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In a quantum Hall interferometer, the dependence of the signal on source-drain voltage is controlled by details
of the edge physics, such as the velocities of edge modes and the interaction between them and with screening
layers. Such dependence of the signal has been seen in recent experiments at various integer and fractional
filling factors, including ν = 2 and 2/5, where two edge modes are present. Here we study theoretically the
current-voltage curves for various values of the relative edge velocities, interaction strength, and the temperature,
in a model containing two edge modes. We consider separate cases in which the inner mode or the outer mode is
weakly backscattered at the tunneling contacts. When the inner mode is completely reflected and the outer mode
is partially transmitted, we find striking features at very low temperatures related to resonance of excitations of
the closed inner channel. Fluctuations in the charge of the closed inner mode, caused by sparse tunneling events,
lead to an exponential suppression of the interference visibility at high voltages, in agreement with experiments.
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I. INTRODUCTION

Interferometric methods have proven to be a powerful
experimental tool for the investigation of quantum Hall sys-
tems [1–25]. Most dramatically, for fractional quantized Hall
states, interferometry has provided direct measurements of
the fractional statistics as well as the fractional charges of
quasiparticle excitations. More generally, for both integer and
fractional quantum Hall states, interferometry has provided
information about the nature of the modes that propagate
along the edges of the interferometer, including their inter-
actions with localized charges in the bulk. At a higher level,
interferometer experiments provide some sensitive tests of our
understanding of quantum Hall states in real materials.

In this paper, we restrict ourselves to quantum Hall in-
terferometers of the Fabry-Pérot type [15]. In this geometry,
two constrictions allow charged quasiparticles or electrons to
tunnel between the chiral edge modes on the two sides of a
quantum Hall region (Fig. 1). When a voltage difference is
applied between the two edges of the device, any particles that
tunnel across the constrictions will reduce the current trans-
mitted along the edges, and this will lead to a decrease in the
measured electrical conductance. If quasiparticles can propa-
gate coherently along the edges between the two constrictions,
the tunneling amplitudes will add coherently with a phase dif-
ference that depends on the magnetic flux passing through the
interferometer region, with possible additional contributions
due to quantum statistics when fractionally charged quasi-
particles are involved. As the enclosed flux is sensitive to
relatively small changes in the applied magnetic field or to
changes in the area of the device caused by changes in the
voltage applied to nearby gates, changes in these parameters
can lead to interference oscillations in the electrical resistance
of the device. It should be noted that changes in the inter-
ferometer area can result from Coulomb interactions between

the edge modes and charges in the bulk, as well as from direct
interactions with the gates [21].

Experiments are most frequently carried out in the limit of
small source-drain voltages, where the transmitted current is a
linear function of the applied voltage. Further information can
be obtained, however, from measurements at larger voltages.
Voltage dependencies in the case in which the quantized Hall
state has a single propagating mode along each edge, such as
at filling factors ν = 1 or 1/3, were discussed in Ref. [15].
The analysis predicted an oscillatory dependence of the inter-
ference amplitude on the applied voltage, with a voltage scale
determined by the edge-mode velocity and the length of the
interference path. The precise form of the voltage dependence
was found to depend on the filling factor ν.

In this paper, we extend the theory to cases in which there
are two copropagating modes on each edge. Specifically, we
consider a fractional case with bulk filling factor ν = 2/5 and
the integer case ν = 2. We take into account the Coulomb
coupling between charge fluctuations along the two modes
on a given edge, but we assume that over longer distances
interactions are well screened, due to the presence of a nearby
conducting gate. We also assume weak scattering of charges
between the two edge modes. This assumption is justified
in the case of ν = 2, because the associated particles have
different spins in the two modes, and tunneling requires a
spin flip. For ν = 2/5, the experiments of Ref. [13] suggest
that intermode tunneling is weak in that case as well, per-
haps because of a relatively large separation of the two edge
channels and a small interferometer size (cf. Ref. [26]). At
the same time, intermode scattering cannot be ignored on the
laboratory timescale. We will see that such rare scattering
events can dramatically suppress the observed time-averaged
interference current in the nonlinear regime.

When the interferometer edge contains two copropagating
modes, different interference phenomena can occur depending
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FIG. 1. Schematics of an electronic Fabry-Pérot interferometer
with filling factor ν = 2/5, showing inner mode (a) and outer mode
(b) tunneling. Tunneling is shown with dashed lines. On each edge
of the interferometer, there are two copropagating edge modes.

on the nature of the constrictions. If the constrictions are only
weakly pinched off, tunneling will occur only between the
inner modes of the two edges, while the outer modes pass
freely through the constrictions [see Fig. 1(a)]. We shall see
that in this case, the presence of the outer mode has relatively
little effect on the interference signal, and the voltage depen-
dence of the interference amplitude is similar to what one
would predict for the inner mode alone, using the formulas
of Ref. [15]. The situation is more interesting in the regime
where the constrictions are pinched to the extent that the inner
mode is completely reflected, while the outer mode passes
through the constrictions with only weak backscattering [see
Fig. 1(b)]. This physical situation was previously addressed
for ν = 2 and T = 0 under the assumption of an infinite edge
velocity [23]. We go well beyond that limiting case.

In another departure from the earlier work, we consider
asymmetric voltage bias. It is usually assumed that the voltage
bias is applied symmetrically, that is, the potentials Vd and Vu

of the lower and upper edges equal ±V/2, where V is the bias.
In actual experiments [14] the bias is often asymmetric. We
thus introduce the bias voltage V = Vd − Vu and the average
voltage Ṽ = (Vu + Vd )/2, which can often be treated as in-
dependent parameters. The degree of asymmetry is measured
by the parameter η = Ṽ /V , which ranges from 0 to 1/2. Note
that for a linear relation Ṽ = ηV between the bias and average
voltages, the conductance depends on the derivatives of the
current with respect to both V and Ṽ .

Experiments in the case of ν = 2/5 appear to be in a
regime where the Coulomb coupling between the two edge
modes is relatively weak [13]. On the other hand, in the integer
case, experiments can fall in a regime where the two modes
are strongly coupled. Such strong coupling has been proposed
[27] to explain the “pairing” phenomenon [28,29] in GaAs

systems, where the oscillation period in a range of filling
factors above ν = 2 coincides with what one might expect
for particles of charge 2e, and it has been observed directly
in a graphene interferometer [14,30]. Consequently, in our
numerical examples, we shall focus on the strong-coupling
regime for ν = 2 but the weak-coupling regime for ν = 2/5.

The signal measured in a quantum Hall interferometer will
generally depend on the number of quasiparticles inside the
interference loop. In fractional quantum Hall states, there will
be phases associated with quantum statistics of the quasiparti-
cles, in addition to effects of electrostatic interactions, which
may be present in integer as well as fractional cases. For
bulk quasiparticles, the latter effect may be neglected if the
bulk-edge interaction is well screened, as we assume in this
paper. However, electrostatic coupling cannot be neglected
between the two copropagating edge modes, which are close
together in space. In the case of outer-mode interference, the
inner mode forms a closed loop, which contains an integer
number of quasiparticles, and we have to account for possible
fluctuations of this number.

In the linear transport regime, all fluctuations are ther-
mal and become unimportant in the low-temperature situation
that we consider in this paper. In the nonlinear transport
regime, however, it is possible for charge to tunnel between
the inner loop and the outer edge channels, so that a small
leakage current flows through the device. Although the tun-
neling timescale is much longer that the travel time of a
charge through the interferometer along its edges, the leakage
current can cause fluctuations in the charge on the closed
inner loop on the timescale of an experimental measure-
ment. As the charge fluctuations grow with increasing voltage
bias, the resulting fluctuations in the interference phase can
lead to rapid suppression of the observed signal at large
voltages.

In a separate effect, even when the charge on the closed
inner loop is fixed, there can be resonances in the transport
when the bias voltage times the tunneling charge matches the
energy of a plasma excitation on the inner loop.

The organization of our paper is as follows. In Sec. II,
we introduce the models used in our paper, and we outline
our computational methods. In Sec. III, we consider in detail
the integer quantum Hall effect at ν = 2, while in Sec. IV,
we consider ν = 2/5. In all cases, when we consider inter-
ference of the outer mode, we begin with a discussion under
the assumption of a fixed charge on the island formed by the
closed inner channel. In that regime, tunneling between co-
propagating edge channels can be neglected. We then address
the regime of the fluctuating island charge. This amounts to
averaging the results for the fixed charge over the statistical
distribution of the charge on the inner edge channel. The
fixed charge approximation applies in two cases: when the
timescale of the experiment is shorter than the time over which
the island charge changes, and if the island charge does not
fluctuate at all, as may be the case in the linear transport
regime.

In Secs. II and III, we separately consider the cases of
asymmetric and symmetric voltage bias. Since experiments
[13] at ν = 2/5 were performed at an approximately sym-
metric voltage bias, however, we assume that the bias is
symmetric in the discussion of ν = 2/5.
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Our findings are summarized in Sec. V. Some technical
details are addressed in Appendixes A and E. Appendix B
contains a careful calculation of the Aharonov-Bohm phase.
Experimental data are usually presented as a Fourier trans-
form of the interference contribution to the current. We
address the subtleties of such a Fourier transform in
Appendixes C and D. Appendix F contains a table of notations
in this paper.

II. MODEL

A. Edge modes

We start with the model of a quantum Hall (QH) liquid with
two copropagating chiral edge modes. The outer mode sepa-
rates the filling factor ν1 from 0, and the inner mode separates
the filling factor ν1 from the filling factor ν = ν2 + ν1. One
example from the integer QH effect (IQHE) is the ν = 2 liq-
uid, where ν1 = ν2 = 1; another example from the fractional
QH effect (FQHE) is the ν = 2/5 liquid, where ν1 = 1/3 and
ν2 = 1/15. The Lagrangian of a single chiral left-moving QH
edge in the absence of the intermode interaction is

L = h̄∂xφo(∂t − vo∂x )φo

4π
+ h̄∂xφi(∂t − vi∂x )φi

4π
, (1)

where vo and vi are the velocities of the outer and inner modes.
To describe the opposite propagation direction, one needs to
change the sign in front of the time derivatives. The Bose
fields φ describe the linear charge densities on the edge chan-
nels, − e

√
νi∂xφ

2π
, for a left-moving channel with filling factor

discontinuity νi. The charge density of a right-moving channel
is defined with the opposite sign: e

√
νi∂xφ

2π
. Here, −e < 0 is the

electron charge, and we have assumed that the magnetic field
points in the negative z-direction.

In contrast to the case of a single edge mode, a Fabry-Pérot
interferometer can now be operated in two ways: inner mode
tunneling in Fig. 1(a) and outer mode tunneling in Fig. 1(b).
In both cases, we assume that the distances between two
quantum point-contacts (QPC1 and QPC2) are the same along
the two edges, and the coordinates of QPC1 and QPC2 are x1

and x2. The distance is denoted as a = |x2 − x1|. An adjust-
ment for an asymmetric device with the different distances
is straightforward. Figure 1(a) shows the situation of inner
mode tunneling, where tunneling occurs between the coun-
terpropagating modes on the upper (u) and lower (d) edges at
the two QPCs. Figure 1(b) shows the situation of outer mode
tunneling, where the inner bulk region is completely pinched
off by the side gates, and the inner mode forms a closed loop
within the interference loop, leading to the direct tunneling
through the outer bulk. Inner mode tunneling has been exten-
sively studied in the past (see, in particular, Ref. [22]), and
we address that case only briefly. The main focus of the paper
is the technically harder and physically richer case of outer
mode tunneling.

The Lagrangian (1) is written in a gauge such that the
vector potential of the magnetic field has zero component
parallel to the edges away from the tunneling contacts.
At the contacts, the vector potential is large and points across
the constriction. This leads to an Aharonov-Bohm phase in
the tunneling operator, which depends on the magnetic field,

the charge of the tunneling particle, and the area enclosed
by the interferometer path. For fractional Hall states, there
can be additional contributions to the phase, arising from the
braiding statistics with quasiparticles inside the loop. In the
case of a closed inner channel, the total phase accumulation
around the loop, including the Aharonov-Bohm phase and any
braiding phases due to enclosed anyons, is required to obey a
quantization condition, which leads to quantization of the total
charge on the closed loop (see Sec. II E 1).

We note that the fields φ in Eq. (1) and the associated
charge densities should be understood to describe fluctuations
or deviations from an equilibrium state having a specified
value of the voltages applied to any nearby gates, as well
as fixed voltage on the edge states and a specified magnetic
field. Varying voltages from these fiduciary values will lead to
additional terms in the Lagrangian, linear in the gradients ∂xφ.

Obviously, the noninteracting model (1) is oversimplified.
A more realistic model adds a short-range Coulomb interac-
tion to the Lagrangian [23],

Le = − h̄w

2π
(∂xφo)(∂xφi ), (2)

where the Coulomb repulsion strength w > 0. The total
Lagrangian L + Le can be diagonalized by introducing the
following transformation:(

φo

φi

)
=

(
cos θ − sin θ

sin θ cos θ

)(
φ1

φ2

)
, (3)

where φ1,2 are the edge eigenmodes. Having in mind ν = 2/5,
we expect that the bare velocity vo of the outer 1/3 mode
is faster than the velocity vi of the inner 1/15 mode. If we
choose 0 < θ < π/4 satisfying tan(2θ ) = 2w/(vo − vi ), then
the diagonalized Lagrangian is

L + Le = h̄∂xφ1(∂t − v1∂x )φ1

4π
+ h̄∂xφ2(∂t − v2∂x )φ2

4π
, (4)

with the velocities of the eigenmodes being

v1 = 1
2 [vo + vi +

√
(vo − vi )2 + 4w2], (5)

v2 = 1
2 [vo + vi −

√
(vo − vi )2 + 4w2]. (6)

In the following sections, we shall deal with the inner and
outer mode tunneling in the presence of short-range interac-
tion. We discuss tunneling contacts in Sec. II B. Section II C
deals with the case of the open inner channel. Sections II D
and II E address a much harder problem of the closed inner
channel. We make the assumption that the interaction strength
w is less than

√
vivo and hence v2 > 0 as thermodynamic

stability demands.
As mentioned above, we assume weak tunneling between

the modes on a single edge. Nevertheless, rare tunneling
events are important at a high bias. We thus approach the
problem in two steps. First, we neglect intermode tunneling
in Sec. II D. This amounts to computing the tunneling current
through the interferometer on a short timescale. Next, we in-
troduce intermode tunneling between copropagating channels
in Sec. II E. We only consider intermode tunneling events in
the closed-loop geometry Fig. 1(b) since only in that case is
there long-term memory of rare tunneling events due to the
charge conservation on the closed loop. The memory effect
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means that the interference current, computed at a fixed charge
of the inner island, should be averaged over all possible charg-
ers on the inner loop.

In principle, tunneling between the edges and localized
states in the bulk of the interferometer can affect the current
even in geometry Fig. 1(a), where both channels are open.
We will not consider this part of physics in this paper. Such
tunneling was addressed in the linear transport regime at finite
temperatures in Ref. [21]. Our analysis should apply, however,
if the sample is in an incompressible state, with at most a
few localized states inside the energy gap in the interior of
the interferometer.

Most of our analysis assumes symmetric voltage bias,
Ṽ = 0. Yet, the experiment [14] at ν = 2 was performed at
asymmetric bias. We extend the theory to the asymmetric case
in Sec. II F.

B. Quantum point contacts

In general, for a two-point Fabry-Pérot interferometer
where quasiparticles with charge e∗ tunnel and a voltage bias
V is applied, the total Hamiltonian is Ĥ + ĤT , where Ĥ de-
scribes the edges and ĤT describes the interedge tunneling.
The edge Hamiltonian Ĥ is the sum of the Hamiltonians of
the upper and lower edges,

Ĥ =
∫

dx

{
h̄v1

4π

[(
∂xφ

u
1

)2 + (
∂xφ

d
1

)2
]

+ h̄v2

4π

[(
∂xφ

u
2

)2 + (
∂xφ

d
2

)2]}
, (7)

where the indexes u and d refer to the top and bottom edges.
As shown in Fig. 1, we choose the lower edge to be right-
moving and the upper edge to be left-moving; therefore, their
Bose fields satisfy the following commutation relation [31]:[

φ
d/u
j (t, x), φd/u

k (t, y)
] = ±iπsgn(x − y)δ jk, (8)

where the plus sign corresponds to the lower edge (d) and the
minus sign corresponds to the upper edge (u). The tunneling
Hamiltonian ĤT is expressed as

ĤT = 	1T̂ (t, x1) + 	2T̂ (t, x2) + H.c., (9)

where T̂ (t, x) are the tunneling operators that transfer parti-
cles from the lower edge to the upper edge through the QPCs,
x1,2 are the locations of the QPCs, and 	1,2 are the tunneling
amplitudes. Voltage bias enters as a difference of the chemical
potentials of the edges. It can be eliminated in a usual way
[20] in the interaction representation so that the tunneling
Hamiltonian becomes

ĤT = 	1eiωJ t T̂ (t, x1) + 	2eiωJ t T̂ (t, x2) + H.c., (10)

where ωJ = e∗V/h̄ is the effective Josephson frequency, e∗
is the charge of the tunneling particle, and V ≡ Vd − Vu is
the bias voltage, i.e., the difference between voltages applied
to the lower and upper edges. The bias voltage affects the
average charge density on the edges. For an asymmetrically
applied voltage bias, where Vu + Vd �= 0, this may alter the
net charge on the edge and induce a voltage-dependent shift
in the interference phase [20]. This effect will be discussed in
Sec. II F below.

The tunneling current operator is the time derivative of the
charge of one edge, and it can be represented as

ÎT = ie∗

h̄
[	1eiωJ t T̂ (t, x1) + 	2eiωJ t T̂ (t, x2) − H.c.]. (11)

Throughout this paper, we will work in the weak backscatter-
ing regime, i.e., we assume a small tunneling amplitude for
each quantum point contact and treat the tunneling Hamil-
tonian ĤT as a perturbation. In the lowest-order perturbation
theory, the expectation value for the current is found using the
following standard formula:

IT = − i

h̄

∫ 0

−∞
dt〈[ÎT (0), ĤT (t )]〉. (12)

By defining

P(t, x) = 〈T̂ (t, x)T̂ †(0, 0)〉 = 〈T̂ †(t, x)T̂ (0, 0)〉, (13)

which satisfies the relation P∗(t, x) = P(−t,−x), one can
write down the noninterference part of the tunneling current
IT = Inonint + Iint as

Inonint = e∗

h̄2

∫ 0

−∞
dt (|	1|2 + |	2|2)(e−iωJ t − eiωJ t )

× [P(−t, 0) − P(t, 0)], (14)

and the interference part as

Iint = e∗

h̄2

∫ 0

−∞
dt (	1	

∗
2e−iωJ t − c.c.)[P(−t,−a) − P(t, a)]

+ (	∗
1	2e−iωJ t − c.c.)[P(−t, a) − P(t,−a)], (15)

where a = |x1 − x2| is the distance between the two QPCs,
measured along an edge.

In the next two subsections, we address the structure of
the correlation functions for inner and outer mode tunneling.
Another component of the model is the phase difference ϕ

between the two tunneling amplitudes. Its behavior is rather
subtle for outer mode tunneling. We discuss it in Sec. II E.

C. Inner mode tunneling

In this section, we discuss the inner mode tunneling case
shown in Fig. 1(a), with quasiparticle charge e∗ = −νe/2,
which is the smallest allowed charge for ν = 2/5 or 2. The
quasiparticle charge can also be written as e∗ = −nν2e, where
n is an integer, since ν/2ν2 is an integer. We address inner
mode tunneling only briefly, as a more detailed investigation
of inner mode tunneling can be found in Ref. [22].

According to the bosonization technique, the tunneling
operator

T̂ (t, x) = δ−n2ν2 ein
√

ν2φ
u
i (t,x)e−in

√
ν2φ

d
i (t,x), (16)

where δ is a short-time cutoff. We will denote the correlation
function (13) as Pi since we deal with the inner modes.

Using standard formulas for correlation functions of Bose
fields, it is easy to find that at zero temperature,

Pi (t, x) = Gd (t, x)Gu(t, x), (17)

where

Gd,u(t, x) = [δ + i(t ∓ x/v1)]−n2ν2 sin2 θ

× [δ + i(t ∓ x/v2)]−n2ν2 cos2 θ . (18)
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We hence obtain an analytical result for the noninterference
current as follows:

Ii,nonint = 2πe∗(|	1|2 + |	2|2)

	(2n2ν2)h̄2 |ωJ |2n2ν2−1sgn(ωJ ), (19)

where 	(2n2ν2) in the denominator is the Gamma func-
tion. For the interference current, we first introduce exp(iϕ)
as the phase difference between 	1 and 	2, i.e., 	2/	1 =
|	2/	1| exp(iϕ). The phase difference includes an Aharonov-
Bohm phase, the statistical phase due to any localized anyons,
a nonuniversal phase due to microscopic details of the tunnel-
ing contacts, and a possible correction due to asymmetry of
the voltage bias (see Sec. III). Since interference experiments
are conducted in a regime where the interferometer contains
a large number of flux quanta, a relatively small change in
magnetic field or gate voltage can alter the Aharonov-Bohm
phase by a large amount, while phase shifts due to changes
in the contacts remain negligible. In our discussions below,
we also assume that there are no changes in the number of
localized anyons produced by changes in the applied voltages
or magnetic fields.

Noticing that Pi(t, x) = Pi(t,−x), we can write the expres-
sion for Ii,int as

2e∗

h̄2 |	1	2| cos ϕ

∫ 0

−∞
dt

[e−iωJ t P(−t, a) − eiωJ t P(−t, a) + c.c.]. (20)

At a finite temperature T , we need to replace the zero-
temperature correlation functions with the finite-temperature
ones. This can be done by a conformal transformation [32],
and the result is

Gd,u(t, x)

= (πT/h̄)n2ν2 [sin πT (δ + i(t ∓ x/v1))/h̄]−n2ν2 sin2 θ

× [sin πT (δ + i(t ∓ x/v2))/h̄]−n2ν2 cos2 θ , (21)

where we have taken kB = 1.

D. Outer mode tunneling: Fixed island charge

In this section, we discuss the geometry in Fig. 1(b)
for the outer mode tunneling, where the tunneling
charge e∗ = −mν1e, the tunneling operator T̂ (t, x) is
δ−m2ν1 eim

√
ν1φ

u
o (t,x)e−im

√
ν1φ

d
o (t,x), and δ is the ultraviolet cutoff.

In the subsequent sections, we will focus on the lowest-charge
quasiparticles with m = 1, but the equations in this section are
general. In contrast to the inner mode tunneling, due to the
presence of the inner closed loop, the correlation function
(13), Po(t, x), does not have a simple form as Pi(t, x) in
Eq. (17). Indeed, even in the absence of charge tunneling
between the two edge modes, the Coulomb interaction
between the closed inner channel and the outer ν1 channel
affects the amplitudes for scattering of the two incoming
ν1 edge modes, φd

o (ω, x1) and φu
o (ω, x2), into the outgoing

modes, φu
o (ω, x1) and φd

o (ω, x2). That scattering process is
the focus of the current subsection, as we neglect intermode
tunneling between the inner and outer channels, and we
consider the total charge on the inner mode to be fixed.

1. Scattering problem

We start by solving the problem without tunneling not
only between copropagating modes but also at the QPCs. The
scattering problem involves four incoming and four outgoing
channels: there are two incoming and two outgoing outer
edge channels and two incoming and two outgoing inner edge
channels. Fortunately, the chirality of the transport allows us
to ignore half of those channels, as we demonstrate below.
This gives a major simplification in comparison with those
QH states that have counterpropagating edge modes, such as
the ν = 2/3 state.

Before we can proceed, we need to specify what sections of
the inner and outer edge channels interact with each other in
Fig. 1(a). We assume that the nearby inner and outer modes
interact on the top and bottom sides of the device for all x
except in a narrow vicinity of points x1 and x2. No other other
pairs of modes interact. In our model, the interaction strength
is always the same whenever it is nonzero.

We next observe that nothing that happens downstream
has any effect upstream (downstream and upstream mean
down and up with respect to the propagation direction of
chiral modes). Thus, we can ignore the interaction of all
outgoing channels on the left and on the right of the inter-
ferometer. More interestingly, we can ignore the interaction
of the incoming modes. The reason is that the solution of
the scattering problem below only requires knowledge of the
time-dependent correlation functions of the outer incoming
modes in point x1 on the lower edge and point x2 on the
upper edge. These correlation functions are the same as on an
infinite edge that does not contain any intermode interactions
downstream from the point x1 for the bottom edge and x2 for
the top edge. Such an edge is in thermal equilibrium, and
hence the time-dependent correlation functions in the point
contacts are the same as if the inner channel did not exist at
all. Thus, we can ignore the inner edge modes to the left of x1

and to the right of x2.
To understand the scattering process quantitatively, we will

use the frequency-space representation of the Bose fields [31].
For a left- or right-moving field with velocity v,

φ(t, x) = −
∫ ∞

0

dω√
ω

[e−iωtφ(ω, x) + H.c.]e−ωδ/2, (22)

where

φ(ω, x) = e∓iωx/vφ(ω, 0). (23)

φ(ω, x) satisfies the following commutation relation:

[φ(ω, x), φ†(ω′, x)] = δ(ω − ω′). (24)

Such a relation applies in the limit of an infinitely long edge,
which is relevant for the outer edge channels. The Bose fields
that describe the closed inner channel in the interferometer
drop out after the equations of motion are solved. The equa-
tions of motion are the first-order differential equations for the
charge densities ∼∂xφ, which are derivatives themselves. We
ignore that subtlety below and proceed as if one could remove
one partial derivative with respect to the coordinates from all
terms in the equations. This simplifies notations and does not
affect our final results.
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The outgoing fields depend on the incoming fields as fol-
lows: (

φu
o (ω, x1)

φd
o (ω, x2)

)
= S

(
φd

o (ω, x1)

φu
o (ω, x2)

)
, (25)

with S being a unitary 2 × 2 matrix. Next, we try to find the
matrix S by solving the propagation equations and boundary
conditions. A similar problem was solved in Ref. [23], and
we follow its approach here. See also Ref. [33] for a related
approach to quantum wires. In the region between the two
QPCs, due to the interaction, the free-propagating fields are
the eigenmodes in Eq. (3), hence they satisfy the following
equations:

φd
j (ω, x2) = eiωa/v j φd

j (ω, x1), (26)

φu
j (ω, x2) = e−iωa/v j φu

j (ω, x1), (27)

with j = 1, 2. In addition, the closed loop should satisfy the
continuity conditions at the positions of the QPCs, where the
interaction is minimal,

φd
i (ω, x1) = φu

i (ω, x1), (28)

φd
i (ω, x2) = φu

i (ω, x2). (29)

Solving for φu
o (ω, x1) and φd

o (ω, x2), we can find

S11 = − sin2 θ cos2 θ
(
e

iaω
v1 − e

iaω
v2

)2

−1 + (
sin2 θe

iaω
v1 + cos2 θe

iaω
v2

)2
, (30)

S12 = 2ie
iaω(v1+v2 )

v1v2
[

sin2 θ sin
(

aω
v1

) + cos2 θ sin
(

aω
v2

)]
−1 + (

sin2 θe
iaω
v1 + cos2 θe

iaω
v2

)2
. (31)

From the symmetry of the equations, S11 = S22 and S12 = S21.

2. Correlation functions

We can now compute Po(t, x) at zero temperature using the
formula for free Bose fields A, B, C, and D,

〈eiAe−iBeiCe−iD〉
= exp

[− 1
2 (〈A2〉 + 〈B2〉 + 〈C2〉 + 〈D2〉)

+ 〈AB〉 − 〈AC〉 + 〈AD〉 + 〈BC〉 − 〈BD〉 + 〈CD〉],
(32)

and the zero-temperature correlation functions between free
chiral fields φ and φ†,

〈φ(ω, x)φ†(ω′, x)〉 = δ(ω − ω′)�(ω), (33)

〈φ†(ω, x)φ(ω′, x)〉 = 0 (34)

(remember that ω is necessarily positive). All correlation
functions can be expressed in terms of the correlation func-
tions of the incoming outer edge modes at x1 and x2.
The incoming fields in those two points are uncorrelated
with each other due to chirality. Their self-correlation func-
tions assume equilibrium values unaffected by the inner
mode.

Computing 〈T̂ (t, x1)T̂ †(0, x1)〉 gives

Po(t, 0) = δ−2m2ν1 exp

{
−m2ν1

∫ ∞

0

dω

ω

× [2 − (S11 + S∗
11)](1 − e−iωt )e−ωδ

}
, (35)

and computing 〈T̂ (t, x2)T̂ †(0, x1)〉 gives

Po(t, a) = δ−2m2ν1 P1(a) exp

{
−m2ν1

∫ ∞

0

dω

ω

× [2 − (S12 + S∗
12)e−iωt ]e−ωδ

}
, (36)

where

P1(a) = exp

(
2m2ν1

∫ ∞

0

dω

ω
S∗

11e−ωδ

)
(37)

is a real number. We note that Po(t, a) satisfies the relation
Po(t, a) = Po(t,−a) as well.

We simplify the equations for the tunneling current as

Io,nonint = 2e∗

h̄2 (|	1|2 + |	2|2)
∫ ∞

−∞
dt sin(ωJt )ImPo(−t, 0),

(38)

Io,int = 4e∗

h̄2 |	1	2| cos ϕ

∫ ∞

−∞
dt sin (ωJt )ImPo(−t, a), (39)

where exp(iϕ) is the phase difference between 	1 and 	2.
At a finite temperature T , we substitute the Bose-

Einstein distribution into the correlation functions of the Bose
fields, i.e.,

〈φ(ω, x)φ†(ω′, x)〉 = δ(ω − ω′)
1 − e−h̄ω/T

, (40)

〈φ†(ω, x)φ(ω′, x)〉 = δ(ω − ω′)
eh̄ω/T − 1

. (41)

Therefore, we can find Po(t, x) at a finite temperature as

Po(t, 0) = δ−2m2ν1 exp

{
−m2ν1

∫ ∞

0

dω

ω
[2 − (S11 + S∗

11)]

(
1 − e−iωt

1 − e−h̄ω/T
+ 1 − eiωt

eh̄ω/T − 1

)
e−ωδ

}
, (42)

Po(t, a) = δ−2m2ν1 P1(a) exp

{
−m2ν1

∫ ∞

0

dω

ω

[2 − (S12 + S∗
12)e−iωt

1 − e−h̄ω/T
+ 2 − (S12 + S∗

12)eiωt

eh̄ω/T − 1

]
e−ωδ

}
, (43)

where

P1(a) = exp

[
2m2ν1

∫ ∞

0

dω

ω

(
S∗

11

1− e−h̄ω/T
+ S11

eh̄ω/T −1

)
e−ωδ

]
. (44)
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To numerically compute the current in Eqs. (38) and (39),
one needs to compute the integral in the expression for Po(t, x)
first. Unfortunately, there is no known analytical result for
Po(t, x). However, following a technique similar to that used
in Ref. [23], one can write the integral in Po(t, x) as a se-
ries. The details of this series expansion are explained in
Appendix A.

E. Aharonov-Bohm phase and the average current
on the laboratory timescale

We now turn to the effect of voltage-induced fluctuations
of the charge on the closed inner channel. We compute the
interference contribution to the current and represent it as

Ii,int = Ĩ cos ϕ, (45)

where ϕ is an effective Aharonov-Bohm phase, accumulated
by the interfering charges. Our focus above was on Ĩ . The
rich physics of the phase ϕ in the linear transport regime has
been discussed in previous work on Coulomb-dominated in-
terferometry [21,24], and much of the same discussion applies
to a well-screened case. It is not a goal of this manuscript
to address the behavior of the phase in detail in the linear
regime at finite temperatures. Some subtleties of its behavior
are addressed in Appendixes B and C. In the main text, we
limit ourselves to a few comments and focus instead on the
limit of low temperatures with the emphasis on nonlinear
transport. This regime is greatly affected by intermode tun-
neling between the inner and outer channels in the closed loop
geometry of Fig. 1(b).

The general structure of the phase factor is

exp(iϕ) = exp[iC + i(α0Ṽ + ϕλ) + iγ N], (46)

where C is a constant, depending on microscopic details,
such as the structure of the tunneling contacts; the α0Ṽ term
represents the dependence of the phase on the average voltage
Ṽ = (Vd + Vu)/2 due to the dependence of the area of the
open channel on the chemical potential; and γ represents the
phase due to N holes of positive charge e confined on the inner
channel at ν = 2 or due to N confined quasiparticles of posi-
tive charge e/3 at ν = 2/5. In both cases, Coulomb interaction
of the N particles with the outer edge channel changes its area.
At ν = 2/5, γ also includes a statistical phase of anyons. The
value of γ can always be chosen between −π and π without
affecting the phase (46) by adding a multiple of 2π , and we
will assume such a choice. Finally, ϕλ represents an additional
phase shift that depends linearly on any variations in control
parameters such as gate voltages or the magnetic field. For
simplicity, we shall focus on the case of a single control
parameter, which we label λ1, and we write ϕλ = α1λ1, where
α1 is a constant.

The total charge on the inner channels is easy to compute
when the QPCs are open. The charge equals

Q = |e∗|(Ũ + β1λ1), (47)

where e∗ is the quasiparticle charge, Ũ is a linear function of
Ṽ , and β1 is another constant. As discussed below, the charge
of the closed inner edge is quantized. Still, Eq. (47) is an
important reference point in that case, too. In particular, in

the linear-response regime, N = Q/|e∗| is the nearest integer
to the prediction of the above equation.

1. Linear regime

If tunneling happens between the inner edges of the device,
a simple model of a fixed-area interferometer may apply. The
phase ϕ then combines a statistical phase due to localized
anyons in the bulk of the device (at ν = 2/5 only) and the
standard Aharonov-Bohm phase proportional to the fixed area
of the device, the magnetic field, and the charge of a tunneling
quasiparticle.

The situation is more complex when the inner channel is
closed. Indeed, in that case the fixed-area model does not
work since the charge confined by the inner edge cannot
change continuously in response to changing magnetic field
or chemical potential. It is quantized as an integer number
of electron charges at ν = 2 and an integer number of e/3
charges at ν = 2/5. This number can only change discon-
tinuously as a new quasiparticle is added. Since the interior
of the sample is taken to be in an incompressible quantum
Hall state, its electron density will increase with increasing
magnetic field. As the enclosed charge is constant between
jumps, the enclosed area will shrink, leaving a charge deficit
in the vicinity of the edge. The interior charge will be well
screened by gates, but as the area of the inner mode shrinks,
the induced charge on the inner edge will cause a change in
phase of the outer edge due to the Coulomb coupling. In the
limit of strong intermode coupling, the decrease in the charge
of the inner edge will be precisely compensated by a charge
increase on the outer edge, which is in good contact with the
leads. Together with an equal charge increase resulting from
the increased flux through the area of the outer mode, this will
cause the interference phase to increase with magnetic field
at twice the rate that one would observe in the absence of
coupling between the modes. Thus, at ν = 2, with strongly
coupled modes, the change in phase due to a small increase
in magnetic field will be twice what would be observed at
ν = 1 in the same magnetic field. This can indeed be seen
experimentally (see Ref. [14] and references therein).

From time to time, the charge within the inner channel
will jump. This jump is screened by an opposite-sign jump
of the charge within the outer channel. In the strong-coupling
regime, the screening charge is exactly equal to one quasi-
particle charge. Hence, at ν = 2, such jumps are invisible in
interferometry.

Appendix B computes the dependence of ϕ on the poten-
tials Vd and Vu of the lower and upper edges in the intermediate
coupling case. The dependence is linear between jumps of the
charge of the inner channel. Such jumps do result in discon-
tinuities of ϕ. The effects of these glitches on the Fourier
transforms of the differential conductance with respect to
various control parameters, which are the key quantities to
be extracted from interferometer experiments, are analyzed in
Appendix C.

Glitches are only discontinuous at zero temperature. They
are still relatively sharp, however, as long as the temperature
is lower than the charging energy. At higher temperatures,
the charge confined by the inner loop strongly fluctuates. The
physics is similar to the fluctuations of the bulk charge in a
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FIG. 2. Schematics of the kinetics of quasiparticles on the inner
loop in the low-temperature limit. The dashed arrows on the right
represent the tunneling of quasiparticles from the lower edge into
Nd − N unfilled states. The dashed arrows on the left represent
the tunneling of quasiparticles from N − Nu filled states into the
upper edge.

poorly screened device. We do not address this effect here and
refer the reader to earlier work [21].

The constraints on the inner mode charge derived above
can also be obtained from the Hamiltonian (10), together with
Eq. (16), in the strong tunneling limit. Minimizing the energy
then leads to the result

n
√

ν2
�φi

2π
− nν2A2

(B − B0)

�0
= integer, (48)

where �φi is the net change in φi around the edges of the
interferometer, A2 is the area enclosed by the inner loop, B0

is the reference magnetic field for which the ground state
has ∂xφi = 0, �0 is the flux quantum, and the integer n is
the charge of the tunneling quasiparticle, divided by −ν2e.
The charge on the inner edge is given by e

√
ν2�φi/2π . For

ν = 2/5, we have ν2 = 1/15 and n = 3.

2. Nonlinear regime

We now address slow fluctuations of the charge confined
by the closed inner edge due to the tunneling between coprop-
agating edge modes on each side of the interferometer in the
closed-loop geometry. We start with ν = 2.

a. ν = 2 case. We will only address charge fluctuations in
the low-temperature limit. This contrasts with our results in
the short-time regime, which apply at any temperature. The
fluctuations are driven by the potential difference between
the upper and lower edges of the interferometer. Their origin
can be visualized in the model of noninteracting electrons on
the QHE edges at ν = 2, Fig. 2. The inner edge possesses a
discrete set of electron energy levels. Electrons from the outer
mode with a higher chemical potential, say at the lower edge,
can tunnel into available states of the inner edge below the
chemical potential. This is a slow process, involving spin flips.
Between such rare tunneling events, any neutral excitations on
the inner edge equilibrate with the environment. The energy of
the inner edge is not conserved, due to its Coulomb interaction
with the outside world. Thus, we expect the inner edge to relax
into the lowest-energy state consistent with its charge. This

happens on a much faster timescale than the tunneling events
in the inner loop. At the same time, the chemical potential of
the upper open edge is below the chemical potential of the
inner loop. This leads to tunneling from the inner loop to the
upper edge channel. Again, the inner loop rapidly sets into a
ground state after any such tunneling event.

The above picture only applies in the nonlinear transport
regime. If the chemical potentials of the upper and lower
edges are close to each other, the inner edge is unlikely to
have an energy level between the two chemical potentials.
This prevents the tunneling into the inner island.

In general, the tunneling rates between the inner loop and
the outer edges depend on microscopic details. We will adopt
a simple model in which the tunneling matrix elements are the
same for all states of the inner edge. In other words, we simply
assume that the tunneling rate between the lower and inner
edges is proportional to the number of the empty energy levels
on the inner edge below the chemical potential of the lower
edge. The tunneling rate between the inner and upper edges
is similarly proportional to the number of occupied states on
the inner edge above the chemical potential of the upper edge.
This describes Ohmic transport since the currents between the
inner loop and outer edges are, on average, proportional to
the chemical potential differences between the inner island
and the outer edges. The quantization of the charge of the
inner edge means that its zero-temperature chemical potential
assumes a discrete set of values. The number of accessible
values for a given voltage bias will depend on the magnetic
flux or other parameters, represented by the control parameter
λ1 and changes by ±1 as λ1 is varied. In general, at a fixed
bias, two different level numbers are possible, say k and k + 1,
depending on λ1. As the bias is increased, one will cross
a threshold where the number of allowed levels changes to
k + 1 and k + 2. Quantities such as the Fourier amplitudes of
the current with respect to the magnetic field or other control
parameters will exhibit mathematical singularities as these
thresholds are crossed.

The range of possible hole numbers N on the inner edge as
a function of Vd and Vu is computed in Appendix B. We shall
denote the minimal and maximal allowed values for given Vd

and Vu and fixed λ1 as Nu < Nd , assuming Vd > Vu.
We now introduce a kinetic equation for N . The distri-

bution function of the number of holes N is fN , and we
consider its rate of change. When there are N − 1 holes on
the inner edge, the holes on the lower edge have enough
energy to tunnel into any one of the unfilled Nd − (N − 1)
levels, and we assume that the tunneling rates are all equal to
	io. The rate of the N − 1 → N transition is 	io fN−1[Nd −
(N − 1)]. Similarly, the rate of the N + 1 → N transitions
is 	io fN+1(N + 1 − Nu). Finally, the combined rate of the
N → N − 1 and N → N + 1 processes is 	io fN [(N − Nu) +
(Nd − N )]. Therefore, we have the following kinetic equation:

ḟN = − 	io fN (Nd − Nu) + 	io fN−1[Nd − (N − 1)]

+ 	io fN+1(N + 1 − Nu). (49)

The stationary distribution function for N can be found to be

fN = CN−Nu
Nd −Nu

2Nd −Nu
. (50)
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We will now average the interference current over fN .
This requires us to average the phase factor (46) in Eq. (45),
where we use α0 = −2ea/h̄vo, Eq. (B6), and γ = 2πw/vo

(mod 2π ), −π < γ � π , Eq. (B7).
We observe that from the binomial formula,

1

2Nmax

Nmax∑
N=0

CN
Nmax

eiθN = 1

2Nmax
(1 + eiθ )Nmax

= (eiθ/2)Nmax cosNmax (θ/2). (51)

Hence, the expected value of the phase factor is

Nd∑
N=Nu

fN exp[iC + i(α0Ṽ + α1λ1) + iγ N]

= exp

{
iC + i(α0Ṽ + α1λ1) + i

γ

2
(gu + gd )

+
(

2β0
vo

w

)
log

(
cos

γ

2

)
V

+ F (gd )

[
−i

γ

2
− log

(
cos

γ

2

)]

+ F (gu)

[
−i

γ

2
+ log

(
cos

γ

2

)]}
, (52)

where V = Vd − Vu, and we use the function F (g) = g − [g],
where [x] is the nearest integer to x, and gu and gd are com-
puted in Appendix B as

gu = β0

(
2vo

w
Vu − Vu − Vd

)
+ β1λ1, (53)

gd = β0

(
2vo

w
Vd − Vu − Vd

)
+ β1λ1. (54)

As discussed above [Eq. (47)] and in Appendix C, λ1 repre-
sents a selected control parameter, such as a gate voltage or
the magnetic flux through the inner loop, and β1 is a constant
that depends on microscopic details.

A striking feature of the above expression is the (Vd −
Vu)(log cos γ

2 ) term, responsible for the exponential suppres-
sion of the current at a large voltage bias Vd − Vu. Note also
that if γ = π , there is no interference current when Nu �= Nd .

b. ν = 2/5 case. We will use an Ohmic model similar
to the ν = 2 problem. This may seem unjustified since the
tunneling of fractionally charged quasiparticles is typically
non-Ohmic in the FQHE. That is, however, not the case for
tunneling between copropagating edge channels. Indeed, the
edge theory with copropagating modes can be interpreted as
a chiral conformal field theory. Tunneling terms in the Hamil-
tonian must be Bose fields, as is the case for any contribution
to the Hamiltonian. Hence, their scaling dimension is integer.
That integer is usually 1. In particular, this is the case for the
interchannel tunneling of e/3 anyons at ν = 2/5. Since the
scaling dimension is the same as at ν = 2, the use of a similar
model is justified.

We again find a binomial distribution fN for the quasiparti-
cle number. The statistical phase is computed in Appendix B
and equals γ = 2πν1(

√
ν1w√
ν2vo

− 1). We can always assume that
−π < γ � π by adding an irrelevant multiple of 2π . We also

compute the coefficient α0 = −2ν1ea/h̄vo in Appendix B.
Finally, we average the phase factor over fN and find

Nd∑
N=Nu

fN exp[iC + i(α0Ṽ + α1λ1) + iγ N]

= exp

[
iC + i(α0Ṽ + α1λ1) + i

γ

2
(Nd + Nu)

+ (Nd − Nu) log

(
cos

γ

2

)]

= exp

{
iC + i(α0Ṽ + α1λ1) + i

γ

2
(gu + gd )

+
(

2β0
vo

w

)
ν2

ν1
log

(
cos

γ

2

)
V

+ F (gd )

[
−i

γ

2
− log

(
cos

γ

2

)]

+ F (gu)

[
−i

γ

2
+ log

(
cos

γ

2

)]}
, (55)

where the definitions of gu and gd have been modified accord-
ing to the discussion of ν = 2/5 in Appendix B:

gu =
√

ν2

ν1
β0

(
2vo

w

√
ν2Vu − √

ν1Vu − √
ν1Vd

)
+ β1λ1,

(56)

gd =
√

ν2

ν1
β0

(
2vo

w

√
ν2Vd − √

ν1Vu − √
ν1Vd

)
+ β1λ1.

(57)

As at ν = 2, the above expression reveals exponential sup-
pression of the current at a high bias V = Vu − Vd . As before,
γ = π implies no interference current for Nu �= Nd .

F. Asymmetric bias

In the previous subsections, we have discussed the re-
sponse under the assumption that the bias voltage V is applied
symmetrically to the two edges, i.e., that the voltages Vd and
Vu applied to the lower and upper edges are equal to V/2 and
−V/2, respectively. However, in many experiments the bias
is applied asymmetrically, and in many cases only to one of
the edges. This is the case, for example, in the experiments of
Ref. [14]. In the general case, we may write

Vd/u = Ṽ ± V/2, (58)

where Ṽ is the average of the applied voltages and V is their
difference. A nonzero value of Ṽ can introduce an additional
phase factor into the tunneling amplitudes in the presence
of screening gates [20]. This reflects the charge accumulated
in the interferometer due to the applied voltage. Indeed, the
phase accumulated by a particle on a path around an interfer-
ometer is proportional to the charge inside the device [25].

In this subsection, we address the effect of nonzero Ṽ . We
limit our discussion to ν = 2 since the relevant experiments
[13] at ν = 2/5 involve symmetric bias. We also assume a
fixed charge of the inner island, since the fluctuations of the
island charge do not differ qualitatively between the cases of
symmetric and asymmetric bias.
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If Ṽ �= 0 but V = 0, the system will remain in a state of
thermal equilibrium, with some alteration of the total charge,
which will generally lead to a shift in the interference phase ϕ.
At a low temperature, the charge of the inner channel assumes
a fixed value that minimizes the energy shifted by the total
charge times the chemical potential. In what follows in this
subsection, we shall assume the inner loop charge is fixed at
this value, even at a nonzero V .

Application of an asymmetric bias to the device will then
lead to an interference current with an altered phase but with
an amplitude computed in precisely the same way as in the
case of a symmetric bias. Thus we may write

Iint = Ĩ cos ϕ, (59)

where ϕ depends on Ṽ but is independent of V , while Ĩ
depends on V but not on Ṽ .

An important experimental quantity is differential conduc-
tivity, dI/dV . If the voltage is applied asymmetrically, with
Ṽ = ηV , we have

dIint

dV
= dĨ

dV
cos(ϕ) − ηĨ sin(ϕ)

dϕ

dṼ
. (60)

Typically, values of dI/dV are obtained over a range of
control parameters, such as the magnetic field and/or one
or more gate voltages, and one takes a Fourier transform of
the data with respect to these parameters. The transform will
have peaks at frequencies corresponding to the interference
oscillations, and we wish to compute the amplitudes of these
peaks. Asymmetry in the applied voltage can have an impor-
tant effect on these amplitudes.

In the case of a Fabry-Pérot interferometer at ν = 1, the
factor dϕ/dṼ is a constant, equal to −2ea/h̄v (see Ref. [20]).
However, the case of ν = 2 is more complicated. In particular,
for interference of the outer mode, when the inner mode is
completely reflected at the point contacts, the charge on the
inner edge is restricted to integer values. At low temperatures,
for V = 0, the accumulated charge on the inner edge mini-
mizes the energy of the system. Since only an integer number
of electrons can tunnel into the inner edge, the accumulated
charge changes discontinuously as one more electron is added
or removed in response to the changing Ṽ . This may result in
a discontinuous jump in ϕ due to the Coulomb interaction of
the inner and outer edge modes. As a result, the interference
phase will not depend linearly on Ṽ or on parameters such
as B or the gate voltages, and the interference current is no
longer a simple sinusoidal function of these parameters. As
discussed in Appendix C, this situation leads to an array of
Fourier peaks, whose amplitudes may be analyzed separately.
In the remainder of this subsection, we shall ignore this com-
plication and assume that ϕ is a linear function of Ṽ and the
other parameters, so that dϕ/dṼ is a constant. However, as we
show in Appendix C, the essential results for the amplitude
of the dominant finite-frequency Fourier peaks are unchanged
after the phase jumps are properly taken into account, except
for renormalization by a voltage-independent constant.

This linearity assumption is actually valid in the limit of
very strong mode coupling, where an integer jump in the
charge of the inner mode will be compensated by an opposite
integer jump in the charge of the outer mode. The interference

phase will consequently jump by a multiple of 2π , which will
have no effect on the interference signal. In this limit, there-
fore, it is appropriate to ignore the jumps, so that ϕ is a linear
function of Ṽ . This near-invisibility of phase jumps in the
strong-coupling regime is also responsible for the appearance
of a flux period normally associated with particles of charge
2e (cf. Appendix C). In this case, we find

dϕ

dṼ
= −2ea

h̄vo
, (61)

as shown in Appendix B.
In the discussions above, we ignored any effects on the

edge modes due to changes in the occupation of localized
states in the bulk of the interferometer. This agrees with our
assumption that the quantum Hall system is well screened by
nearby gates. If this is not the case, the slope |dϕ/dṼ | may be
reduced below the value 2ea/h̄vo.

From the analysis of the previous section, we obtain for the
outer mode

Ĩ = −4e

h̄2 |	1	2|
∫ ∞

−∞
dt sin(ωJt )ImPo(−t, a). (62)

Now, if we perform the Fourier transform of (60) with respect
to ϕ, the amplitude A is

A =
[(

dĨ

dV

)2

+
(

η
dϕ

dṼ
Ĩ

)2
] 1

2

. (63)

III. RESULTS FOR ν = 2 QH LIQUIDS

In this section, we discuss our numerical results for ν = 2
QH liquids, where ν1 = ν2 = 1. We first consider an open
inner mode and then address a harder and more interesting
problem of a closed inner island. In Sec. III B, we consider
the case in which the charge, confined by the inner loop,
is time-independent. We first consider the easier problem of
symmetrically applied bias. We next address asymmetric bias.
We discuss nonlinear transport in the regime of fluctuating
charge on the inner island in Sec. III C. Note that the results
of Sec. III B apply in the linear transport regime, even if
the tunneling amplitude between copropagating modes is not
negligible, since at low temperatures in the linear regime the
charge of the inner loop does not fluctuate. We assume an ap-
proximate symmetry between the spin-up and -down channels
so that vo ≈ vi and θ = π/4.

A. Inner mode tunneling

We first briefly discuss the inner mode tunneling case for
ν = 2 interferometers. In this case, the bulk would not form a
closed island, and the linearity of ϕ over Ṽ always holds, so
that

dϕ

dṼ
= − 2ea(vo − w)

h̄(vivo − w2)
≈ −2ea

h̄v1
, (64)

where the second equality only holds at θ = π/4. To derive
this equation, one needs to remember that the same bias is
applied to all open channels. The Fourier amplitude of the
interference contribution to the conductance is thus given by
Eq. (63). We have plotted the Fourier amplitude curves for
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FIG. 3. Inner mode tunneling at ν = 2. Fourier amplitudes A of
the differential conductance ∂I/∂V with different choices of η are
plotted. The ratio between the faster and slower velocities of the
normal modes is fixed at v1 = 5v2, and the temperature T = 0.

different choices of asymmetry factor η in Fig. 3. One sees
that asymmetrically applied voltage bias lifts the curve.

B. Outer mode tunneling: Fixed island charge

Here we ignore tunneling between the inner and outer edge
channels and hence assume a fixed charge of the inner closed
loop. We start with the simplest limit of the symmetric voltage
bias. In that case Ṽ = 0 in Eq. (46). The Fourier transform of
the current with respect to the control parameter λ1, Eq. (46),
is trivial and essentially reduces to computing Ĩ .

Since vo ≈ vi due to the approximate symmetry of the spin-
up and -down channels, the edge is in the strong interaction
regime, i.e., θ = π/4. The interaction strength w is reflected
in the normal-mode velocities v1,2, where v1 is the velocity of
the charged mode and v2 is the much slower velocity of the
neutral mode. A related problem was considered in Ref. [23]
in the limit of an infinite velocity of the charged mode. This
limit is problematic from the point of view of locality since all
events are causally related in a system with an infinite velocity
of excitations. Reference [23] focuses on zero temperature
only and contains no plots of the voltage dependence of the
interference current. Such plots are the main focus of this sec-
tion, where we also address finite temperatures. In Sec. III B 2
we also address the asymmetry of the voltage bias.

We shall concentrate on the Fourier amplitude of dI/dV .

1. Symmetric bias

The results of calculations along the lines of Sec. II D and
Appendix A are illustrated in Fig. 4 for the case of symmetric
bias. In contrast to the ν = 1 interferometer at a symmetric
bias (see Ref. [15]), where

Ĩ = e

h̄3 (	1	
∗
2 + 	∗

1	2)
4π2T

sinh(2πTa/h̄v)
sin(ωJa/v), (65)

FIG. 4. Outer mode tunneling at ν = 2 at a fixed island charge.
The plots show the dependence of the Fourier amplitude of the
interference contribution to ∂I/∂V on the voltage bias, for differ-
ent velocity ratios, when the bias voltage is applied symmetrically.
The temperature is represented with a dimensionless quantity �2 =
Ta/h̄v2, and is fixed at �2 = 1/20.

these curves are no longer periodic in the voltage. Despite
the absence of any periodicity, note a series of nodes with a
distance of roughly π in units of eVa/h̄v2. This corresponds
to eV = 2π h̄v2/2a, where 2a is the perimeter of the interfer-
ometer, that is, to the lowest excitation energy on the loop of
length 2a (v2 is considerably slower than v1).

Experiments in graphene were performed at a highly asym-
metric voltage bias. This modifies the I-V curves as discussed
in Sec. II F and below.

2. Asymmetric bias

As above, a linear dependence of the interference phase on
the control parameters is assumed. Several plots of the Fourier
amplitude at finite temperature are shown in Fig. 5. When the
asymmetry η and bias voltage V are both small, the Fourier
amplitude is close to dĨ/dV , which represents the differential
conductance at ϕAB = 0. When η is greater, the values of the
Fourier amplitude at the nodes increase and are nonzero, but
the positions of the first few minima are relatively unchanged.

Even though no periodicity is seen, the plots exhibit a series
of nodes whose distance is roughly π in units of eVa/h̄v2

just like in the symmetric case. This corresponds to eV =
2π h̄v2/2a, where 2a is the perimeter of the interferometer.
This is the lowest excitation energy on the loop of length 2a,
as we already saw above. The plots show the absolute value
of the Fourier amplitude. It is thus natural to associate the
effective period with twice the distance between successive
nodes. We then discover approximately the same period as in
Eq. (65) at v = v2.

The above results apply in the weak backscattering regime.
A perturbative calculation is insufficient for stronger tun-
neling. Note that for Fabry-Pérot interferometers, an exact
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(a)

(b)

FIG. 5. Outer mode tunneling at ν = 2 at a fixed island charge.
The plots show the dependence of the Fourier amplitude A, Eq. (63),
on the voltage bias at a finite temperature, when the bias voltage
is applied asymmetrically. The temperature is represented with a
dimensionless quantity �2 = Ta/h̄v2, and is fixed at �2 = 1/20.
(a) Fourier amplitude curves at different velocity ratios. (b) The ratio
between the faster and slower velocities of the normal modes is fixed
at v1 = 5v2, and Fourier amplitude curves with different choices of
η are plotted. Nonlinearities in the dependence of ϕ on Ṽ and the
control parameters have been ignored.

solution is known at ν = 1 [15]. This solution only works in
the absence of interchannel interaction near QPCs.

C. Outer mode tunneling: Fluctuating island charge

We present here results for the interference current, aver-
aged over fluctuations in the island charge. Since we only
solved the kinetic problem at zero temperature, the results
apply only at low temperatures. At the same time, we consider
an arbitrary voltage bias.

The current follows Eq. (45) with the averaged phase factor
(52). Motivated by the usual way to present experimental data,
we focus on the Fourier transform of dI/dV with respect to
a control parameter λ1 such as the magnetic field. Technical
details of the Fourier transform can be found in Appendix D.

We now show results for several choices of the parameters
in Fig. 6 . We plot the voltage dependence of one prominent
Fourier harmonic with respect to λ1. In all cases we choose the
harmonic of frequency α1 + γ β1, Eq. (52). This is a natural
choice since α1λ1 should be understood as a naive Aharonov-
Bohm phase 2π�/�0, where � is the magnetic flux through
the nominal area of the device, and �0 is a flux quantum,
and we can interpret γ λ1β1 as the phase due to the average
λ1-dependent charge on the inner island. This choice also
corresponds to m = 0 in Appendix D. As discussed in that
Appendix, dominant harmonics correspond to small m. They
are also likely less sensitive to temperature effects. The value
of β1 [Eqs. (53) and (54)] does not matter for the plots because
it only affects the scale of the vertical axis, which is arbitrary
here. In all cases we set T = 0. The rest of the parameters are
listed in the figures. The key difference from the case of the
fixed island charge consists in a rapid decay of the signal at
large V .

Another interesting feature is present at a discrete set of
voltages. See, in particular, rectangular boxes and the in-
set in Fig. 6(c). One observes discontinuities in the Fourier
amplitude of dI/dV . Their origin is due to the tunneling
between the outer modes and the inner island. As shown
in Appendix B, the maximal and minimal hole numbers Nd

and Nu on the inner loop equal Nd,u = [gd,u], where gd,u

are given by Eqs. (B10) and (B11) and the square brackets
denote the nearest integer. If gd − gu = 2β0vo(Vd − Vu)/w is
an integer, then the number Nd − Nu + 1 of the energy levels,
available for transport between the outer edges through the
inner loop, is exactly gd − gu + 1 irrespective of the flux λ1

(see Appendix B). For noninteger gd − gu, the number of the
available levels depends on the flux and varies between the
largest integer less than gd − gu + 1 and the lowest integer
greater than gd − gu + 1. In other words, the structure of the
set of available levels as a function of the flux changes at
the integer values of gd − gu. This results in singularities in
the Fourier transform with respect to λ1 at

V = mw

2β0vo
(66)

at each integer m, with β0 given by (B9). This feature can
be used to extract the parameters of the edge theory from the
data.

IV. RESULTS FOR ν = 2/5 FQH LIQUIDS

In this section, we consider the interferometer in Fig. 1 for
ν = 2/5 QH liquids, where ν1 = 1/3 and ν2 = 1/15. We only
study the case of symmetric voltage bias since the bias was
applied symmetrically in the relevant experiment [13].

A. Inner mode tunneling

For the inner mode tunneling, we numerically computed
the differential conductance of the interference current, and
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(a)

(b)

(c)

FIG. 6. Outer mode tunneling in ν = 2 interferometers for fluc-
tuating island charge. (a) The dependence of the dominant Fourier
amplitude on the voltage bias at zero temperature with a symmetric
bias. (b) Fourier amplitude curves at different velocity ratios with a
totally asymmetric bias. (c) The ratio between the faster and slower
velocities of the normal modes is fixed at v1 = 5v2, and Fourier
amplitude curves with different choices of η are plotted. Rectangular
boxes and the inset show threshold features due to fluctuations of
the inner island charge that arise from residual tunneling between
copropagating modes.

FIG. 7. Inner mode tunneling at ν = 2/5. The dependence of
the Fourier amplitude of the differential conductance of the interfer-
ence current on the voltage bias is shown at different temperatures,
with θ = π/16 and v1 = 5v2. �1 is the dimensionless temperature
Ta/h̄v1.

the results are shown in Figs. 7 and 8. In Fig. 7, we plot
the voltage dependence of the Fourier amplitude of the in-
terference contribution to the conductance with respect to the
magnetic flux at a weak coupling θ = π/16. One can observe
that the location of the first node depends significantly on
the temperature, while the locations of the subsequent nodes
show little temperature dependence. Nevertheless, the first
node position remains finite at T = 0. This is in contrast with
the situation at ν = 1/3, where the first node of dI/dV does
move to zero voltage for T → 0. The difference in behavior is

FIG. 8. Inner mode tunneling at ν = 2/5. The dependence of the
Fourier amplitude of the differential conductance on the voltage bias
is shown at different interaction strengths (represented with θ ), with
v1 = 5v2 and T = 0.
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related to the fact that at ν = 1/3, the tunneling current across
a constriction follows I ∼ V 2×1/3−1 = V −1/3 at T = 0, so the
current grows at low voltages, so dI/dV < 0. When T �= 0,
however, the system enters a linear regime for eV < T , where
dI/dV > 0. Hence there is a sign change at a voltage of order
T/e. By contrast, at ν = 2/5, for inner edge tunneling, the
low-voltage current follows the relation I ∼ V 2×3/5−1 = V 1/5

at T = 0, which goes to zero when V → 0. (The precise forms
only apply as long as the conductance G ∼ V −4/5 remains
small.)

B. Outer mode tunneling

1. Fixed island charge

In this subsection, we assume that charge of the inner
closed loop is fixed at a value independent of the voltage
bias and the magnetic flux. We also assume a symmetric
application of the voltage bias. It is then straightforward to
plot the Fourier transform of the interference contribution to
the conductance with respect to the magnetic flux.

Figures 9 and 10 show numerical results for the differen-
tial conductance of the interference current, with θ = π/16
and v1 = 5v2. Immediately, one can notice a striking feature
of resonance in these curves when the temperature is low
enough.

The first resonance occurs when eVa/3h̄v1 ≈ π/5, there-
fore h̄ωJ ≡ eV/3 ≈ π h̄v1/5a = π h̄v2/a. This reminds us of
the energy levels of a closed edge mode En = 2π h̄nv/L,
where n is an integer, v is the edge velocity, and L is the
circumference of the edge. Therefore, the resonance occurs
when the Josephson energy h̄ωJ of the tunneling quasiparticle
matches the energy levels of plasmons on the inner mode,
which are nh̄πv2/a. As can be seen from Fig. 9, there is
a second resonance when eVa/3h̄v1 ≈ 2π/5, in agreement
with this picture. One can also check what happens when we
change the ratio between v1 and v2, and the plots are shown
in Fig. 10. When the ratio v1/v2 gets larger, the resonance
occurs at a smaller value of eVa/3h̄v1. All these findings are
consistent with our interpretation.

There is one issue in our argument: one can treat the closed
inner 1/15 mode as an eigenmode only in the weak interaction
limit. To find out what happens in the strong interaction limit,
we show conductance curves at different θ in Fig. 11. Clearly,
resonance is suppressed at strong interactions.

We give a theory of the resonance feature in the above plots
in Appendix E. We find that at a weak interaction θ and zero
temperature, the width of the resonance scales as θ2 and its
height scales as θ−2/3.

2. Fluctuating island charge

Just like at ν = 2, our analysis builds on the case of a fixed
island charge and involves averaging the Aharonov-Bohm
phase factor over the distribution of the charge of the inner
loop. We use the results of Sec. II and the Fourier expansion
from Appendix D. As at ν = 2, our results apply only at
low temperatures, and they are illustrated in Figs. 12 and 13.
We plot one prominent Fourier harmonic with respect to the
magnetic field λ1. As at ν = 2, we focus on zero tempera-
ture and choose the harmonic of frequency α1 + γ β1. This

(a)

(b)

FIG. 9. Outer mode tunneling at ν = 2/5 at a fixed island charge.
The Fourier amplitude of the interference contribution to the dif-
ferential conductance is shown at different temperatures, with θ =
π/16, v1 = 5v2, and �1 = Ta/h̄v1. (a) A zoom-in view of the con-
ductance curve for a better visualization of the first few resonances.
(b) The conductance curve over a wider range, showing the modula-
tion due to the outer mode.

corresponds to the m = 0 harmonic from Appendix D and is
a natural choice since α1λ1 can be understood as the naive
Aharonov-Bohm phase 2π�/3�0, where � is the magnetic
flux through the nominal area of the device, and �0 is the flux
quantum, and we can interpret γ λ1β1 as the phase due to the
average λ1-dependent charge on the inner island. The value
of β1 does not matter for the plots because it only affects the
scale of the vertical axis, which is arbitrary here.

In contrast to ν = 2, we see two types of sharp features
in the differential conductance: the resonance from plasmon
scattering, addressed in Sec. IV B 1, and the voltage-threshold
features associated with changes in the fluctuating island
charge, similar to the one discussed in Sec. III C at ν = 2. The
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FIG. 10. Outer mode tunneling at ν = 2/5 at a fixed island
charge. Comparison of Fourier amplitudes of outer-mode differential
conductance ∂I/∂V for different velocity ratios v1/v2, with θ =
π/16 and �1 = Ta/h̄v1 = 1/50.

plasmon resonance manifests itself as a sharp maximum with
a nearby minimum on the curve. The voltage-threshold feature
is seen as a sharp drop on the curve at eVa/3π h̄v1 ≈ 0.4 in the
blue line in Fig. 13. Its location can be deduced in the same
way as Eq. (66) using the definitions of gd,u, which apply to
ν = 2/5 in Appendix B. One finds

V = m
ν1w

2ν2β0vo
, (67)

where m is an integer, ν1 = 1/3, and ν2 = 1/15. As at ν = 2,
resonances allow extracting the parameters of the edge theory
from the data.

FIG. 11. Outer mode tunneling at ν = 2/5 at a fixed island
charge. The Fourier amplitude of the differential conductance ∂I/∂V
of the interference current is shown for different θ , with v1 = 5v2 and
T = 0.

FIG. 12. Outer mode tunneling at ν = 2/5 for fluctuating island
charge. The primary Fourier amplitude of the differential conduc-
tance ∂I/∂V of the interference current is shown for different
velocity ratios v1/v2, with θ = π/16 and T = 0.

Another important feature is a rapid decay of the current
at a high voltage. As at ν = 2, this is a manifestation of the
long-time fluctuations of the Aharonov-Bohm phase due to
the fluctuations of the charge on the inner loop. As excep-
tions, however, note a similarity of the red and green curves
in Fig. 13 with the red and green curves for a fixed island
charge in Fig. 11. It reveals little suppression of interference
by the fluctuations of the island charge. The reason is that γ

in Eq. (55) is relatively close to 0 at θ = π/4 or π/8 and
v1 = 5v2.

FIG. 13. Outer mode tunneling at ν = 2/5 for fluctuating island
charge. The primary Fourier amplitude of the differential conduc-
tance ∂I/∂V of the interference current is shown for different θ , with
v1 = 5v2 and T = 0.
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V. SUMMARY

In the main part of this paper, we have used bosonization
methods to study nonlinear behavior of a quantum Hall Fabry-
Pérot interferometer at finite source-drain voltage, in cases in
which the quantum Hall state contains two edge modes propa-
gating in the same direction. Important examples are when the
bulk filling factor is ν = 2/5 or 2. We focus on the situations
in which the constrictions defining the interferometer region
are either slightly pinched off, so that the inner mode is weakly
backscattered while the outer mode is completely transmitted,
or pinched off to an extent that the inner mode is completely
reflected while the outer mode is weakly backscattered. Our
analyses were confined to situations in which the interfer-
ing channel is only weakly backscattered, because situations
with stronger backscattering are difficult to treat using the
bosonization approach.

The most interesting and challenging cases involve tun-
neling between the outer edge modes in devices where the
inner mode forms a closed loop. In contrast to the tunneling
between inner edge modes, these cases involve a nontrivial
scattering process for bosonic edge plasmons between the
opposite edges of the device. After the scattering problem is
solved, however, the residual tunneling of quasiparticles can
be treated perturbatively in the weak-backscattering limit. If
the edge modes are not too strongly coupled, we find reso-
nance features in the I-V curves at low temperatures, which
emerge due to resonance states of plasmons on the closed
inner channel. The resonances contain information about the
velocity of the inner edge mode. A quantitative analytic theory
of the resonances is possible in the limit of weak intermode
interaction.

Previous investigations [23] have considered the theory
for interferometers at ν = 2, with strongly coupled edge
modes, in the limit where the fast mode velocity is taken
to infinity. Here we have extended the theory to the phys-
ically realistic case of finite edge velocities. We have also
addressed the effects of asymmetrically applied voltage bias,
since this is relevant for recent experiments in graphene [14].
Another novel effect addressed in this work is weak tunneling
between copropagating edge channels. While the leakage cur-
rent through the inner closed loop is negligible in comparison
with the total current through the interferometer, fluctuations
of the charge on the closed inner channel, caused by the tun-
neling events, can have a dramatic effect on the interference
signal at high voltages. Most importantly, the interference
contribution to the current rapidly decays as a function of
voltage, in agreement with experiments. We have only ad-
dressed these effects at zero temperature, and an extension of
the theory to finite temperatures would be useful. Indeed, we
find that many features of the I-V curve are highly sensitive
to the temperature in the model, even in the absence of fluctu-
ations of the charge on the inner loop.

Fluctuations of charge on the inner loop are not the only
mechanism of interference suppression at a high voltage bias.
Similar effects can also result from tunneling between the
edges and localized states inside the interferometer. Tunnel-
ing can also lead to telegraph noise, recently observed in
Refs. [34,35], if the tunneling rates are sufficiently slow.
This effect can be present even for one-channel edges if the

tunneling particles are anyons or if the bulk-edge interaction
is not fully screened.

We note that in the case of a single channel, at ν = 1,
the interference current is predicted to be a periodic function
of the bias in a simple model with well-screened bulk-edge
interactions [15]. However, screening gates are typically not
close enough to the 2D gas to fully screen the interaction
between contrapropagating edge channels close to the tunnel-
ing contacts. This should make little difference in the limit of
weak tunneling at the contacts. If the tunneling probability is
on the order of 50%, however, the interplay of tunneling and
Coulomb interaction can excite plasma modes in the interfer-
ometer, which can act like a temperature rise that increases
with the voltage and can suppress interference at a high bias.
This effect could also be important for interferometers with
several edge modes if backscattering probabilities at the con-
strictions are near 50%.

We have assumed instantaneous short-range interactions in
all our models. This is legitimate if the screening gates are
good metals. They can always be treated as such on large
timescales, such as the time needed to take a measurement
or the time it takes the system to respond to changes in the
charge on a closed loop or a localized impurity level. How-
ever, behavior on the timescale of charge flight through the
interferometer is more subtle. For example [36], in a recent
experiment [13] at ν = 2/5, the screening gates are two-
dimensional electron systems with a very large Hall angle,
σxx � σxy. In this case, a more appropriate model might treat
the screening layer as one or more additional finite-velocity
chiral channels, interacting with the interferometer modes. We
leave an investigation of such a model for future work.

Interesting experimental data have arrived for nonlinear
transport in multichannel quantum Hall interferometers, and
new experiments are being performed. We expect that new
data, especially at low temperatures, will provide an oppor-
tunity for fruitful comparison with the theory. We predict
resonance features in the weak-coupling regime at ν = 2/5,
but the temperature was not sufficiently low to observe them
in the recent experiment [13]. At the same time, our prediction
of rapid suppression of interference at a high voltage bias even
for weak tunneling at ν = 2/5 agrees with the data [13].

The focus of our theory at ν = 2 was on weak tunneling
that can be treated perturbatively. On the other hand, the ex-
periment of Ref. [14] was carried out in the 50% transmission
regime, and lower transmission is required for comparison
with our work. Fortunately, the experimental regimes needed
for comparison with this paper are within reach.
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APPENDIX A: SERIES EXPANSION OF Po(t, x)

Reference [23] provides a technique to represent Po(t, x) as
an exponential function of a series, for θ = π/4 and v1 → ∞.
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We follow this technique in this Appendix, and we extend it
to an arbitrary θ and a more general v1, as well as to the finite-
temperature regime.

1. Zero temperature

For the purpose of numerical integration, it is better to write
Po(t, a) as the product P1(a)P2(t, a)P3(t ) of the following
three expressions:

P1(a) = exp

(
2m2ν1

∫ ∞

0

dω

ω
S∗

11e−ωδ

)
, (A1)

P2(t, a) = exp

[
m2ν1

∫ ∞

0
dω

1

ω
(S12 + S∗

12 − 2)e−iωt e−ωδ

]
,

(A2)

P3(t ) = δ−2m2ν1 exp

[
−2m2ν1

∫ ∞

0

dω

ω
(1 − e−iωt )e−ωδ

]

= (δ + it )−2m2ν1 . (A3)

We will set v1 = kv2, where k is an integer. All our plots
correspond to such a choice of the velocities. It is straight-
forward to generalize to a rational k. The technique does not
generalize to the case in which k is an irrational number, but
this is irrelevant from a physical point of view. Now we take
the coefficients S11 and S12 as functions of the dimensionless
variable ω′ = aω/v1. Expanding S11 and S12 − 1 in series in

ξ = eiω′
, we can find

S11 =
∞∑

n=0

an(1 − ξ )ξ n, (A4)

S12 − 1 =
∞∑

n=0

bn(1 − ξ )ξ n, (A5)

where an and bn are real numbers. Next, we will make use of
the following formula:

f (η, A) =
∫ ∞

0

dω

ω
(1 − e−iωη )e−ωA = ln

(
1 + i

η

A

)
. (A6)

Therefore, P1 and P2 in Eqs. (A1) and (A2) can be expressed
in the following form:

P1(a) = exp

{
2m2ν1

∞∑
n=0

an f

(
1, in + v1δ

a

)}
, (A7)

P2(t, a) = exp

{
m2ν1

∞∑
n=0

bn

[
f

(
−1,−in + i

v1t

a
+ v1δ

a

)

+ f

(
1, in + i

v1t

a
+ v1δ

a

)]}
. (A8)

For the purpose of numerical computations, we only keep
a finite number of terms in these expansions, and the exact
number of terms depends on the rate of convergence. One can
show that the rate of convergence increases as we increase
θ . For the curves shown in Fig. 11, we keep 400 terms for
θ = π/32, 300 terms for θ = π/16; 100 terms for θ = π/8;
and 80 terms for θ = π/4.

2. Finite temperature

At a finite temperature T , Po(t, a) can be written as P1(a)P2(t, a)P3(t ) as well. The finite-temperature expressions of the
factors are

P1(a) = exp

[
2m2ν1

∫ ∞

0

dω

ω

(
S∗

11

1 − e−h̄ω/T
+ S11

eh̄ω/T − 1

)
e−ωδ

]
, (A9)

P2(t, a) = exp

[
m2ν1

∫ ∞

0

dω

ω
(S12 + S∗

12 − 2)

(
e−iωt

1 − e−h̄ω/T
+ eiωt

eh̄ω/T − 1

)
e−ωδ

]
, (A10)

P3(t ) = δ−2m2ν1 exp

[
−2m2ν1

∫ ∞

0

dω

ω

(
1 − e−iωt

1 − e−h̄ω/T
+ 1 − eiωt

eh̄ω/T − 1

)
e−ωδ

]
= (πT/h̄)2mν2

1

sin2mν2
1 [(πT/h̄)(δ + it )]

. (A11)

To derive an expansion at a finite temperature, a general-
ization of Eq. (A6) is required. We use the following formula
(for a derivation, see Ref. [31]):

g(η, A, β ) =
∫ ∞

2π/L

dω

ω

(
e−iωη

1 − e−βω
+ eiωη

eβω − 1

)
e−ωA

= − ln

{
2β

L
sin

[
π

β
(A + iη)

]}
, (A12)

where the limit L → ∞ is assumed. One can check the agree-
ment with Eq. (A6) by computing g(η, A, β ) − g(0, A, β ) in
the limit of β → ∞.

We take the coefficients S11 and S12 as functions of the di-
mensionless variable ω′ = aω/v1 again, but we use a different

expansion in ξ = eiω′
,

S11 =
∞∑

n=0

cnξ
n, (A13)

S12 − 1 =
∞∑

n=0

dnξ
n. (A14)

For a side note, one can derive the following relations between
an, bn and cn, dn:

cn = an − an−1, c0 = a0, (A15)

dn = bn − bn−1, d0 = b0. (A16)
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In Eqs. (A9) and (A10), P1 and P2 can be represented as

P1(a) = exp

[
2m2ν1

∞∑
n=0

cng

(
n,

v1δ

a
,

h̄v1

Ta

)]
, (A17)

P2(t, a) = exp

{
m2ν1

∞∑
n=0

dn

[
g

(
−n + v1t

a
,
v1δ

a
,

h̄v1

Ta

)

+ g

(
n + v1t

a
,
v1δ

a
,

h̄v1

Ta

)]}
. (A18)

3. Series representation of Po(t, 0)

Finally, for the completeness of the discussion, we give an
expansion for Po(t, 0) as well. At zero temperature, we write
Po(t, 0) as P3(t )P4(t ), where P3(t ) is given in Eq. (A3) and
P4(t ) is

exp

{
m2ν1

∫ ∞

0

dω

ω
(S11 + S∗

11)(1 − e−iωt )e−ωδ

}
. (A19)

We adopt the expansion of S11 in the form of Eq. (A13).
Therefore, P4 is represented as

exp

{
m2ν1

∞∑
n=0

cn

[
f

(
v1t

a
,−in + v1δ

a

)

+ f

(
v1t

a
, in + v1δ

a

)]}
. (A20)

At a finite temperature, P3(t ) is given in Eq. (A11), and P4

is

exp

{
m2ν1

∫ ∞

0

dω

ω
(S11 + S∗

11)

×
(

1 − e−iωt

1 − e−h̄ω/T
+ 1 − eiωt

eh̄ω/T − 1

)
e−ωδ

}
, (A21)

which can be represented in the following series form:

exp

{
m2ν1

∞∑
n=0

cn

[
g

(
0,

v1δ

a
− in,

h̄v1

Ta

)

− g

(
v1t

a
,
v1δ

a
− in,

h̄v1

Ta

)
+ g

(
0,

v1δ

a
+ in,

h̄v1

Ta

)

− g

(
v1t

a
,
v1δ

a
+ in,

h̄v1

Ta

)]}
. (A22)

APPENDIX B: EFFECT OF ASYMMETRIC
BIAS AND CHARGE FLUCTUATIONS ON THE

AHARONOV-BOHM PHASE

We need to consider the phase due to the accumulation of
charge in the device, in addition to the usual Aharonov-Bohm
phase. This additional phase depends on the bias voltages
applied to the lower and upper edges. Also, as discussed in
Appendix C, it exhibits discrete jumps when the charge on the
closed inner channel changes between its allowed quantized
values. In this Appendix, we explicitly calculate this addi-
tional phase for the ν = 2 and 2/5 interferometers in terms

of the bias voltages Vd ,Vu, and the total charge of the inner
mode Nν1e, where N is an integer. We also determine possible
occupation numbers on the closed inner edge as functions of
the bias at zero temperature.

The charge density of the right- or left-moving mode at fill-
ing factor ν is ± e

√
ν∂xφ

2π
. We first write down the Hamiltonian

in terms of the original outer and inner modes,

H = a

[
h̄vo

4π

(
∂xφ

u
o

)2 + h̄vi

4π

(
∂xφ

u
i

)2 + 2h̄w

4π

(
∂xφ

u
o

)(
∂xφ

u
i

)

+ h̄vo

4π

(
∂xφ

d
o

)2 + h̄vi

4π

(
∂xφ

d
i

)2 + 2h̄w

4π

(
∂xφ

d
o

)(
∂xφ

d
i

)

− Vd
√

ν1
e∂xφ

d
o

2π
+ Vu

√
ν1

e∂xφ
u
o

2π

]
, (B1)

where ±√
ν1e∂xφ/2π stand for average time-independent

charge densities, which do not depend on the coordinate on
the lower and upper edges.

To find the phase factor, we must know the charge densities
in the ground state. Therefore, we minimize the Hamiltonian
with respect to the charge densities [20]. The total charge on
the inner channel is Nν1e, where N is an integer. Therefore,
we have a constraint

√
ν2

e∂xφ
d
i

2π
− √

ν2
e∂xφ

u
i

2π
= Nν1e

a
, (B2)

where a is the distance between the QPCs.
We first assume a constant N = 0. Differentiating the

Hamiltonian with respect to the three variables ∂xφ
u
i , ∂xφ

u
o ,

and ∂xφ
d
o , we find the condition for the extrema

∂xφ
u
i = qu

i = −√
ν1

e(Vd − Vu)w

2(vivo − w2)
, (B3)

∂xφ
u
o = qu

o = −√
ν1

e(2Vuvivo − Vuw
2 − Vdw

2)

2vo(vivo − w2)
, (B4)

∂xφ
d
o = qd

o = √
ν1

e(2Vdvivo − Vuw
2 − Vdw

2)

2vo(vivo − w2)
. (B5)

To make the ground-state expectation values 〈∂xφ
u/d
o/i 〉 vanish,

we shift the fields φ
u/d
o/i → φ

u/d
o/i − qu/d

o/i x, and the additional
phase factor for 	2 is then given by

exp
[
i
√

ν1
(
qu

o − qd
o

)
a
] = exp

[
− iν1e(Vd + Vu)a

h̄vo

]
. (B6)

This phase depends only on the outer mode velocity vo.
Next, we consider the general case when the charge on the

inner edge is Nν1e �= 0 and induces an additional charge of
−N (ν1

√
ν1/ν2)e(w/vo) on the outer edge. Then, the outer-

edge phase factor is

exp

[
− ieν1(Vd + Vu)a

h̄vo
+ 2π iN

ν1
√

ν1√
ν2

w

vo

]
. (B7)

There is also an additional statistical phase exp(−2π iNν1),
which matters for noninteger ν1 but can be ignored at ν = 2.

As an example at filling factor ν = 2, when vi = vo and
the ratio between the eigenmode velocities is v1 = 5v2, from
Eq. (5), we can find vo = vi = 3v2 and w = 2v2. Therefore,
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the phase jump due to each additional hole on the inner chan-
nel is +4π/3, which equals −2π/3 (mod 2π ).

We now address the dynamics of N . To set up the kinetic
equations, we need to count the number of the available states
on the inner loop. To do this, we introduce the chemical po-
tential eVi of the inner loop, that is, subtract a[Vi

√
ν2

e
2π

∂xφ
d
i −

Vi
√

ν2
e

2π
∂xφ

u
i ] from the Hamiltonian. Our task is to count

available values of the quasiparticle number N on the inner
edge for Vd > Vi > Vu. The number of quasiparticles that min-
imizes the Hamiltonian for a given choice of Vi is

N =
[√

ν2

ν1
β0

(√
ν2

2vo

w
Vi − √

ν1Vu − √
ν1Vd

)]
, (B8)

where [x] is the nearest integer to x, and

β0 = ea

2π h̄

w

vivo − w2
. (B9)

Within the above model, the maximal and minimal occupancy
of the inner loop can be obtained by substituting Vi = Vd and
Vi = Vu. There are, however, two subtleties, which require a
slight modification of our model. The inner loop may cou-
ple to various gates. In the simplest model, the electrostatic
coupling shifts Vi by a constant. A similar shift is needed
to accommodate the coupling of the current along the inner
loop and the magnetic field [20]. With this in mind, we set
N = Nu ≡ [gu] for Vi = Vu and N = Nd ≡ [gd ] for Vi = Vd ,
where the brackets mean the nearest integer,

gu =
√

ν2

ν1
β0

(
2vo

w

√
ν2Vu − √

ν1Vu − √
ν1Vd

)
+ β1λ1,

(B10)

gd =
√

ν2

ν1
β0

(
2vo

w

√
ν2Vd − √

ν1Vu − √
ν1Vd

)
+ β1λ1,

(B11)

and λ1 is a control parameter, such as the magnetic flux. β1 is a
constant that depends on the details of the system. In general,
multiple control parameters may be present. We ignore this
point to make the notations simpler. We assume that Vd > Vu

and hence Nd > Nu. Then the range of the possible number of
quasiparticles on the inner loop is between Nd and Nu.

APPENDIX C: FOURIER EXPANSION
WITH PHASE JUMPS

We discuss here the effects of phase jumps arising from
an integer constraint on the charge on a closed inner mode
on the Fourier expansions of the interference current and the
differential conductance of the outer mode. The analysis will
be particularly relevant for the case of intermediate coupling
between the modes. We restrict our discussion to the short-
time limit, i.e., we assume the island charge is fixed at the
value that minimizes the energy for the given value of Ṽ , with
V = 0. Of course, these results apply in the linear transport
regime.

We limit our discussion to the short-time limit of the fixed
charge of the inner loop at ν = 2. It also applies to linear
transport.

Assume the effective Aharonov-Bohm phase ϕ can be writ-
ten as

ϕ = C + αL + P(g), (C1)

where C is a constant,

αL =
M∑

j=0

ᾱ jλ j, (C2)

g =
M∑

j=0

β̄ jλ j, (C3)

and P is a periodic function of g, where λ j , for 1 � j � M,
are parameters such as the magnetic field and various gate
voltages, while λ0 = Ṽ . The coefficients ᾱ j, β̄ j are constants
that depend on the details of the system, and with no loss of
generality, we can choose the period of P to be 1. We are
interested here in the linear regime, so we set V → 0.

To describe sharp phase jumps, we choose P to be a saw-
tooth function,

P(g) = −γ̄ (g − [g] + D), (C4)

where [g] is the closest integer to g, and D is a constant. Such
a choice is justified by the discussion in Sec. II E. Without loss
of generality, we can set D = 0 by changing the value of C.
Then

P(g) =
∑

n

γne2π ing, (C5)

where γn = −iγ̄ (−1)n/2πn and γ0 = 0.
A similar expansion can be used in a situation in which the

inner mode is not perfectly reflected at the QPCs. In this case,
the sawtooth steps will be rounded, and the values of γn will
fall off exponentially at large n.

In the same way, we can write

eiP(g) =
∑

n

cne2π ing =
∑

n

cne2π in(β̄0Ṽ +∑
β̄ jλ j ). (C6)

The coefficients cn may be expanded in terms of products of
γn if γ̄ is small.

We wish to take the Fourier transform of eiϕ with respect
to one or more of the parameters λ j for j � 1. In the simplest
case, we just choose j = 1, and we hold λ j fixed for all other
j. (Without loss of generality, we can set these parameters
equal to zero by adjusting the constant C and shifting λ1.)

Let us define

h(k) =
∫ ∞

−∞
dλ1e−ikλ1 eiϕ. (C7)

We then find that

h(k) = 2πeiC
∑

n

cneiṼ (ᾱ0+2πnβ̄0 ) δ(k − ᾱ1 − 2πnβ̄1). (C8)

We see that a nonzero value of Ṽ leads to linear shifts in
phases but no change in the magnitudes of the various Fourier
components.
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If γ̄ = 0, we have

h(k) = 2πδ(k − ᾱ1)eiᾱ0Ṽ eiC . (C9)

More generally, if γ̄ = −2πm, where m is an integer, we have
cn = 0 for n �= m, and

h(k) = 2πδ(k − ᾱ1 − 2πmβ̄1)eiṼ (ᾱ0+2πmβ̄0 )eiC . (C10)

If m is not an integer, h(k) will contain multiple Fourier
components, but the largest peak in h(k) will correspond to
the integer n that is closest to m.

As an example, we consider the case of ν = 2 when the
parameter λ1 = BĀ, where Ā is the nominal area enclosed by
the outer edge mode, ignoring the small periodic area oscil-
lations that occur as one varies parameters. Then ᾱ1 = e/h̄.
We assume that the nominal area enclosed by the inner mode
is slightly smaller than Ā, and we write it as rĀ, where r is
slightly smaller than 1. Then 2πβ̄1 = re/h̄. The n = 0 peak
of the Fourier transform then occurs at a frequency k = e/h̄
while the n = 1 peak occurs at k = (1 + r)e/h̄ ≈ 2e/h̄. In
the limit of strong coupling, where v1/v2 → ∞, we have
γ̄ → −2π , and only the n = 1 peak survives.

Using Eq. (45) from the main text, we have

Iint = Ĩ (V )

2

∑
n

[eiλ1(ᾱ1+2πnβ̄1 )e2π inβ̄0Ṽ cneiCeiᾱ0Ṽ + c.c.].

(C11)

Then

dIint

dV
=

∑
n

[(An + A′
n)eiλ1(ᾱ1+2πnβ̄1 )e2π inβ̄0Ṽ + c.c.], (C12)

where

An = 1

2

dĨ

dV
cneiCeiᾱ0Ṽ , (C13)

A′
n = iη(Ĩ/2) cneiCeiᾱ0Ṽ (2πnβ̄0 + ᾱ0), (C14)

and η = dṼ /dV . If we calculate
∫ ∞
−∞ dλ1e−ikλ1 (dIint/dV ), the

Fourier transform of (C12), we will obtain a set of δ-function
peaks at frequencies k = k±

n = ±(ᾱ1 + 2πnβ̄1), with ampli-
tudes given by (An + A′

n)e2π inβ̄0Ṽ or its complex conjugate. If
ᾱ1 is not commensurate with 2πβ̄1, these peaks are distinct,
and their amplitudes can be measured separately. The magni-
tudes will be independent of Ṽ and will be given by

An = (|An|2 + |A′
n|2)1/2. (C15)

In our model, at ν = 2, if one is in the strong-coupling
regime, where γ̄ is close to −2π , the dominant coefficient
cn will come from n = 1, and the dominant term in (C12)
will come from n = 1. If ᾱ1 and 2πβ̄1 are commensurate,
however, some of the peaks may coincide. Thus, if r = 1, we
have k+

1 = k−
−3, resulting in a single peak with an amplitude

(A1 + A′
1)e2π iβ̄0Ṽ + (A∗

−3 + A′∗
−3)e6π iβ̄0Ṽ . Then, if c−3 is not

negligible compared to c1, the magnitude will depend on Ṽ
and on the phase offset eiC . As remarked above, the coeffi-
cients other than c1 all vanish in the limit of strong coupling
between the modes.

The discussions above can be readily generalized to finite
temperatures if one replaces eiP(g) in (C6) by a thermal average

〈eiP(g)〉 and takes into account the Gaussian phase distribution
arising from thermal fluctuations of the charge on the outer
edge. Thermal fluctuations will typically lead to an exponen-
tial decrease of the interference signal at high temperatures,
with the weaker Fourier coefficients cn decaying faster than
the dominant one. The discussion can also be readily gen-
eralized to situations in which one considers two or more
parameters λ j and takes a multidimensional Fourier transform
with respect to them.

We finally comment on the slope dϕ/dṼ . At ν = 2, if 2a
is taken to be the same for the two modes, we find

ᾱ0 = − 2ea(vi − w)

h̄(vivo − w2)
= 2πβ̄0

vi − w

vo − w
, (C16)

γ̄ = −2πw/vo. (C17)

The slope dϕ/dṼ between phase jumps is then given by

dϕ

dṼ
= −2

ea

h̄vo
, (C18)

as found in Appendix B.
By contrast, the slope extracted in an interference experi-

ment from the dominant n = 1 Fourier peak will be given by

�ϕ

�Ṽ
= −4

ea

h̄(vo + w)
, (C19)

as implied by (C11). This will be somewhat larger than the
differential rate if w < vo. This difference can also be under-
stood from the results of Appendix B. When Ṽ is increased by
the amount necessary to change ϕ by 4π , the occupations of
the inner and outer modes will have each increased by 1, so
that one phase jump will have occurred. If the negative charge
jump on the outer mode has a magnitude less than 1, this will
reduce the change �Ṽ necessary to produce a net increase of
one electron on the outer edge.

In Sec. II E, we averaged the phase factor over the distri-
bution function fN , where N is fluctuating between Nd and
Nu. If we assume Vd = Vu = Ṽ , then Nd = Nu and N would
no longer fluctuate. Then, in the notation of Sec. II E, the
effective phase would reduce to

ϕ = C + α0Ṽ + α1λ1 + γ N (mod 2π ), (C20)

where N = [g] and g = κβ0Ṽ + β1λ1. For the case of ν = 2,
κ = 2(vo − w)/w. Now ϕ has the same form as in Eq. (C1),
and one can hence make connections between the coefficients
α j, β j and ᾱ j, β̄ j . By definition, γ = −γ̄ (mod 2π ), with
−π < γ < π . We then find the following relations:

ᾱ j − γ̄ β̄ j = α j, (C21)

−β̄0 = κβ0, (C22)

−β̄1 = β1. (C23)

APPENDIX D: EFFECT OF FLUCTUATING ISLAND
CHARGE ON THE CURRENT

We shall be interested in the Fourier expansion of the
following function:

exp[iC1F (g + A) + iC2F (g + B)] =
∑

m

amei2πmg, (D1)
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where A, B,C1,C2 are constants, and F (g) = g − [g]. The form of the above function is motivated by Eq. (52). The Fourier
coefficient am is given by the formula

am =
∫ 1

2

− 1
2

dge−i2πmg exp[iC1F (g + A) + iC2F (g + B)]. (D2)

We find that F (g + A) can be written as

F (g + A) = F (g + A − �A�) =
{

g + A − �A�, − 1
2 < g < 1

2 − (A − �A�),

g + A − �A� − 1, 1
2 − (A − �A�) < g < 1

2 .
(D3)

In the following calculations, we will use the notation a ≡ A − �A� and b ≡ B − �B�. We first assume that a > b. Then

C1F (g + A) + C2F (g + B) =

⎧⎪⎪⎨
⎪⎪⎩

C1(g + a) + C2(g + b), − 1
2 < g < 1

2 − a,

C1(g + a − 1) + C2(g + b), 1
2 − a < g < 1

2 − b,

C1(g + a − 1) + C2(g + b − 1), 1
2 − b < g < 1

2 .

(D4)

Next, am can be found as

am = ieiC1a+iC2b

2πm − C1 − C2
e−i(2πm−C1−C2 )/2[e−i(2πm−C1−C2 )(−b)e−iC1 (−e−iC2 + 1) + e−i(2πm−C1−C2 )(−a)(−e−iC1 + 1)]. (D5)

One can analyze the case of a < b by the substitution A ↔ B and C1 ↔ C2 so that

am = ieiC1a+iC2b

2πm − C1 − C2
e−i(2πm−C1−C2 )/2[e−i(2πm−C1−C2 )(−a)e−iC2 (−e−iC1 + 1) + e−i(2πm−C1−C2 )(−b)(−e−iC2 + 1)]. (D6)

Due to the definitions of a and b, there seems to be an apparent discontinuity in our coefficient am in Eqs. (D5) and (D6) when A
or B is an integer. However, this discontinuity is actually absent. Indeed, in the limit a → 1−, b is less than a. We now use (D5)
and find that

am = ie−i(2πm−C1−C2 )/2

2πm − C1 − C2
eiC1+iC2b[e−i(2πm−C1−C2 )(−b)e−iC1 (−e−iC2 + 1) + ei(−C1−C2 )(−e−iC1 + 1)]. (D7)

In the limit a → 0+,

am = ie−i(2πm−C1−C2 )/2

2πm − C1 − C2
eiC2b[e−iC2 (−e−iC1 + 1) + e−i(2πm−C1−C2 )(−b)(−e−iC2 + 1)]. (D8)

One can see that the two limits are equal, hence no discontinuity occurs. However, there will generally be discontinuities in the
first derivatives with respect to the various parameters.

Equation (D5) simplifies in terms of the parameter γ = 2πw
vo

(mod 2π ), C1 = − γ

2 − i log(cos γ

2 ), and C2 = − γ

2 +
i log(cos γ

2 ) found in Eq. (52) as

am = − 2

2πm + γ
eiπm(a+b−1) cosa−b(γ /2)

{
sin

[
(2πm + γ )(a − b) − γ

2

]
+ 1

cos(γ /2)
sin

[
(2πm + γ )(b − a)

2

]}

= 2 tan(γ /2)

2πm + γ
eiπm(a+b−1) cosa−b(γ /2) cos

[
(2πm + γ )(a − b) − γ

2

]
. (D9)

The result for a < b can be found by exchanging a ↔ b and C1 ↔ C2,

am = − 2

2πm + γ
eiπm(a+b−1) cosa−b(γ /2)

{
sin

[
(2πm + γ )(b − a) − γ

2

]
+ cos(γ /2) sin

[
(2πm + γ )(a − b)

2

]}

= 2 sin(γ /2)

2πm + γ
eiπm(a+b−1) cosa−b(γ /2) cos

[
(2πm + γ )(a − b)

2

]
. (D10)

In the strong-coupling regime at ν = 2, where w/vo ≈ 1
and γ = 2πw

vo
(mod 2π ) ≈ 0, we find the largest contribution

from m = 0. (This corresponds to n = 1 in the notation of
the previous Appendix.) Similarly, at ν = 2/5, one expects a
small γ in the strong-coupling regime, where each quasiparti-
cle on the edge of the inner island is screened by a quasihole
on the outer edge.

APPENDIX E: THEORY OF THE RESONANCE

In this Appendix, we provide a quantitative theory of the
resonance seen in Fig. 9. We assume weak interaction between
the inner and outer edge modes, i.e., θ is small. From Eq. (36),
we can find the correction �P to Po(t, a) due to this weak
interaction. The correction from �S11 is merely a constant
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(independent of t) after integration and can be ignored. The
correction due to �S12 equals

�P = 1

3
P0

o (t, a)
∫ ∞

0

dω

ω
�(S12 + S∗

12)e−iωt e−ωδ, (E1)

where P0
o (t, a) = [δ + i(t + a/v1)]−1/3[δ + i(t − a/v1)]−1/3

is the value of Po(t, a) when θ = 0. By looking at Eq. (31),
we can find that

�S12 = − 2θ2
(
e

iaω(v1+v2 )
v1v2

[
cos

(
aω
v1

) − cos
(

aω
v2

)]) + O(θ4)(−1 + e
2iaω
v2

) − 2θ2
(
e

2iaω
v2 − e

iaω(v1+v2 )
v1v2

) + O(θ4)
.

(E2)

To the lowest order, the poles of �S12 can be found by calcu-
lating the zeros of the denominator, and we can write the poles
as aωn/v2 = nπ + εn + i�n, where

εn + i�n = −iθ2[1 − (−1)neinπ/k] (E3)

with k = v1/v2. In this equation, we notice that �n =
−θ2[1 − (−1)n cos(nπ/k)] � 0. One needs to go to the next
order in θ if the above imaginary part is zero. Below we only
focus on leading resonances with small n, and we assume that
the imaginary part of Eq. (E3) is nonzero.

To find �P, we first assume that t > 0 and consider the
contour integral,∫

C1+C2+C3

dz

z
�(S12 + S∗

12)e−izt e−zδ, (E4)

where C1 : z = s, s ∈ (0,∞) is the positive real axis, C2 : z =
Reiφ, φ ∈ (0,−π/2), R → ∞ is a quarter circle, and C3 : z =
is, s ∈ (−∞, 0) is the negative imaginary axis. We denote the
residue of �S12 at the nth pole as Mn, and we find the value of
the integral as

D1(t ) = 2π i
∑

n

(
Mne−iωnt

ωn

)
. (E5)

The integral along C2 is obviously zero. The integral along C3

is a featureless function of t since the integrand has no poles
close to the imaginary axis. We call that function h(t ). Notice
that h(t ) is a real function. Therefore, we can write∫ ∞

0

dω

ω
�(S12 + S∗

12)e−iωt e−ωδ = D1(t ) − h(t ) (E6)

when t > 0. When t < 0, we close the contour in the counter-
clockwise direction and observe that the integral along C1 is
D2(t ) − h(−t ), where

D2(t ) = −2π i
∑

n

(
Mne−iωnt

ωn

)∗
. (E7)

For all signs of t , we can conclude that the value of the integral
is D(t ) − h(|t |), where

D(t ) = 2π i
∑

n

[
sgn(t )Re

(
Mne−iωnt

ωn

)
+ iIm

(
Mne−iωnt

ωn

)]
.

(E8)

Looking at the formula for the interference current,

2e∗

h̄2 |	1	2| cos ϕ

∫ 0

−∞
dt

× [e−iωJ t P(−t, a) − eiωJ t P(−t, a) + c.c.], (E9)

we focus on the correction to the current due to D(t ), which
can be expressed as

�I = 2e∗

h̄2 |	1	2| cos ϕ
∑

n

∫ 0

−∞
dt

×
[

2π i

3
P0

o (−t, a)
Mn

ωn
(e−i(ωJ−ωn )t − ei(ωJ+ωn )t ) + c.c.

]
.

(E10)

We thus expect a resonance when ωJ is close to v2(nπ +
εn)/a ≈ nπv2/a. The width of the resonance is set by
v2�n/a ∼ θ2. The height of the conductance maximum can
be estimated from the zero bias anomaly for quasiparticle
tunneling at ν = 1/3. To estimate the height we use the volt-
age on the order of the resonance width. Then the height is
proportional to Mn�

−1/3
n /ωn ∼ θ4/3. The conductance peak

scales as Mn�
−4/3
n ωn ∼ θ−2/3. All these predictions are in

qualitative agreement with the features of the resonance ob-
served in Fig. 11. A quantitative comparison is not possible at
large θ .

APPENDIX F: TABLE OF NOTATIONS

In this Appendix, Table I presents a list of the notations
used in this paper.
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TABLE I. List of notations.

a Distance between the two QPCs, measured along an edge
A Amplitude of the differential conductance
Ā Nominal interference area
B Magnetic field
e∗ < 0 Electric charge of the tunneling quasiparticle
En Energy levels of a closed bosonic edge mode
fN Distribution function of the number of inner quasiparticles N
F (g) Function g − [g], where the bracket [· · · ] means the nearest integer
gd , gu Linear functions of controlling parameters λ0,1 that define Nd,u

Gd,u(t, x) Green’s functions of quasiparticle operators on the lower and upper edges
H Edge Hamiltonian of the system
IT Tunneling current
Ĩ Amplitude of the interference current
L Edge Lagrangian of the system
m Tunneling charge between outer modes in units of −ν1e
n Tunneling charge between inner modes in units of −ν2e
N Net number of positive quasiparticles on a closed inner edge
Nd , Nu Maximum and minimum number of inner quasiparticles
P(t, x) Green’s function of tunneling operators, defined as 〈T̂ (t, x)T̂ †(0, 0)〉
S Scattering matrix from incoming Bose fields to outgoing Bose fields
T̂ (t, x) Tunneling operator between lower and upper edges
T Temperature
vi,o, v1,2 Velocities of various edge modes
Vd,u Voltages applied on the lower and upper edges
V , Ṽ Difference and average of the lower and upper voltages Vd,u

w Coupling strength between the outer and inner modes
α0,1 Coefficients of controlling parameters λ0,1 that directly contribute to the phase ϕ

β0,1 Coefficients of controlling parameters λ0,1 in N , Nd , and Nu

γ Phase from the interval (−π ; +π ) associated with each inner quasiparticle
	1,2 Tunneling amplitudes between lower and upper edges at QPC1 and QPC2
	io Tunneling amplitude between inner and outer modes on a single edge
δ Short-time cutoff
η Asymmetry factor for the voltage bias, defined as Ṽ /V
θ Mixing angle of the inner and outer modes
�1,2 Dimensionless temperature
λ0,1 Controlling parameters in the phase ϕ, including the average voltage Ṽ and magnetic flux ĀB
ν Filling factor of the bulk region
ν1, ν2 Filling factors of the outer and inner modes
φi,o, φ1,2 Bose fields of various edge modes
ϕ Interference phase, i.e., the phase difference between 	1 and 	2

ωJ Josephson frequency, defined as e∗V/h̄
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