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Disordered Majorana nanowires: Studying disorder without any disorder
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The interplay of disorder and short finite wire length is the crucial physics hindering progress in the
semiconductor-superconductor nanowire platform for realizing non-Abelian Majorana zero modes. Disorder
effectively segments the nanowire into isolated patches of quantum dots which act as subgap Andreev bound
states often mimicking Majorana zero modes. In this work, we propose and develop a new theoretical approach
to model the disorder, effectively a spatially varying effective mass model, which does not rely on incorporating
the unknown microscopic details of disorder into the Hamiltonian. This model effectively segments the wire
into multiple quantum dots, characterized by highly enhanced effective mass at impurity sites leading to the
segmentation of the wire into effective random quantum dots. We find that this model can qualitatively and
quantitatively reproduce the disorder physics, providing a crystal clear way to understand the effects of disorder
by comparing the mean free path to the superconducting coherence length. In addition, this model allows precise
control over the disorder regime, enabling us to evaluate the reliability of topological invariants in predicting
Majorana zero modes. We find that topological invariants alone may yield a significant false-positive rate as
indicators for topology in the actual wire with increasing disorder strength. Therefore, we propose a set of new
indicators to characterize the spatial distribution of the zero-energy state, emphasizing the key necessity for
isolated Majorana zero modes localized at the wire ends. Employing this set of new indicators for stringent
characterizations, we explore their experimental relevance to the measured differential conductance spectra. Our
findings highlight the critical role of isolated localized states, beyond the topological invariant, in identifying
topological Majorana zero modes. We believe that this approach is a powerful tool for studying realistic Majorana
nanowires where disorder and short wire length obfuscate the underlying topological physics.
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I. INTRODUCTION

The semiconductor-superconductor (SM-SC) nanowire has
been proposed as a platform for pursuing the Majorana zero
modes (MZMs) a decade ago [1–5]. However, the experi-
mental advances have been suffering from the ambiguity in
the interpretation of the observed zero-bias conductance peak
(ZBCP) since 2012 [6–16], although such conductance trans-
port spectroscopy has remained the main experimental tool to
search for MZMs in nanowires. The main challenge is whether
the observed ZBCP which manifests some levels of nearly
quantized conductance can be attributed to the theoretically
predicted Majorana zero modes, or other alternative trivial
explanations such as inhomogeneous potential [17–19] and
disorder [5,19–37]. The fundamental reason for this chal-
lenging problem is the interplay of disorder and short wire
length, both are present in the current experimental nanowires.
Therefore, in this paper, we aim to answer the heart of this
challenging question: How to cleanly define the topology
in disordered finite-size systems? This is what has hindered
progress in the subject and has led to controversies [5].

To answer this question, we first need to understand the
disorder physics in the SM-SC nanowire in a controllable
and transparent way. Therefore, we propose a new model that
reproduces the same disorder physics [19,26,32,38] without
explicitly putting any disorder in the chemical potential. The

motivation is that we know that disorder plays a crucial role in
the current experiments, and the disorder is likely to split the
one-dimensional (1D) nanowire system into isolated quantum
dots (i.e., short wire segments without any coherence among
them). Therefore, the microscopic (which is unknown any-
way) details of the disorder (e.g., charged impurities or not,
long range versus short range, correlated disorder or not) are
no longer important—the only physical effect of disorder is
that it leads to a spatially dependent random effective mass as
the 1D wire is effectively segmented into a bunch of random
dots. We believe that this model is also very physical since the
presence of quenched impurities is likely to lead to segmenta-
tion, dividing the wire into a system of short wires of random
lengths and positions. Therefore, we directly segment the wire
using a spatially varying effective mass, where the effective
mass is large at the sites of impurities, and uniform in the
rest of the wire. Note that the “impurities” here have nothing
to do with real impurities in the wire causing disorder—here
the “impurities” are just a formal term implying the sites
where the effective mass changes randomly, staying uniform
in between the impurities. In other words, the number of
impurities (n) defines how many segments the wire breaks
into, namely n + 1 segments for a wire of length L, implying
also that the mean free path by definition is then L/(n + 1).
The biggest advantage of this method is the transparency
in the underlying disorder physics without worrying about
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the microscopic details of the disorder itself, allowing us to
directly parametrize the strength of the disorder, through the
variations in the effective mass with no explicit disorder term
in the Hamiltonian, which was a hard problem before because
the disorder details are unknown in nanowires—in fact, even
the actual source of the disorder is unknown.

The hallmark of the current approach is that the disorder-
induced mean free path (MFP), which is what matters,
naturally emerges as it is the average distance that a particle
can travel before hitting an impurity (and changing its mass
suddenly). This distance is precisely the average length scale
of the quantum dots that the wire is segmented into, and thus
the essential ingredient of disorder, the MFP, is built into
the model without getting bogged down in the unnecessary
details of the actual disorder potential itself. Therefore, we can
directly compare this mean free path with the superconducting
coherence length, which is also the length scale of the local-
ization of Majorana zero modes. If the mean free path is larger
than the superconducting coherence length, the wire is then in
the weak-disorder regime, where the physics is expected to
be qualitatively similar to the pristine wire. If the mean free
path is smaller than the superconducting coherence length, the
wire is then in the strong-disorder regime, where the topology
is expected to be suppressed. If the two length scales are
comparable, then the wire is then in the intermediate-disorder
regime, where the physics is complicated and depends on the
details.

We apply this new model to the recent experiment from
Microsoft Quantum on InAs-Al nanowires [16] and find that
we can reproduce both the “positive” (i.e., topological) and
“negative” (i.e., trivial) results in the experiment by sim-
ply changing the number (or the density) of impurities (or
segments), which directly controls the mean free path. Our
results show that the positive results belong to the weak-
disorder regime, while the negative results belong to the
intermediate-disorder regime, which is consistent with our
previous analysis [33,34]. Of course, for even stronger dis-
order with extremely short MFP, the system is completely
Anderson localized, and there is no topology whatsoever [39].

Besides the success in reproducing the experiment (and
introducing a physically transparent model eliminating any
disorder details), we also use this model to explore other in-
teresting physics, for example, we can make a nontopological
wire topological by simply increasing the superconducting
gap with other parameters fixed, which effectively decreases
the superconducting coherence length and thus satisfies the
hierarchy of the length scale to enter the topological regime,
happening when the SC coherence length decreases below the
MFP.

After establishing the model, we then return to the fun-
damental question by studying the efficacy of using the
topological invariant in order to predict the existence of the
topological Majorana zero modes. This is particularly impor-
tant because most previous works are based on the topological
invariant to determine the topology of a zero energy state [40].
We find that the false-positive rate of using the topological
invariant to predict MZMs increases as the disorder strength
increases, which is consistent with the previous work [33,34].
To overcome this problem of false positives, we propose look-
ing at the isolated Majorana zero modes at the ends of the wire

from the local density of states (LDOS). This is because, on
the one hand, for any topological MZMs to be useful in fusion
and braiding, the non-Abelian state has to reside at the end
of the wire; on the other hand, we will also establish, using
statistical analysis, that the existence of the isolated localized
state (i.e., absence of the bulk state) at zero energy has a direct
correlation with the topology and can serve as a definitive
criterion to predict the topological states with isolated MZMs
at ends of the wire in finite short wires. We emphasize that the
topological invariant is a unique Majorana criterion only for
very long wires with little disorder and must be complemented
by other operational topological indicators in finite disordered
wires, a point first made in Ref. [34].

With this additional criterion of isolated localized end
states, allowing us to obtain a more accurate prediction of
the topological localized MZMs, we study the connection
between these “theoretical indicators” (e.g., topological in-
variant and other indicators based on the LDOS to ensure
the isolated localized MZMs) to “experimental observables”
(i.e., differential conductance). We raise several questions of
concern in the field, for example, “Does the quantized ZBCP
at both ends always lead to the presence of topological local-
ized MZMs?” If not, “Is this absence of topological localized
MZMs because of the absence of topology or the absence of
localized state (i.e., multiple topological patches in the bulk of
the wire)”; “Does the state with nontrivial topological invari-
ant but without isolated localized state always lead to ZBCP
at one end of the wire smaller than the quantized value?” We
provide answers to these questions using a rigorous statistical
analysis.

The rest of the paper is organized as follows. In Sec. II,
we introduce the model of the spatially varying effective mass
in the nanowire. Our main results start in Sec. III, where we
first present the pristine limit in Sec. III A (as a baseline result
for comparison) and then simulate the recent experiment [16]
from Microsoft Quantum on the InAs-Al nanowire to demon-
strate different disorder regimes in Sec. III B. We then study
the dependence of the strength of the disorder in Sec. III C,
and the wire length in Sec. III D. To end this section, we show
that we can bring a nontopological wire back to a topological
wire by only increasing the proximitized SC gap in Sec. III E.
In Sec. IV, we propose several new indicators to predict the
topological localized MZMs. We begin with the definition for
these indicators in Sec. IV A and then show their benchmark
results ranging from the pristine limit to the strong-disorder
regime in Sec. IV B. With these new indicators, we study the
false-positive rate of only using the topological invariant to
predict the topological localized MZMs in Sec. IV C. Finally,
we study the connection of these “theoretical indicators” to
the experimental observables in Sec. IV D. Our discussion
and conclusion are in Sec. V. We also provide a detailed
Appendix. In Appendix A, we provide additional simulations
for the experimental data. In Appendixes B and C, we pro-
vide more results for the dependence on the strength of the
impurities and the wire length. In Appendix D, we show more
benchmark results using the new indicators. In Appendixes E
and F, we provide more results that demonstrate the statistics
of the special cases of interest, such as “localized MZMs with-
out quantized ZBCP” and “quantized ZBCP without localized
MZMs,” respectively.
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II. SPATIALLY VARYING EFFECTIVE MASS MODEL

We start with the standard 1D single-band model of
a superconductor-semiconductor heterostructure nanowire
[1–5] with a large Rashba-type spin-orbit coupling (SOC) in
the presence of a magnetic field. The standard Hamiltonian is
described by

H = HK + HSOC + HZ + HSC, (1)

where the kinetic term is

HK =
∑

σ=↑/↓

∫ L

0
dxψ†

σ (x)

(
− h̄2

2m∗
d2

dx2
− μ

)
ψσ (x), (2)

the Rashba SOC term is

HSOC =
∑

σ,σ ′=↑/↓

∫ L

0
dxψ†

σ (x)

(
ih̄ασ̂y

d

dx

)
σ,σ ′

ψσ ′ (x), (3)

the Zeeman term is

HZ =
∑

σ,σ ′=↑/↓

∫ L

0
dxψ†

σ (x)VZ (σ̂z )σ,σ ′ψσ ′ (x), (4)

and the SC term is

HSC =
∫ L

0
dx[�ψ

†
↑(x)ψ†

↓(x) + H.c.]. (5)

Here m∗, μ, α, VZ , �, and L are effective mass, chemical
potential, Rashba-type SOC strength, Zeeman energy, prox-
imitized superconducting gap, and wire length, respectively;
σ is the spin index; σ̂x,y,z are three Pauli matrices acting on
the spin space; and ψ†

σ (x) creates an electron with spin σ at
position x.

Based on the standard Hamiltonian, we modify the kinetic
part Eq. (2) by introducing a spatially varying effective mass,
which gives a natural way to segment the wire into a bunch
of quantum dots. The effective “cut” in the nanowire is then
modeled by the spike in the spatial profile of effective mass
because it effectively reduces the hopping amplitude across
both sides of the cuts. Therefore, the original model in Eq. (1)
has a different kinetic term HK as per

HK =
∑

σ=↑/↓

∫
dxψ†

σ (x)

{
− h̄2

2

d

dx

[
1

m∗(x)

d

dx

]
− μ

}
ψσ (x),

(6)
where m∗(x) is the spatial profile of the effective mass. Note
that the effective mass m∗(x) is inside the derivative to ensure
the hermiticity of the kinetic term.

Depending on the details of the effective mass inhomo-
geneity (to be described below), the wire of length L will be
subdivided into a number of incoherent segments, i.e., dots.
Intuitively, the fundamental physics arises from the fact that
disorder can randomly create local impurities with large ef-
fective mass, which effectively reduce the electron mobility in
their surroundings and thus inhibit coherent electron transport
across the regions (“dots”) separated by these impurities. This
mechanism of segmenting the wire due to the disorder pro-
vides a more physical way of incorporating disorder compared
to manually putting disorder into the chemical potential term
in the Hamiltonian, particularly since the detailed disorder is

unknown (and the full details of the disorder are irrelevant for
the Majorana physics).

To numerically solve the spatially varying nanowire, we
construct the corresponding effective tight-binding model in
the usual manner by discretizing the wire with a fictitious
lattice constant a (where L = Na and a = 10 nm such that
N = 300 for L = 3 µm, and N = 1000 for L = 10 µm, which
is large enough for numerical convergence) and replacing the
differential operator with the finite difference. The kinetic
term Eq. (2) then becomes

H̃K =
∑
i,σ

− h̄2

2m∗
i+ 1

2

a2
(c†

i,σ ci+1,σ + H.c.)

+
⎛
⎝ h̄2

2m∗
i+ 1

2

a2
+ h̄2

2m∗
i− 1

2

a2
− μ

⎞
⎠c†

i,σ ci,σ , (7)

Here the m∗
i+ 1

2
is the discretized version of the effective mass

defined at the bond connecting site i and i + 1, and c†
i,σ creates

an electron with spin σ at site i.
Therefore, it becomes evident that the large local effective

mass at m∗
i+ 1

2
results in a “cut” in the nanowire through the

following two processes: (1) the suppression of hopping am-
plitude between site i and i + 1; (2) the increase of the onsite
chemical potential at site i. In the following calculations, we
will model the spatially varying effective mass profile using
two key parameters: (1) the number of the impurities n scat-
tered randomly in the wire, creating possibly n + 1 segments
or quantum dots, and (2) the strength of these impurities k,
which controls the magnitude of the effective mass at the
impurities, i.e., δm∗/m∗ ∼ U (0, k), where U (a, b) is a contin-
uous uniform distribution between a and b. For simplicity, we
assume that the impurities only occupy one site, i.e., the same
length scale as the lattice constant a. Relaxing this criterion
should not change any of our conclusions.

The SOC and Zeeman term in the Hamiltonian Eq. (1) can
be discretized similarly and remains the same form as the
standard model in Refs. [1–5]. To incorporate the SC term,
we integrate out the SC degrees of freedom and obtain the
Green’s function of the SM-SC system G(ω) = {ω + iη −
[HK + HSOC + HZ + 	(ω)]}−1, where ω is the energy, η is
an infinitesimal value to ensure causality, and 	(ω) is the
self-energy of the interface of SC and SM. The self-energy
expanded in the Bogoliubov-de Gennes basis can be treated
as −γ ω+�0τx√

�2
0−ω

[41], where γ is the effective SC-SM coupling

strength, �0 is the parent SC gap size, and τx is the Pauli
matrix x acting on the particle-hole space. Moreover, in order
to simulate the suppression of the parent SC gap due to the
magnetic field, we manually make the parent SC gap collapse
following �0(VZ ) = �0(VZ = 0)

√
1 − (VZ/VZ0)2. These are

all standard methodologies for studying SC-SM-based Majo-
rana nanowires.

In the following, unless otherwise stated, we choose the
typical parameters close to InAs-Al SM-SC nanowire from
Ref. [16]: The uniform effective mass m∗ is 0.032 me (the
impurities thus induce the effective mass of km∗), the SOC
strength α is 0.84 eV Å, the effective g factor is 11.5 (which
converts the magnetic field, B, to Zeeman field, 1

2μBgB, with
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μB being Bohr magneton), the parent SC gap at zero magnetic
fields �0(VZ ) is 0.3 meV with a critical field VZ0 = 2 meV, the
effective SC-SM coupling strength is 0.2 meV, the wire length
L is 3 µm (except for Sec. III D), and zero dissipation and zero
temperature are assumed. Since the chemical potential μ is
not directly reported in the experiment [16], we convention-
ally choose μ = 0.5 meV, which leads to a topological phase
transition at VZc =

√
μ2 + γ 2 ∼ 0.54 meV (VZ > VZc is the

topological regime) and pristine superconducting coherence
length ξSC ∼ 0.36 µm (estimated from the Majorana localiza-
tion length [33,42]) in the clean wire in the thermodynamic
limit.

III. RESULTS FOR THE SPATIALLY VARYING
EFFECTIVE MASS MODEL

In this section, we present the numerical results of the
spatially varying effective mass model. We compute the fol-
lowing metrics for the numerical results:

(1) The local differential conductance spectrum GLL

(GRR) for the reflection at the left (right) lead and the nonlocal
conductance spectrum GLR (GRL) for the transmission from
the right to the left lead (left to the right lead). We first attach
two SM leads to both ends of the wire, where the interface
effectively creates a Schottky barrier whose potential height
is 5 meV [18]. We then compute the S matrix of both leads
with the help of a Python package KWANT [43] following
Blonder-Tinkham-Klapwijk formalism [44]. We refer readers
to a series of earlier works [18,19,38,45,46] for the detailed
calculation as it is a standard procedure. This differential
conductance spectrum is the only metric that can be directly
measured and reported in current experiments.

(2) The LDOS defined as ρ(ω, xi ) = − 1
π

Im[trσ,τ G(ω)]i,i.
This metric can serve as a theoretical tool to study the spatial
distribution of the state, though not necessarily directly acces-
sible in the transport experiment, but, in principle, LDOS can
be measured by scanning tunneling spectroscopy.

(3) The topological visibility (TV) [47,48] Q =
det(SLL) = det(SRR), where SLL (SRR) is the block in S
matrix at zero energy that describes the local reflection
process at the left (right) lead and det is the determinant.
This metric theoretically probes the change from the normal
reflection to the Andreev reflection and thus serves as an
indicator for topological quantum phase transition (TQPT),
where Q change from +1 (trivial regime) to −1 (topological
regime) at the TQPT in the pristine wire in the thermodynamic
limit.

(4) The thermal conductance κ = κ0tr(SLRS†
LR) =

κ0tr(SRLS†
RL), where κ0 is the quantized thermal conductance

κ0 = π2k2
BT

6h [25,47] (T is the temperature and kB is the
Boltzmann constant), and SLR (SRL) is the block in S matrix at
zero energy that describes the transmission from the right to
the left lead (the left to the right lead). This metric indicates
the TQPT by a peak of κ/κ0 = 1 in the pristine wire in the
thermodynamic limit. In contrast to the TV, which is purely
theoretical, this, in principle, can be measured.

A. Pristine wire

We start with a pristine wire to provide a standard reference
(i.e., the baseline for comparison with realistic disordered

systems) for the metrics mentioned above. In Figs. 1(a) and
1(b), we show the local conductance spectra GLL and GRR as
a function of the Zeeman field and bias voltage, respectively,
where the quantized ZBCPs at 2e2/h appear beyond the TQPT
critical field VZc ∼ 0.54 meV at both ends. In Figs. 1(c) and
1(d), we present the nonlocal conductance spectra GLR and
GRL, where the topological gap closes and reopens at the
same critical field VZc. In Figs. 1(e) and 1(g), we present
the LDOS at the left (0 µm), midpoint (1.5 µm), and right
end (3 µm), which show two zero energy states at the wire
ends and no zero energy state in the bulk of the wire. In
Fig. 1(h), we present the total DOS, the spatial integral of
the LDOS defined above. In Figs. 1(i) and 1(j), we present
the topological visibility Q and thermal conductance κ , re-
spectively, which both show the topological phase transition
at the same critical field VZc ∼ 0.54, indicated by the abrupt
change of TV from +1 to −1, and the peak in the thermal
conductance quantized at κ/κ0 = 1. In Fig. 1(k), we present
the line cut of the LDOS of a zero energy state in the topo-
logical regime at VZ = 0.65 meV. The two Majorana modes
are localized at the wire ends, where the envelope of oscil-
lation can be used to estimate the lower bound of Majorana
localization length (which is also the SC coherence length)
ξSC. We note that VZ = 0.65 meV has the largest topological
gap. The estimated ξSC ∼ 0.36 µm. In Fig. 1(l), we present the
spatial profile of the effective mass, which is uniform in the
pristine wire.

In order to make the wire enter the topological regime, one
should ensure the following hierarchy of length scales [33,34],

ξSC < ξMFP � L, (8)

where ξSC is the SC coherence length and ξMFP is the mean
free path. Note that the inequality with respect to the wire
length simply cuts off the MFP at L since the electrons cannot
travel a distance larger than the wire length by definition, so L
is an effective stringent upper limit on the MFP. In the pristine
wire, since there is no inhomogeneity along the wire, the mean
free path can be at most the wire length L = 3 µm, which
manifestly satisfies the hierarchy as ξSC ∼ 0.36 µm. It is obvi-
ous that, for short disordered wires, the inequality defined by
Eq. (8) becomes increasingly unachievable, making it a huge
challenge to enter the topological regime. We mention that
the inequality defined by Eq. (8) is strongly violated by all
the early Majorana nanowire experiments except possibly the
recent Microsoft experiment, where the two length scales are
likely to be comparable allowing some minimal topological
gap to emerge [16,33,34].

This relation provides a very simple and intuitive rule
of thumb to characterize the strength of effective disorder,
which was not easy to do in the earlier models of using an
explicit disorder potential in the chemical potential before.
Namely, in the previous model [19,32,33,38] where the onsite
potential disorder is manually put throughout the wire, one
does not have a straightforward way to estimate the boundary
between the weak- and intermediate-disorder regime, or the
intermediate- and strong-disorder regime. The fundamental
reason is that the variance of disorder is not directly mapped
to the variance of zero energy states, and therefore one has
to generate a series of random disorder configurations (and
simulate an ensemble of conductance spectra for each disorder
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FIG. 1. Pristine wire with n = 0 and L = 3 µm. [(a)–(d)] Local (GLL and GRR) and nonlocal (GLR and GRL) conductance spectra. The
bottom (top) axis shows the Zeeman (magnetic) field. The vertical dashed line indicates nominal TQPT. [(e)–(g)] LDOS at left, midpoint, and
right end. (h) Total DOS. [(i)–(j)] Topological visibility Q and thermal conductance κ . (k) LDOS at zero energy for VZ = 0.65 meV. (l) Spatial
profile of effective mass.

realization) to study the variance of zero energies, which is
inversely related to the relaxation time τ , and finally ap-
proximately estimate the mean free path ξMFP from a huge
collection of simulated disordered data. In contrast, in the spa-
tially varying effective mass model, the mean free path ξMFP

comes out rather clearly and naturally from the underlying dis-
order physics, namely, it is the distance over which the mass
remains uniform (or equivalently average segment length),
i.e, ξMFP = L

n+1 . The weak- (strong-) disorder regime is when
ξSC < ξMFP (ξSC > ξMFP), while the intermediate regime is
when ξSC ∼ ξMFP. This is the huge advantage of our new
approach—it enables us to include only the minimal necessary
aspect of disorder by building in the MFP physically and
naturally in the effective Majorana model instead of getting
overwhelmed by calculations over disorder distributions or
many different disorder configurations.

In the following sections, we will first demonstrate how
this spatially varying effective mass model can reproduce the
same results as the previous models which include disorder
explicitly in the Hamiltonian qualitatively, especially, repro-
ducing the findings of the recent experiment from Microsoft
Quantum on the InAs-Al nanowire [16] in Sec. III B. We will
then study how this new model behaves under the change
of parameters k in Sec. III C and different wire lengths L in
Sec. III D. Finally, following this criterion, we will demon-
strate that we can bring a nontopological wire back to a
topological wire by only increasing the proximitized SC gap

which effectively decreases the SC coherence length ξSC to
satisfy the hierarchy of ξSC < ξMFP in Sec. III E.

B. Simulation of experimental data

In this section, we sample different disorder configurations
to reproduce the recent experiment in Ref. [16]. Our goal is
to demonstrate that the disorder physics can be qualitatively
captured by the spatially varying effective mass model. There-
fore, we aim to reproduce the two representative results in the
experiment: (1) a positive result that passes the topological
gap protocol (TGP), e.g., Fig. 11 in Ref. [16] (also shown
here in Fig. 2), and (2) a negative result that fails the TGP,
e.g., Fig. 20 in Ref. [16] (also shown here in Fig. 4). For the
details on TGP, which Ref. [16] uses as the definitive tool
for determining topology (“positive”) or not (“negative”), we
refer to the Microsoft article [16]. We mention that TGP is,
for all practical purposes, equivalent to our earlier work on
local and nonlocal conductance for Majorana confirmation as
presented in Ref. [38].

Figure 2 is the positive result in the sense that the local
conductance spectra from both ends exhibit ZBCPs beyond
the same critical field, with the left end disappearing at a
smaller field than the right, and the gap closing and reopening
feature can be tracked from the nonlocal conductance, which
happens at the same field at the onset of ZBCP. Therefore,
we reproduce these crucial features in Fig. 3 using the new
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FIG. 2. The positive experimental result, Fig. 11 in Ref. [16], passes the TGP. [(a)–(d)] Local (GLL and GRR) and nonlocal (GLR and GRL)
conductance spectra as the function of magnetic field. The false color is rendered with a new diverging color scheme from 0 to 4e2/h than the
original print.
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FIG. 3. Simulation of the positive result Fig. 11 in Ref. [16] (also in Fig. 2) with n = 5, k = 9, and L = 3 µm. [(a)–(d)] Local (GLL and GRR)
and nonlocal (GLR and GRL) conductance spectra. The bottom (top) axis shows the Zeeman (magnetic) field. The vertical dashed line indicates
nominal TQPT. [(e)–(g)] LDOS at left, midpoint, and right end. (h) Total DOS. [(i)–(j)] Topological visibility Q and thermal conductance κ .
(k) LDOS at zero energy for VZ = 0.6 meV. (l) Spatial profile of effective mass.
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FIG. 5. Simulation of the negative result Fig. 20 in Ref. [16] (also in Fig. 4) with n = 9, k = 9, and L = 3 µm. [(a)–(d)] Local (GLL

and GRR) and nonlocal (GLR and GRL) conductance spectra. The bottom (top) axis shows the Zeeman (magnetic) field. The vertical dashed
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conductance κ . (k) LDOS at zero energy for VZ = 0.95 meV. (l) Spatial profile of effective mass.

model in a 3-micron-long wire (same as the experiment) by
choosing the parameter of n = 5, k = 9 in the varying effec-
tive mass model. From the top row of Fig. 3, we can already
notice the similarity between the theoretical simulation and
experimental results which manifest the correlation between
local conductance spectra and gap closing and reopening
from nonlocal conductance spectra. From the bottom row
of Fig. 3, we confirm the topological regime between VZ ∈
[0.54, 0.75] meV by computing the TV Q = −1 [Fig. 3(i)]
and showing a peak in the thermal conductance quantized at
κ0 [Fig. 3(j)]. In Fig. 3(k), we show the LDOS at a specific
Zeeman field for a zero energy state, which clearly shows
that the wire hosts two pairs of MZMs (where the first pair
extends between [0, 0.6 µm]), and the second pair extends
between [1 µm, 3 µm]. The LDOS at the midpoint also indi-
cates a zero energy bulk state in Fig. 3(f). This localization
of the Majorana modes is consistent with the positions of
the impurities [Fig. 3(l)], which effectively segment the wire
into several quantum dots. This positive result belongs to the
weak-disorder regime, which can manifest nontrivial topolog-
ical visibility in Fig. 1 over a region of VZ ∈ [0.54, 0.75] meV.
This is also consistent with our criterion since n = 5 cor-
responds to the MFP being ξMFP = 0.5 µm, which is larger
than ξSC = 0.36 µm. However, the weak local conductance
[Fig. 3(a)] and the absence of the peak in the zero energy
LDOS at the left ends [Fig. 3(k)] imply a potential issue that
the wire, despite showing a nontrivial topological invariant,
may not be useful for the braiding and fusion due to the

absence of isolated MZMs on both ends of the wire. We will
address this issue later in Sec. IV. Note that the presence or
absence of end localized states is not included in the Microsoft
TGP because this physics is not directly accessible in their
transport spectroscopy.

On the contrary, Fig. 4 is a definitive negative result be-
cause the local conductance spectra from both ends do not
exhibit any correlation between the appearance of ZBCPs,
and the gap closing and reopening feature cannot be inferred
from the nonlocal conductance. In this scenario, we can repro-
duce the similar “negative” features by increasing the number
of impurities, as shown in Fig. 5 in the same wire length L =
3 µm with n = 9 and k = 9. From the top row in Fig. 5, we
simulate and reproduce the absence of the correlation and gap
closing and reopening feature. This impurity configuration
destroys the topological regime as shown in Figs. 5(i) and 5(j),
where the TV Q > 0 and the thermal conductance does not
show one single clear peak. To understand the microscopic de-
tails, we show the LDOS at zero energy and a Zeeman energy
near 0.95 meV as shown in Fig. 5(k). We notice multiple pairs
of MZMs extended over the wire, which is consistent with the
spatial distribution of impurities in Fig. 5(l). Therefore, this
negative result belongs to the intermediate-disorder regime,
which is consistent with the fact that it fails the TGP, and also
with our simple criterion as ξMFP = 0.3 µm, which is of the
same order of ξSC = 0.36 µm (in the pristine wire). (Note that
this estimate of 0.36 µm serves as a lower bound—we can
roughly estimate the actual SC coherence in the presence of
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TABLE I. Statistics of the positive and negative simulations for
a 3-micron wire.

k n
Positive simulations

Ensemble size
Examples

9 5 1/100 Fig. 3
9 6 2/100 Figs. 31 and 32
9 7 1/100 Fig. 33

k n
Negative simulations

Ensemble size
Examples

9 9 4/100 Figs. 5, 34, 35, and 36
9 10 1/50 Fig. 37
9 11 1/50 Fig. 14
9 12 1/50 Fig. 38

disorder by considering the ratio of two topological gaps with
and without the disorder, which gives an actual ξSC approaches
infinity as the gap size approaches zero.)

The qualitative agreement between Figs. 2 and 3, and
between Figs. 4 and 5 is not a result of fine-tuning. Other
disorder configurations using a similar value of n can pro-
duce the same qualitative results, including whether the gap
reopens, and whether the left and right conductance are cor-
related. These results are presented in Appendix A along with
the statistics for the positive and negative results summarized
in Table I. It is noteworthy that the positive simulations in

general look more similar to the positive experimental data
than the negative simulations look like the negative experi-
mental data, which makes sense since the negative results are
by definition an infinitely larger set than the positive results.
Of course, what matters are the positive results (and a well-
defined way of ruling out the negative results).

C. Dependence of k

In the previous section, we have demonstrated that n is the
most relevant parameter that directly determines the topology
by controlling the mean free path ξMFP = L

n+1 . In this section,
we will study the effect of the other parameter k (which
controls the variance of the effective mass of the impurities).

Intuitively, since a larger value of k will allow a larger
effective mass of the impurities, which suppresses the hopping
across the impurities more, the precise value of k should not
affect the topology as long as it is large enough to produce
effective segmentation. (In fact, even for n, a similar caveat
applies in the sense that the value of n is irrelevant except in
the sense of satisfying or violating the all-important inequality
of ξMFP > ξSC or not.)

Our numerical simulation verifies this intuition for k. We
present typical results for larger k as shown in Fig. 6 for
k = 20, Fig. 7 for k = 40, Fig. 8 for k = 80, and Fig. 9 for
k = 160. All these results have the same value of n = 5, and
we find similar results as the positive simulations in Fig. 3,
which belong to the weak disorder. Besides these similar
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FIG. 6. n = 5, k = 20, and L = 3 µm. [(a)–(d)] Local (GLL and GRR) and nonlocal (GLR and GRL) conductance spectra. The bottom (top)
axis shows the Zeeman (magnetic) field. The vertical dashed line indicates nominal TQPT. [(e)–(g)] LDOS at left, midpoint, and right end.
(h) Total DOS. [(i)–(j)] Topological visibility Q and thermal conductance κ . (k) LDOS at zero energy for VZ = 0.6 meV. (l) Spatial profile of
effective mass.
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FIG. 7. n = 5, k = 40, and L = 3 µm. [(a)–(d)] Local (GLL and GRR) and nonlocal (GLR and GRL) conductance spectra. The bottom (top)
axis shows the Zeeman (magnetic) field. The vertical dashed line indicates nominal TQPT. [(e)–(g)] LDOS at left, midpoint, and right end.
(h) Total DOS. [(i)–(j)] Topological visibility Q and thermal conductance κ . (k) LDOS at zero energy for VZ = 0.6 meV. (l) Spatial profile of
effective mass.

results shown from Fig. 6 to Fig. 9, we present more examples
in Appendix B. These results all confirm that the value of k
does not affect the topology as much as n does since k does not
determine the ξMFP as n does—k just has to be large enough
to produce an effective segmentation of the wire.

D. Dependence of L

One remaining parameter of experimental relevance is the
wire length L. Actually, L is irrelevant when L > ξMFP, but in
short enough wires, it is possible that the L is the length cutoff
for the MFP. In this section, we will present the results for
an extremely long wire of L = 10 µm. We will demonstrate
that changing the system size L can affect the mean free path
ξMFP = L

n+1 , assuming a fixed number of impurities in the
wire with changing length, and therefore change the topology.
Note that if the impurity density is kept fixed, then obviously
increasing L would increase n proportionally and no new
physics emerges, since it is the value of n that determines the
topology. Especially, we will show how one has to scale the
number of impurities n proportionally to the wire length L, in
order to keep the same disorder regime. Basically, we show
explicitly that if the impurity density is held fixed (the likely
physical situation), then increasing L does nothing construc-
tive for obtaining topology. What is necessary is decreasing
the impurity density, which cannot be achieved just by in-
creasing L if n is not fixed.

We first fix the number of impurities n = 5 and k = 9, and
present the typical result in Fig. 10 for a 10-micron wire. We
find that the result is very similar to the pristine wire with
very low variance. We note that in this process the effective
impurity density has decreased by more than a factor of 3,
thus making the situation similar to the 3-micron long wire
with n = 1. For almost any impurity realizations with n = 5 in
10-micron wires, local conductance spectra consistently show
the quantized ZBCP beyond TQPT at VZc ∼ 0.54 meV and
the nonlocal conductance spectra show the gap closing and
reopening feature at the same critical field. For the topological
visibility and thermal conductance, we consistently find the
abrupt change of TV from +1 to −1, and the peak in the
thermal conductance quantized at κ/κ0 = 1. The zero energy
LDOS at a Zeeman field VZ inside the topological regime
shows one pair of MZMs localized at the wire ends. The
only difference from the pristine case is that the LDOS in
the bulk of the wire shows a very weak peak due to the
impurity near the position at 1 micron. This extreme long wire
limit is clearly in the weak-disorder regime, which even can
be considered as the pristine case because it shows a much
more stable topology than the previous 3-micron wire with
the same n = 5 as shown in Fig. 3. This phenomenon can be
understood from the same rule of thumb Eq. (8) that ξMFP now
increases from 0.5 to 1.6 µm due to the increase of L from
3 to 10 µm, which becomes much longer than the SC coher-
ence length ξSC = 0.36 µm (since other parameters remain the
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FIG. 8. n = 5, k = 80, and L = 3 µm. [(a)–(d)] Local (GLL and GRR) and nonlocal (GLR and GRL) conductance spectra. The bottom (top)
axis shows the Zeeman (magnetic) field. The vertical dashed line indicates nominal TQPT. [(e)–(g)] LDOS at left, midpoint, and right end.
(h) Total DOS. [(i)–(j)] Topological visibility Q and thermal conductance κ . (k) LDOS at zero energy for VZ = 0.6 meV. (l) Spatial profile of
effective mass.

same). We emphasize that if the impurity density is kept fixed
(instead of the impurity number) while increasing L, then
there would be no effect on the topology. Thus, increasing
the wire length without decreasing the impurity density does
no good whatsoever. Disorder and wire length are closely
connected, and this connection is obvious in the new model,
and hidden in the standard disorder (in the chemical potential)
model.

Following the same logic, we find that even n = 9 in the ex-
tremely long wire of L = 10 µm can still be considered in the
weak-disorder regime to manifest a robust topology beyond
TQPT. We present such a typical example in Fig. 11. This is
in contrast to the previous case of L = 3 µm, where n = 9 is
in the intermediate-disorder regime as shown in Fig. 5. This is
for the same reason: ξMFP now becomes 1 from 0.3 µm, which
is much longer than the ξSC = 0.36 µm. Equivalently, n = 9
in the L = 10 micron case has an impurity density of ∼1.1
which is smaller than the impurity density of 1.67 in the n = 5
and L = 3 micron case. More examples of the extremely long
wires are presented in Appendix C.

The previous two examples imply that one has to choose a
much larger n proportionally in the extreme long wire limit to
keep the wire in the same disorder regime. That is to say, in a
10-micron wire, to simulate what happened for n = 5 in the 3-
micron wire, we need to increase n = 19 as shown in Fig. 12.
This is simply because 10/20 is exactly the same as 3/6—
both wires now have similar segmentation and comparable

MFP values. We notice similar features as Fig. 3—though
there is a gap closing and reopening feature in the nonlocal
conductance, the reopened topological gap will eventually
close and the maximal topological gap (∼0.03 meV) is also
much smaller compared to the parent SC gap at zero field
(∼0.3 meV), similarly to the experimental positive result in
Fig. 2. Whether such a small gap should be called topolog-
ical or not is a semantic matter. Braiding will be difficult to
accomplish in systems with such small gaps.

Furthermore, in order to simulate the negative result
(Fig. 4) using an extremely long wire, we need to further
increase the number of impurities n = 32 as shown in Fig. 13
so that the impurity density stays a constant. In the first row
of Fig. 13, we observe a ZBCP appearing only at the left con-
ductance spectrum but not at the right conductance spectrum.
In addition, the gap reopening feature is also absent, and the
Zeeman field where the bulk gap closes [Fig. 13(c)] is not even
at the same field as the onset of the ZBCP in the left local
conductance spectrum [Fig. 13(a)]. In the bottom row, we
confirm that the system does not undergo a TQPT as the TV
almost always remains positive, and the thermal conductance
does not show a quantized peak. This wire with n = 32 is in
the intermediate-disorder regime because the mean free path
ξMFP = 0.3 µm is already shorter than the (lower limit of) the
SC coherence length ξSC = 0.36 µm. More examples of pris-
tine, weak disorder, and intermediate disorder in a 10-micron
wire can be found in Appendix C.
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FIG. 9. n = 5, k = 160, and L = 3 µm. [(a)–(d)] Local (GLL and GRR) and nonlocal (GLR and GRL) conductance spectra. The bottom (top)
axis shows the Zeeman (magnetic) field. The vertical dashed line indicates nominal TQPT. [(e)–(g)] LDOS at left, midpoint, and right end.
(h) Total DOS. [(i)–(j)] Topological visibility Q and thermal conductance κ . (k) LDOS at zero energy for VZ = 0.6 meV. (l) Spatial profile of
effective mass.

E. Increase the SC gap to make a nontopological
wire topological

Finally, we demonstrate the ability to make a nontopologi-
cal wire topological by only increasing the proximitized SC
gap as a larger SC gap decreases the SC coherence length
ξSC. We choose Fig. 14 as an example of a nontopolog-
ical 3-micron wire with n = 11 and k = 9. Here because
the MFP ξMFP = 0.25 µm is already smaller than the lower
bound of the SC coherence length ξSC = 0.36 µm, the wire
was originally in the strong-disorder regime. In the top row
of Fig. 14, the local conductance spectra show ZBCPs that
only persist for a small energy interval of the Zeeman field
(VZ ∈ [0.6, 0.7] meV), and there is no correlation between the
left and right conductance spectra. The nonlocal conductance
spectra also do not manifest the gap reopening feature. In
the bottom row, the TV shows a negative value over a small
energy interval, and the thermal conductance does not show
a single sharp peak. At a specific Zeeman field at 0.6 meV in
Fig. 14(k), the LDOS at zero energy only shows one peak at
the left end. Another peak is localized in the bulk region at
xi ∼ 2 µm due to the spatial distribution of the impurity.

To make it topological without reducing the disorder, we
increase the SC gap by raising the SC-SM coupling strength
(0.2 meV). Our first attempt is to increase SC-SM coupling
strength to 0.3 meV. Because the SC coherence length ξSC ∝
vF /�, where vF is the Fermi velocity in the SM (assumed
to be invariant under the change of SC-SM coupling), and �

is the topological gap (due to the proximitized SC gap in the
SM), a higher SC-SM coupling of 0.3 meV effectively de-
creases the lower limit of SC coherence length from 0.36 µm
to 0.24 µm, and thus, brings the SC coherence length ξSC to
the similar order of the MFP ξMFP = 0.25 µm. The numer-
ical results are shown in Fig. 15. Now the ZBCP in local
conductance spectra [Figs. 15(a) and 15(b)] begin to persist
for a larger energy interval, although the correlation between
the two ends is still absent. The nonlocal conductance spectra
[Figs. 15(c) and 15(d)] begin to manifest the gap reopening
feature. In the TV [Fig. 15(i)] and the thermal conductance
[Fig. 15(j)], we find that the topological regime becomes more
visible and robust. In the LDOS at zero energy at a Zeeman
field VZ = 1 meV [Fig. 15(k)], where both local conductance
spectra manifest ZBCP, we observe the zero energy state
localized at both ends of the wire. The only issue is that the
bulk regime hosts multiple pairs of MZMs in the bulk at the
positions of impurities [Fig. 15(l)]. This implies that the wire
starts to enter an intermediate-disorder regime.

Furthermore, if we continue to increase the SC-SM cou-
pling to 0.4 meV, which effectively brings the SC coherence
length ξSC further down to 0.18 µm, which is already smaller
than the MFP ξMFP = 0.25 µm, then we find that the wire
becomes even more topological, as shown in Fig. 16. In this
case, the local conductance spectra [Figs. 16(a) and 16(b)]
show clear quantized ZBCPs correlated at both ends, and the
nonlocal conductance spectra [Figs. 16(c) and 16(d)] show the
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FIG. 10. Long wire limit L = 10 µm with n = 5 and k = 9. [(a)–(d)] Local (GLL and GRR) and nonlocal (GLR and GRL) conductance
spectra. The bottom (top) axis shows the Zeeman (magnetic) field. The vertical dashed line indicates nominal TQPT. [(e)–(g)] LDOS at
left, midpoint, and right end. (h) Total DOS. [(i)–(j)] Topological visibility Q and thermal conductance κ . (k) LDOS at zero energy for
VZ = 0.6 meV. (l) Spatial profile of effective mass.

gap closing and reopening features at a larger Zeeman field.
The larger TQPT is the result of both a larger proximitized
SC gap and the disorder. In the TV [Fig. 16(i)] and thermal
conductance [Fig. 16(j)], we find clear change of Q and peak
of κ . In the LDOS at zero energy and VZ = 1 meV, we find
the zero energy state localized at both ends, with the bulk
states being greatly suppressed compared to the previous case
[Fig. 15(k)]. This means that the wire now enters the weak-
disorder regime. All of this is being achieved in our new model
simply by decreasing ξSC while keeping ξMFP fixed.

From Fig. 14 to Fig. 16, we improve the topology of the
wire by only increasing the SC gap, which exemplifies the
ability to make a nontopological wire topological by increas-
ing the proximity-induced SC gap in the nanowire.

IV. TOPOLOGICAL INDICATORS

However, from the previous conductance spectra (e.g.,
Figs. 5 and 14), we notice an issue: The TV itself may not
serve as a good indicator in the disordered short wire. The
dilemma that the topological invariant manifests a nontrivial
negative value, but without the isolated MZMs localized at the
ends of the wire, has been extensively discussed in Ref. [34].
This is important not just because disorder suppresses and
obscures all topologies, but also because in the non-Abelian
anyon-based topological quantum computing [49–52], it is
only when the isolated MZMs are localized at ends of the

wire that they can be used to perform fusions and braid-
ing. Thus, the lack of TV being able to indicate topology
is an extremely important problem, which must somehow
be dealt with, particularly since most current experimental
wires are likely to be in the intermediate-disorder regime
where ξSC and ξMFP are not that different. Therefore, in this
section, we aim to find a more reliable topological indicator
by incorporating information about the spatial distribution
of the MZMs. In principle, the criteria to detect the topo-
logical MZMs should characterize both of the following
features:

(1) Nontrivial topological invariant
(2) Isolated zero energy states localized at the ends of the

wire
The first feature is already captured by the TV, and there-

fore, we will focus on the indicators that can capture the
second feature.

A. Indicators for localized topological MZMs

Because the information on the spatial distribution of the
MZMs can only be detected by the quantity that is defined
over the entire wire, we choose to focus on the LDOS instead
of the conductance spectra, which only probe the properties of
the ends of the wire. Therefore, based on the different aspects
of the LDOS, we propose and discuss four distinct possible
indicators.

075401-12



DISORDERED MAJORANA NANOWIRES: STUDYING … PHYSICAL REVIEW B 110, 075401 (2024)

−0.2

0.0

0.2

V
b
ia

s
(m

V
)

(a)

0 2 4
GLL(e2/h)

−0.2

0.0

0.2
(b)

0 2 4
GRR(e2/h)

−0.2

0.0

0.2
(c)

−10−3 0 10−3

GLR(e2/h)

−0.2

0.0

0.2
(d)

−10−3 0 10−3

GRL(e2/h)

0.0 0.5 1.0

VZ (meV)

−0.2

0.0

0.2

ω
(m

eV
)

(e)
10−210−1

ρ(ω, xi = 0)

0.0 0.5 1.0

VZ (meV)

−0.2

0.0

0.2
(f)

10−2 10−1 100

ρ(ω, xi = L
2 )

0.0 0.5 1.0

VZ (meV)

−0.2

0.0

0.2
(g)

10−210−1

ρ(ω, xi = L)

0.0 0.5 1.0

VZ (meV)

−0.2

0.0

0.2
(h)

10−2 10−1

ρ̄(ω)

0.0 0.5 1.0

VZ (meV)

−1

0

1

Q

(i)

0.0 0.5 1.0

VZ (meV)

0

1

κ
/
κ

0

(j)

0 1 2 3 4 5 6 7 8 910

xi (μm)

0

1

2

ρ
(ω

=
0
,x

i
)

(k)

VZ=0.6 meV

0 1 2 3 4 5 6 7 8 910

xi (μm)

0

5

10

m
/
m

∗

(l)

0.0 1.0 2.0 3.0
B (T)

0.0 1.0 2.0 3.0
B (T)

0.0 1.0 2.0 3.0
B (T)

0.0 1.0 2.0 3.0
B (T)

FIG. 11. Long wire limit L = 10 µm with n = 5 and k = 9. [(a)–(d)] Local (GLL and GRR) and nonlocal (GLR and GRL) conductance
spectra. The bottom (top) axis shows the Zeeman (magnetic) field. The vertical dashed line indicates nominal TQPT. [(e)–(g)] LDOS at
left, midpoint, and right end. (h) Total DOS. [(i)–(j)] Topological visibility Q and thermal conductance κ . (k) LDOS at zero energy for
VZ = 0.6 meV. (l) Spatial profile of effective mass.

1. Indicator 1: LDOS end weight

The first indicator follows the intuitive idea of directly
quantifying the relative weight of the zero energy states lo-
calized at the ends of the wire. Therefore, we define it as

I (1) =
∑

xi∈Ends ρ(ω = 0, xi )∑
xi∈[0,L] ρ(ω = 0, xi )

, (9)

Here the only degree of freedom is the length scale of ends.
This is because, in the actual finite-size wire, the localized
MZMs are not strictly localized at the absolute (geometric)
ends while extending over a finite length at the ends, where
the length scale is the Majorana localization length (same
as SC coherence length ξSC). Therefore, we can choose to
define the length scale of “ends” as ξSC/2. In all the previ-
ous results with SC-SM coupling strength of 0.2 meV and
3-micron wires, this corresponds to the end regions defined as
[0, 0.18] µm ∪ [2.82, 3] µm, since ξSC = 0.36 µm in the pris-
tine limit.

We can then roughly estimate this weight I (1) as∫ ξ/2
x=0 |ψ (x)|2dx∫ ∞
x=0 |ψ (x)|2dx

≈
∫ ξ/2

x=0 e−2x/ξ dx∫ ∞
x=0 e−2x/ξ dx

= e−1
e ≈ 63%. Here ψ (x) is the

wave function in a semi-infinite pristine long wire. This can
serve as a reference threshold for whether the second criterion
of localized MZMs is satisfied.

However, this threshold tends to underestimate topology
because we ignore the oscillatory part in the wave function,
and the reality is always the wires with finite size where these

oscillations are typically present adversely affecting topology
because of the overlap between the end MZMs. Therefore,
we can relax the threshold a bit, by choosing a smaller value
of 50%, as a working definition to define isolated localized
states. Namely, I (1) > 50% means the localized MZMs are
present at the ends of the wire. In principle, one can impose a
more stringent criterion by shortening the length scale of the
end region and/or decreasing the threshold of I (1).

2. Indicator 2: Total number of MZMs

The second indicator we consider is the total number of
MZMs within the wire. This quantity is originally proposed in
Ref. [34] to differentiate the MZMs from the trivial fermionic
zero-energy Andreev bound states (ABSs). The quantity is
defined based on the LDOS as

I (2) = πη
∑

xi∈[0,L]

ρ(ω = 0, xi ), (10)

and, therefore, we expect the ideal pair of MZMs to show the
value of 2, and any value larger than 2 means more than one
pair of MZMs exists, which are likely to live in the bulk of
the wire, causing potential topology problems. In contrast, any
value smaller than 2 means the absence of the zero-energy
state since MZMs must come in pairs. In practice, we choose
a tolerance of ±10%, i.e., any value of I (2) in the range of
[1.8,2.2] is considered to indicate the presence of the isolated
localized MZMs at the ends.
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FIG. 12. Long wire limit L = 10 µm with n = 19 and k = 9. [(a)–(d)] Local (GLL and GRR) and nonlocal (GLR and GRL) conductance
spectra. The bottom (top) axis shows the Zeeman (magnetic) field. The vertical dashed line indicates nominal TQPT. [(e)–(g)] LDOS at
left, midpoint, and right end. (h) Total DOS. [(i)–(j)] Topological visibility Q and thermal conductance κ . (k) LDOS at zero energy for
VZ = 0.6 meV. (l) Spatial profile of effective mass.

3. Indicator 3: Kullback-Leibler divergence

The third indicator is motivated by statistics and infor-
mation theory. In principle, the LDOS can be viewed as an
(unnormalized) probability distribution of the position of a
particle because ρ(ω, x) ∝ ∑

εi
δ(ω − εi )|ψi(x)|2. Therefore,

if we have a reference state that represents a standard “isolated
localized MZMs” state, then we can compare any arbitrary
state with this reference state. The measure of “distance” (rig-
orously speaking, it is divergence because it is not symmetric)
will provide an indicator of whether these two states (two
probability distributions) are similar. Therefore, we choose
the reference state to be the LDOS for a zero-energy state
in the pristine limit at a Zeeman field which maximaizes the
topological gap [i.e., VZ = 0.65 meV in Fig. 1(k)]. Thus, this
indicator is defined as

I (3) = DKL(ρ(ω = 0, xi )test||ρ(ω = 0, xi )ref)

= DKL(ρ(ω = 0, xi )disorder||ρ(ω = 0, xi )MZM). (11)

Here we choose Kullback-Leibler (KL) divergence as the
measure of “distance” defined as

DKL(p(x)||q(x)) =
∫

p(x) log

(
p(x)

q(x)

)
dx, (12)

where p(x) and q(x) are the LDOS after the normalization
over the entire wire.

The KL divergence is minimized to zero if the p(x) = q(x)
while could diverge to infinity if p(x) and q(x) are very

different. Therefore, we set the threshold to be 0.9 corre-
sponding to the KL divergence between a trivial state (e.g.,
VZ < 0.54 meV in Fig. 1) and the reference state (i.e., VZ =
0.65 meV in Fig. 1). Namely, we conclude an isolated local-
ized state if I (3) < 0.9.

4. Indicator 4: Bulk and end LDOS ratio

The fourth indicator is motivated directly by the fact that
for any well-defined localized MZMs, we must have the
LDOS vanishing in the bulk of the wire and large at the ends
of the wire. Therefore, we just impose these restrictions by
having:

(1) The amplitude of LDOS at the midpoint of the wire is
less than the LDOS peaks at the ends by a certain threshold.

(2) The amplitude of LDOS in the bulk of the wire can
never exceed the average of the peaks on two ends of the wire.

The logic of these two restrictions leads to a possible im-
plementation to define the following set of two ratios:

(1) Ratio of midpoint LDOS over end LDOS, i.e.,

I (4)
1 = ρ

(
ω = 0, xi = L

2

)
1
2

[
max

xi∈[0,
ξ

2 ]
ρ(ω = 0, xi ) + max

xi∈[L− ξ

2 ,L]
ρ(ω = 0, xi )

] .

(13)
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FIG. 13. Long wire limit L = 10 µm with n = 32 and k = 9. [(a)–(d)] Local (GLL and GRR) and nonlocal (GLR and GRL) conductance
spectra. The bottom (top) axis shows the Zeeman (magnetic) field. The vertical dashed line indicates nominal TQPT. [(e)–(g)] LDOS at
left, midpoint, and right end. (h) Total DOS. [(i)–(j)] Topological visibility Q and thermal conductance κ . (k) LDOS at zero energy for
VZ = 0.6 meV. (l) Spatial profile of effective mass.

(2) Ratio of maximal LDOS in the bulk over the end
LDOS, i.e.,

I (4)
2 =

max
xi∈Bulk

ρ(ω = 0, xi )

1
2

[
max

xi∈[0,
ξ

2 ]
ρ(ω = 0, xi ) + max

xi∈[L− ξ

2 ,L]
ρ(ω = 0, xi )

] .

(14)
Here the end LDOS is take as the “first peak” from the end.
We choose the threshold for the first ratio as I (4)

1 < 4%, and
for the second ratio as I (4)

2 < 1 to declare the isolated localized
MZMs.

B. Benchmark of the four indicators

Given these four indicators, we need to test whether what
we previously concluded visually by looking at the LDOS can
now be quantified by the indicators. Therefore, we benchmark
them by applying the four indicators to the previous results
ranging from pristine regime to strong-disorder regime. We
find that the four indicators actually can have different pre-
dictions for topology in disordered short wires. There is also
the issue of some arbitrariness in assigning the threshold on
the benchmark for each indicator, but this arbitrariness is also
present in practice because true topology applies only in the
thermodynamic limit, and a finite system is always subject
to some threshold subjectivity. This can to some extent be
adjusted by applying the indicators to the pristine system first.

1. Pristine

We first apply the four indicators to the pristine wire to
provide a reference for the subsequent benchmarks as shown
in Figs. 17(a)–17(d). Each panel on the first row shows one
indicator from I (1) to I (4) as a function of the Zeeman field VZ .
We also present the corresponding TV Q on the right axis (red
line) for comparison.

In Fig. 17(a), I (1) shows that the end weight is very low in
the trivial regime, while it saturates around 0.6 in the topo-
logical regime, close to the ideal value of 0.63 as mentioned
above. In Fig. 17(b), I (2) shows that the total number of MZMs
is zero in the trivial regime, while it is 2 in the topological
regime as expected. In Fig. 17(c), I (3) shows that the KL di-
vergence is around 1 in the trivial regime (because the LDOS
in the trivial regime is very different from that in the topolog-
ical regime), and then becomes very small in the topological
regime. (The minimum of zero at VZ = 0.65 meV is simply
because the reference state is chosen there.) In Fig. 17(d), I (4)

1
(black line) shows that the ratio of the midpoint LDOS and
the end LDOS becomes exponentially small beyond TQPT,
and I (4)

2 (blue line) shows that bulk LDOS can never exceed
the end LDOS. All these indicators work as expected in the
pristine limit.

In the bottom panels of Fig. 17, we present the LDOS at
four Zeeman fields, where Fig. 17(e) is in the trivial regime,
and Figs. 17(f)–17(h) are in the topological regime, corre-
sponding to the vertical dashed lines in the top panels. This
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FIG. 14. The 3-micron wire in the strong-disorder regime with n = 11 and k = 9, and SC-SM coupling strength is 0.2 meV. [(a)–(d)]
Local (GLL and GRR) and nonlocal (GLR and GRL) conductance spectra. The bottom (top) axis shows the Zeeman (magnetic) field. The vertical
dashed line indicates nominal TQPT. [(e)–(g)] LDOS at left, midpoint, and right end. (h) Total DOS. [(i)–(j)] Topological visibility Q and
thermal conductance κ . (k) LDOS at zero energy for VZ = 0.6 meV. (l) Spatial profile of effective mass.

provides a direct visualization of how the LDOS at zero en-
ergy evolves from an extended state [Fig. 17(e)] to a localized
state [Figs. 17(f)–17(h)] in the pristine limit.

All four indicates can accurately manifest the change in
the distribution of LDOS for zero energy state, and their
predicted criticalities converge to the change of TV. The fact
that all four indicators give consistent results is due to the
perfect bulk-edge correspondence in the topological regime in
the pristine limit. However, things become more complicated
in the interplay of disorder and short wire—the topological
phase transition and the change in the LDOS from extended
to localized state may not happen at the same VZ . Therefore,
the four indicators, which emphasize different aspects, may
give different results.

2. Weak-disorder regime

Thus, to provide physical insights on the short disordered
wire, instead of just stating everything is complicated, we
need to revisit the previous disordered results and see how the
four indicators behave.

We first revisit the positive results with n = 5 (Fig. 3) to see
whether the four indicators can tell us that the wire is without
isolated MZMs localized at both ends of the wire, despite the
TV being negative within the regime of VZ ∈ [0.6, 0.7] meV.
This is a crucial test for the efficacy of these indicators since

TV by itself suggests that the system is topological. We
present the benchmark of the four metrics in Fig. 18.

In Fig. 18(a), I (1) never meets the threshold of end localized
state [I (1) < 0.5] when the TV is −1. This is consistent with
Fig. 3 and Figs. 18(e)–18(h) where the LDOS is not well
localized at the left end. Thus, this indicator I (1) correctly
reflects the absence of isolated localized MZM at the left end.

In Fig. 18(b), I (2) tells that the total number of MZMs
is 2, which passes the criterion. However, in the LDOS on
the bottom panel, we do see another pair of MZMs close to
the left end. The failure to detect another pair of peaks may be
due to the arbitrariness of how zero energy is defined (i.e., a
resolution problem). Namely, in finite wires, because MZMs
overlap in the bulk, the total number of MZMs may change
if one calculates it on a finer scale of energy. Therefore, this
indicator I (2) fails here.

In Fig. 18(c), KL divergence I (3) shows a value larger than
1, indicating that the distribution is very different from the
reference distribution for the localized MZMs. Therefore, this
indicator I (3) correctly supports the conclusion.

In Fig. 18(d), although the ratio of maximal LDOS over
the end LDOS in the bulk remains I (4)

2 smaller than 1 within
the regime where TV is negative, the ratio of midpoint over
end LDOS I (4)

1 is always larger than the threshold 0.04, which
violates the criterion. Therefore, it indicates the absence of
isolated localized end states, which itself is a correct indicator.
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FIG. 15. The 3-micron wire in the intermediate-disorder regime with n = 11 and k = 9, and SC-SM coupling strength is 0.3 meV. [(a)–(d)]
Local (GLL and GRR) and nonlocal (GLR and GRL) conductance spectra. The bottom (top) axis shows the Zeeman (magnetic) field. The vertical
dashed line indicates nominal TQPT. [(e)–(g)] LDOS at left, midpoint, and right end. (h) Total DOS. [(i)–(j)] Topological visibility Q and
thermal conductance κ . (k) LDOS at zero energy for VZ = 1 meV. (l) Spatial profile of effective mass.

3. Strong-disorder regime

Having verified the four indicators applying to the weak-
disorder regime, we now consider a nontopological wire in the
strong-disorder regime (Fig. 14) where the TV shows negative
values over VZ = 0.6 to 0.9 meV. The results are presented in
Fig. 19.

In Fig. 19(a), the end weight I (1) is always much smaller
than the threshold of 0.5, which correctly indicates the ab-
sence of localized MZMs at the ends of the wire. In Fig. 19(b),
although I (2) shows 2 MZMs, there are more peaks in the
bulk of the wire as shown in Figs. 19(f)–19(h). Therefore, this
indicator I (2) fails here. In Fig. 19(c), the KL divergence I (3)

shows a much larger value than 1, which is a correct indicator.
In Fig. 19(d), the ratio of the maximal bulk LDOS over the
end LDOS I (4)

2 (blue line) is mostly larger than 1, which does
not pass the threshold. Thus, it is also a correct indicator.

Therefore, our indicators, except for the total number of
MZMs I (2), can correctly reproduce the correct conclusion of
the presence or absence of isolated localized MZMs at the
ends of the wire regardless of the disorder regime. We believe
that the failure of I (2) most likely arises from the energy
resolution issues associated with defining a zero energy.

4. Statistics of the four indicators

We present more benchmark results in Appendix D, and
summarize the success/failure statistics of the four indicators
in Table II.

From Table II, we can conclude that the second indicator
I (2) is the least reliable one (with accuracy less than 28%)
because the number of MZMs at zero energy is a bit arbitrary
and also ill defined if one looks at a finer scales of energy. The
first indicator I (1) using the end weight works well in most
scenarios (with an accuracy of around 71%). It is physical
and intuitive, with the only arbitrariness being the length
scale of the end and the threshold of the weight. However,
once these two are fixed, the indicator is well defined. The
third indicator I (3) using KL divergence is mathematically
rigorous and scores even better (with an accuracy of around
85%). However, it is difficult to connect I (3) directly to a
physical quantity since it is a measure of the “divergence”
between two probability distributions. The fourth indicator,
I (4)
1 and I (4)

2 , directly uses the ratio of bulk LDOS over
the edge LDOS while also ensuring the bulk LDOS does
not exceed the edge LDOS. This is simple, intuitive, and
also the most accurate with a perfect statistical success in
our analysis.

Therefore, in the following section, we will choose the
third I (3) and fourth indicators I (4) as reliable indicators to
detect the localized MZMs in the disordered short wire.

C. Predictive power of TV

With the benchmark results for the four indicators, we now
study the predictive power of the topological visibility Q.
Namely, we generate an ensemble of L = 3 µm with k = 9 for
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FIG. 16. The 3-micron wire in the weak-disorder regime with n = 11 and k = 9, and SC-SM coupling strength is 0.4 meV. [(a)–(d)] Local
(GLL and GRR) and nonlocal (GLR and GRL) conductance spectra. The bottom (top) axis shows the Zeeman (magnetic) field. The vertical dashed
line indicates nominal TQPT. [(e)–(g)] LDOS at left, midpoint, and right end. (h) Total DOS. [(i)–(j)] Topological visibility Q and thermal
conductance κ . (k) LDOS at zero energy for VZ = 1 meV. (l) Spatial profile of effective mass.

different n (n = 0, and 5 � n � 12) and study the correlation
between the topological visibility Q and the I (3) and I (4),
respectively.

We first show the joint distribution of TV Q and KL di-
vergence I (3) in Fig. 20 from the pristine limit n = 0 to the
strong-disorder regime n = 12. The density of the data points
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FIG. 17. The benchmark of four indicators on the pristine 3-micron wire in Fig. 1. (a) End weight I (1) (black) on the left axis, and TV Q
(red) on the right axis as a function of VZ [same for (a)–(d)]. The horizontal dashed line indicates the threshold of I (1) (50%). (b) Total number
of MZMs I (2) (black) on the left axis. The horizontal dashed line indicates the ideal value of I (2), and the dotted line indicates the tolerant
range of I (2) around 2 ([1.8,2.2]). (c) KL divergence I (3) (black) on the left axis. The horizontal dashed line indicates the threshold of I (3) (0.9).
(d) Ratio of midpoint LDOS and end LDOS I (4)

1 (black), and the ratio of maximal in the bulk and end LDOS I (4)
2 (blue). The horizontal dashed

line indicates the threshold of I (4)
1 , 0.04 (black), and I (4)

2 , 1 (blue), respectively. [(e)–(h)] The LDOS at four Zeeman fields indicated by the
vertical dashed line in (a)–(d).
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FIG. 18. The benchmark of four indicators on the weak-disorder 3-micron wire with n = 5 and k = 9 in Fig. 3. (a) End weight I (1) (black)
on the left axis and TV Q (red) on the right axis as a function of VZ [same for (a)–(d)]. The horizontal dashed line indicates the threshold of I (1)

(50%). (b) Total number of MZMs I (2) (black) on the left axis. The horizontal dashed line indicates the ideal value of I (2), and the dotted line
indicates the tolerant range of I (2) around 2 ([1.8,2.2]). (c) KL divergence I (3) (black) on the left axis. The horizontal dashed line indicates the
threshold of I (3) (0.9). (d) Ratio of midpoint LDOS and end LDOS I (4)

1 (black), and the ratio of maximal in the bulk and end LDOS I (4)
2 (blue).

The horizontal dashed line indicates the threshold of I (4)
1 , 0.04 (black), and I (4)

2 , 1 (blue), respectively. [(e)–(h)] The LDOS at four Zeeman
fields indicated by the vertical dashed line in (a)–(d).
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FIG. 19. The benchmark of four indicators on the strong-disorder 3-micron wire with n = 11 and k = 9 in Fig. 14. (a) End weight I (1)

(black) on the left axis, and TV Q (red) on the right axis as a function of VZ [same for (a)–(d)]. The horizontal dashed line indicates the
threshold of I (1) (50%). (b) Total number of MZMs I (2) (black) on the left axis. The horizontal dashed line indicates the ideal value of I (2), and
the dotted line indicates the tolerant range of I (2) around 2 ([1.8,2.2]). (c) KL divergence I (3) (black) on the left axis. The horizontal dashed
line indicates the threshold of I (3) (0.9). (d) Ratio of midpoint LDOS and end LDOS I (4)

1 (black), and the ratio of maximal in the bulk and end
LDOS I (4)

2 (blue). The horizontal dashed line indicates the threshold of I (4)
1 , 0.04 (black), and I (4)

2 , 1 (blue), respectively. [(e)–(h)] The LDOS
at four Zeeman fields indicated by the vertical dashed line in (a)–(d).

TABLE II. Summary for four indicators.

Method Accuracy Pros Cons

End weight, I (1) 5/7 (Figs. 18, 66, 69, 70, 19) Simple and intuitive Arbitary in the length scale of
“end” and threshold

Total number of MZMs, I (2) 2/7 (Figs. 67 and 68) Simple Lowest accuracy and arbitrary
KL divergence, I (3) 6/7 (Figs. 18, 66, 68, 69, 70, 19) Statistical meaning Indirect to physics
Ratio, I (4)

1 and I (4)
2 7/7 (Figs. 18, 66, 67, 68, 69, 70, 19) Simple, intuitive, and the most

accurate
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FIG. 20. The joint distribution of TV Q and KL divergence I (3) for 3-micron wires with k = 9 for different n = 0 (a), and 5 � n � 12
[(b)–(i)]. The regime between two red dashed lines indicates data points satisfying the threshold. Outliers [I (3) > 2] are suppressed for visibility.

is interpolated using kernel density estimation and rasterized
in hexagon bins.

Each panel shows all the data with a fixed n, where each
data point in the panel corresponds to one spatial profile of
zero-energy LDOS ρ(ω = 0, xi ) at a specific Zeeman field
VZ that is in the (nominal) topological regime (i.e., VZ >

0.54 meV). Namely, we exclude the data points in the ob-
viously trivial regime below the TQPT. This is because the
LDOS at zero energy in the trivial regime is always inside
the gap, and is usually very tiny (e.g., Fig. 17(e)) and does
not have any features of interest. The regions between two

red dashed lines indicate the data points that have localized
MZMs at the ends of the wire, i.e., 0 < I (3) < 0.9. Around
each panel, the top axis shows the marginal distribution of
TV, while the right axis shows the marginal distribution of KL
divergence I (3).

In the pristine limit at n = 0 [Fig. 20(a)], we find that
both TV and I (3) are correlated as all data points are
localized on the lower right region of the panel, corre-
sponding to (Q, I (3) ) ∼ (−1, 0) The absence of data points
with Q = +1 is because we intentionally exclude the trivial
regime.
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As disorder is introduced, since n = 5 [Fig. 20(b)], we find
that the correlation between TV Q and I (3) is relaxed. I (3) first
begins to spread out, meaning that, although most of the data
points still have a nontrivial TV, they begin to deviate from the
localized MZMs state, i.e., bulk LDOS begins to grow.

As the disorder continues to increase, the weight of I (3)

near zero is further reduced, and the TV also begins to spread
out. For example, at n = 7 [Fig. 20(d)], the trivial state begins
to populate as indicated by the peak at Q = +1 on the top
axis.

At n = 9 [Fig. 20(f)], the topological states and trivial
states are roughly balanced as indicated by the equal weights
of Q = +1 and Q = −1. Therefore, n = 9 serves as a criti-
cal point, below which the topological states are statistically
more likely, while above which the trivial states are more
likely. This is also consistent with our previous estimate of
the intermediate-disorder regime using the criterion Eq. (8),
where the SC coherence length (ξSC ∼ 0.36 µm) is compara-
ble to the MFP (ξMFP ∼ 0.3 µm).

In the strong-disorder regime when n > 9 [Fig. 20(g)–
20(i)], the localized MZMs become fewer and fewer, and the
trivial states dominate. However, the trivial states (Q ∼ +1)
are not the only possible outcomes, there are a still few data
points with Q = −1 but without any isolated localized MZMs
(I3 > 0.9) at the ends of the wire.

This is a direct demonstration of the fact that the TV itself
may not serve as a sufficient indicator for the topological
localized MZMs in the disordered system. On the other hand,
since the lower right regions of all the panels are always
empty, it means that the TV can only serve as a necessary
condition, namely, as long as the Q is positive, the existence
of localized MZMs can almost be ruled out. These results
also bring out transparently the crucially important physics
of disordered short wires, as in the Microsoft experiment,
that the intermediate-disorder regime in finite wires cannot
be cast as definitively topological or definitely trivial based
just on the TV values (and conductance matrix results) with
the situation being highly nuanced and complex with topology
and the absence of topology may coexist with small changes
in the parameter values, which is a hallmark of mesoscopic
physics. We believe that braiding in this regime is likely to
fail, and one should stick to the weak-disorder regime where
the topology is a meaningful concept even in realistic short
wires.

Similarly, we also plot the joint distribution of TV Q and
the fourth indicator on the ratio in Fig. 21. Here one technical
issue is that the fourth indicator has two ratios, I (4)

1 for the ratio
between end LDOS and bulk LDOS, and I (4)

2 for the ratio be-
tween the maximal bulk LDOS and end LDOS. Therefore, to
avoid plotting them separated, we synthesize the two into one
value I (4), by encoding the first ratio I (4)

1 into the magnitude
of I (4), and the second ratio I (4)

2 into the sign of I (4)—if I (4)
2

is larger (smaller) than 1, then the sign is negative (positive).
Namely,

I (4) = sgn
(
I (4)
2 − 1

)
I (4)
1 . (15)

Therefore, the isolated localized MZMs are then indicated
by the region of 0 < I (4) < 0.04, which is indicated by the
regions between two red dashed lines in each panel of Fig. 21.

From Fig. 21, we find the same trend as what is inferred
from Fig. 20. In the pristine limit n = 0, all data points are
concentrated at the lower left corner indicating a correlation
of Q = −1 (nontrivial TV) and I (4) = 0 (localized state).

As disorder increases (n increases), the centroid shifts
gradually from the left corner above the dashed line for I (4) =
0 [(Q, I (4) ) ≈ (−1, 0+)] to the right corner below the dashed
line for I (4) = 0 [(Q, I (4) ) ≈ (+1, 0−)]. This shift indicates
that the state evolves from a topological localized state in
the weak-disorder limit (n < 9) to a trivial bulk state in the
strong-disorder limit (n > 9).

However, since there are still data points with Q = −1 and
I (4) < 0 for any n > 0, it means the TV is a good indicator
only in the pristine wire with n = 0, while its predictive power
becomes weaker as the disorder increases (n increases). This
is consistent with the conclusion obtained from Fig. 20. We
think that using TV as a decisive indicator for topology is
incorrect in disordered finite wires since the definition really
applies in the thermodynamic limit to precisely pinpoint the
TQPT only. Its use to define a topological regime may simply
not work decisively in finite disordered wires.

This motivates us to directly map out the predictive
power of the TV. Especially, we are concerned about the
false-positive (FP) rate of using TV Q alone to predict the
topological localized MZMs. Here we choose the most strin-
gent criterion and define the true positives as the simultaneous
satisfaction of all three indicators: (1) TV shows a nontrivial
value, (2) I (3) < 0.9, and (3) 0 < I (4) < 0.04.

The result of the FP rate is shown in Fig. 22, where we
choose three different thresholds for TV being nontrivial. We
find that the FP rate is not sensitive to the choice of TV
threshold, as long as the threshold is negative. Therefore, in
the following results, without loss of generality, we adopt the
threshold of “Q being negative” as Q < −0.9.

As disorder increases (n increases), the FP rate continues
to increase until around n = 9 (intermediate-disorder regime),
and then it saturates at around 90% in the strong-disorder
regime. This is a relatively high FP rate, which again confirms
the low predictive power of TV in the presence of disorder.
Thus, we have established that the common notion of topology
being given by a binary choice (some invariant being positive
or negative) does not work for finite disordered wires.

D. Experimental relevance

All of the previous indicators, TV Q, I (3), and I (4), are the-
oretical and can only be applied to simulations. Therefore, we
connect our theoretical indicators to the experimental results,
i.e., the differential conductance spectrum.

In this section, we aim to study whether the ZBCP
strengths from both ends correlate with the existence of topo-
logical localized MZMs. Namely, we want to answer the
two questions: (1) Does the presence of topological localized
MZMs always lead to quantized ZBCP at both ends? (2) Does
quantized ZBCP at both ends always lead to the presence of
topological localized MZMs?

Here the “localized MZMs” are defined the same as before
from the two aspects: (1) nontrivial topology indicated by TV;
(2) the LDOS shows an isolated localized zero-energy state
indicated by both I (3) and I (4). The “quantized conductance”
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FIG. 21. The joint distribution of TV Q and ratio I (4) for 3-micron wires with k = 9 for different n = 0 (a), and 5 � n � 12 [(b)–(i)]. The
regime between two red dashed lines indicates data points satisfying the threshold. Outliers (|I (4)| > 0.15) are suppressed for visibility.

is defined as the ZBCP within ±10% of 2e2/h (i.e., 1.8 to
2.2 e2/h), namely, we require the deviation of quantized con-
ductance as per

�G ≡ 1

2

∑
i={L,R}

∣∣∣∣Gii(Vbias = 0) − 2e2

h

∣∣∣∣ < 0.2
e2

h
. (16)

To answer these two questions from a statistical point
of view, we compute the Bayesian conditional probability
conditioned on each other (i.e., “quantized conductance”
and “localized MZMs”) in Fig. 23(a). Namely, we compute

(1) the probability of measuring quantized conductance
given the state is isolated localized MZMs (blue line),
denoted as P(quantized conductance|localized MZM),
and (2) the probability of isolated localized MZMs
manifesting a quantized conductance (orange line)
P(localized MZM|quantized conductance). Again, each
Zeeman field VZ is one sample in the total ensemble
(however, we did not exclude the nominal trivial regime
this time). The missing points for large n (strong-disorder
regime) in P(quantized conductance|localized MZM) arise
because there is no sufficient instance of localized MZMs in
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FIG. 22. False-positive rate of using TV alone to predict topo-
logical localized MZM state with three choices of TV thresholds
Q < −0.1 (red), Q < −0.5 (orange), and Q < −0.9 (cyan). The
error bar indicates the 95% binomial proportion confidence interval.

the strong-disorder regime in the first place (and thus it is
meaningless to discuss its Bayesian conditional probability).
Namely, P(quantized conductance|localized MZM) ≡
P(quantized conductance ∩ localized MZM)

P(localized MZM) is not well defined because
P(localized MZM) itself is almost zero.

If the two events (“quantized conductance” and “lo-
calized MZMs”) are equivalent, then we expect to see
both conditional probabilities are 1, which is indeed the
case of the pristine wire (n = 0). However, as disorder in-
creases, the two conditional probabilities begin to diverge.
The probability P(quantized conductance|localized MZM)
remains close to 1 as n > 0; however, the recipro-
cal case P(localized MZM|quantized conductance) becomes
much smaller and approach to 0 in the strong-disorder regime
(n > 9).

Therefore, it would be intriguing to study those sam-
ples that fall outside of these two events. Namely,
we would like to know the case: (1) it has localized
MZMs but not quantized conductance, accounting for
P(quantized conductance|localized MZM) < 1, and (2) it has
quantized conductance but without the localized MZMs, ac-
counting for P(localized MZM|quantized conductance) < 1.
We do this next.

1. Localized MZMs without quantized ZBCP

An example of the first case is shown in Fig. 24 along with
Fig. 25. We find that the local conductance spectra show a
weak ZBCP with a thin linewidth and small conductance over
VZ ∈ [0.7, 1] [see Figs. 24(a) and 24(b)]. In the LDOS on the
bottom row, we notice that there is always a zero energy state
localized in the bulk of wire at around 1 micron. Therefore,
this example should not be considered localized MZMs due
to the bulk states. However, both indicators imply that the
localized states exist from VZ = 0.7 to 1 meV (cyan shaded
regions in Fig. 25). The reason for the indicator not capturing
the bulk state is that the peak in the bulk is slightly deviated
from the midpoint at 1.5 microns, and the height of the peak
is also not very prominent.

We also study other examples of the same type as
shown in Appendix E, and confirm that the discrepancy of
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FIG. 23. (a) The conditional probability of “quantized conduc-
tance” given “localized MZMs” (blue), and “localized MZMs” given
“quantized conductance” (orange) for different n. The error bar in-
dicates the 95% binomial proportion confidence interval. (b) The
conditional probability of “nonquantized conductance” given “the
absence of localized MZMs modes” (blue) and “the absence of lo-
calized MZMs modes” given “nonquantized conductance” (orange)
for different n. Here A indicates the negation of the event A. (c) The
conditional probability of “nonquantized conductance” given “non-
trivial topology and the absence of localized MZMs modes” (blue),
and “nontrivial topology and the absence of localized MZMs modes”
given “nonquantized conductance” (orange) for different n.

P(quantized conductance|localized MZM) from 1 all comes
from the imperfect criterion in I (3) and I (4). Namely, there
are some data points that are not perfect localized MZMs
are falsely identified as localized MZMs. This is an artifact
of the indicator I (3) and I (4) because the accuracy of these
indicators is subjected to the choice of the threshold. However,
this does not mean that the indicators are not valid but should
rather be understood as that they can provide a direction for
improvement. Because, ultimately, what is being proposed
in this paper is the logic of using the criterion on LDOS to
select the localized MZMs, and Eq. (13) is just one possible
implementation. Therefore, to reduce the false-positive rate
of the indicator of topological MZMs, we can impose more
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FIG. 24. An example of localized MZMs without quantized ZBCP in a 3-micron wire with n = 7 and k = 9. [(a)–(d)] Local (GLL and GRR)
and nonlocal (GLR and GRL) conductance spectra. The bottom (top) axis shows the Zeeman (magnetic) field. The vertical dashed line indicates
nominal TQPT. [(e)–(g)] LDOS at left, midpoint, and right end. (h) Total DOS. [(i)–(j)] Topological visibility Q and thermal conductance κ .
(k) LDOS at zero energy for VZ = 0.6 meV. (l) Spatial profile of effective mass.
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FIG. 25. The benchmark of I (3) and I (4)
1,2 on an example of localized MZMs without quantized ZBCP (cyan-shaded regions) in a 3-micron

wire with n = 7 and k = 9 in Fig. 24. [(a) and (b)] Line cuts of the local (GLL and GRR) conductance at zero bias. The red dashed line indicates
the threshold of quantized conductance. (c) KL divergence I (3) (black) on the left axis, and TV Q (red) on the right axis as a function of VZ . The
horizontal dashed line indicates the threshold of I (3) (0.9). (d) Ratio of midpoint LDOS and end LDOS I (4)

1 (black), and the ratio of maximal in
the bulk and end LDOS I (4)

2 (blue). TV Q (red) on the right axis as a function of VZ . The horizontal dashed line indicates the threshold of I (4)
1 ,

0.04 (black), and I (4)
2 , 1 (blue), respectively. [(e)–(h)] The LDOS at four Zeeman fields indicated by the vertical dashed line in (a)–(d).
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FIG. 26. An example of quantized ZBCP without localized MZMs in a 3-micron wire with n = 6 and k = 9. [(a)–(d)] Local (GLL and GRR)
and nonlocal (GLR and GRL) conductance spectra. The bottom (top) axis shows the Zeeman (magnetic) field. The vertical dashed line indicates
nominal TQPT. [(e)–(g)] LDOS at left, midpoint, and right end. (h) Total DOS. [(i)–(j)] Topological visibility Q and thermal conductance κ .
(k) LDOS at zero energy for VZ = 0.6 meV. (l) Spatial profile of effective mass.

stringent criteria by modifying the detail of Eqs. (13) and (14).
For example, we can modify Eq. (13) by using the average
LDOS over a finite region of the bulk instead of just one point
right at the midpoint, which will exclude the case shown in
Fig. 24.

2. Quantized ZBCP without localized MZMs

The other scenario is that the ZBCP manifests the quan-
tized conductance but without having the localized MZMs.
This case is more common because (1) it can either happen
in the case of “ugly ZBCP” [19,53], where the quantized
ZBCP is accidentally induced by disorder without a nontrivial
topological invariant (i.e., Q > −0.9), or (2) it can happen in
the case where TV is negative but there are multiple patches
of topological regime in the bulk [34] (i.e., Q < −0.9 but
without localized states).

An example of the first case is shown in Fig. 26 along with
Fig. 27. In Figs. 26(a) and 26(b) and Figs. 27(a) and 27(b),
the local conductance spectra show the almost quantized
ZBCPs from both ends. However, the nonlocal conductance
spectra in Figs. 26(c) and 26(d) do not manifest any fea-
ture of the gap closing and reopening. In Figs. 26(i) and
26(j), the TV is mostly positive when ZBCPs appear at
around VZ = 0.75 to 0.8 meV, and the thermal conductance
shows multiple peaks. However, this is the region where
local conductance shows quantized ZBCPs. In Figs. 26(k)
and 26(l), we notice multiple bulk states in the LDOS at
zero energy, which are localized at the same positions of the

impurities. In Figs. 27(c) and 27(d), the KL divergence I (3) is
larger than 1 and the ratio I (4)

1 and I (4)
2 both do not satisfy

the threshold, indicating the absence of localized states. In
Figs. 27(e) and 27(h), we see two bulk states localized at
around 0.5 microns and 2.5 microns (outside the “end” re-
gion), which explains the large value I (3) and I (4)

1,2 in Figs. 27(c)
and 27(d).

An example of the second case is shown in Fig. 28 along
with Fig. 29. In Figs. 28(a) and 28(b), the local conduc-
tance spectra show quantized ZBCPs from both ends, and
the nonlocal conductance spectra show a gap closing and
reporting feature, although the reopened gap size is very
tiny (< 10% of the proximitized SC gap). In this case, al-
though the TV is negative from Fig. 28(i), the localized
state is absent because LDOS at zero energy has multiple
peaks in the bulk, as shown in Figs. 29(e) and 29(h). This
is an example demonstrating the importance of isolated lo-
calized states in the LDOS. More examples that manifest
quantized ZBCP but without localized MZMs are shown in
Appendix F.

Finally, in Sec. IV C, we show that if the wire mani-
fests a trivial topological invariant, then the localized states
cannot exist either (see Figs. 20 and 21). This means that
these two scenarios above do not have localized states. That
is, we can ignore the effect of the topological invariant
Q and only look at whether the localized state exists or
not to determine the existence of the topological localized
MZMs. Basically, in finite disordered systems the topological
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FIG. 27. The benchmark of I (3) and I (4)
1,2 on an example of quantized ZBCP without localized MZMs (cyan-shaded regions) in a 3-micron

wire with n = 6 and k = 9 in Fig. 26. [(a) and (b)] Line cuts of the local (GLL and GRR) conductance at zero bias. The red dashed line indicates
the threshold of quantized conductance. (c) KL divergence I (3) (black) on the left axis, and TV Q (red) on the right axis as a function of VZ . The
horizontal dashed line indicates the threshold of I (3) (0.9). (d) Ratio of midpoint LDOS and end LDOS I (4)

1 (black), and the ratio of maximal in
the bulk and end LDOS I (4)

2 (blue). TV Q (red) on the right axis as a function of VZ . The horizontal dashed line indicates the threshold of I (4)
1 ,

0.04 (black), and I (4)
2 , 1 (blue), respectively. [(e)–(h)] The LDOS at four Zeeman fields indicated by the vertical dashed line in (a)–(d).
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FIG. 28. An example of quantized ZBCP without localized MZMs in a 3-micron wire with n = 10 and k = 9. [(a)–(d)] Local (GLL

and GRR) and nonlocal (GLR and GRL) conductance spectra. The bottom (top) axis shows the Zeeman (magnetic) field. The vertical dashed
line indicates nominal TQPT. [(e)–(g)] LDOS at left, midpoint, and right end. (h) Total DOS. [(i)–(j)] Topological visibility Q and thermal
conductance κ . (k) LDOS at zero energy for VZ = 0.6 meV. (l) Spatial profile of effective mass.
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FIG. 29. The benchmark of I (3) and I (4)
1,2 on an example of quantized ZBCP without localized MZMs (cyan-shaded regions) in a 3-micron

wire with n = 10 and k = 9 in Fig. 28. [(a) and (b)] Line cuts of the local (GLL and GRR) conductance at zero bias. The red dashed line indicates
the threshold of quantized conductance. (c) KL divergence I (3) (black) on the left axis, and TV Q (red) on the right axis as a function of VZ . The
horizontal dashed line indicates the threshold of I (3) (0.9). (d) Ratio of midpoint LDOS and end LDOS I (4)

1 (black), and the ratio of maximal in
the bulk and end LDOS I (4)

2 (blue). TV Q (red) on the right axis as a function of VZ . The horizontal dashed line indicates the threshold of I (4)
1 ,

0.04 (black), and I (4)
2 , 1 (blue), respectively. [(e)–(h)] The LDOS at four Zeeman fields indicated by the vertical dashed line in (a)–(d).

invariant Q is simply not very meaningful, and perhaps should
be avoided.

3. Negation of localized MZMs and quantized ZBCP

Although the localized MZMs and quantized ZBCP are
not equivalent in the general disorder case, the negation of
the two events is almost equivalent. Here we study the case
where both events, localized MZMs and quantized ZBCP,
are absent. Namely, we aim to answer the questions which
correlate the negation of two events: (1) Does the absence
of topological localized MZMs always lead to nonquantized
ZBCP at both ends? (2) Does nonquantized ZBCP at both
ends always lead to the absence of topological localized
MZMs?

This is important not only because these two questions
are complementary to the previous two questions, but also
because if any of the questions is true, then it provides a way
to rule out the topological localized MZMs barely from the
conductance spectrum.

Therefore, we again compute the Bayesian conditional
probability conditioned in Fig. 23(b). Here the overline A
means the negation of the event A. We find that both Bayesian
conditional probabilities are close to 1, and the probability
of the absence of localized MZMs given nonquantized con-
ductance [orange line in Fig. 23(b)] is much closer to
1. This means that “quantized conductance” is a neces-
sary condition for the “localized MZMs.” This also verifies
the previous conjecture that the conditional probability of
P(quantized conductance|localized MZMs) should always be
1 [blue line in Fig. 23(a)], which was not manifested explic-
itly in the strong disorder due to the scarcity of ‘localized
MZMs’ itself in the strong disorder. (Because P(A|B) = 1 ⇔
P(B|A = 1))

The other conditional probability “having nonquantized
conductance given the absence of localized state” [blue

line in Fig. 23(b)] is also quite close to 1, but not as
close as the reciprocal case. Combined with the fact that
P(localized MZMs|quantized conductance) is rather small
and approaches zero in the strong-disorder regime, we can
conclude the relative statistical occurrence of the following
events:

P(localized MZMs ∩ quantized conductance)

� P(localized MZMs ∩ quantized conductance)

� P(localized MZMs ∩ quantized conductance)

� P(localized MZMs ∩ quantized conductance) ∼ 0,

(17)

The first inequality is deduced from the fact that
P(quantized conductance|localized MZMs) [blue line in
Fig. 23(b)] is close to 1. The second inequality is deduced
from the fact that P(localized MZMs|quantized conductance)
[orange line in Fig. 23(a)] is very small and close to
0 in the strong-disorder regime. The third inequality
is deduced simply from the fact that both
P(localized MZMs|quantized conductance) [blue line in
Fig. 23(a)] and P(quantized conductance|localized MZMs)
[orange line in Fig. 23(b)] should be 1.

In other words, this hierarchy of the statistical occurrence
means that (1) if the conductance spectrum does not show
quantized ZBCP in experiments, then it is also unlikely to
be the useful localized MZMs. (2) Conversely, if the state
is not a localized MZM, though it can show the quantized
conductance in rare cases, but mostly of the case, then it
will just manifest any nonquantized conductance. We empha-
size that our results are valid at T = 0, so experimentally
it applies only to very low temperatures. Finite-temperature
crossover effects are impossible to study since they would
depend on other unknown parameters such as the tunnel
barrier strength controlling the conductance. Topology or
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FIG. 30. The histogram of the deviation of quantized conductance averaged over both ends, �G, [see Eq. (16)] conditioned on Q < −0.9
with localized states (cyan) and without localized states (orange) for different n. The absence of certain histograms is because of the absence
of the corresponding priori probability.

not can only be discussed at T = 0 from a theoretical
perspective.

4. Topological without localized states

When a state does not have localized MZMs, there could be
three possibilities: (1) It is not topological but is localized, (2)
it is neither topological nor localized, and (3) it is topological
but not localized.

The first case is actually rare because of Fig. 20 and Fig. 21,
namely, as we mentioned before, the TV is a necessary con-
dition for the localized MZMs—if the TV is positive, then
localized states is almost impossible. For the second case,
they are mostly mundane trivial states, which are not particu-
larly interesting. Therefore, in this section, we will focus on
the third case, and study whether the ZBCP strengths from
both ends correlate with whether isolated end states exist or
not. Namely, we aim to answer the two questions: (1) Does
negative TV without an isolated localized end state always
lead to nonquantized ZBCP at least at one end? (2) Does
nonquantized ZBCP at least at one end always imply negative
TV but without an isolated localized end state? Note that
the crucial difference between this section and the previous

section Sec. IV D 3 is whether we impose the condition of a
negative TV.

To answer the first question, we compute the probabil-
ity density distribution of quantized ZBCP given Q < −0.9
with localized states (cyan bars) and without localized states
(orange bars) for different n in Fig. 30. Namely, we use
p(�G|Q < −0.9 ∩ localized states) to denote the distribution
of the averaged deviation from quantized conductance con-
ditioned on the topological localized states, and similar for
p(�G|Q < −0.9 ∩ localized states).

For n = 0 in Fig. 30(a), we find a single peak at �G = 0
for the case of topological localized states. This is consistent
with the expectation that the ZBCP is always quantized if
the localized MZMs are present. The absence of the other
distribution conditioned on “topological but without localized
states” is because this case cannot exist in pristine wire (i.e.,
pristine wires always host localized MZMs in the topological
regime.)

As disorder increases (n increases), the distribution of the
quantized ZBCP is broader for the case of “topological but
without localized states” than the case of “topological with
localized state.” Namely, it is more likely to have quantized
ZBCP if localized MZMs are present. However, the other
distribution conditioned on “topological without localized
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states” also shows a peak at �G = 0, which means that the
negative TV without localized MZMs does not necessarily
imply the nonquantized ZBCP. We show such probability in
Fig. 23(c) (the blue line) where it indicates around 70% of
chances that the ZBCP is quantized even if it has a negative
TV but without localized states.

In the strong-disorder regime, the distribution conditioned
on “topological with localized states” is missing because this
is also a scenario that does not exist in the strong-disorder
regime [it is the same reason as in Fig. 23(a)].

Finally, we show the conditional probability of the recip-
rocal case to answer the second question in Fig. 23(c) (the
orange line). We find that this probability is almost always
zero. This is particularly interesting because from Fig. 23(b)
to Fig. 23(c), what makes the orange line change from almost
1 to 0 is only the restriction of TV being negative. This
indicates that, when the ZBCP is not quantized, it is not just
that localized MZMs are impossible, but also that the topology
itself is almost trivial. This is because

P(localized MZMs|quantized conductance)

= P((Q < −0.9) ∩ localized states|quantized conductance)

= P((Q < −0.9) ∩ localized states|quantized conductance) + P((Q > −0.9) ∩ localized states|quantized conductance)

+ P((Q > −0.9) ∩ localized states|quantized conductance)

= P((Q < −0.9) ∩ localized states|quantized conductance) + P((Q > −0.9) ∩ localized states|quantized conductance).

(18)

The third equal sign is because (Q > −0.9 ∩
localized states) is almost impossible as shown
in Figs. 20 and 21. Therefore, the fact that
P(localized MZMs|quantized conductance) ∼ 1 and
P((Q < −0.9) ∩ localized states|quantized conductance) ∼
0 indicates the large contribution from P((Q > −0.9) ∩
localized states|quantized conductance).

Note that the last equation in Eq. (18) can be further com-
bined to P(localized states|quantized conductance), which
means that the existence of “localized MZMs” can be statis-
tically inferred only from the existence of “localized states”
because “localized states” is a more rigorous statement. This
also demonstrates the importance of isolated localized states
at the ends of the wire over the topological invariant itself.
Because whether the topological localized MZMs (tested by Q
plus I (3) and I (4)) exist or not can be ultimately boiled down to
only whether the localized states (tested by I (3) and I (4)) exist
or not.

V. DISCUSSION AND CONCLUSION

In this paper, we propose a new way to model the dis-
order without explicitly involving the microscopic details of
disorder by using the varying effective mass in the wire.
We find that this model can capture the essential disorder
physics that was previously obtained by adding an uncor-
related Gaussian random potential to the chemical potential
[19,32,38]. Besides the qualitative agreement, this method
also provides a clear physical picture of the disorder effect—
segmenting the wire into quantum dots carrying different
regions of topological patches [34]. This provides us with
a crystal clear and simple picture to determine the disorder
regime by directly comparing the SC coherence length to the
mean free path [L/(n + 1)]. If the SC coherence length is

smaller than the mean free path, then the wire is in the pristine
or weak-disorder regime, where the topological regime is
mostly protected. If the SC coherence length is larger than the
mean free path, then the wire is in the strong-disorder regime,
where the topological regime is almost always destroyed. If
both length scales are comparable, then the wire is in the
intermediate-disorder regime, where the topological regime
may or may not exist because it depends on the details [39],
and we need to look at other metrics. (It is possible that
the best current experiments are in this difficult intermediate
regime, whereas all the earlier experiments during 2012–2022
were in the strong-disorder regime where the SC coherence
length is larger than the electron mean free path, and as such,
the experiments were only probing the class D antilocalization
conductance peaks, conflating it with Majorana peaks.)

One success of this model is that we can reproduce both
the positive (passing TGP) and negative results (failing TGP)
in the recent experiment by Microsoft Quantum [16] quali-
tatively by simply changing the number of impurities n that
segments the wire. This is not only a triumph of the theory
itself but also strong evidence that the experiment is indeed in
the intermediate-disorder regime. This is encouraging since
the earlier experiments were in the hopeless strong-disorder
regime where the system is Anderson localized with no
topology.

We then proceed to study the effect of other parameters in
this theory. We find that the variance of effective mass k does
not affect the boundary of the disorder regime as long as it is
sufficiently large (k > 10). On the other hand, the wire length
L plays a crucial role in determining the disorder regime, as
it can directly control the MFP. Therefore, to keep the same
disorder regime in a longer wire, one needs to increase the
number of impurities n accordingly to keep the MFP invari-
ant. Following this logic, we demonstrate how we make a
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nontopological wire topological by only increasing the SC
gap, which further decreases the SC coherence length until
it is a smaller value than the mean free path. Thus, future
progress in the subject will come from either decreasing the
disorder or increasing the SC gap (or perhaps both) as all one
needs is to achieve a large value for the dimensionless ratio
ξMFP/ξSC, which can be achieved either by increasing ξMFP

(by reducing disorder), or by decreasing ξSC (by increasing
the SC gap). It is important to emphasize that a pristine
nanowire manifests an exponentially protected topological
superconducting phase carrying non-Abelian end MZMs only
in the limit of L � ξSC [40]. Even for a pristine system,
there is no topology, no protection, and no isolated MZMs
when the wire length L is comparable to or shorter than ξSC

simply because the MZMs overlap strongly in this situation
and simply become ordinary subgap Andreev bound states
accompanied by Majorana oscillations [54]. In the presence
of disorder, the situation becomes complicated as disorder
may create almost-zero energy ABS throughout the bulk of
the wire, leading to a very complex scenario with no simple
description and no topology. This is the current experimental
scenario we are trying to describe using our new approach in
the current work.

In simulating the previous results, we touch on a bedrock
of the topological localized MZMs. Namely, we find that
the topological invariant itself is totally insufficient to predict
the topological localized MZMs in the short disordered wire.
We propose the importance of the isolated localized states at
the ends of the wire over the topological invariant itself as
was already mentioned in Ref. [34]. This is because for any
Majorana modes to be useful, it must be localized at the end
of the wire. Therefore, we propose several new indicators that
characterize the spatial distribution of the LDOS to filter out
the localized MZMs. These indicators are motivated by the
fact that we want the localized MZMs to be isolated at the
ends, and also to suppress the bulk states. By benchmark-
ing these indicators with the simulation in different disorder
regimes, we find two useful indicators that can predict the
isolated localized states pretty well. The first is the KL di-
vergence between the LDOS of a test state and a topological
localized state as a reference state. The second one is an
intuitive ratio between the end LDOS and the bulk LDOS, as
well as the maximal bulk LDOS and the end LDOS, to ensure
that the end LDOS is maximized while the bulk LDOS is
minimized, respectively. Combining these two indicators, we
inspect the predictive power of the topological invariant (i.e.,
TV), and find that the TV itself is not a good indicator as the
false-positive rate increases in the weak-disorder regime and
saturates in the strong-disorder regime. This implies that one
needs to also consider the spatial distribution of the LDOS to
form a reliable conclusion on the topological MZMs. In fact,
this is essentially to say that the indicators for the localized
states are more rigorous than the topological invariant itself.

Then, we use a stringent criterion by combining all three
indicators and then connect the theoretical indicators to the ex-
perimentally accessible conductance. By using the Bayesian
conditional probability, we answer several crucial questions
that were not seriously addressed before. For example, we
find the quantized ZBCP is a necessary condition for the
isolated localized MZMs to exist. Conversely, the existence
of localized MZMs is almost a necessary condition for the
quantized ZBCP but not absolutely. We also find the hierar-
chy of the statistical occurrence of the localized MZMs and
quantized ZBCP in the strong-disorder regime, namely, the
case of “nonquantized ZBCP” without “localized MZMs” is
more common than the case of “quantized ZBCP” without
“localized MZMs,” followed by the case of “quantized ZBCP”
with ‘localized MZMs’(the case of “nonquantized ZBCP”
with “localized MZMs” is not physically sensible).

Finally, we study the importance of the isolated localized
states at the ends of the wire by asking whether the con-
ductance is always nonquantized if the wire has nontrivial
topological invariant but without localized states. We find that
the quantized ZBCP is more likely to appear if the localized
MZMs are present, but the absence of localized MZMs does
not necessarily imply the nonquantized ZBCP. In addition, we
find that if the conductance is not quantized, then the reason is
always that the wire itself is not topological and the localized
states are absent. Since the localized states are more rigorous
criteria than the topological invariant itself, this means that
if the conductance is not quantized, then the wire does not
have a localized state. This suggests strongly that one should
focus on whether localized states in the LDOS exist beyond
the topological invariant itself to determine the existence of
useful topological isolated MZMs localized at the ends of the
wire.

While the Majorana nanowire problem has turned out
to be much more complicated than one had thought origi-
nally [1–4,40], the important physics point is that we have
learned a great deal of new physics involving the meaning of
topology itself in finite disordered systems. This knowledge
transcends the specific platforms we are considering and may
explain why topology has been so difficult to observe in other
platforms too (e.g., quantum spin Hall quantization, edge
physics in quantum hall systems). In the presence of disorder
suppressing the topological energy gap, a finite system con-
flates topology and finite-size crossover in a highly complex
manner. Our current work shows a new way of understanding
this complex interplay in Majorana platforms, which should
pave the way for significant future progress.

ACKNOWLEDGMENT

This work is supported by the Laboratory for Physical
Sciences through the Condensed Matter Theory Center at the
University of Maryland.

075401-30



DISORDERED MAJORANA NANOWIRES: STUDYING … PHYSICAL REVIEW B 110, 075401 (2024)

APPENDIX A: MORE SIMULATIONS OF THE EXPERIMENTAL DATA

In this section, we present more simulations of the positive results (Fig. 2) from Figs. 31–33, and negative results (Fig. 4)
from Figs. 34–38.
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FIG. 31. Simulation of the positive result Fig. 11 in Ref. [16] (also in Fig. 2) with n = 6, k = 9, and L = 3 µm. Same captions as Fig. 3.
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FIG. 32. Simulation of the positive result Fig. 11 in Ref. [16] (also in Fig. 2) with n = 6, k = 9, and L = 3 µm. Same captions as Fig. 3.
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FIG. 33. Simulation of the positive result Fig. 11 in Ref. [16] (also in Fig. 2) with n = 7, k = 9, and L = 3 µm. Same captions as Fig. 3.
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FIG. 34. Simulation of the negative result Fig. 20 in Ref. [16] (also in Fig. 4) with n = 9, k = 9, and L = 3 µm. Same captions as Fig. 5.
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FIG. 35. Simulation of the negative result Fig. 20 in Ref. [16] (also in Fig. 4) with n = 9, k = 9, and L = 3 µm. Same captions as Fig. 5.
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FIG. 36. Simulation of the negative result Fig. 20 in Ref. [16] (also in Fig. 4) with n = 9, k = 9, and L = 3 µm. Same captions as Fig. 5.
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FIG. 37. Simulation of the negative result Fig. 20 in Ref. [16] (also in Fig. 4) with n = 10, k = 9, and L = 3 µm. Same captions as Fig. 5.
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FIG. 38. Simulation of the negative result Fig. 20 in Ref. [16] (also in Fig. 4) with n = 12, k = 9, and L = 3 µm. Same captions as Fig. 5.
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APPENDIX B: MORE RESULTS SHOWING THE DEPENDENCE OF k

In this section, we present more results that resemble the positive results in Fig. 2 with an increasing k. Figures 39–42 show
the results for k = 20. Figures 43–48 show the results for k = 40. Figures 49–53 show the results for k = 80. Figures 54–56
show the results for k = 160.
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FIG. 39. n = 5, k = 20, and L = 3 µm. Same captions as Fig. 3.
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FIG. 40. n = 5, k = 20, and L = 3 µm. Same captions as Fig. 3.
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FIG. 41. n = 5, k = 20, and L = 3 µm. Same captions as Fig. 3.
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FIG. 42. n = 5, k = 20, and L = 3 µm. Same captions as Fig. 3.
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FIG. 43. n = 5, k = 40, and L = 3 µm. Same captions as Fig. 3.
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FIG. 44. n = 5, k = 40, and L = 3 µm. Same captions as Fig. 3.
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FIG. 45. n = 5, k = 40, and L = 3 µm. Same captions as Fig. 3.
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FIG. 46. n = 5, k = 40, and L = 3 µm. Same captions as Fig. 3.
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FIG. 47. n = 5, k = 40, and L = 3 µm. Same captions as Fig. 3.
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FIG. 48. n = 5, k = 40, and L = 3 µm. Same captions as Fig. 3.
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FIG. 49. n = 5, k = 80, and L = 3 µm. Same captions as Fig. 3.
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FIG. 50. n = 5, k = 80, and L = 3 µm. Same captions as Fig. 3.
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FIG. 51. n = 5, k = 80, and L = 3 µm. Same captions as Fig. 3.
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FIG. 52. n = 5, k = 80, and L = 3 µm. Same captions as Fig. 3.
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FIG. 53. n = 5, k = 80, and L = 3 µm. Same captions as Fig. 3.
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FIG. 54. n = 5, k = 160, and L = 3 µm. Same captions as Fig. 3.
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FIG. 55. n = 5, k = 160, and L = 3 µm. Same captions as Fig. 3.
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FIG. 56. n = 5, k = 160, and L = 3 µm. Same captions as Fig. 3.
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APPENDIX C: MORE RESULTS SHOWING THE DEPENDENCE OF L

We present more results in a 10-micron wire in (1) the pristine limit with n = 5 (Figs. 57 and 58), (2) weak-disorder regime
with n = 9 (Figs. 59 and 60), (3) weak-disorder regime with n = 19 (Figs. 61–63), and (4) intermediate-disorder regime with
n = 32 (Figs. 64 and 65).
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FIG. 57. Long wire limit L = 10 µm with n = 5 and k = 9. Same captions as Fig. 10.
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FIG. 58. Long wire limit L = 10 µm with n = 5 and k = 9. Same captions as Fig. 10.
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FIG. 59. Long wire limit L = 10 µm with n = 9 and k = 9. Same captions as Fig. 11.
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FIG. 60. Long wire limit L = 10 µm with n = 9 and k = 9. Same captions as Fig. 11.
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FIG. 61. Long wire limit L = 10 µm with n = 19 and k = 9. Same captions as Fig. 12.
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FIG. 62. Long wire limit L = 10 µm with n = 19 and k = 9. Same captions as Fig. 12.
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FIG. 63. Long wire limit L = 10 µm with n = 19 and k = 9. Same captions as Fig. 12.
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FIG. 64. Long wire limit L = 10 µm with n = 32 and k = 9. Same captions as Fig. 13.
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FIG. 65. Long wire limit L = 10 µm with n = 32 and k = 9. Same captions as Fig. 13.

APPENDIX D: MORE BENCHMARK RESULTS ON THE FOUR INDICATORS

In this section, we provide more benchmark results for the four indicators from the weak-disorder regime with n = 6
(Figs. 66–68) to the intermediate-disorder regime (Fig. 69), and strong-disorder regime with n = 10 (Fig. 70).
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FIG. 66. The benchmark of four indicators on the weak-disorder 3-micron wire with n = 6 and k = 9 in Fig. 31. Same captions as Fig. 17.

075401-48



DISORDERED MAJORANA NANOWIRES: STUDYING … PHYSICAL REVIEW B 110, 075401 (2024)

0 1
VZ (meV)

0

1

I
(1

)

(a)

0 1
VZ (meV)

0.0

2.5

I
(2

)

(b)

0 1
VZ (meV)

0

1

I
(3

)

(c)

0 1
VZ (meV)

0

1

I
(4

)
1

,I
(4

)
2

(d)

0 1 2 3

xi (μm)

0

2

ρ
( ω

=
0
,x

i
)

(e)

VZ=0.6 meV

0 1 2 3

xi (μm)

0

2
ρ
( ω

=
0
,x

i
)

(f)

VZ=0.7 meV

0 1 2 3

xi (μm)

0

2

ρ
( ω

=
0
,x

i
)

(g)

VZ=0.8 meV

0 1 2 3

xi (μm)

0

2

ρ
( ω

=
0
,x

i
)

(h)

VZ=0.9 meV

−1

0

1

−1

0

1

−1

0

1

−1

0

1

Q

FIG. 67. The benchmark of four indicators on the weak-disorder 3-micron wire with n = 6 and k = 9 in Fig. 32. Same captions as Fig. 17.
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FIG. 68. The benchmark of four indicators on the weak-disorder 3-micron wire with n = 7 and k = 9 in Fig. 33. Same captions as Fig. 17.
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FIG. 69. The benchmark of four indicators on the weak-disorder 3-micron wire with n = 9 and k = 9 in Fig. 36. Same captions as Fig. 17.
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FIG. 70. The benchmark of four indicators on the weak-disorder 3-micron wire with n = 10 and k = 9 in Fig. 37. Same captions as Fig. 17.

APPENDIX E: MORE RESULTS SHOWING LOCALIZED MZMs WITHOUT QUANTIZED ZBCP

In this section, we present more results that show isolated localized MZMs but without manifesting quantized
ZBCP in the strong-disorder limit from Figs. 71–74.
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FIG. 71. An example of localized MZMs without quantized ZBCP in a 3-micron wire with n = 5 and k = 9. Same captions as Fig. 24
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FIG. 72. The benchmark of I (3) and I (4)
1,2 on an example of localized MZMs without quantized ZBCP (cyan-shaded regions) in a 3-micron

wire with n = 5 and k = 9 in Fig. 71. Same captions as Fig. 25.
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FIG. 73. An example of localized MZMs without quantized ZBCP in a 3-micron wire with n = 6 and k = 9. Same captions as Fig. 24.
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FIG. 74. The benchmark of I (3) and I (4)
1,2 on an example of localized MZMs without quantized ZBCP (cyan shaded regions) in a 3-micron

wire with n = 6 and k = 9 in Fig. 73. Same captions as Fig. 25.

APPENDIX F: MORE RESULTS SHOWING QUANTIZED ZBCP WITHOUT LOCALIZED MZMs

In this section, we present more results that manifest quantized ZBCP but without showing isolated localized MZMs in the
strong-disorder limit from Figs. 75–78.
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FIG. 75. An example of quantized ZBCP without localized MZMs in a 3-micron wire with n = 11 and k = 9. Same captions as Fig. 26.
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FIG. 76. The benchmark of I (3) and I (4)
1,2 on an example of quantized ZBCP without localized MZMs (cyan-shaded regions) in a 3-micron

wire with n = 11 and k = 9 in Fig. 75. Same captions as Fig. 27.
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FIG. 77. An example of quantized ZBCP without localized MZMs in a 3-micron wire with n = 12 and k = 9. Same captions as Fig. 26.
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FIG. 78. The benchmark of I (3) and I (4)
1,2 on an example of quantized ZBCP without localized MZMs (cyan-shaded regions) in a 3-micron
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