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Disparities of topological states at multiple interconvertible domain walls
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With the emergence of rich topological phases in artificial photonic crystals (PCs), numerous peculiar physical
phenomena occur within domain walls (DWs) constructed by PCs with different topological phases. These
phenomena include robust topological edge states (TESs), strongly localized topological corner states (TCSs),
the quantum spin Hall effect, the quantum valley Hall effect, filling anomalies, and fractional charges at corners
and edges. In this paper, we propose triangular lattice PCs composed of six triangle-shaped silicon rods to
form two pairs of interconvertible DWs under two types of perturbations. We show that topological phase
transitions occur with perturbations affecting 3 out of 6 rods. The first perturbation opens a band gap at the
� point, supporting a pair of pseudospin helical edge states. The second perturbation opens another band
gap at the K point, supporting valley edge states while preserving the initial topological band gap. We find
that all designed topological PCs exhibit Wannier centers partially deviating from the center, causing different
filling anomalies, thereby marking PCs with different topological indices corresponding to distinct higher-order
topological phases. The results from mode charge distribution, calculated by integrating the local density of
states (LDOS), are consistent with the Wannier center position analysis. By analyzing the LDOS under different
boundary conditions at the corners and edges, we uncover significant disparities in the distribution of TES and
TCS. Intriguingly, under certain conditions, the corner states can hybridize with edge states or even with bulk
states. The rich topological physics presented not only provides insights into topological phases but also opens
avenues for engineering topological states with potential applications.
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I. INTRODUCTION

The concept of topological phases, derived initially from
topological insulators in the field of condensed matter physics
[1–3], has undergone extensive exploration in optical systems,
such as photonic crystals (PCs) [2,4–17], waveguides [18–20],
bound states in the continuum (BIC) [21–23], and even at
disordered systems [23–26] as well as other nonoptical do-
mains [27–33]. One notable outcome of this exploration is
the emergence of robust topological edge states (TESs) gov-
erned by the bulk-edge correspondence principle. The TES
exhibits robustness to defects, backscattering, and resistance
to bending routes. This property unlocks potential applica-
tions, including optical splitters [34] and resonators [26].
Compared with conventional optical devices, topological PCs
offer advantages such as increased bandwidth, reduced power
consumption, and enhanced resistance to manufacturing im-
perfections [35–38]. Furthermore, authors of recent studies on
TESs primarily categorize them into two types: pseudospin
[15,39–41] and valley [42–44]. Extending the degrees of free-
dom of these TESs in optical systems facilitates innovative
manipulation of light. While these systems offer robustness
that is limited to a set of symmetry-preserving defects [9,45],
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they still exhibit unidirectional boundary modes [46–48]. The
design of topological PCs offers greater diversity than their
counterparts in condensed matter physics, as different unit cell
patterns can be fabricated artificially.

Higher-order photonic topological insulators have intro-
duced the concept of topological corner states (TCSs),
characterized by strong localization, and have garnered sig-
nificant attention in research [49–53]. These topologically
protected states manifest in lower dimensions. For example,
in the realm of two-dimensional (2D) photonic systems, zero-
dimensional TCSs [49,54–56] are a viable phenomenon. The
TCS holds promise for various applications, including the
development of low-threshold topological nanolasers [57] and
the achievement of ultrahigh-Q Fano resonance [58].

While corner states often indicate the presence of higher-
order topology, they can also blend into the bulk bands
[59,60]. Additionally, in numerous topological crystalline in-
sulators, the discrepancy in spatial symmetry between the
edges and the bulk leads to a failure in bulk-edge correspon-
dence [35]. Researchers have recently shown that fractional
mode charges at system boundaries or defects, a method to in-
vestigate the bulk topology without relying on these boundary
states, can serve as excellent markers for studying topolog-
ical phases [61–65]. Fractional mode charges are rigorously
protected by both crystal symmetry and topology. Unless the
system undergoes a topological phase transition, it remains
unchanged. Therefore, they can serve as important signals
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of topological crystalline phases, especially in topological
photon systems where the symmetry at the bulk and edge
differs.

In this paper, we study numerous higher-order topologi-
cal phases and phase transitions in 2D PCs, which support
fractional mode charges at the edge and corner boundaries,
with a triangular lattice comprising unit cells consisting of
six triangular-shaped silicon (Si) rods. To induce a transi-
tion from a trivial topological phase to a nontrivial one and
a transition of diverse higher-order topological phases, we
introduce two types of artificial perturbations, treated as per-
turbations, into a subset of Si rods within a unit cell. Two
perturbations open two band gaps exhibiting distinct phase
transitions, one of which hosts a pair of pseudospin helical
edge states, and the other supports the valley edge states.
Two types of perturbations enable the construction of two
domain walls (DWs), where TESs and TCSs emerge. These
perturbations provoke nontrivial distributions of the Berry
curvature around � and K in the Brillouin zone. Additionally,
the mode charge distribution—calculated by the integration of
the local density of states (LDOS) over bulk bands—varies in
response to alterations of higher-order topological phases. The
fractional mode charge emerges at the corners and edges due
to filling anomalies caused by the noncenter Wannier center
[61–64]. We detect the quantum spin Hall effect (QSHE)
by introducing circular polarization sources within the DW
formed by combining a nontrivial topological PC with a trivial
one. Numerous DWs, fabricated by PCs with different topo-
logical phases, are engineered to establish various boundary
conditions. Notably, we observe gapped TESs and strongly
localized TCSs exhibit varying distributions of frequencies
in those DWs. By leveraging the QSHE realized on these
DWs and photonic helicity, we designed optical logic gates.
Our primary objective is to investigate the conditions and
distinctions of topological states within these interchange-
able DWs. Our discoveries present multiple interchangeable
DWs within uncomplicated optical setups, emphasizing dif-
ferences between TESs and TCSs. Although the immunity
of TESs against effects that break the different symmetries
of the phases (e.g., spin-flip processes in the QSHE, valley
coupling terms in the valley phase, or certain crystallographic
symmetry reductions) under the preservation of time-reversal
symmetry is not well characterized in the literature at the
moment, the TESs, characterized by their defect robustness
and resistance to backscattering, along with the well-localized
TCSs, are essential for optical applications. These findings
unlock opportunities for tailoring topological states and ex-
ploring potential applications, including the implementation
of TESs in topological optical splitters [34] and harnessing
TCS for achieving ultrahigh-Q Fano resonance [58].

This paper is structured as follows: In Sec. II, we present
the PCs in different higher-order topological phases and their
evolution processes. In Sec. III, we discuss various DWs
composed of these different PCs. In Sec. IV, we explore the
fractionalization of edges and corners under different bound-
ary conditions based on the Wilson loop calculation method.
In Sec. V, we investigate the robustness properties of these
topological states. We conclude with a summary and outlook
for future research in Sec. VI.

II. TOPOLOGICAL PC

We consider the transverse magnetic (TM) modes within
the designed photonic system, where out-of-plane Hz and
in-plane Ex and Ey items are zero while other components
remain finite. The dynamics of light are governed by the
master equation derived from the Maxwell equation:

�∇ × �∇ × �E (�r) =
(

ω2

c2

)
ε(�r) �E (�r), (1)

where ε(�r) of Si rods, being 12.11, are surrounded by air. The
corresponding magnetic field can be obtained by the Faraday
relation �H (�r) = −[i/μ0ω] �∇ × �E (�r). The lattice vectors are
denoted as �a1 and �a2, where a1 = a2 = a = √

3a0. The unit
cell contains six equilateral-triangle-shaped Si rods with a

FIG. 1. Schematic of the unit cell of the two-dimensional (2D)
photonic crystal (PC) and corresponding band diagrams. (a) The
partially shrunken unit cell for m = 0.35 is labeled type A and has
a trivial band structure. (b) The unit cell for m = 1 with a gapless
band structure forms quadruple degeneracy at ωa/(2πc) = 0.61 at
the � point is stamped type C. (c) The partially expanded unit cell for
m = 1.4 is marked as type B and exhibits nontrivial band structure.
(d) Schematic of the 2D PC with ε = 12.11, a = √

3a0 = 2580 nm;
red dashed rhomboid indicates another type of unit cell. (e) Brillouin

zone of the proposed PC with points of high symmetry, where
−→
b1 =

2π/
√

3a(
√

3
−→
kx − −→

ky ) and
−→
b2 = 4π/

√
3a

−→
ky . (f) Maximal Wyckoff

position for C3-symmetric unit cells. The gray areas indicate band
gaps opened at similar frequency widths between PCs in (a) and (b).
As indicated by the dashed arrowed lines, the inversion of bands
occurs between m = 0.35 and 1.4 at the � point. The inversion
involves an exchange between a pair of dipole modes (px and py)
and a pair of quadrupole modes (dxy and dx2−y2 ).
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FIG. 2. (a) In the second perturbation, the perturbed triangle rod
in type B rotates around its center by an angle θ to evolve into type
D, while all rods in type D are rotated by 60◦ to transform into type
E. (b) and (d) Photonic band structures of types D and E at θ = 17◦,
where the first and second band gaps are marked with gray regions,
and different colored dots indicate various eigenstate patterns at the
� point and different phase winding properties at the K point. (c)
and (e) Eigenstate distributions (Ez) at the � point for types D and
E, marked by pairs of differently colored dots, and phase diagrams
of two eigenstates ϕEz at the K point with opposite phase winding
properties. The ± indicates the positive and negative distribution of
the eigenstate distributions Ez. Band inversion occurs simultaneously
at the K and � points, supporting the coexistence of pseudospin and
valley states.

length of r. As shown in Fig. 1(a), these Si rods are artificially
divided into two groups, with two adjacent triangles belonging
to different groups. The distance from the center of each rod
in two groups to the center of the unit cell is R1 and R2, re-
spectively. In the absence of perturbations (R1 = R2 = a/3),
the photonic system with a triangular lattice containing six
equivalent Si rods in each cell exhibits C6 crystal symmetry,
which has two irreducible representations. Due to the double
number of rods in the designed unit cell compared with the
hexagonal lattice, such as graphene [66–68], with double de-
generacy at points K and K ′ in the Brillouin zone, two Dirac
cones are folded back to the � point, resulting in quadruple
degeneracy, as shown in Fig. 1(b). At the degeneracy point,
the Ez field carries px(py) and dxy(dx2−y2 ) orbitals, as shown
in Fig. 2(a), related to two pairs of pseudospin states, namely,
p+, d+ for pseudospin-up and p−, d− for pseudospin-down,
where p± = (px ± ipy)/

√
2 and d± = (dx2−y2 ± idxy)/

√
2.

Here, we consider a = 2.58 µm, r = na, and n = 0.35.
In the case of R1 = R2 = a/3, six Si rods are equally split,

resulting in the designed PC resembling graphene, as shown
in Fig. 1(b). The photonic band structure exhibits quadruple
degeneracy at the � point around ωa/(2πc) = 0.61, as dis-
played in Fig. 1(b). Figures 1(a) and 1(c) illustrate that one of
the band gaps appears when the symmetry of the designed sys-
tem changes. The proportionality coefficient m is introduced
into the expressions for R1 and R2 to break the symmetry.
The first group of Si rods remains fixed, namely, R1 = a/3.
The value of R2 is adjusted by m and can be expressed as
a × n/3 + a × (1−n) × m/3. There is no perturbation, mean-
ing R1 = R2 when m = 1; the vertex of the adjusted triangle
that is closest to the center of the unit cell coincides exactly
with the center when m = 0. Meanwhile, the side length that
is farthest from the center lines up precisely with the edge
when the m = 1.5. It is evident that the symmetry of the
system undergoes change from C6 to C3, which gives rise to
distinct distributions of special high-symmetry points (HSPs)
within the real unit cell, namely, maximal Wyckoff positions
when m deviates from 1. There are three distinct Wyckoff
positions for C3-symmetric unit cells, namely, a center (a) and
two corners of the unit cell (b and c), as shown in Fig. 1(f).
In various configurations of C3-symmetric PCs, the Wannier
centers demonstrate diverse distributions at these special po-
sitions. If located at the center point a, it aligns with the ionic
center of the unit cell of an insulator, reflecting the electrical
neutrality typical of traditional insulators in their trivial phase.
However, the Wannier centers at corner b or c, which lead
to the filling anomaly at corners and edges of PCs, are the
primary drivers of the fractionalization of edge and corner
charges. The fractionalization at varying edges and corners
of PCs, which exhibit diverse higher-order topological phases
corresponding to the distinct positions of the Wannier center
located at different corners, will be discussed later.

Figures 1(a) and 1(b) show two opposite changes in two
scenarios under the first type of perturbation: the enlargement
of the distance of the selected triangle group (1 < m < 1.5)
and the shrinking (0 < m < 1). Both perturbations of distance
lead to a band gap between the third and fourth bands opening
at the � point. To assess the impact of this perturbation on
the gap, eigenfrequency as a function of proportionality coef-
ficients m at the � point in the Brillouin zone is calculated,
as illustrated in Fig. 3(a). It is evident that the perturbation
induces a band gap scaling with the magnitude of devia-
tion from m = 1, and there is a quasilinear relationship near
m = 1. By comparing the change in eigenfrequency at the �

point with m, we can select two perturbations with band gaps
located at similar positions. When m = 0.35 and 1.4, the two
dispersion relations of the TM modes both have band gap in
the frequency range around between ωa/2πc = 0.653 (75.9
THz) and ωa/2πc = 0.586 (68.09 THz). The gap opened for
these specific perturbations is properly wider than most other
perturbations, making them suitable for demonstrating the
topological phase transition. The partly shrunken PC denoted
as type A (m = 0.35), and the partly expanded one, denoted
as type B (m = 1.4), possess similar band structures with
the nearly identical band gap between the third and fourth
photonic bands.

In the initial type of perturbation, where the system tran-
sitions from C6 to C3, there is consideration to introduce the
second type of perturbation to further disrupt its symmetry.
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FIG. 3. (a) The eigenfrequency of a pair of p and d mode shifts
with m at the � point. (b) Schematic of domain walls (DWs) com-
posed of combinations of photonic crystals (PCs). The topological
phase transition occurs with band inversion when m crosses 1, corre-
sponding band gap, as marked by black arrow line, open, as shown in
(a). DW1 comprises PCs of rotated types A and B, and the interface
between types A and B produces DW2. (c) The left image shows
how the eigenfrequency at the K and M points varies with the angle
θ , with the gap opening at approximately θ = 9.5◦. The right image
illustrates the evolution of the eigenfrequency at the � point with θ ,
where the gap remains open throughout the entire range of θ .

This second perturbation is specifically applied to type B
PCs. From the first image of Fig. 2(a), it is observed that,
under this perturbation, the triangle group, which has under-
gone the initial perturbation and has been expanded, rotates
counterclockwise around the center of the cell by an angle
θ . It is evident that this perturbation still maintains the C3

symmetry of the system, preserving the maximal Wyckoff
positions unchanged. However, it disrupts the mirror symme-
try. Under this perturbation, a new gap opens between the
first and second bands, while the gaps between the third and
fourth bands—caused by the previous perturbation—remain
unchanged. After experiencing this perturbation, the PC is
designated as type D, and upon undergoing a rotationally
flipped operation—rotating clockwise by 60◦—it transitions
to type E, as depicted in Fig. 2(a).

It is straightforward to infer that the band structures of
types D and E are the same, as illustrated in Figs. 2(b) and
2(d). However, as depicted in Figs. 2(c) and 2(e), the eigen-
state patterns of Ez at the � point are swapped between the
two types of PCs with opposite phase winding properties at
the K point, which indicates distinct higher-order topological
phases. These changes not only result in the exchange of two
degenerate points at the � point within the former band gap,
leading to the emergence of two pairs of pseudospin states as
previously discussed, but they also enable the realization of
the valley Hall effect within the newly formed band gap due
to the opposite phase-winding behaviors.

To clarify the impact of the second perturbation on the
two band gaps, we calculated the evolution of characteristic
frequencies at the K, M, and � points as a function of the angle
θ . The results are shown in Fig. 3(c), where it is evident from
the evolution of the eigenfrequencies at the � point that this

perturbation has a minimal effect on the band gap supporting
pseudospin states, with the band gap essentially remaining
constant at ωa/2πc = 0.66 and 0.57 throughout the changes
in angle θ . However, for the newly emerged band gap sup-
porting valley states, it only opens when the angle θ exceeds
∼ 9.5◦. As seen from the band structure of type B in Fig. 1(a),
the eigenfrequency at the K point on the first band initially
exceeds that at the M point on the second band, but it gradually
decreases with increasing θ , while the eigenfrequency at the
M point on the second band correspondingly rises.

To prove the topological phase difference between types A
and B, the k · p perturbation theory is applied to Maxwell’s
equations of 2D PCs. The effective Hamiltonian can be di-
vided into two, denoted as

H (�k) = H0 + H ′, (2)

where H0 represents the Hamiltonian without perturbation
and H ′ is designated as a perturbation term, denoted as �k · �p,
where �k is the wave vector, and the x component of the mo-
mentum operator px is defined as ∂/∂x as well as py = ∂/∂y.
Here, H (�k) can be rewritten under the basis [p+, d+, p−, d−]
as [15]

H (�k) =
(

H+ 0
0 H−

)
, (3)

where H± are summarized as

H± =
(

M + Bk2 Ak±
A∗k± −M − Bk2

)
, (4)

where A and B can be determined from the off-diagonal
and diagonal terms of H ′ based on The k · p perturbation
theory, k± = kx ± iky, and M is associated with the eigenval-
ues of H (0), namely, the unperturbed term H0, denoted as
(εd − εp)/2. Here, εd and εp are the eigenfrequencies of Ez

states carrying d and p orbits at the � point. The spin Chern
number for two pseudospin states around the � point can be
summarized as

C± = ± 1
2 [sgn(M ) + sgn(B)], (5)

where B stemming from the diagonal terms of the perturbed
Hamiltonian is generally negative. It is noted that, if M > 0,
namely, εd > εp, the spin Chern number C± = 0, indicating
the PC is in a trivial phase. Conversely, if M < 0, namely,
εd < εp, the spin Chern number C± = ±1, signifying that the
PC is in a topological phase. The M serves as the critical factor
for judging the topological phase of the PC. As M transitions
from positive to negative, there is an inversion of the bands
between the pair p and d modes, as shown in Fig. 3(a), leading
to a shift from a trivial phase to a topological phase. The pres-
ence of this inversion results in the appearance of topological
states.

Based on the comparison of the two pairs of modes at the
� point between types A and B, along with the evolution of
eigenfrequency at the � point with the m in Fig. 3(a), we
observe that the eigenfrequency of a pair p mode is directly
proportional to m. In contrast, the eigenfrequency of a pair d
mode exhibits an inverse trend. These two frequencies inter-
sect at the point m = 1, indicating the presence of different
topological phases on either side of this point. In specific
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FIG. 4. (a) Berry curvature distribution for the first three bands
of type B in the reciprocal space, with the left image showing the
first Brillouin zone marked by a black hexagon, and the plaquette

formed by
−→
b1 and

−→
b2 in Fig. 1(e) highlighted in red, where all four

vertices are the � point. The left image displays the Berry curvature
distribution over a Brillouin zone composed of a 4 × 4 plaquette,
and the right image is for a single plaquette. (b) Wannier band for
the first three bands, which shows the characteristic Wilson loop
of the photonic obstructed atomic limit. (c) and (d) Berry curvature
distribution for the first band of types D and E in the reciprocal space,
which shows opposite behaviors at K and K ′ points between the two
types of photonic crystals (PCs). (d) and (f) Wannier band for the
first band and the second and third bands, which shows nontrivial
polarization.

terms, type A with m = 0.35 is in the trivial phase with the
spin Chern number C± = 0, and type B is in the topological
phase with C± = ±1. To further verify the pair of spin Chern
numbers for type B, we calculated the Berry curvature distri-
bution and Wannier band for the first three bands of type B
using a discretized calculation across the Brillouin zone, as
illustrated in Figs. 4(a) and 4(b). The detailed calculations of
these bands are discussed in Appendix A in the Supplement
Material [69]. We found that the Berry curvature distribution
around the � point forms a petal shape, regularly distributed
around the � point with adjacent Berry curvatures being oppo-
sitely signed. At the � point itself, the value is zero due to the
superposition of two opposite spin Chern numbers. From the
nontrivial Wannier band, it is evident that the phase of type B
is the photonic obstructed atomic limit (OAL), which differs
from the trivial phase in which the Wannier centers are not
located at the center of the unit cell but at its edges.

To prove that types D and E represent different higher-
order topological phases, we calculated the topological
invariants corresponding to the HSPs in the reciprocal space
below their first band gap. We denote the HSP as 	, for
C3 eigenvalues of 	, marked as 	(n), can only be 	(n) =
exp[i2π (n−1)/3], for n = 1, 2, 3. The topological invariants
can be defined as [	(n)] = #	(n) − #�(n) by referring to the �

point, where #	(n) [#�(n)] is the number of bands below the
band gap with C3 eigenvalues 	(n) [�(n)]. However, some of

these invariants are not independent due to the time-reversal
symmetry and the conservation of the number of bands below
the band gap, resulting in redundancies among them [61,62].
By eliminating the redundant invariants, the indices χ for C3-
symmetric PCs, which characterize the different topological
classes, are determined by

χ = ([K1], [K2]). (6)

In trivial PCs, where band inversion does not occur, the
eigenvalues 	(n) at all the HSPs 	 are identical, resulting
in the invariants [	(n)] = 0. Conversely, a nonzero [	(n)]
indicates the presence of a topological phase. We find that,
for the first band of types D and E, #�1 = 1 and #�2 = 0,
the C3 eigenvalues at the K point for two types of PC can be
determined by the phase profiles (ϕEz ), illustrated in Fig. 2(c)
and 2(e). Therefore, the topological indices are χ =(−1,0) for
type D and χ =(−1,1) for type E.

The variations in bulk polarizations between types D and E
indicate different topological classes. The polarization of the
occupied bands, derived from the Wannier band, is specified
as follows:

ps = 1

Nk
∑

j,k v
j
s (k)

, (7)

where s indicates the direction of projection of polarization
along the lattice vector as, Nk represents the number of dis-
cretizations of k, and j denotes the index of the occupied
bands. The polarization P = (p1a1 + p2a2) and p1 = p2 due
to the C3 symmetry of the PCs we design in this paper. Wan-
nier bands for the first band in types D and E for θ = 17◦,
as shown in Figs. 4(d) and 4(f), display corresponding polar-
izations with values of − 1

3 and 1
3 , respectively. This reflects

that the Wannier center for the first band of type D is located
at the maximal Wyckoff position c, whereas for type E, it
is located at the maximal Wyckoff position b, as shown in
Fig. 1(f). However, for the second and third bands, the value
(p1, p2)=(− 2

3 , − 2
3 ) for type D and ( 2

3 , 2
3 ) for type E. There

are two Wannier centers present in two bands. One is at the
maximal Wyckoff position b, and the other is at the maximal
Wyckoff position a; for type E, one is at the maximal Wyckoff
position c, and the other is at the maximal Wyckoff position
a. Interestingly, for the second band gap, summing the po-
larizations of the band below results in a total polarization
of zero for both types D and E. This scenario is the same
for type B, as illustrated in Fig. 4(b), where one Wannier
band is at zero, and the other two are precisely opposite in
sign. Therefore, the distribution of the three Wannier centers
is not entirely concentrated at the center point of the unit cell.
Only one is located at the center, while the other two are at
different corners of the unit cell. The Wannier bands for type
D at different values of θ are displayed in Appendix A in the
Supplemental Material [69]. They all have structures like the
Wannier bands shown in Fig. 4(b).

III. DWs

Types A and B with different topological phases can be
used to construct the DW1. However, supposing that 1 of the
2 PCs, like type A, is rotated by 60◦, the rod pattern at the edge
between the two types of PCs changes. Figure 3(b) illustrates
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two various DWs. DW2 (blue line) is formed by combining
types A and B and can be turned into DW1 (yellow line) by
rotation of type A, and DW2 can be changed back to DW1 by
antirotation of type A. Types D and E, being in two different
higher-order topological states, can also form two DWs based
on their relative positions, as illustrated in Fig. 3(d). When
type E is positioned above type D, the interface formed is
DW3, marked by a green line. When the positions of types E
and D are swapped, a new interface, DW4, is formed, labeled
by a light blue line. The difference in rod pattern and topolog-
ical phase between the four DWs leads to distinct behavior in
the TES and TCS. Meanwhile, this difference can make the
proposed PC suitable for various optical applications such as
splitters [34] or PC heterostructures [77].

To demonstrate the difference between the first two DWs,
the supercell with DW1 (DW2) comprising 10 unit cells
of rotated type A (type A) and 10 unit cells of type B is
built, marked as a yellow (blue) dashed line in Fig. 5(a).
The projected band structures of supercells can be calculated
by employing Floquet periodicity along the x direction and
applying the scattering boundary condition along the y direc-
tion. Figure 5(b) displays the result of calculations. Notice
that two DWs all exhibit gapped TESs within the band gap,
and the evolution of the upper (lower) states of two DWs
along the kx direction is quite similar. In this case, the group
velocities of two upper states, or lower ones, at two DWs
have the same sign in plus or minus. However, the bandwidth
for low- or high-frequency TESs at two DWs is different.
As can be seen from Fig. 5(b), the gap between the two
TESs varies, with the gap at DW2 being wider than at DW1,
resulting in differences in the topological frequency windows
for low-frequency (high-frequency) ranges between the two
DWs. The variations in range and position of bandwidth at
two interconvertible DWs can hold significant potential for
optical applications such as optical splitters [34]. Given the
presence of gapped TESs at the DWs, the existence of TCSs
can be confirmed based on the bulk-edge-corner correspon-
dence principle [49] that, if the eigenmodes of TESs at kx = 0
and π/a have different parity, the TCSs will emerge at specific
frequencies within the band gap of the TESs. The distribution
of Ez for the upper TESs at two DWs is displayed in Fig. 5(c).
The parity between kx → 0+ and kx = π/a at two DWs is
opposite. This discrepancy in parity reflects the presence of
TCSs at both DWs [19,49]. To investigate the QSHE, the local
chirality (or directionality) map is introduced, characterized
by the Stokes parameters derived from the magnetic field
[77,78], namely, D = S3/S0, where S0 = |Hx|2 + |Hy|2 and
S3 = −2im[Hx × conj(Hy)]. Like the ellipticity, the sign of D
distinguishes the chirality. Both chirality maps of two TESs
around the � point are presented in Fig. 5(d) and exhibit non-
trivial distribution with positive and negative chiralities. The
D of upper TESs is nearly opposite to the lower ones, which
is related to their opposite group velocities. The opposite
behavior in D and power flow between the two TESs reveals
that the upward-facing triangle TES exhibits a pseudospin po-
larization opposite to the one marked with a downward-facing
triangle.

To illustrate the coexistence of pseudospin and valley states
between the other two DWs, supercells with DW3 (DW4)
are constructed, comprising 10 unit cells of type E (type D)

FIG. 5. (a) Schematic of the photonic crystals (PCs) with the first
two interconvertible domain walls (DWs). DW1 can be transformed
into DW2 through a 60◦ clockwise rotation. The yellow dashed rect-
angle is a supercell with periodic conditions in the y directions and
a lattice constant in width, used to calculate the projected band with
DW1, and the blue dashed line is to obtain the projected band with
DW2. (b) Both projected bands of the two DWs exhibit two topo-
logical edge states (TESs). The direction of the triangles represents
pseudospin polarization, with colors indicating the group velocity
near the � point at kx = 0.05 × π/a; red represents positive velocity,
and blue represents negative. (c) Distribution of Ez around two DWs.
The Ez fields around the � point at kx = 0.05 × π/a and kx = π/a
are amplified and rotated to investigate the change of parity. (d)
Chirality (directionality) map around DWs at kx = 0.05 × π/a. The
black arrow represents the power flow located at the region around
D = 0. The chirality map and the direction of power flow exhibit op-
posite characteristics for the upper and lower modes within the same
DW, while the upper or lower TESs at different DWs are similar.
When kx < 0, the chirality map and the direction are opposite to that
of |kx|. Additionally, the fact that the chirality map and direction of
lower (upper) TESs at −|kx| is like that of upper (lower) TESs at
|kx| results in the same pseudospin polarization between the left side
(kx < 0) of lower (upper) TESs and the right side (kx > 0) of upper
(lower) TESs, contributing to the quantum spin Hall effect (QSHE).

in the upper part and 10 unit cells of type D (type E) in
the lower part. These configurations are indicated by cyan
(purple) dashed lines in Fig. 6(a). The projected band struc-
tures of these supercells can be calculated by employing
Floquet periodicity along the x direction and applying scat-
tering boundary conditions along the y direction. Figures 6(b)
and 6(d) show the band structures around the pseudospin band
gap and valley band gap for the case of θ = 17◦, respec-
tively. The gray areas represent bulk states, and both band
gaps contain two gapped TESs of pseudospin-up (marked
by upward red triangles) and pseudospin-down (marked by
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FIG. 6. (a) Schematic of the photonic crystals (PCs) featuring
two other interconvertible domain walls (DWs). DW3 can be trans-
formed into DW4 by exchanging the positions of types D and E. The
cyan dashed rectangle denotes a supercell with periodic conditions
in the y direction and a lattice constant in width, used to calculate
the projected band for the supercell marked with DW3, while the
purple dashed line is utilized to determine the projected band for the
supercell with DW4. (b) Projected bands of two supercells around
pseudospin band gap. Both feature two gaped topological edge states
(TESs) with opposite pseudospin polarization. (c) Chirality maps of
two supercells around DWs. The black arrow represents the Poynting
flow. (d) Projected bands of two supercells around the valley band
gap. The cyan dotted line indicates the valley edge states of the
supercell containing DW3, while the purple dotted line signifies the
valley edge states of the supercell with DW4. (e) Chirality maps of
two supercells around DWs at the K point, along with the opposite
Poynting flow between two DWs.

downward blue triangles). However, the bandwidths of the
two TESs on DW3 and DW4 also differ. In Appendix B in the
Supplemental Material [69], the projected band structures of
supercells with DW3 (DW4) under different θ ’s were consid-
ered, revealing that θ significantly affects the two pseudospin
TESs on both DWs. Nevertheless, as discussed in Sec. II,
for different θ ’s of type D (or type E), they are in the same
higher-order topological phase. This indicates that symmetry
at the edges of higher-order photonic topological insulators
needs careful consideration. Both local chirality maps with
the power flow of two TESs around the � point are pre-
sented in Fig. 6(c). Clearly, the behavior in chirality maps
and power flow of two TESs on the same DW is opposite,
reflecting the opposite pseudospin polarization of the two
TESs. Unlike the first two DWs, the chirality map distribution
on the current two DWs is very different. These differences

allow for the design of efficient optical logic gates, which
is discussed in detail in Appendix B in the Supplemental
Material [69]. Only a TES appears on the valley band gaps,
as illustrated in Fig. 6(d), with the cyan and purple dotted
lines representing valley TESs at DW3 and DW4, respec-
tively. Both local chirality maps with the power flow of two
TESs around the K point (kx = 2

3 × π/a) are presented in
Fig. 6(e), and at the K ′ point (kx = − 2

3 × π/a), the chirality
maps and power flow of TESs on both DWs are also op-
posite to those at the K point, reflecting the quantum valley
Hall effect (QVHE). The distribution of chirality maps of
TESs at the K point on both DWs is also different, and the
directions of power flow are exactly opposite. This also indi-
cates that boundaries have a significant impact on the QVHE
system.

We discussed the cases where types D and E have the
same θ . Figure 7 shows the evolution of the gap between two
pseudospin TESs in 225 different conditions for θ ranging
from 9◦ to 23◦. Interestingly, these 225 cases are represented
as a 15 × 15 matrix, where the columns represent θ in the
upper part of the supercells, the rows represent θ in the lower
part of the supercells, and the size of the matrix elements is
determined by the size and color of the square blocks within
the grid. In both supercells with DW3 and those with DW4,
the matrix is the symmetric matrix, and these two matrices
can be approximately viewed as inverse diagonal flips of
each other. Observing the evolution of the gap, in certain
specific θ values, the two gapped TESs become gapless. From
the diagonal data, this occurs ∼19◦ for DW3 and ∼13◦ for
DW4. In matrix elements where the gap is very small, the
symmetry at the boundaries formed by two different domains
is relatively high, illustrating that symmetry at edges has a
significant impact on the distribution of TESs.

IV. FRACTIONAL CHANGE AND FILLING ANOMALY

The filling anomaly, which may manifest at corners and
edges in topological PCs where a corner is formed by the in-
tersection of two edges, is a critical feature in their electronic
counterparts. This filling anomaly is central to the behavior
of higher-order topological insulators (HOTIs), where there
is an imbalance in the overall charge within the subspace
of occupied bands. This phenomenon occurs due to a mis-
match between the Wannier centers of the occupied bands and
the atomic positions in HOTIs. In the topological photonic
system, a similar mismatch can also occur, as discussed in
Sec. II, where the Wannier center deviates from the center of
the unit cell under different perturbations. This mismatch can
lead to a loss of charge neutrality at the edges and corners,
potentially resulting in fractional charges at these boundaries.
Although photons are neutral particles, the fractional charge
can be derived from the LDOS. Moreover, different topo-
logical phases can significantly affect the LDOS, leading to
noticeable changes in the fractional charge at corners and
edges obtained by integrating over the LDOS. These changes
can be considered significant alterations in light-matter in-
teractions and optoelectronic properties during topological
transitions. In this section, we will discuss such changes.
Using the LDOS, we can obtain the mode charge of each unit
cell within a supercell. The mode charge of the ith unit cell is
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FIG. 7. (a) The gap between two pseudospin topological edge states (TESs) of supercells with DW3 under various configurations. The
gray domain represents 10 unit cells of type E for θ marked in black. The blue domain corresponds to 10 unit cells of type D for θ marked in
red. A 15 × 15 grid forms 225 supercells with DW3, each representing different configurations. The vertical coordinates indicate θ of type D,
marked in corresponding colors, while the horizontal coordinates show θ of type E, marked similarly. The size of the gap is denoted by the
color and size of the square blocks within each grid; larger blocks correspond to larger gaps. (b) The gap between two pseudospin TESs in a
supercell with DW4, formed after swapping positions between types D and E under various configurations.

given by [63,64]

Ci =
∫ fgap

0

∫
ρi( f , r)df dr, (8)

where fgap refers to a frequency below the band gap of con-
cern, and ρi ( f , r) is the photonic LDOS of the ith unit cell,
which varies depending on the frequency f and the location r
of the ith unit cell. The mode charge Ci can be determined by
the integration over real space within the ith unit cell and the
bulk frequency. The charge measures the number of photonic
modes from the ith unit cell that contribute to the valence band
bulk states, analogous to the electronic charge that fills the
valence band in their electronic counterparts. The photonic
LDOS ρi ( f , r) is discussed in detail in Appendix C in the
Supplemental Material [69]. The total mode charge, obtained
from the summation across all unit cells, exhibits robustness
and only changes as the system undergoes a topological transi-
tion. Moreover, this change is abrupt if observed in an infinite
system. This robustness of the changes is discussed in detail
in Appendix D in the Supplemental Material [69].

To measure the fractionalization at the edge and corner, we
first construct triangular supercells composed solely of one
type of topological PC and surrounded by a perfect electric
conductor (PEC). This configuration allows us to indepen-
dently study the fractional charge at the edge and corner
of topological supercells that are in different higher-order
topological phases. To accomplish this, we constructed large
triangular supercells composed entirely of type D units, with
each side containing 12 unit cells, totaling 78 unit cells in the
supercell. The structural diagram is shown in Fig. 8(a), where
each blue hexagon represents a unit cell of type D for θ = 17◦,
and the spaces between each hexagon are intentionally left to
clearly identify the specific location of each unit cell within
the large triangular supercells. Each unit cell in the supercells
is tightly packed without any gaps. From the structural dia-
gram, we can clearly identify the unit cells situated at corners,

edges, or within the bulk. Notably, the 3 unit cells at the three
vertices of the large triangular supercells are at corners; the
remaining 10 unit cells on each side, excluding the vertices,
are on the edges; and the rest are within the bulk. To study the
distribution differences of the LDOS under different boundary
conditions, we selected 1 unit cell each from those situated
at the corner, edge, and bulk. We marked these selected unit
cells with stars in three different colors: black for the bulk, red
for the edge, and blue for the corner. The LDOS marked with
corresponding color stars is displayed alongside the structural
diagram. To observe the global changes in LDOS and between
the two band gaps, three ranges are provided, as shown in
Fig. 8(a). It was found that the LDOS distribution in the bulk
unit cell corresponds exactly to the band distribution range
of type D shown in Fig. 2(b), where two gaps are clearly
visible in the LDOS. For the unit cells at the corner and edge,
there is a significant reduction in the LDOS of bulk states,
with varying degrees of reduction, reflecting the mismatch in
charge between the bulk and at the edge and corner, i.e., filling
anomaly. In the eigenstate spectrum next to the LDOS, we
observed that there are 30 edge states within the pseudospin
band gap, which exactly matches the number of unit cells at
the boundaries. However, there are a total of six corner states,
corresponding to three corner unit cells. The distribution of
the LDOS at the corners and edges corresponds perfectly
to the eigenstate spectrum. Interestingly, in the valley band
gap, we did not observe the existence of a TES or TCS,
which demonstrates the failure in bulk-edge correspondence
mentioned in the introduction. However, their LDOSs within
the range of the first band is significantly different from that of
unit cells in the bulk. Figure 8(b) shows the structural diagram,
LDOS, and eigenstate spectrum for type E at θ = 17◦. It is
evident that the LDOS distribution of the unit cell within the
bulk is the same as for type D, yet changes occur at the corners
and edges. Looking at the eigenstate spectrum at the pseu-
dospin band gap, the edge states are more widely distributed,
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FIG. 8. (a) Schematic illustration of the large triangular supercells comprised of 78 unit cells of type D for θ = 17◦, enclosed by perfect
electric conductor (PEC) boundaries marked with a bold black line. Unit cells at different boundaries are indicated by stars in three colors:
black for bulk, red for edge, and blue for corner. To the right of the schematic illustration are the photonic local densities of states (LDOSs)
within these unit cells, marked by stars of corresponding colors. The photonic LDOSs are segmented into different regions. The first row spans
from 0 to 90 THz, which includes the pseudospin band gap and the valley band gap. The second is between 40 and 50 THz, covering just
the valley band gap. The third spans from 65 to 80 THz, encompassing the pseudospin band gap. Eigenspectra for type D are positioned to
the right of the photonic LDOSs. Different states are marked by dots of the same colors, with black dots representing bulk states, red dots
for edge states, and blue dots for corner states. Like the classification of photonic LDOSs, the ranges of the eigenstate spectrum match those
of the LDOS with the lower-frequency eigenstate spectrum embedded within the higher one. (b) and (c) Schematic illustration of the large
triangular supercells of types E and B. Similarly, stars and dots in the described colors represent corresponding photonic LDOSs and states.
(d) Calculated electric field (Ez) pattern for the corner state in the eigenstate spectrum, shown sequentially for types D, E, and B.

and three low-frequency corner states even lie within the bulk
band and the lower-frequency bulk states. The phenomenon
of bulk-edge-corner hybridization in topological states has
been widely studied in recent research through the analysis of
the LDOS [63,65,79]. In some cases, corner states within the
bulk band can be seen as BIC [54,80]. This is because TCSs
somewhere in the spectrum—whether within the bulk band (or
edge bands) or the band gap—exhibit robustness, as evidenced
by a prominent peak in the LDOS at the corners of type E

within the bulk band range. In the valley band gap, unlike type
D, there is the presence of TCSs, as evidenced by the LDOS
and eigenstate spectrum. As discussed in Appendix E in the
Supplement Material [69], we explored the evolution of the
LDOS for types D and E at corners and edges under varying
θ . It was found that, as θ increases, the peaks representing
TCSs in both types tend to converge and undergo a redshift.
For type E, the corner states either hybridize with the edge
states or with the bulk states. The LDOS for type B, which
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FIG. 9. Mode charge distribution and Wannier centers of topological photonic crystals with various topological phases. (a) Simplified
schematic distribution of Wannier centers for type D below the valley band gap and a distribution map of the mode charge C for each unit cell
below the valley band gap in large triangular supercells comprised 78 unit cells of type D for θ = 17◦, enclosed by perfect electric conductor
(PEC) boundaries marked with a bold black line. (b) Simplified distributions of the three different Wannier centers for type D corresponding
to the three bands below the pseudospin band gap, along with the distribution map of the mode charge C for each unit cell in large triangular
supercells. (c) Simplified schematic distribution of Wannier centers for type E below the valley band gap and a distribution map of the mode
charge C for each unit cell below the valley band gap in large triangular supercells configured identically to (a). (d) Simplified schematic
distribution of Wannier centers for type E below the pseudospin band gap, along with the distribution map of the mode charge C in large
triangular supercells. (e) The distribution map of the mode charge C below the valley band gap in large triangular supercells of type B. (f) The
three-dimensional (3D) rendering in (e) with a two-dimensional (2D) projection at the base. Since the unit cells exhibit C3 symmetry, these
large triangular supercells can be divided into three equivalent areas using red lines. In each area, the distribution map of the mode charge C is
identical.

has the same number of corner and edge states, is displayed in
Fig. 8(c). The electric field distribution of the corner states in
the three supercells is located at their three vertices, as shown
in Fig. 8(d).

According to Eq. (8), the mode charge within each unit cell
in large triangular supercells can be calculated. Figures 9(a)
and 9(c) show the distribution of mode charge within the
range of the first band for supercells of types D and E, re-
spectively. From Sec. II, we know that the Wannier center
for the bulk band below the valley band gap (i.e., the first
band) of type D is located at the maximal Wyckoff position
c, marked in purple, whereas for type E, it is at the maximal
Wyckoff position b, marked in light blue, based on their dis-
tinct nontrivial polarization and Berry curvature distributions.
The respective Wannier configurations in the supercell are
displayed on the left side of the mode charge distribution in
a simplified schematic diagram with differently colored dots,
where solid dots represent bulk electrons in their electronic
counterparts, and hollow dots represent boundary electrons
for C3-symmetry breaking. Bulk unit cells are always neutral,
and charges at the edge and corner unit cells are indicated mod
1 after removing the symmetry-breaking boundary electrons.
The configuration of bulk Wannier centers largely matches
the mode charge distribution obtained through integrating the
LDOS. A crucial distinction emerges between types D and

E, which are in different higher-order topological phases;
Wannier centers at the maximal Wyckoff position c have a
fractional corner charge of 1

3 and a fractional edge charge
of 2

3 , whereas those at the maximal Wyckoff position b in
type E display no expected fractional corner charge and a
fractional edge charge of 1

3 . The mode charge within the range
of the first three bands for supercells of types D and E, along
with their corresponding Wannier configurations, are shown
in Figs. 9(b) and 9(d). Within this range, both configurations
have three Wannier centers. For type D, these centers are lo-
cated at the maximal Wyckoff positions c, a, and b; for type E,
they are at positions b, a, and c. Ultimately, the superposition
results in nearly identical mode charge distributions with a
fractional corner charge of 4

3 (mod 1 results in 1
3 ) and an edge

charge of 2 (mod 1 results in 0). The Wannier configuration
for type B is consistent with that of types D and E, also
featuring three Wannier centers below the pseudospin band
gap. However, the three energy bands corresponding to the
three Wannier centers at positions a, b, and c differ. The mode
charge distribution is shown in Figs. 9(e) and 9(f). For the
three topological PCs, the mode charge distribution, whether
below the valley band gap or the pseudospin band gap, can
be divided into three equivalent parts due to the C3 symmetry
of types B, D, and E. This division, indicated by red lines,
significantly simplifies the computational effort needed to
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FIG. 10. (a) Simplified schematic of large triangular supercells designed for domain wall (DW) studies, divided into three equivalent areas
due to the C3-symmetric distribution of mode charge C throughout the supercell. Research areas are marked with red lines, and actual sections
representing one-third of the supercells are also outlined with red lines and indicated by red arrows. The actual supercells are constructed
from an interior of 45 unit cells surrounded by four layers of external unit cells, totaling 231 unit cells, with perfect electric conductor (PEC)
boundary conditions. (b) and (c) Schematic illustrations of 1 of the 3 equivalent areas of large triangular supercells with DW1 and DW2,
where both interiors are type B and the exterior is type A and rotated type A, respectively. Different colored stars indicate unit cells at various
boundaries: black for bulk, red for edge, and blue for corner. Photonic local densities of states (LDOSs) for corresponding colored cells are
displayed on the right side of the schematic. The photonic LDOSs are segmented into different regions using the same method as shown in
Fig. 8(a). On the far right is the calculated electric field (Ez) pattern for the corner state of large triangular supercells. (d) and (e) Schematic
illustrations of 1 of the 3 equivalent sections of large triangular supercells with DW3 and DW4, with interiors being types E and D, and
exteriors being type D and rotated type E, respectively. Stars in the described colors mark the corresponding photonic LDOSs, alongside the
electric field (Ez) pattern for the corner state.
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calculate the mode charge distribution on supercells with DWs
in upcoming analyses. In our previous analyses, we simply
averaged the Wannier center on the unit cell corner to 1

3 ,
distributing it among the adjacent 2 unit cells. This was based
on all bulk polarization P is in the dipole phase. However,
we need to consider higher-order multipoles, which affect the
shape of the Wannier orbitals and cannot be simply repre-
sented by dots or circles. This has an impact on the distribution
of mode charge at the boundaries, corners, and near-boundary
bulk. The effects of these shape variations are discussed in
detail in Appendix F in the Supplemental Material [69].

To measure the fractionalization on the four DWs pro-
posed in Sec. III, we constructed a larger triangular supercell,
consisting of an inner domain of 45 unit cells surrounded
by four layers of other types of unit cells. Given that the
mode charge distribution also adheres to C3 symmetry, we
only need to study one-third of the structure, as shown in
Fig. 10(a). Similarly, we used black, red, and blue stars to
mark unit cells within the bulk, at the edge, and at the corner,
respectively. The corresponding LDOS of each unit cell at
supercells with DW1, DW2, DW3 (for θ = 17◦), and DW4
(for θ = 17◦) are displayed in Figs. 10(b)–10(e), along with
their respective electric field (Ez) patterns for the corner states.
In the valley band gap, peaks representing valley TESs appear
in the LDOS at the edge of DW3 and DW4, which differ
from the PEC boundary conditions. From their respective
projected band structures, we know that, in all four cases at the
pseudospin gap, there are two gapped TESs, with the lower-
frequency TES partially merging into the bulk states, while
the higher-frequency TES remains predominantly within the
band gap. This is also reflected in the LDOS at the edges.
When integrating the LDOS up to the gap between the two
TESs, the mode charge of all unit cells is ∼3, indicating that
the lower-frequency TES originates from the bulk states below
the band gap, and the higher-frequency TES from those above.
At the corners of the 4 DWs, the peaks representing the corner
states vary, and they hybridize with the edge states to different
extents. In Appendix G in the Supplemental Material [69], we
analyze the LDOS at the edges and corners of DW3 and DW4
under varying θ conditions and investigate the LDOS of all
unit cells within one-third of a supercell equipped with four
DWs in the case of θ = 17◦.

Our previous mode charge distributions were calculated
for the first three bulk states. However, the higher-frequency
pseudospin TES originates from the bulk states above the
band gap, indicating that the subsequent three bulk states
are also topological bands. This leads to the emergence of
topological states between the sixth and seventh bands. In
Appendix H in the Supplemental Material [69], we present
the eigenstate spectrum of the larger triangular supercell with
DW3 around the third band gap, calculated at different θ . It
was found that, as θ increases, the topological states located
on the DW gradually hybridize with the bulk states, while
the topological states on the outer PEC boundaries remain
largely unchanged. We chose to analyze the mode charge
distribution of the bulk states between the second and third
band gaps at θ = 10◦, where the topological states have not
yet hybridized with the 4–6 bulk states. The Wannier bands
and Berry curvature for bands 4–6 are like those for bands
1–3, indicating that the configuration of their Wannier centers

FIG. 11. (a) Distribution and overlay of two noncentral Wannier
centers in simplified triangular supercells with DW4. (b) and (c) The
distribution map of the mode charge C for each unit cell in one-third
of the large triangular supercells with DW1 and DW2. (d) and (e) The
distribution map of the mode charge C for each unit cell in one-third
of the large triangular supercells with DW3 and DW4.

is consistent with what we discussed in Sec. II, with the three
Wannier centers located at the maximal Wyckoff positions
a, b, and c, respectively. Figure 11(a) displays the overlay
of two noncentral Wannier centers on the DW in simplified
triangular supercells with DW4. Adding a centrally located
Wannier center, the fractional charges at corners and edges on
the DW are the same as previously discussed on PEC, i.e.,
a fractional corner charge of 4

3 (mod 1 results in 1
3 ) and an

edge charge of 2 (mod 1 results in 0). Unlike the situation
with PEC, the external boundaries on the DW relate to the PCs
surrounding the inner domain; if the external PC is topologi-
cal, then the periphery of the DW also possesses topological
properties, and if it is trivial, the periphery is also trivial.
Figure 11(b) shows the mode charge distribution obtained
by integrating the LDOS in one-third of the large triangular
supercells with DW1, with a fractional corner charge of 1.73
(mod 1 results in 0.73 ≈ 2

3 ) and an edge charge of 2.3 (mod
1 results in 0.3 ≈ 1

3 ). This distribution is very similar to the
mode charge distribution in the large triangular supercells
with DW2, as shown in Fig. 11(c). Figures 11(d) and 11(e)
display the mode charge distribution at DW3 and DW4, re-
spectively. Notably, the boundaries both inside and outside of
their DWs are topological. Compared with DW1 and DW2,
they show a potential trend and applications for transitioning
from ordinary pseudospin edge states to large-area pseudospin
waveguide states. The inconsistency of mode charge at their
outermost boundaries with the bulk is due to the surrounding
PEC. The calculated fractional corner charges on the DWs
are 1.33 and 1.34 (mod 1 results in 0.33 and 0.34, ∼ 1

3 ), and
the fractional edge charges are ∼2.0 (mod 1 results in 0),
consistent with the Wannier center configurations discussed
in Fig. 11(a).
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FIG. 12. (a) The light transmission at two domain walls (DWs) with defects. The schematic of the photonic crystal (PC) composed of
types A and B PCs, constructing DW2, highlighted by the blue line, is positioned at the top, along with the transmission at two DWs under
73.5 THz. The defects, placed in black dashed rectangles, are amplified. From top to bottom, the defects consist of, in sequence, a 30◦ rotation
of the marked-red Si rod, a cavity, and a larger rod. Corresponding transmissions of these defects between two red dashed lines at two DWs
are shown adjacent to them. (b) and (c) The light transmission at various routes. The DW exhibits zigzag interface in (b) and horseshoelike
interface in (c). The transmissions at zigzag interfaces (horseshoelike) are illustrated under 69.76 THz (68.5 THz) for DW1 and 69.1 THz (68.5
THz) for DW2.

V. ROBUSTNESS OF TOPOLOGICAL STATES

The various types of PCs with two DWs are built to demon-
strate the robustness of TESs. Figure 12(a) shows PCs with
different defects at DWs and the propagation of the light
source within the bandwidth of the TES, along with no defect.
These defects include the rotation, loss, and alteration in the
dimension of 1 of 6 rods in the unit cell. The source at 73.5
THz within the bandwidth of both upper TESs, marked as
a red arrow in Fig. 12(a), is selected to investigate the im-
pact of defects on TESs, incidenting from the left. The edge
modes are all well located at the interface, and the defects
do not significantly affect the topological PCs; this robustness
is meaningful in the manufacture and fabrication of optical
devices. To further investigate the robustness of TESs, the
different routes with turns for two DWs are designed, as dis-
played in Fig. 12(b) for the zigzag route as well as Fig. 12(c)
for the horseshoelike route. The edge modes exhibit similar
behavior to the case of defects, remaining well localized at
the interface without significant backscattering, even in sharp
turns.

Transmittance spectra for DW1 and DW2 with various de-
fects and routes are presented in Fig. 13(a). The transmittances
are all ∼1 within the bandwidth of TESs under any defects and
routes. We also observed that these defects caused varying de-
grees of small transmission loss on the two DWs. Specifically,
the rotation defect resulted in ∼0 dB loss for DW2; the cavity
defect caused ∼0.13 dB loss for DW1 and ∼0.21 dB loss for
DW2; the bigger defect led to ∼0.30 dB loss for DW1 and
∼0.49 dB loss for DW2; the zigzag defect caused ∼1.5 dB
loss for DW1 and ∼1.13 dB loss for DW2. Meanwhile, the
difference in TESs between the two DWs appears striking by

the comparison of the two spectra. The bandwidth of TESs
at DW1 is consistently wider than that at DW2, and there is
some overlap in the frequency of TESs between two DWs.

According to the chirality map, the light sources [S± =
H0eiωt (ex ∓ iey)] can be positioned suitably at the DW of
PCs. Here, S+ as a left circularly polarized source can excite
pseudospin-up states, and S− as a right circularly polarized
source can excite pseudospin-down states. Figures 13(b) and
13(c) illustrate the excited state at DW1 under 69.46 THz (at
DW2 under 68.89 THz) within the bandwidth of lower TESs.
It is conspicuous that the directions of two pseudospin states
are opposite at each DW. Moreover, the pseudospin-up state
at both DWs propagates to the left, being the same direction
of power flow in Fig. 5(d), while the pseudospin-down states
propagate to the right. The chirality maps and group velocities
of two lower TESs at DWs are similar, leading to the same
propagation direction of pseudospin-up (pseudospin-down)
states at two DWs. Intriguingly, the chirality maps and group
velocities between upper and lower TESs are all opposite,
indicating that the propagation direction of pseudospin-up or
pseudospin-down states within upper TESs is the same as that
within the bandwidth of lower TESs, namely, pseudospin-
up toward the left and pseudospin-down toward the
right.

VI. CONCLUSIONS

In conclusion, in this paper, we introduced two pairs of
interconvertible DWs constructed using PCs with different
higher-order topological phases, leading to the emergence of
TESs at the interfaces. On the second pair of interconvertible
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FIG. 13. (a) Transmittance for photonic crystal (PC) slabs with
various defects and routes at two domain walls (DWs). (b) and (c)
The transmission of S± = H0eiωt (ex ∓ iey ) as light sources located
in the center of DWs. The source S− propagates toward the right,
and the source S+ propagates in the opposite direction under 69.1
THz for DW1 and 69.46 THz for DW2.

DWs, valley and pseudospin TESs coexist. We have exten-
sively studied the topological phases of the C3-symmetric
topological PCs, specifically types B, D, and E. We found
that different locations on the DWs, such as the edges and

corners, host rich topological physics compared with the bulk
of the system. Using the Wilson loop method, we calcu-
lated the Berry curvature distribution and the Wannier band,
characterizing the topological nature of types B, D, and E. We
confirmed that types D and E belong to different higher-order
topological phases by calculating the topological index and
the bulk polarization of their first energy bands, determining
the distinct positions occupied by their Wannier centers. In-
terestingly, for types B, D, and E, we calculated the Wannier
centers associated with the first three energy bands at maximal
Wyckoff positions a, b, and c. We found that these Wannier
centers do not completely deviate from the center of the unit
cell like other topological PCs; their Wannier centers only
partially deviate. However, only the Wannier centers located
at the edge of the unit cell contribute to the filling anomalies
at the boundaries and corners. To further validate this partial
deviation of Wannier centers, we constructed large triangular
supercells with PEC boundaries and integrated the photonic
LDOS to calculate the mode charge distribution, which was
consistent with our predictions based on Wannier center anal-
ysis. This is attributed to the reduction in the symmetry group
of the system from C6 to C3. We also calculated the mode
charge distribution on the two pairs of DWs and found a wider
region of filling anomaly on the second pair. By comparing the
photonic LDOS at the corners and edges, we discovered the
phenomenon of bulk-edge-corner hybridization. We demon-
strated the robustness of TESs by analyzing transmission
and transmittance under various routes and defect scenarios,
confirming the QSHE in both DWs. We observed significant
disparities in TESs and TCSs between the two pairs of inter-
changeable DWs. Moreover, leveraging the QSHE realized on
these DWs and photonic helicity, we designed optical logic
gates in the Supplemental Material [69], which extends the
applications of topological PCs.
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