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We investigate the steady-state energy flow of the periodically driven nonequilibrium spin-boson model by
means of combining counter-rotating-hybridized rotating-wave (CHRW) method with full counting statistics.
In the case of weak driving (A < 0.1�), where A is the driving amplitude and � is the energy gap of the
two-level system, our results are consistent with those obtained by traditional rotating-wave approximation
(RWA) approach; in the case of high-frequency driving, our results are in agreement with the ones of the
secular Floquet-Redfield method. As the driving amplitude increases, the steady-state flow exhibits nonlinear
behavior: it reaches a maximum at medium driving, and then decreases to zero, which means that the coherent
destruction of tunneling (CDT) appears, and then continues to grow slowly. We also find that, when the
steady-state energy flow varies with driving frequency ωd , comparing with RWA results, the counter-rotating
(CR) terms increase the energy flow at low-frequency driving (ωd < �), where ωd is the driving frequency,
and decreases it at high-frequency driving (ωd > �). In the case of strong driving, when the zero-order Bessel
function of the first kind satisfies J0( A

ωd
ζ ) = 0, instead of J0( A

ωd
) = 0, the steady-state energy flow is 0, which

corresponds to the CDT of the energy flow. The modified parameter ζ mainly defines the contribution of
the CR terms. At high-frequency driving, the modified parameter ζ tends to 1, our result is consistent with
previous results J0( A

ωd
) = 0. We find that the CDT of flow only occurs when both CR terms of the driving

and the dissipation are considered simultaneously. Our results show the influence of the CR terms on the
energy flow and the modification of CDT condition and give theoretical guidance for energy transport of small
quantum devices.
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I. INTRODUCTION

Understanding and manipulating energy transport in low-
dimensional materials is of great significance for scientific
development and practical applications. The energy transport
of nonequilibrium quantum systems has attracted great at-
tention [1]. The nonequilibrium spin-boson (NESB) model,
which is initially proposed by Segal and Nitzan [2,3], is
considered as the most fundamental and commonly used
model for studying quantum transport phenomenon. Techni-
cally, there are many methods to solve this model, such as
noninteracting-blip approximation (NIBA) solving the dis-
sipation dynamics of strong system-bath coupling [4–6],
nonequilibrium Green’s function (NEGF) method solving
the dissipation dynamics [7], and Redfield scheme solv-
ing the dissipation dynamics of weak system-bath coupling
[2,8]. In order to unify the description of the dynamics
of the NESB, nonequilibrium polaron-transformed Red-
field equation and polaron-transformed nonequilibrium Green
function are proposed [9–11]. It should be noted that the
nonequilibrium polaron transformation is reduced to NIBA
once thermal baths are characterized as the Ohmic case.
This limitation of the polaron transformation in handling
Ohmic bath inspires to improve this transformation. Zheng’s
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group propose an improved transformation: counter-rotating-
hybridized rotating-wave method (CHRW) to investigate the
equilibrium dynamics of driven two-level system [12–14].
This approach is beyond the traditional rotating-wave ap-
proximation (RWA) and allows to explore the effects of
CR terms. In this paper, we extend the zero tempera-
ture CHRW to finite temperature systems and combine
it with the full counting statistics to research the effects
of CR terms on the energy transport of the driven-NESB
model.

Recently, the driven-NESB model has been widely studied
[15–17], in nanomaterials, such as superconducting devices
based on Josephson tunneling junctions [18,19], optically
and electrically controlled qubits in quantum dots [20–22],
etc. The suitability of the Floquet theorem for the study of
periodically driven systems has been extensively established
[23–25]. In the driven-NESB model, the off-diagonal terms
of the density matrix were usually omitted in the secular
Floquet-Redfield method, for it was usually believed that they
only take effect in short time behavior and do not affect the
steady state. The steady-state result of the density matrix only
retains the diagonal terms [23–25]. Our steady-state energy
flow clearly contains diagonal and off-diagonal terms of the
density matrix. Moreover, the influence of the nonvanishing
off-diagonal terms increase with the temperature difference of
the two baths [26]. In nonequilibrium systems, the omission of
CR terms and secular approximation would lead to the neglect
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of the steady-state flow caused by interplay between CR terms
of driving and dissipation [26].

The dynamics of open system with periodical driving ex-
hibits coherent destruction of tunneling (CDT) [27,28], that
is, due to the destructive interaction between dissipation dy-
namics and external periodic driving, the transition between
two quantum states can be suppressed. And this situation only
is observed when consider both CR terms of the driving and
dissipation simultaneously [13]. This paper mainly answers
the following questions: (1) is there a CDT in the energy
transport of the driven-NESB model? (2) What is the effect
of the CR terms on the energy flow of the driven-NESB
model? First, we apply time-dependent unitary transforma-
tions on the time-dependent Hamiltonian, which include both
the CR terms of the driving and dissipation coupling. Then in
the rotating frame, we obtain the effective time-independent
Hamiltonian. The CR terms not only renormalize the bare
Hamiltonian of the system, but also modify the spectral den-
sity of the system-bath interaction, resulting in significant
influence of the driving parameters on the steady-state energy
flow. However, the interaction form of the system-bath after
transformation is similar to that of RWA, which means the
results of CHRW satisfy the second law of thermodynamics
[29–31]. Our results are in agreement with two existing re-
sults: they are consistent with RWA results in the case of weak
dissipation and weak driving, and they are consistent with
those of secular Floquet-Redfield method in high-frequency
strong driving [28]. We demonstrate the variation of energy
flow from weak to strong driving, and show the energy flow
before and after CDT. Considering the CR terms, the condi-
tion of CDT should be J0( A

ωd
ζ ) = 0, instead of J0( A

ωd
) = 0,

and the modified parameter ζ is determined by the CR terms.
When the driving is high-frequency, the modified parameter ζ

is approximately to ζ ≈ 1, and our results are in agreement
with the existing ones, J0( A

ωd
) = 0. Moreover, we find that

the steady-state energy flow is exactly 0 only when both
the CR terms of the driving and dissipation are considered
simultaneously.

This paper is organized as follows. In Sec. II, we intro-
duce the Hamiltonian of the periodically driven-NESB model
and derive the equation of motion by using CHRW and full-
counting statistics. The steady-state energy flow for various
driving amplitude A and driving frequency ωd are presented
and discussed in Sec. III. Finally, the conclusion is given in
Sec. IV.

II. MODEL AND THEORY

We consider driven-NESB model, as shown in Fig. 1,
which consists of a periodically driven two-level system cou-
pled to two individual thermal baths at different temperatures.
The Hamiltonian of the model reads (h̄ = 1, kB = 1),

Ĥ (t ) = −1

2
[�σ̂z + A cos(ωdt )σ̂x] +

∑
k;v=L,R

ωk,v b̂†
k,v

b̂k,v

+ 1

2

∑
k;v=L,R

gk,v (b̂†
k,v

+ b̂k,v )σ̂x

= −1

2
�σ̂z − A

4
(σ̂+e−iωd t + σ̂−eiωd t )

FIG. 1. Schematic description of the periodically driven
nonequilibrium spin-boson model, composed by central periodically
driven two-level system coupled to two individual thermal baths,
with temperatures TL and TR, respectively. The red (blue) lines
describe the interaction between the system and the Lth (Rth) bath.

+ 1

2

∑
k;v=L,R

gk,v (b̂†
k,v

σ̂− + b̂k,vσ̂+)

+ ĤCR1 + ĤCR2 +
∑

k;v=L,R

ωk,v b̂†
k,v

b̂k,v, (1)

and both CR terms of driving and dissipation are

ĤCR1 = −A

4
(σ̂+eiωd t + σ̂−e−iωd t ), (2)

ĤCR2 = 1

2

∑
k;v=L,R

gk,v (b̂†
k,v

σ̂+ + b̂k,vσ̂−), (3)

where σμ (μ = x, y, z) denote the μ-component Pauli ma-
trix and σ± = (σx ± iσy)/2,� denotes the energy gap of the
two-level system, and A cos(ωdt ) is a time-dependent driving
with the amplitude A and frequency ωd . The bosonic operator
b̂†

k,v
(b̂k,v ) creates (annihilates) one phonon with energy ωk,v

and momentum k in the vth bath, and gk,v describes the cou-
pling strength between the two-level system and the vth bath.
Here, the vth bath is characterized by the spectral function
as G(ω) = ∑

k g2
kδ(ω − ωk ) = 2αωθ (ωc − ω), where α is the

dimensionless coupling constant, θ is the usual step function,
and ωc is the cutoff frequency. Note that, in the Hamiltonian,
both the dissipation and the driving couple to σx and commute
with each other. Usually, RWA neglects the CR terms ĤCR1

and ĤCR2, and is valid in the regime of weak driving and weak
dissipation. In this work, we consider the influence of the CR
terms of the driving and the dissipation on energy transport in
a wide parameter range beyond weak driving.

The full counting statistics as a mathematically rigorous
method is usually applied to measure the arbitrary order
of the energy current fluctuation, of which the lowest
order gives the energy flow. To calculate the energy
flowing into the right bath, we include the auxiliary
counting field χ to the whole Hamiltonian as Ĥχ (t ) =
exp(iχ

∑
k ωk,Rnk,R/2)Ĥ (t ) exp(−iχ

∑
k ωk,Rnk,R/2) with

nk,R = b†
k,Rbk,R. When set χ = 0, the conventional

Hamiltonian is recovered. The counting Hamiltonian is
written as

Ĥχ (t ) = Ĥ0(t ) + Ĥ1χ , (4)
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with

Ĥ0(t ) = −1

2
[�σ̂z + A cos(ωdt )σ̂x]

+
∑

k;v=L,R

ωk,v b̂†
k,v

b̂k,v (5)

and

Ĥ1χ = 1

2

∑
k

gk,R(b†
k,Reiχωk,R/2 + bk,Re−iχωk,R/2)σ̂x

+ 1

2

∑
k

gk,L(b†
k,L + bk,L )σ̂x. (6)

In order to consider the CR terms, we apply the time-
dependent canonical transformation [13] in the full count-
ing statistics, Ĥ ′(t ) = eS(t )Ĥχ (t )e−S(t ) − ieS(t ) d

dt e−S(t ). The
generator of the unitary transformation is

S(t ) =
[
−i

A

2ωd
ζ sin(ωdt ) +

∑
k

gk,L

2ωk,L
ξk,L(b̂†

k,L − b̂k,v )

+
∑

k

gk,R

2ωk,R
ξk,R

(
b̂†

k,Re
iχωk,R

2 − b̂k,Re
−iχωk,R

2
)]

σx, (7)

where we introduce two parameters of the transformation
related to the driving and the dissipation, respectively, ζ and
ξk,v . These parameters, ζ ∈ [0, 1] and ξk,v ∈ [0, 1], which
have value ranges from 0 to 1, determine the valid range
of CHRW. And these parameters will be determined later.
When ξk,v = 0 and ζ �= 0, the generator (7) becomes the one
used for taking account of the CR terms of the driving. And
when ξk,v �= 0 and ζ = 0, the generator (7) changes into the
generator of treating the CR terms of dissipation. The details
of CHRW are shown in Appendix A. After the transformation,
the effective Hamiltonian is obtained in the first order approx-
imation of gk,v, Ĥ ′(t ) = Ĥ ′

0(t ) + Ĥ ′
1χ , where the renormalized

driven two-level system and first-order dissipation interaction
terms are given by

Ĥ ′
0(t ) = −1

2
J0

(
A

ωd
ζ

)
η�σz +

∑
k;v=L,R

ωk,v b̂†
k,v

b̂k,v

− Ã

4
(σ+e−iωd t + σ−eiωd t ) (8)

and

Ĥ ′
1χ = 1

2

∑
k,v

g̃k,v

(
b̂†

k,v
e

iχωk,v δv,R
2 σ− + b̂k,ve

−iχωk,v δv,R
2 σ+

)
, (9)

with the Kronecker delta δv,R. If all subscripts are equal, δv,R

is equal to 1, otherwise it is 0. And η = ηRηL with

ηv = exp

[
−

∑
k

2g2
k,v

ω2
k,v

ξ 2
k,v coth

(
ωk,v

2Tv

)]
. (10)

The coupling strength g̃k,v is modified by CR terms,

g̃k,v = gk,v

2J0
(

A
ωd

ζ
)
ηv�

ωk,v + J0
(

A
ωd

ζ
)
ηv�

. (11)

To minimize the ground state energy of the system, two
parameters ξk,v and ζ are determined by the function,

ξk,v = ωk,v

ωk,v + J0
(

A
ωd

ζ
)
ηv�

(12)

and

J1

(
A

ωd
ζ

)
η� = 1

2
A(1 − ζ ) ≡ Ã

4
. (13)

The parameters ζ and ξk,v are uniquely determined by
Eqs. (12) and (13). Meanwhile, the scope of the parameters,
ζ ∈ [0, 1] and ξk,v ∈ [0, 1] naturally provides the applica-
ble conditions of CHRW. The self consistent solutions of
Eqs. (12) and (13) are constrained by A, ωd , and α. For
high-frequency driving, this method works very well even if
A/ωd increases up to 6 [13].

Then, in the rotating frame of Ĥ ′(t ), H̃ =
R(t )Ĥ ′(t )R†(t ) − iR(t ) d

dt R†(t ) with the operator R(t ) =
exp[iωdt (− 1

2σz + ∑
k,v nk,v )], we obtain a time-independent

Hamiltonian, H̃ = H̃0 + H̃1χ , where the bare Hamiltonian is

H̃0 = −1

2

(
δ̃σz + Ã

2
σx

)
+

∑
k,v

(ωk,v − ωd )b†
k,v

bk,v, (14)

with the detuning δ̃ = J0( A
ωd

ζ )η� − ωd . The dissipation
interaction is

H̃1χ = 1

2

∑
k,v

g̃k,v (b†
k,v

eiχωk,vδv,R/2σ+ + H.c.). (15)

Here, we emphasize that the spectral density in transformed
Hamiltonian is renormalized as

G̃(ω) =
∑

k

g̃2
kδ(ω − ωk )

=
[ 2J0

(
A
ωd

ζ
)
ηv�

ω + J0
(

A
ωd

ζ
)
ηv�

]2

G(ω), (16)

which is the result of the combination of the CR terms
of the driving and the dissipation and also is the keypoint
to CDT in the energy transport. We define a renormaliza-
tion factor of correlation spectrum as, F = G̃(ω)/G(ω) =
[

2J0( A
ωd

ζ )ηv�

ω+J0( A
ωd

ζ )ηv�
]2. For comparison, Table I shows the physical

quantities modified by different CR terms, denoted by labels
ζ -RWA, ξk-RWA, and ζ -ξk-RWA, respectively: that only in-
volve the CR terms of the driving, that only involve the CR
terms of the dissipation, and that involve both CR terms of the
driving and dissipation.

Figure 2 shows the spectral density when different CR
terms are considered. If only considering the CR terms of the
driving, the spectral density that characterizes the dissipation
from the bath is not renormalized. While considering CR term
of the dissipation or both CR terms of the driving and the
dissipation simultaneously, the spectral density is renormal-
ized. That is, the renormalization of the spectral density is
directly caused by CR term of the dissipation. Comparing the
results of ξk-RWA and ζ -ξk-RWA, CR terms of the driving
greatly reduce the spectral density. When adjust the driving
amplitude A and frequency ωd to achieve J0( A

ωd
ζ ) = 0, we see
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TABLE I. The modified quantities of different CR terms.

RWA ζ -RWA ξk-RWA ζ -ξk-RWA

CR term of the driving
√ √

CR term of the dissipation
√ √

Driving amplitude A Ã = 4J1

(
A
ωd

ζ
)
� A Ã = 4J1

(
A
ωd

ζ
)
η�

Detuning δ � − ωd J0

(
A
ωd

ζ
)
� − ωd η� − ωd J0

(
A
ωd

ζ
)
η� − ωd

Coupling strength gk gk gk g̃k = 2η�

ωk+η�
gk g̃k = 2J0 ( A

ωd
ζ )η�

ωk+J0 ( A
ωd

ζ )η�
gk

Spectral density G(ω) G(ω) G(ω) G̃(ω) = [ 2η�

ω+η�

]2
G(ω) G̃(ω) =

[
2J0 ( A

ωd
ζ )η�

ω+J0 ( A
ωd

ζ )η�

]2

G(ω)

that the spectral density of ζ -ξk-RWA is 0, as shown in the
Fig. 2(c). Meanwhile, the Hamiltonian of two-level system is
zero, HTLS = − 1

2 J0( A
ωd

ζ )η�σz = 0.
Then we derive the equation of motion combined with full

counting statistics. In the interaction picture, the total den-
sity matrix of the system and bath, ρ̃I

SB(t ) = eiH̃0t ρ̃SB(t )e−iH̃0t ,

satisfies the equation,

d

dt
ρ̃I

SB(χ, t ) = −i
[
H̃ I

1 (χ, t ), ρ̃I
SB(χ, t )

]
, (17)

where superscript I indicates that the operator is in
the interaction picture and H̃ I

1 (χ, t ) = eiH̃0t H̃1χe−iH̃0t .
The relation with counting field χ is given as,
[A(χ ), B(χ, t )] = A(χ ), B(χ, t ) − B(χ, t )A(−χ ). The
differential equation Eq. (17) can be integrated formally,

ρ̃I
SB(χ, t ) = ρ̃I

SB(χ, 0) − i
∫ t

0
dτ

[
H̃ I

1 (χ, t ), ρ̃I
SB(χ, τ )

]
.

(18)
Substituting Eq. (18) into Eq. (17) and taking trace over
two baths, the integrodifferential equation of reduced density
matrix ρ̃I

S (χ, t ) = TrB[ρ̃I
SB(χ, t )] is written as

d

dt
ρ̃I

S (χ, t ) = −i
∫ t

0
dτTrB

[
H̃ I

1 (χ, t ),
[
H̃ I

1 (χ, τ ), ρ̃I
SB(χ, τ )

]]
.

(19)

In Born-Markov approximation, we obtain

d

dt
ρ̃I

S (χ, t ) = −i
∫ ∞

0
dτTrB

[
H̃ I

1 (χ, t ),
[
H̃ I

1 (χ, t − τ ),

ρ̃I
S (χ, t )ρB

]]
. (20)

After transforming the equation back into the Schrödinger
picture and using the Kronecker product property
and the technique of Lyapunov matrix equation, we
expand the density matrix into a vector |ρ̃S (χ, t )〉 =
|ρ̃11(χ, t ), ρ̃12(χ, t ), ρ̃21(χ, t ), ρ̃22(χ, t )〉. The equation
of motion is expressed as

d

dt
|ρ̃S (χ, t )〉 = L̂(χ )ρ̃S (χ, t )〉, (21)

where L̂(χ ) is the Liouvillion superoperator. The reduced
density matrix is given by ρ̃S (χ, t ) = exp[L̂(χ )t]ρ̃S (χ, 0),
with the initial state ρ̃S (χ, 0). Therefore the cumulant gen-
erating function is obtained, Gt (χ ) = ∂ lnZχ (t )/∂t, and the
cumulant function is Zχ (t ) = TrS[ρ̃S(χ, t)]. Then the corre-
sponding nth cumulant of heat current fluctuations is given
by J (n)(t ) = ∂n ln Gt (χ )/∂ (iχ )n|χ=0. In particular, the energy
flow is the first cumulant J (t ) = ∂ ln Gt (χ )/∂iχ |χ=0. The de-
tails of the derivation of the steady-state flow are given in
Appendix B. The steady-state flow is written as

Jss = ω1γR,1
sin2(2φ)

2
[1 − (2nR,1 + 1)(ρ̃11 − ρ̃22)ss]

+ ω1γR,1
sin(2φ) cos(2φ)

2
(2nR,1 + 1)(ρ̃12 + ρ̃21)ss

0 4 8

0.00

0.02

0.04

0.06

G
(ω
)

ω

A=0.5Δ
ζ-ξk-RWA
ξk-RWA
ζ-RWA and RWA

(a)

0 4 8

0.00

0.02

0.04

0.06

ω

A=Δ
ζ-ξk-RWA
ξk-RWA
ζ-RWA and RWA

(b)

0 4 8

0.00

0.02

0.04

0.06

ω

A=3.44Δ
ζ-ξk-RWA
ξk-RWA
ζ-RWA and RWA

(c)

FIG. 2. Modified spectral density G(ω) as the function of frequency ω: (a) A = 0.5�, (b) �, and (c) 3.44�. The driving frequency ωd = �.
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ζ-ξk-RWA

ξk-RWA

ζ-RWA
RWA

ζ-ξk-RWA

ξk-RWA

ζ-RWA
RWA

ζ-ξk-RWA

ξk-RWA

ζ-RWA
RWA

0 1 2 3
0

100

200

st
ea
d
y
-s
ta
te
fl
o
w
J s
s
(×
1
0
-4
)

A

(a)

ωd=Δ

0.0 1.5 3.0 4.5
0

200

400

A

(b)
ωd=1.5Δ

0 2 4 6
0

200

400

A

(c)

ωd=2Δ

FIG. 3. The steady-state energy flow Jss as the function of driving amplitude A for the four methods: (a) ωd = �, (b) 1.5�, and (c) 2�.
The temperatures of the baths are TL = 0.5� and TR = 0.05�.

+ ω2γR,2cos4(φ)[1 − (2nR,2 + 1)(ρ̃11 − ρ̃22)ss]

− ω2γR,2
sin(2φ) cos2(φ)

2
(2nR,2 + 1)(ρ̃12 + ρ̃21)ss

+ ω3γR,3sin4(φ)[1 − (2nR,3 + 1)(ρ̃11 − ρ̃22)ss]

+ ω3γR,3
sin(2φ) sin2(φ)

2
(2nR,3 + 1)(ρ̃12 + ρ̃21)ss,

(22)

where ρ̃11 and ρ̃22 are the diagonal terms of the density
matrix, ρ̃12 and ρ̃21 are the off-diagonal terms; please see
Appendix B for the definition of other parameters. The en-
ergy flow Eq. (22) clearly contains diagonal, (ρ̃11 − ρ̃22)ss and
off-diagonal terms, (ρ̃12 + ρ̃21)ss. The steady-state population
difference (ρ̃11 − ρ̃22)ss is,

(ρ̃11 − ρ̃22)ss = 4γe(γyγz + δ̃2) − 4γcγdγy − 2Ãδ̃γd

Ã2γz − 2Ãδ̃γc + 4γx(γyγz + δ̃2)
. (23)

And the steady-state quantum coherence (ρ̃12 + ρ̃21)ss is

(ρ̃12 + ρ̃21)ss = 2Ãδ̃γe − Ã2γd − 4γdγxγy

Ã2γz − 2Ãδ̃γc + 4γx(γyγz + δ̃2)
, (24)

with the quasienergy ±�̃ = ±
√

δ̃2 + Ã2

4 and the other pa-
rameters in Appendix B. The steady-state flow Jss obviously
contains three frequencies: ω1 = ωd , ω2 = ωd + �̃ and ω3 =
ωd − �̃, which correspond to Mollow triple peaks of the
spectrum. The renormalization parameters clearly show the
interplay effect of the CR terms of the dissipation and the
driving on energy flow. In absence of the external driving
(A = 0), our results reduced to the previous result [32]

J = 2η�γR(η�)γL(η�)[nL(η�) − nR(η�)]

[2nR(η�) + 1]γR(η�) + 2nL(η�) + 1]γL(η�)
. (25)

Comparing the two results of with driving and without driv-
ing, Eqs. (22) and (25), under the external driving, the energy
transport changes from one channel ω = η� to three channels
corresponding to the Mollow triplet ω1 = ωd , ω2 = ωd + �̃

and ω3 = ωd − �̃.

III. RESULTS AND DISCUSSION

In this section, we discuss the steady-state flow Jss

of the driven-NESB with various driving amplitudes and
temperature biases and show the interplay effect of the driving
and dissipation on energy transport. Set � = 1 as the energy
unit and the system-bath coupling strength αL = αR = 0.01.

Firstly, we compare the steady-state energy flow given by
the four methods: ζ -ξk-RWA, ξk-RWA, ζ -RWA, and RWA
to demonstrate the effects of two kinds of CR terms on the
energy transport. The flow Jss is plotted as a function of
driving amplitude A with ωd = � in Fig. 3(a), ωd = 1.5� in
Fig. 3(b), and ωd = 2� in Fig. 3(c). In resonant case ωd = �

with weak driving case A < 0.5�, four methods share the
same results. As we know, RWA is valid for the resonance or
near-resonance case in the regime of weak driving and weak
dissipation. Our method, including two kinds of CR terms,
can return to the RWA results in the weak driving and weak
dissipation case. This consistency in the weak interaction is
derived directly from the renormalized parameters. That is to
say, in weak driving range A < 0.5�, the renormalization fac-
tors of correlation spectrum is F ≈ 1; the driving amplitude is
Ã ≈ A; and the detuning is δ̃ ≈ δ. Then the effect of the CR
terms is weak enough to be ignored. Beyond the case of weak
interactions, the effect of CR terms becomes important.

In Fig. 3, increasing the driving amplitude A away from
weak driving and tuning the driving frequency away from
resonance, the energy flows considering both CR terms are
significantly lower than in the other three cases. In high-
frequency regime, ωd > �, the CR terms generally reduces
the steady-state energy flow. The most significant behavior
is that when both CR terms of driving and dissipation are
included simultaneously, although there is a temperature bias
between the left and right baths, the steady-state energy flow
exhibits CDT, which means that the energy flow disappears
at A and ωd in a special ratio that satisfies J0( A

ωd
ζ ) = 0. In

resonant case of Fig. 3(a), the steady-state energy flow is
strictly zero with A ≈ 3.5. When A > 3.5, the system exhibits
finite steady-state flow. In the case of nonresonance, such as
ωd = 1.5�, Jss = 0 with the driving amplitude A ≈ 4.5 and
ωd = 2�, Jss = 0 with A ≈ 5.8. Table II shows the condition
of the CDT corresponding to different driving frequencies and
amplitude. Note that when only the CR terms of the driving
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TABLE II. Coherent destruction of tunneling condition.

ωd A ζ J0

(
A
ωd

)
J0

(
A
ωd

ζ
)

CDT

� 2.4048� 0.5584 1.3 × 10−5 0.5975 ×
� 3.443� 0.6984 −0.3716 1.2 × 10−4 √
6� 14.4288� 0.9234 1.3 × 10−5 0.0989 ×
6� 15.467� 0.9329 −0.0863 1.8 × 10−5 √
10� 24.048� 0.9551 1.3 × 10−5 0.0573 ×
10� 25.086� 0.9586 −0.0526 4.2 × 10−5 √
20� 48.096� 0.9779 1.3 × 10−5 0.0279 ×
20� 49.134� 0.9789 −0.0266 2.0 × 10−5 √

are considered, the steady-state flow is greatly reduced but not
exactly zero.

Besides CDT, Fig. 3 has another feature: the flow Jss

shows an inflection point, which are marked by arrows. Those
inflection points concave downward and occur in the specific
frequency of ωd − �̃ = 0. As we know, with the Rabi fre-
quency increasing, the spectrum of resonance fluorescence
of two-level system changes from a single peak to a Mol-
low triplet [12], i.e., the energy transmitted changes from
one resonant frequency ω1 = ωd to the triplet frequencies:
ω1 = ωd , the blueshifted frequency ω2 = ωd + �̃ and the red-
shifted frequency ω3 = ωd − �̃. Fixed the driving frequency
ωd , the quasienergy �̃ increases as the driving amplitude A,
accordingly. When �̃ increases to satisfy the condition ω3 =
ωd − �̃ = 0, the frequency of the redshift phonon is zero. And
the channel that emits phonons with the redshift frequency ω3

is closed. The original flow with three frequencies, ω1, ω2,
and ω3 becomes two-channel transport with frequencies ω1

and ω2. Therefore the steady-state flow shows a concave in-
flection point. Since there is only one solution for the driving
parameters corresponding to ω3 = 0, only one concave inflec-
tion point occurs. Continue to increase the driving amplitude,
the frequency of the emitted photon changes from ωd − �̃ to
�̃ − ωd [28].

Figure 4 shows the steady-state energy flow Jss as a func-
tion of driving frequency ωd for the four methods with A =
0.2� in (a), A = 0.5� in (b), and A = � in (c). In general,
at a fixed driving amplitude, the steady-state energy flow is
similar to the Lorentz line with driving frequency. The four
curves basically overlap at A = 0.2� in Fig. 4(a), which

reconfirms that the results of the four methods are consistent
under the weak interaction condition. As the driving ampli-
tude A increases from 0.2� to 0.5�, then to �, the difference
of the four methods becomes greater. And the CR terms
become non-negligible for A > 0.5�. The steady-state flow
Jss is maximum at the frequency ωd ≈ �, so the energy trans-
port is mainly caused by the resonance between the driving
frequency of the external field and the energy gap of the
two-level system. In Figs. 4(b) and 4(c), the maximum of
the energy flow remains at the resonant frequency, ωd ≈ �.
In high-frequency region, ωd > �, the flow obtained by ζ

-ξk-RWA, is significantly lower than the other three meth-
ods. In low-frequency region, ωd < �, the flow obtained by
method ζ -ξk-RWA is larger. This indicates the CR terms have
opposite effects on the energy flow in the high- and low-
frequency regions, similar to the effect of CR in the quantum
Zeno effect [33]. The peak width of steady-state energy flow
increases with the increase of driving amplitude.

Next, we give the results of ζ -ξk-RWA and consider the
interplay effect of both CR terms of the driving and the dis-
sipation, on Jss. Figure 5 plot the steady-state flow Jss with
driving frequency ωd for various of driving amplitude A with
temperature bias in 5(a) and without temperature bias in 5(b).
When the temperature bias is TR = 0.05� and TL = 0.5�,
the energy flow in the low frequency (ωd < �) and high-
frequency (ωd > �) regions is obviously higher than that
without temperature bias with TR = TL = 0.5� in 5(b). But
near the resonance region ωd ≈ �, the temperature bias has
little effect on the energy flow. As shown in Fig. 5(b), in the
case of high frequency ωd 
 �, the steady-state energy flow

ζ-ξk-RWA

ξk-RWA

ζ-RWA
RWA

ζ-ξk-RWA

ξk-RWA

ζ-RWA
RWA

ζ-ξk-RWA

ξk-RWA

ζ-RWA
RWA
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120
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240
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FIG. 4. The steady-state energy flow Jss with driving frequency ωd for the four methods: (a) A = 0.2�, (b) 0.5�, and (c) �. The
temperatures of the baths are TL = 0.5� and TR = 0.05�.
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FIG. 5. The steady-state energy flow Jss with driving frequency ωd for various of the temperature bias and driving amplitude A: (a) TL =
0.5�, TR = 0.05� and (b) TL = 0.5�, TR = 0.5�.

Jss is almost zero without temperature bias. This indicates that
when ωd 
 �, the energy flow is mainly caused by temper-
ature bias. Furthermore, when the driving amplitude A is less
than �, the frequency corresponding to the maximum energy
flow is approximately equal to energy gap of the two level
system, ωd ≈ �. As driving amplitude A increases, regard-
less of whether there is a temperature bias between the two
baths, the maximum steady-state energy flow decreases and
the corresponding driving frequency moves towards higher
frequency.

To further show the influence of driving and temperature
bias on energy flow, we plot the steady-state flow Jss with
driving amplitude A for various temperature bias in resonance
case ωd = � in Fig. 6(a), in nonresonance case ωd = 5� in
Fig. 6(b) and ωd = 10� in Fig. 6(c). In Fig. 6(a), the energy
flow is much larger than that in the case of nonresonance,
and the influence of temperature bias is very small. Note the
energy inflection points, which appears at ω3 = ωd − �̃ = 0,
are more obvious in the low temperature region than in the
high temperature region. In the conditions of large detuning
in (b) and (c), the inflection point moves towards large driving
amplitude. In the insets of Figs. 6(b) and 6(c), there are two in-
flection points: the first concave inflection point is ωd − �̃ =
0, which have discussed in Fig. 3; the second inflection point

is J0( A
ωd

ζ ) = 0, which corresponds to CDT. The position of
the inflection point of CDT is independent of the temperature
of the two baths, which reflects the robustness of CDT to
temperature bias. In flow Jss, considering the CR terms, the
CDT condition is J0( A

ωd
ζ ) = 0 instead of J0( A

ωd
) = 0. Table II

gives the relationship between CDT and driving amplitude
A and driving frequency ωd . When the driving frequency is
resonant to the energy gap of two-level system, the driving
amplitude given by J0( A

ωd
) = 0 is A = 2.4048�, and the driv-

ing amplitude of CDT given by our results is A = 3.443�.
The difference between the two driving amplitudes is mainly
due to the influence of the CR terms in the strong driving
case. In the resonance case with A = 2.4048�, the renormal-
ized parameter ζ = 0.5584. Because the condition of CDT is
always A > 2ωd , which has exceeded the applicable range
of the RWA, so the research of the CDT have to consider
the CR terms. And in the detuning case, the parameter ζ

gradually approaches 1 as the driving frequency increases
to more than 20�. Then, the CDT condition obtained by
our method approaches the case of high-frequency strong
driving, J0( A

ωd
ζ ) ≈ J0( A

ωd
), which is based on the secular

Floquet-Redfield formalism [28], as shown in Table II. In
general, regardless of resonance or detuning, the study of CDT
needs considering CR terms, instead of RWA.
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FIG. 6. The steady-state energy flow Jss with driving amplitude A for various of the temperature bias and driving frequency ωd : (a) �,
(b) 5�, and (c) 10�. The insets are the magnifications of the energy flow near the inflection point and the CDT transition point.
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IV. CONCLUSION

We study the steady-state energy flow Jss of the periodi-
cally driven-NESB model combining CHRW transformations
with full-counting statistics. Through the CHRW transfor-
mations, the effects of two types of CR terms (driving and
dissipation) on the steady-state flow are considered. Our
method is simple to analyze, and realizes the transition from
strong driving to weak driving, and gives the steady-state
energy flow caused by interplay between different CR terms.
The flow Jss under different CR terms, are consistent with
the traditional RWA approach in weak driving and weak
dissipation. However, as the driving amplitude increases, the
influence of the CR terms on the energy flow becomes impor-
tant and RWA is invalid. With the driving amplitude A from
weak to strong, the steady-state flow Jss shows nonmonotonic
curves: firstly increases, and reaches the maximum value at
the medium driving amplitude, and then decreases to zero,
which corresponds to CDT, and then increases slowly. The
CDT condition is J0( A

ωd
ζ ) = 0, which differs from that of the

high-frequency strong driving, J0( A
ωd

) = 0, mainly due to the
renormalization coefficient ζ . This coefficient is ζ = 0.5584
in resonance and only approaches ζ = 1 at high-frequency,
giving a result consistent with high-frequency based on secu-
lar Floquet-Redfield method. In addition, the CDT only occurs
when both CR terms of the driving and the dissipation are
considered simultaneously, and the position of the CDT does
not depend on the temperature bias of the two baths. These
results may deepen the understanding of nonequilibrium en-
ergy transport and the CDT effect in quantum transport and
quantum thermodynamics. Moreover, it may provide theoret-
ical guidance for the smart control of energy and information
in low-dimensional quantum nanodevices.

ACKNOWLEDGMENT

X.-F.C. acknowledges support from the Fujian Province
Natural Science Foundation under Grant No. 2022J01008.

APPENDIX A: THE UNITARY TRANSFORMATIONS

In this section, we describe in detail how to perform the
CHRW transformation with the full counting statistics,

Ĥ ′(t ) = eS(t )Ĥχ (t )e−S(t ) − ieS(t ) d

dt
e−S(t ) (A1)

with the generator in Eq. (7). The transformed Hamiltonian is
divided into three parts,

Ĥ ′(t ) = Ĥ ′
0(t ) + Ĥ ′

1χ + Ĥ ′
2(t ) (A2)

with

Ĥ ′
0(t ) = −1

2
J0

(
A

ωd
ζ

)
η�σz + J1

(
A

ωd
ζ

)
η� sin(ωdt )σy

− A

2
(1 − ζ ) cos(ωdt )σx +

∑
k,v

ωk,v b̂†
k,v

bk,v

+
∑
k,v

g2
k,v

4ωk,v

ξk,v (ξk,v − 2), (A3)

and

Ĥ ′
Iχ = 1

2
J0

(
A

ωd
ζ

)
η�iσyX

+ 1

2
σx

∑
k,v

gk,v (1 − ξk,v )
(
b̂†

k,v
e

iχωk,v δv,R
2 +H.c.

)
, (A4)

and

Ĥ ′
2(t ) = −1

2
J0

(
A

ωd
ζ

)
�(cosh X − η)σz

+ 1

2
J0

(
A

ωd
ζ

)
�(sinh X − ηX )iσy

+ J1

(
A

ωd
ζ

)
�(cosh X − η) sin(ωdt )σy

+ iJ1

(
A

ωd
ζ

)
� sinh X sin(ωdt )σz

− �(cosh Xσz − i sinh Xσy)

×
∞∑

n=1

J2n

(
A

ωd
ζ

)
cos(2nωdt )

+ �(cosh Xσy + i sinh Xσz )

×
∞∑

n=1

J2n+1

(
A

ωd
ζ

)
cos[(2n + 1)ωdt], (A5)

where X = ∑
k,v

gk,v

ωk,v
ξk,v (b̂†

k,v
e

iχωk,v δv,R
2 + b̂k,ve

−iχωk,v δv,R
2 ) and η

in Eq. (10), the nth-order Bessel function of the first kind
Jn(z). In above derivation, we use the identity exp(iz sin α) =∑∞

n=−∞ Jn(z)einα . And the parameter ζ is determined by
Eq. (13). The Hamiltonian Ĥ ′

0(t ) is

Ĥ ′
0(t ) = −1

2
J0

(
A

ωd
ζ

)
η�σz +

∑
k;v=L,R

ωk,v b̂†
k,v

b̂k,v (A6)

− Ã

4
(σ+e−iωd t + σ−eiωd t ),

and the constant term is neglected. The second part Ĥ ′
1χ con-

sist of the first order coupling of the system bath. Setting ξk,v

in the Eq. (12), the Hamiltonian Ĥ ′
Iχ takes the RWA form

Ĥ ′
1χ = 1

2

∑
k,v

g̃k,v

(
b̂†

k,v
e

iχωk,v δv,R
2 σ− + H.c.

)
, (A7)

with a modified coupling strength

g̃k,v = gk,v

2J0
(

A
ωd

ζ
)
ηv�

ωk,v + J0
(

A
ωd

ζ
)
ηv�

. (A8)

The modified correlation function of the system bath is much
smaller and less than 0.02 as shown in Fig. 2. Therefore,
under the transformed Hamiltonian, the equation of motion
is safely approximates by the modified system-bath coupling
coefficient. Since the effect of Ĥ ′

2(t ) on the dynamics is the
fourth order of g̃k,v , we ignore Ĥ ′

2(t ) in the derivation of
equation of motion.

We simultaneously consider both CR terms of the dissi-
pation and the driving and our results can easily fall back to
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the case of only CR term of the driving or dissipation. Setting
ξk,v = 0 in the unitary transformation, we obtain

Ĥ ′(t ) = Ĥ ζ -RWA(t ) + Ĥ ′
2(t ), (A9)

with

Ĥ ζ -RWA(t ) = −1

2
J0

(
A

ωd
ζ

)
�σz +

∑
k;v=L,R

ωk,v b̂†
k,v

b̂k,v

− Ã

4
(σ+e−iωd t + σ−eiωd t )

+ 1

2

∑
k,v

gk,v

(
b̂†

k,v
e

iχωk,v δv,R
2 σ− + H.c.

)
, (A10)

and

Ĥ ′
2(t ) = −�

∞∑
n=1

J2n

(
A

ωd
ζ

)
cos(2nωdt )σz

+ �

∞∑
n=1

J2n+1

(
A

ωd
ζ

)
cos[(2n + 1)ωdt]σy

+ 1

2

∑
k,v

gk,v

(
b̂†

k,v
e

iχωk,v δv,R
2 σ+ + H.c.

)
. (A11)

where the superscript ζ -RWA represents that the CR terms of
the driving is involved and the CR terms of the dissipation are
neglected. The parameters ζ and Ã are obtained from Eq. (13)
with η = 1. Setting ζ = 0 in the unitary transformation, we
obtain

Ĥ ′(t ) = Ĥ ξk -RWA(t ) + Ĥ ′
2(t ), (A12)

with

Ĥ ξk -RWA(t ) = −1

2
η�σz +

∑
k;v=L,R

ωk,v b̂†
k,v

b̂k,v

− A

4
(σ+e−iωd t + σ−eiωd t )

+ 1

2

∑
k,v

g̃k,v

(
b̂†

k,v
e

iχωk,v δv,R
2 σ− + H.c.

)
, (A13)

and

Ĥ ′
2(t ) = −1

2
�(cosh X − η)σz

+ 1

2
�(sinh X − ηX )iσy

− A

4
(σ−e−iωd t + σ+eiωd t ), (A14)

where the superscript ξk-RWA represents that the CR terms of
the dissipation are involved and the CR terms of the driving
are neglected. The parameters η, ξk,v , and g̃k,v are obtained
from Eqs. (10)–(12) with J0( A

ωd
ζ ) = 1.

APPENDIX B: THE DERIVATION OF STEADY-STATE
ENERGY FLOW

This section provides the derivation of the equation of
motion of the density matrix. Assuming two baths are thermal
equilibrium, they follow the Bose-Einstein distribution that
TrB[b̂†

k,v
b̂k,vρB] = nk,v and TrB[b̂k,v b̂†

k,v
ρB] = nk,v + 1 with

nk,v the thermal average boson number at mode k given by
nk,v = [exp(ωk/kBTv ) − 1]−1. According to Eqs. (A6) and
(A7), we get the master equation in the Schrödinger picture,

d

dt
ρ̃s(χ, t ) = −i[H̃os, ρ̃s(χ, t )] −

∫ ∞

0
dτ

1

4

∑
k,v

g̃2
k,v[nk,vσ−e−iH̃osτ σ+eiH̃osτ ρ̃s(t )ei(ωk,v−ωd )τ ] (B1)

−
∫ ∞

0
dτ

1

4

∑
k,v

g̃2
k,v[(nk,v + 1)σ+e−iH̃osτ σ−eiH̃osτ ρ̃s(χ, t )e−i(ωk,v−ωd )τ ]

−
∫ ∞

0
dτ

1

4

∑
k,v

g̃2
k,v[(nk,v + 1)ρ̃s(χ, t )e−iH̃osτ σ+eiH̃osτ σ−ei(ωk,v−ωd )τ ]

−
∫ ∞

0
dτ

1

4

∑
k,v

g̃2
k,v[nk,vρ̃s(χ, t )e−iH̃osτ σ−eiH̃osτ σ+e−i(ωk,v−ωd )τ ]

+
∫ ∞

0
dτ

1

4

∑
k,v

g̃2
k,v[(nk,v + 1)eiχωk,vδv,Rσ−ρ̃s(χ, t )e−iH̃osτ σ+eiH̃osτ ei(ωk,v−ωd )τ ]

+
∫ ∞

0
dτ

1

4

∑
k,v

g̃2
k,v[(nk,v + 1)eiχωk,vδv,R e−iH̃osτ σ−eiH̃osτ ρ̃s(χ, t )σ+e−i(ωk,v−ωd )τ ]

+
∫ ∞

0
dτ

1

4

∑
k,v

g̃2
k,v[nk,ve−iχωk,vδv,Rσ+ρ̃s(χ, t )e−iH̃osτ σ−eiH̃osτ e−i(ωk,v−ωd )τ ]

+
∫ ∞

0
dτ

1

4

∑
k,v

g̃2
k,v[nk,ve−iχωk,vδv,R e−iH̃osτ σ+eiH̃osτ ρ̃s(χ, t )σ−ei(ωk,v−ωd )τ ].
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Expand the density matrix ρ̃s(χ, t ) into a vector, |ρ̃S (χ, t )〉 =
|ρ̃11(χ, t ), ρ̃12(χ, t ), ρ̃21(χ, t ), ρ̃22(χ, t )〉, and the equation of
motion is expressed as

d

dt
|ρ̃S (χ, t )〉 = L̂(χ )ρ̃S (χ, t )〉. (B2)

Then we rotate the equation

U =

⎛
⎜⎜⎝

1 0 0 1
0 1 1 0
0 1 −1 0
1 0 0 −1

⎞
⎟⎟⎠. (B3)

The rotated equation of motion is

d

dt
|ρ̃ ′

S (χ, t )〉 = L̂′(χ )|ρ̃ ′
S (χ, t )〉, (B4)

where |ρ̃ ′
S (χ, t )〉 = |ρ̃S11(χ, t ) + ρ̃S22(χ, t ), ρ̃S12(χ, t ) +

ρ̃S21(χ, t ), ρ̃S12(χ, t ) − ρ̃S21(χ, t ), ρ̃S11(χ, t ) − ρ̃S22(χ, t )〉,
and L̂′(χ ) = U L̂(χ )U −1. The steady-state cumulant
generating function is derived as

Jss = ∂

∂ (iχ )

(
lim

t→∞
lnZχ (t )

t

)∣∣∣∣
χ=0

= lim
t→∞

1

t

∂ lnZχ (t )

∂ (iχ )

∣∣∣∣
χ=0

= 〈I| lim
t→∞

1

t

∂L̂′(χ )t

∂ (iχ )
exp(L′(χ )t )|ρ̃ ′

S (χ, 0)〉|χ=0. (B5)

Then the steady-state solution of energy flow is simplified to

Jss = 〈I|∂L̂
′(χ )

∂ (iχ )
|χ=0|ρ̃ ′

S (t )〉ss, (B6)

with the steady-state density matrix |ρ̃ ′
S (t )〉ss =

limt→∞ exp(L̂′(χ )t )ρ̃ ′
S (χ, 0)〉. Put the matrix element of

the superoperator L̂′(χ ) into Jss, the steady-state energy flow
is written as

Jss = ∂[L̂14(χ ) + L̂41(χ )]

2∂ (iχ )

∣∣∣∣
χ=0

+ ∂[L̂12(χ ) + L̂42(χ )]

∂ (iχ )

∣∣∣∣
χ=0

(ρ̃12 + ρ̃21)ss

+ ∂[−L̂14(χ ) + L̂41(χ )]

2∂ (iχ )

∣∣∣∣
χ=0

(ρ̃11 − ρ̃22)ss, (B7)

with
∂

∂ (iχ )

[L̂14(χ ) + L̂41(χ )]

2

∣∣∣∣
χ=0

= sin2(2φ)

2
ω1γR,1 + cos4(φ)ω2γR,2

+ sin4(φ)ω3γR,3, (B8)
and

∂[L̂12(χ ) + L̂42(χ )]

∂ (iχ )

∣∣∣∣
χ=0

= sin(2φ) cos(2φ)

2
ω1γR,1(2nR,1 + 1)

− sin(2φ) cos2(φ)

2
ω2γR,2(2nR,2 + 1)

+ sin(2φ) sin2(φ)

2
ω3γR,3(2nR,3 + 1),

(B9)
and

∂

∂ (iχ )

[−L̂14(χ ) + L̂41(χ )]

2

∣∣∣∣
χ=0

= − sin2(2φ)

2
ω1γR,1(2nR,1 + 1)

− cos4(φ)ω2γR,2(2nR,2 + 1)

− sin4(φ)ω3γR,3(2nR,3 + 1). (B10)

The expression (ρ̃11 − ρ̃22)ss is the steady-state population
difference, given in Eq. (23), and (ρ̃12 + ρ̃21)ss is the
steady-state quantum coherence, shown in Eq. (24). The
parameters of the steady-state energy flow Jss in Eq. (22)
are defined as γx = γy + γz with cos2(φ) = 1

2 (1 + δ̃

�̃
), γy =

sin2(2φ)�1 − sin2(φ) cos(2φ)�3 + cos2(φ) cos(2φ)�2 and
γz = sin2 �3 + cos2(φ)�2. The other variables are defined as
follows: γd = sin(2φ) cos(2φ)γ1 + sin2(φ) sin(2φ)γ3 −
cos2(φ) sin(2φ)γ2, γc = sin(2φ) cos(2φ)�1 +
sin2(φ) sin(2φ)�3 − cos2(φ) sin(2φ)�2, and γe =
sin2(2φ)γ1 + 2 sin4(φ)γ3 + 2 cos4(φ)γ2. And the finite
temperature decay rate is �i = ∑

v=L,R(2nv,i + 1)γv,i and
the zero temperature decay rate is γi = ∑

v=L,R γv,i with

γv,i = π
4

∑
k g̃k,vδ(ω − ωk,v ) = πG̃v (ωi )

4 . The energies with
the subscripts ωi (i = 1, 2, 3) are denoted as respectively,
ω1 = ωd , ω2 = ωd + �̃, and ω3 = ωd − �̃, which are
concerned with Mollow triplet.
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