisfied, implying all coef-

ficients ci± can be set to 1 through appropriate normalization.
While we can make positive ci0 to 1 and negative ci0 to
−1, achieving absolute uniformity (namely all ci0 equal to
1) remains impossible. This necessitates retaining an unde-
termined coefficient ci0 in Eq. (11). If all ci0 = 1, we can
straightforwardly show that η operator expressed by Eq. (11)
is positive definite when the spectrum is entirely real and

indefinite when the spectrum is complex (and vice versa).
Consider arbitrary nonzero right vector | f 〉, which can be
written as

| f 〉 =
∑

i±

|ψi±〉〈φi±| f 〉 +
∑

i0

∣∣ψi0

〉〈
φi0

∣∣ f
〉

(D16)

with the help of completeness. By substituting it into the
bi-orthonormal condition, the inner product 〈 f |η| f 〉 takes the
form

〈 f |η| f 〉 =
∑

i±

〈 f |φi+〉〈φi−| f 〉 +
∑

i0

∣∣〈φi0

∣∣ f
〉∣∣2. (D17)

If we have an entirely real spectrum, only the second term
exists, and the inner product is, therefore, positive for any
nonzero | f 〉. But if we have complex eigenvalues, the first
term can give negative values or zeros. For example, we can
take | f 〉 = |ψi′+ 〉 − |ψi′− 〉 for arbitrary index i′, then the inner
product equals–2 and thus η is indefinite. If taking some
ci0 = −1, we can have indefinite η even if the spectrum is
entirely real.

APPENDIX E: DETAILS ON THE NON-BLOCH
THEORY AND GBZ

In this section, we give a brief review of the non-Bloch
theory and GBZ introduced by Ref. [52]. Since the spectra
and eigenstates of OBC and PBC Hamiltonians can differ
significantly from each other in non-Hermitian systems, the
Bloch wave picture is no longer valid in OBC. Nevertheless,
extending the wave vector k to a complex value can still solve
the system [15]. The eigenstates can be expressed as a linear
combination of generalized Bloch wave functions

|ψ (E )〉 =
∑

j

N∑
n=1

β j (E )n|n〉 ⊗ |μ j〉, (E1)

where β j = eik j can go beyond the unit circle when k j is
complex valued, |μ j〉 is the distribution in different sublattices
of one unit cell, and |n〉 is the lattice basis. Subscript j denotes
different β with the same energy E . The eigenstates of a
system are constructed by linearly combining these general-
ized Bloch wave functions to satisfy the boundary condition.
Analogous to the bulk Hamiltonians H (k) in Hermitian cases,
H (β )M×M can be given by choosing the generalized Bloch
wave function as the basis. Specifically, the generalized Bloch
Hamiltonian H (β ) for the tight-binding model described by
Eq. (12) takes the form of Eq. (13). Then, the eigenvalue
problem in the original real-space Hamiltonian is converted to
solving the eigenvalue E and eigenstates |μ〉 of H (β ) if β is
given. In contrast to Hermitian systems, where the permissible
β values are confined to the unit circle, non-Hermitian sys-
tems exhibit a broader range of β values that trace complicated
curves on the complex plane, forming the so-called GBZ. The
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non-Bloch theory points out that the GBZ is determined by the
β that constructs continnum bands. By substituting the general
form of OBC for the 1D non-Hermitian systems without sym-
metry into the characteristic equation, the GBZ is obtained
by the condition |βp| = |βp+1|, where βp and βp+1 represent
the pth and (p + 1)th β values respectively, when sorted in
ascending order of magnitude by |β1| � |β2| � · · · � |β2p|.
The GBZ is formed by tracing the trajectory of these βp and
βp+1 values across different energy levels within the contin-
uum bands.

APPENDIX F: NS ZAK’S PHASE IN NON-HERMITIAN
SSH3 MODEL

In this section, we provide more details on how to gener-
alize the NS Zak’s phase in the non-Hermitian SSH3 model.
Predicting the number of conventional edge states (in contrast
to skin modes) generally requires two modifications to the
expressions of topological number: one is to replace all 〈ψ |
with the left vector 〈φ|, where |ψ〉 and |φ〉 are eigenstates of
H and H† with conjugate eigenvalues; the other is that the
calculation should be made in GBZ instead of BZ [15]. In
the case of NS Zak’s phase in the SSH3 model, the original
expression valid for the Hermitian case is

Zλ = −
∮
BZ

dk〈ψ̃λ(k)|∂kψ̃λ(k)〉, (F1)

where |ψ̃λ(k)〉 is defined as

|ψ̃λ(k)〉 = 〈A|ψλ(k)〉√〈ψλ(k)|A〉〈A|ψλ(k)〉 |A〉. (F2)

Here |A〉 denotes the unit vector of the first sublattice. This
definition corresponds to projecting the eigenstate onto the
first sublattice, followed by normalization. To obtain the non-
Hermitian version of NS Zak’s phase, the first step is to
replace all 〈ψλ(k)| with left vectors 〈φλ(k)| in Eq. (F2), which
leads to

|ψ̃λ(k)〉NH = 〈A|ψλ(k)〉√〈φλ(k)|A〉〈A|ψλ(k)〉 |A〉

=
√

aλ
R

aλ
L

e
i(θλ

L +θλ
R )

2 |A〉, (F3)

where aλ
L/R and θλ

L/R denote the modulus and argument phases
of the projected left/right vector of band λ on sublattice A.
Similarly, we have

|φ̃λ(k)〉NH =
√

aλ
L

aλ
R

e
i(θλ

L +θλ
R )

2 |A〉. (F4)

Thus, the NS Zak’s phase in non-Hermitian SSH3 model can
be expressed as

Zλ
NH = −

∮
GBZ

dk〈φ̃λ(k)|∂kψ̃λ(k)〉

= −1

2

∮
GBZ

dk

(
∂θλ

L

∂k
+ ∂θλ

R

∂k

)
−
∮
GBZ

dln

√
aλ

R

aλ
L

= −1

2

∮
GBZ

dk

(
∂θλ

L

∂k
+ ∂θλ

R

∂k

)
. (F5)

Here the second term vanishes upon loop integration due to
the single-valued nature of the modulus. This result can be
interpreted as the mean value of the cumulative phase after a
loop of the left and right vectors.

In the next step, we show that the cumulative phase for
the left and right vectors are the same. Similar to Eq. (20)
in Sec. III, H (r2

M/β∗) and H†(β ) is also connected via a
similarity transformation Sη, namely

S−1
η H

(
r2

M

/
β∗)Sη = H†(β ). (F6)

Since the GBZ is a circle with radius |rM | and can be parame-
terized as β = |rM |eik , we have

S−1
η H (β(k))Sη = H†(β(k)) (F7)

when r2
M > 0 and

S−1
η H (β(k + π ))Sη = H†(β(k)) (F8)

when r2
M < 0. For the first case where r2

M > 0, |ψλ(k)〉 and
Sη|φλ(k)〉 are linearly dependent due to the similarity trans-
formation. The exact proportional ratio between these two
vectors is irrelevant as we only care about the relative phase
between the first and third sublattices. Recall that the expres-
sion for Sη reads

Sη = diag

{
1,

tR1
tL1

,
tR1tR2
tL1tL2

}
, (F9)

we learn that for (tR1tR2 )/(tL1tL2 ) > 0 the relative phase be-
tween the first and third sublattices is the same for |ψλ(β(k))〉
and |φλ(β(k))〉; and for (tR1tR2 )/(tL1tL2 ) < 0, the relative phase
is different by π for |ψλ(β(k))〉 and |φλ(β(k))〉. Note that
(tR1tR2/tL1tL2 ) is constant, so we always have

∂θλ
L

∂k
= ∂θλ

R

∂k
. (F10)

For the r2
M < 0 case, |ψλ(β(k + π ))〉 and Sη|φλ(β(k))〉 are

linearly dependent. Similarly, we have

∂θλ
L (k)

∂k
= ∂θλ

R (k + π )

∂k
. (F11)

The loop integral in GBZ is equal for θλ
L and θλ

R , owing to
their periodicity in k. Thus, we prove that the contribution of
both left and right vectors to the NS Zak’s phase is identical.
Hence, the expression in the Hermitian case can be safely used
with BZ replaced by GBZ, namely

Zλ
NH = −

∮
GBZ

dk
∂θλ

R

∂k
. (F12)

In the end, we explain the axes in Fig. 5(a). By choosing
(tL1tR1 )/t2

3 and (tL2tR2 )/t2
3 as the axes, we indicate that the result

is invariant for different parameter sets as long as these two
quantities are invariant. First, we show straightforwardly that
the OBC spectrum should be invariant. Consider two different
OBC Hamiltonians H1, H2, the only difference is that we have
tL1 , tR1 in the first one and t ′

L1
= αtL1 , t ′

R1
= tR1/α for α ∈ R in
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the second one, so that tL1tR1 = t ′
L1

t ′
R1

. The IGT

S = diag{α−1, α−2, · · · , α−N } ⊗ diag{1, α−1, α−1} (F13)

can transform H2 to H1, or symbolically S−1H2S = H1.
Hence, the energy spectrum for both continuum band and
discrete levels are the same for these two parameter sets.

Then, we show that the NS Zak’s phase should also
produce the same result. By applying the similarity

transformation

S′ = diag{1, α−1, α−1} (F14)

to the generalized Bloch Hamiltonian H2(β ), we have

S′−1H2(β )S′ = H1(βα). (F15)

Note that the radius of GBZ for H2 is r/|α| if that for H1 is
r, we have for any β in the GBZ of H2, αβ is in the GBZ of
H1. Thus, the eigenstates in GBZ of H1 and H2 are connected
by this similarity transformation, and by following the same
analysis, we obtain that the NS Zak’s phase for two cases is
the same.
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