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Quantum theory of polariton weak lasing and polarization bifurcations
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The quantum theory of polariton condensation in a trapped state reveals a second-order phase transition
evidenced by spontaneous polarization parity breaking in subspaces of fixed polariton occupation numbers. The
emission spectra of a polariton condensate demonstrate the coexistence of a symmetry-conserving condensate
state with linear polarization and two symmetry-broken elliptically polarized states in the vicinity of the
threshold. As a result, an oscillating linearly polarized second-order coherence g(2)

xx (t ), with g(2)
xx (t ) < 1 over some

time intervals, is obtained. Spontaneous symmetry breaking is reflected in the second-order cross correlator of
circular polarizations. A related buildup of elliptically polarized weak lasing also results in nonmonotonous
dependence of the circular second-order coherence on excitation power and interaction strength.
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I. INTRODUCTION

The experimental realization of optically trapped polariton
condensates [1,2] marked an important technological advance
by allowing better control of condensate arrangements, po-
larization, and their mutual coupling. Positioning polariton
condensates away from excitation spots in the microcavity
plane reduces substantially thermal noise and condensate
decoherence, thus narrowing polariton lasing lines in the
frequency spectrum. Combined with the recent progress in
increasing polariton lifetimes [3,4], this makes networks of
trapped condensates a promising platform for all-optical de-
vices [5,6] and neuromorphic computing [7–11].

Polariton condensates can encode information through
their polarization (spin) state, which exhibits a great amount
of interesting properties [12–15]. While at high excitation
level linearly polarized condensates are formed, the polariza-
tion state near the condensation threshold is more complex.
It was discovered [16,17] that a single trapped polariton
condensate undergoes parity breaking bifurcation leading to
random formation of two possible states of elliptically polar-
ized condensates with opposite handedness. The polarization
bifurcation near the threshold can be understood as a weak
lasing effect, where coupled single polariton modes may
condense in more than one collective many-body state due
to the interplay of polariton-polariton repulsion and a small
difference in the lifetimes of different normal modes (equiv-
alent to dissipative coupling) [18]. The mean-field theory
used so far to describe this phenomenon studies the polariton
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condensation in terms of nonlinear driven-dissipative equa-
tions, where different condensate states correspond to fixed
points or limit cycles [19,20] (sometimes referred to as time
crystals [21]). This theory lacks the ability to properly address
the possible coexistence of condensates near the threshold
and their quantum properties, which are speculated to allow a
quantum speed up of polariton simulators [22]. Moreover, the
validity of the mean-field description of weak lasing is limited
by the assumption of weak polariton-polariton interaction.
An essential property of weak lasing is that the formation
of a condensate is stabilized by the interaction, not by the
depletion of an incoherent feeding reservoir. As a result, the
condensate occupation numbers are inversely proportional to
the interaction constant. The latter is controlled by the conden-
sate confinement, so that the requirement of weak interaction
is a severe limitation.

In this paper we discuss the properties of the trapped po-
lariton condensate density matrix in the presence of the weak
lasing effect. The system in this case obeys open-dissipative
quantum dynamics described by the Lindblad master equa-
tion for the density matrix. We analyze properties of both the
steady state solution and different two-time correlators, since
the polarization and the many-body correlations can provide
information on the presence of quantum fluctuations in the
system [23,24]. We also calculate the emission spectra from
the condensate, and show how they indicate the symmetry
breaking transition in the system and coexistence of conden-
sates with different symmetries.

II. FORMALISM

For a trapped condensate, we denote by âx and ây the
annihilation operators for X and Y linearly polarized states,
respectively, and assume different dissipation rates, � + γ
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and � − γ , from these states. We also account for the linear
polarization dichroism between these states, with frequency
splitting ε, so that the Y linear polarization possesses the
highest frequency and the lowest dissipation rate. This cor-
responds to the experimental conditions of Refs. [16,17]. If
the polariton harvest rate W is polarization independent, the
condensate density matrix ρ̂ evolves according to the equation

d ρ̂

dt
≡ Lρ̂ = −i[Ĥ, ρ̂] − W

2
([âx, â†

x ρ̂] + [ây, â†
y ρ̂] + H.c.)

− (� + γ )

2
([â†

x, âxρ̂] + H.c.)

− (� − γ )

2
([â†

y, âyρ̂] + H.c.). (1)

Here the coherent evolution of the polariton condensate is
given by the Hamiltonian of the Bose-Hubbard dimer [25]

Ĥ = −ε

2
(â†

+â− + â†
−â+) + α1

4
(â†2

+ â2
+ + â†2

− â2
−)

+ α2

2
â†

+â†
−â+â−, (2)

where we use the operators â± = (âx ∓ iây)/
√

2 for the circu-
lar polarization components, and α1 and α2 are the interaction
constants for polaritons with the same and the opposite cir-
cular polarizations. The natural units of this system can be
defined by taking � as the unit of frequency and �−1 as the
unit of time.

The choice of a polarization independent harvest rate,
W , follows previous theoretical models [26], which were
established by comparison to experiment [27], where the po-
larization independent pump rate does not itself prefer any
specific polarization upon condensation. We note that possible
initial linear polarization of the incoherent pump is typically
lost during the process of relaxation of polaritons into conden-
sate, since polariton-phonon scattering quickly randomizes
the linear polarization component [28]. Nevertheless, other
factors may influence the condensate polarization. We have
considered a real frequency splitting ε between X and Y
linearly polarized states, and a specific implementation could
be based on elliptical micropillar cavities [29], where X and Y
linearly polarized states possess different spatial wave func-
tions. Although we do not model the spatial distribution of
the wave functions explicitly, it is expected that X and Y
polarized states would have different penetrations through the
boundaries of such cavities, resulting in different dissipation
rates.

In what follows, it is convenient to introduce the spin of the
condensate, which is defined by the operators

ŝ1 = 1

2
(â†

x âx − â†
y ây), ŝ2 = 1

2
(â†

y âx + â†
x ây), (3a)

ŝ3 = i

2
(â†

y âx − â†
x ây), ŝ0 = 1

2
(â†

x âx + â†
y ây). (3b)

With the aid of spin components, the Hamiltonian (2) can be
written as

Ĥ = Ĥ0 + Ĥs, Ĥs = −εŝ1 + α

2
ŝ2

3, (4)

where α = α1 − α2. The Hamiltonian Ĥs is recognized as the
Lipkin-Meshkov-Glick model [30], while Ĥ0 = [α1ŝ0(ŝ0 −

1) + α2ŝ2
0]/2 depends only on the total spin operator ŝ0, which

defines the total number of polaritons in the condensate. The
dynamical properties of the Hamiltonians Ĥ and Ĥs are the
same. It is seen from Eq. (1) that the density matrix possesses
the block-diagonal structure: the 1 × 1 block for the empty
condensate, the 2 × 2 block for one polariton (spin 1/2),
the 3 × 3 block for two polaritons (spin 1), etc. Each block
evolves independently of the others under the Hamiltonian
term in (1), but the neighboring blocks are coupled by the
drive-dissipation Lindblad terms in (1).

III. EQUILIBRIUM CONDENSATE PROPERTIES

One can note from Eq. (1) that in this system, instead of
having a specific condensation threshold, there is a threshold
region from W = � − γ to W = � + γ . Moreover, due to
quantum fluctuations the condensate is already formed for
W < � − γ . The semiclassical dynamics of the average spin
components Sμ = 〈ŝμ〉 (see the Appendix for the details) re-
veals the presence of the second order phase transition. For
small pumping W , the condensate is formed with the Y polar-
ization, but for W > Wc this state becomes unstable, and two
elliptically polarized condensates can appear with equal prob-
ability. This symmetry breaking manifests the weak lasing
regime. The critical value Wc is close to � − γ for α � �, and
it shifts to smaller values with increasing interaction constant.

The mean-field approximation describes the system well
in the limit of large condensate populations, and for the weak
lasing regime this is realized in the case of weak interaction,
α � �, see Eq. (A4d). Here we will be interested in the case
α ∼ �, where the exact quantum description is necessary. The
regime of strongly interacting polariton condensates is not
routinely achieved experimentally, but it has been discussed
in the context of polariton blockade [31], it is a clear target in
the field [32,33], and it is expected in the near future, if not
already achieved [34].

Clearly, a sharp phase transition only takes place in the
limit of large condensate occupations, where the mean field
approximation is valid. To investigate the polarization parity
breaking phenomenon at strong interaction and low occupa-
tion numbers, we evolve the master equation (1) until reaching
the steady state ρ̂0. Then we check the probability distribution
of the spin operator ŝ3. In the circular â± basis, it can be writ-
ten as ŝ3 = (â†

+â+ − â†
−â−)/2 and it determines the polariton

occupation number difference between the right and the left
circularly polarized polariton modes. Possible eigenvalues of
ŝ3 are s3 = 0,±1/2,±1,±3/2, . . . , and without parity break-
ing the 0 eigenvalue has the highest probability (the polariton
condensate is linearly polarized).

The probability distribution P(s3) is given by

P(s3) =
∑

n+,n−

〈n+, n−|ρ̂0|n+, n−〉δn+,n−+2s3

=
∑
n+

〈n+, n+ − 2s3|ρ̂0|n+, n+ − 2s3〉, (5)

where n+ and n− are the numbers of polaritons in the + and
− states, respectively. We see from Fig. 1 that instead of cen-
tering at 0, the probability distribution shows a double-peak
structure, indicating that the polaritons have a higher chance to
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FIG. 1. Probability distribution of s3 with different contribution
from states with different number of particles, where the numbers
1, . . . , 36 (encoded by different colors) indicate the number of par-
ticles in a certain subspace of the system. The contribution from the
vacuum state |0, 0〉 is excluded. We have considered a maximum of
36 particles on each site, γ = 0.5�, W = 0.95�, α = ε = �.

condense at either the right circularly polarized (s3 > 0) or the
left circularly polarized (s3 < 0) states. This is the fingerprint
of the polariton condensate undergoing a circular polarization
parity symmetry breaking.

In Fig. 1, different colors in the stacked bar chart represent
different contributions from states with different numbers of
polaritons. For example, 1 represents the contribution from
states with only one polariton (|0, 1〉 and |1, 0〉). Also, one can
note that states with more polaritons have a more pronounced
symmetry breaking, as the interactions between the polaritons
are more significant.

IV. EMISSION SPECTRA

Here we analyze how the polarization symmetry-breaking
transition is reflected in the light emission spectra, which
could in principle be measured in an experiment. To this aim,
we consider the time-delayed first-order correlation functions
for X and Y polarized polariton modes,

g(1)
x (t ) = 〈â†

x (t )âx(0)〉, g(1)
y (t ) = 〈â†

y (t )ây(0)〉. (6)

The time dependent correlators can be calculated in the frame-
work of the quantum regression method [35]. Namely, to
evaluate 〈Â(t )B̂(0)〉 we evolve the modified operator ρ̂B(0) =
B̂(0)ρ̂0 to find ρ̂B(t ) = eLt ρ̂B(0) using the Lindblad superop-
erator L from Eq. (1). Then, 〈Â(t )B̂(0)〉 = Tr{Â(0)ρ̂B(t )}.

The first-order coherence functions (6), shown in Figs. 2(a)
and 2(b), decrease with the time delay corresponding to a
finite coherence time in the system. It is natural that they
also oscillate in time given the energy difference of the X
and Y modes, which is also renormalized by different blue
shifts of these modes with increasing pumping. It can also
be noted that the first order coherence time decreases slightly
with stronger pumping strength W . This is expected given that
under higher pumping strength the interaction between the

(a) (c)

(b) (d)

FIG. 2. We show the first order correlation functions for the X
polarization (a) and the Y polarization (b) under different pumping
strength W . The corresponding emission spectra Ix,y(ω) are shown in
panels (c) and (d). We have considered a maximum of 14 polaritons,
γ = 0.5�, α = ε = �.

polaritons becomes more important and it leads to additional
dephasing [36].

The emission spectra for X and Y polarizations can be
found as

Ix,y(ω) = 1

π
Re

∫ ∞

0
g(1)

x,y(t )e−iωt dt, (7)

and they are shown in Figs. 2(c) and 2(d). These spectra
demonstrate features that are not expected from mean-field
theory presented in the Appendix. The latter predicts only one
emission peak, originating either for the symmetry conserving
Y-polarized state, or from two symmetry breaking ellipti-
cally polarized states, which possess opposite handedness
but the same emission frequency. The X-polarization spec-
tra, however, clearly demonstrate coexistence of two different
condensate states and a corresponding two-peak structure. At
low pumping, there is only one emission line originating from
the X-polarized condensate, which appears initially at ω =
−ε/2 and is gradually blue shifted with increasing pumping
W . At moderate and strong pumping the second line becomes
more and more important and it indicates the formation of
weak lasing condensates. The blue shifts of different conden-
sate states are different, with the blue shift of the weak lasing
state being stronger, since it is more occupied. Consequently,
at W = 0.8� we see the superposition of two peaks, separated
by some distance larger than the Josephson splitting ε. Sim-
ilarly, in the spectrum of Y polarized polaritons [Fig. 2(d)],
we can see also a weak second peak appearing at the low-
frequency wing of the much stronger weak lasing peak. It is
not quite resolved since the emission from the Y polarized
polaritons is stronger, as they have smaller decay rate.

Additional properties of the emission spectra are shown
in Fig. 3. The dependences of the emission intensity on
the interaction strength, shown in Figs. 3(a) and 3(b),
reveal the presence of the blue-shift with increasing in-
teraction. The value of the blue shift is bigger for the
symmetry-broken condensate, so that the separation between
the peaks in the X polarization increases as well. The two
peaks acquire more visibility with increasing of the coherent
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(a) (b)

(c) (d)

(e) (f)

FIG. 3. We show the dependences of the emission spectra in the
X and Y linear polarization on the parameters of the condensate. For
panels (a) and (b) γ = 0.5�, ε = �; for the panels (c) and (d), γ =
0.5�, α = �; and for the panels (e) and (f), α = ε = �. We have
considered a maximum of 14 polaritons on each site and pumping
strength W = 0.8� for all panels.

ε and the dissipative coupling γ , as it is seen from Figs. 3(c)
and 3(e).

V. THE SECOND-ORDER CORRELATORS

Another experimentally important quantity is the second-
order coherence. Here we calculate the time-dependent
second-order correlation functions

g(2)
μν (t ) = 〈â†

μ(0)â†
ν (t )âν (t )âμ(0)〉

〈â†
μ(0)âμ(0)〉〈â†

ν (t )âν (t )〉 , (8)

where μ, ν = x, y,+,−. The numerator in Eq. (8) can be
again calculated using the quantum regression method, as the
average 〈Â(t )B̂(0)〉 = Tr{Â(0)ρ̂B(t )} with Â(0) = â†

ν (0)âν (0),
ρ̂B(0) = âμ(0)ρ0â†

μ(0), and ρ̂B(t ) = eLt ρ̂B(0).
The results for g(2)

yy (t ) and g(2)
xx (t ) are shown in Fig. 4. It

can be seen that the second order coherence at zero time delay
decreases from roughly two (corresponding to a thermal state)
toward one (a coherent state) upon increasing the pumping
strength. This is generally expected of polariton condensates,
although we don’t reach a perfect coherence due to the small
numbers of particles involved. It can also be noted that the sec-
ond order coherence of the vertical polarization (the ây mode)
exceeds that of the horizontal polarization (the âx mode),
and that there is an oscillation in the second order coherence
taking place at higher pumping powers. Such oscillations are
expected in coupled mode systems (e.g., in unconventional
blockade systems [37]). Given that the mechanism in our
present case of coupling âx and ây modes is via the nonlinear
interaction term (α), it is reasonable that these oscillations
only become significant at higher pumping powers. Let us
further recall that the ây mode corresponds to the lower loss

(a)

(b)

FIG. 4. The second order correlation function g(2)
yy (t ) [Y polar-

ization, panel (a)] and g(2)
xx (t ) [X polarization, panel (b)] for different

pumping strengths W . We have considered a maximum of 14 parti-
cles on each site, γ = 0.5�, α = ε = �.

state and hence the state with higher number of particles. The
ây mode acts then as a source of particles for the âx mode
(even though the âx mode also receives particles directly from
the pumping). We note that this source corresponds to terms
of the form â†

x â†
x âyây, which appear from the ŝ2

3 term. As the
scattering rate of such a source term depends on the number
of particles already in the âx state this term can be considered
as a stimulated scattering term, which consequently imparts
coherence to the mode being developed. This explains why
the âx mode tends to have a smaller second order correlation
function. Further, we note that it was previously shown in
systems of bosonic cascades [38] that, when a mode acquires
coherence from another, the original source mode, which in
our case is ây, should show more bunching. That is, ây can
develop a higher second order correlation function as a result
of the nonlinear coupling. Another interesting feature seen in
Fig. 4(b) is the presence of time intervals with g(2)

xx (t ) < 1.
This effect becomes more pronounced with increasing inter-
action, but it is still not sufficient to obtain the sub-Poissonian
polariton statistics.

The polarization parity symmetry breaking can also be
evidenced from the second order cross correlator g(2)

+−(t ) =
g(2)

−+(t ) between the opposite circular polarizations, providing
information about temporal correlations between the emission
of photons with opposite handedness from the condensate.
This correlator is shown in Fig. 5(a). The value g(2)

+−(t ) < 1
tells us that if a photon is observed in one circular polarization,
then it is less likely to detect another photon in the opposite
circular polarization. For long time delay, this anticorrelation
is washed out, as the right and the left circular polarization
have equal realization probabilities.

Interestingly, similar anticorrelation is built up with in-
creasing pumping in the cross correlator g(2)

xy (t ) < 1 between
X and Y linear polarizations, shown in Fig. 5(b). In contrast,
this cross correlator does not saturate at 1. Its saturation value
is close to that defined by the elliptical polarization of the
symmetry-broken condensate state. We note that g(2)

xy (t ) shows
a peak at about the same time when g(2)

xx (t ) shows a dip at
corresponding pumping strength.

The results on the time dependence of the second-order
cross correlators show that in our system the switching
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(a)

(b)

(c)

FIG. 5. (a) The time dependence of the circularly polarized
second-order cross correlator g(2)

+−(t ) for different pumping strength
W . (b) The time dependence of the second-order cross correlator for
linear polarizations g(2)

xy (t ) for different pumping strength W . (c) The

second-order coherence g(2)
++(0) for the same circular polarization.

We have considered a maximum of 14 particles on each site, γ =
0.5�, ε = � in all the panels, and α = � in panels (a) and (b).

between different condensate states in the vicinity of the
threshold takes place on a rather short time scale, about a
few �−1. This is because we considered strongly localized,
trapped condensates, where the spatial degrees of freedom
are “frozen out,” while the quantum polarization fluctuations
are strong. Recent state-of-art experiments [39] have accessed
fluctuations in spatially resolved condensates trapped in a
wide disk and demonstrated formation of long-living space-
polarization patterns in the vicinity of the threshold. It is
interesting to extend the quantum theory of weak lasing to
this case, but the analysis of such a problem is rather hard
computationally.

In Fig. 5(c) we also show the zero-delay second-order co-
herence for the same circular polarization g(2)

++(0) = g(2)
−−(0).

For small pumping, the second order coherence initially in-
creases above two for weak interaction strength α, but it
becomes substantially smaller than two for strongly interact-
ing polaritons. In this case, the dependence on the pumping W
is nonmonotonous, with g(2)

++(0) approaching unity for large
pumping, which manifests the polariton lasing.

VI. CONCLUSIONS

The theory of polariton condensation and spontaneous po-
larization formation is typically treated within the mean-field
approximation, which explicitly assumes large occupation
numbers of the condensates. In applications of polariton
condensates it is often speculated that quantum fluctuations
play a key role [39], and they can lead to quantum speedup
of polaritonic devices [22]. Consequently, it is essential to

generalize the fundamental theory of polariton condensation
into the quantum realm accounting for such fluctuations. By
performing exact quantum calculations of the condensate den-
sity matrix, the first and the second order coherence, as well
as the emission spectra, we demonstrate that the conden-
sate formation near the threshold is indeed more complex.
In particular, it involves possible coexistence of the states
with broken and unbroken parity symmetry. The weak lasing
in the quantum case is manifested by spontaneous polar-
ization parity breaking across the different particle number
subspaces, and it can be experimentally detected by measuring
the second-order cross correlations of circular polarization
components.
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APPENDIX: SEMICLASSICAL APPROXIMATION

The Lindblad master equation for the density matrix (1)
can be used to obtain the equations for the dynamics of the av-
erages of the spin operators ŝμ, μ = 0, 1, 2, 3 that are defined
by Eqs. (3a) and (3b). In particular, for the Hamiltonian (4),
that we use in this paper, the averages Sμ = 〈ŝμ〉 ≡ Tr{ρ̂ ŝμ}
define the Stokes vector components and they satisfy the
equations

Ṡ0 = −(� − W )S0 − γ S1 + W, (A1a)

Ṡ1 = −(� − W )S1 − γ S0 − αS23, (A1b)

Ṡ2 = −(� − W )S2 + εS3 + αS13, (A1c)

Ṡ3 = −(� − W )S3 − εS2, (A1d)

where we also introduced the averages of the normal ordered
products Sμν = 〈:ŝμŝν :〉.

The dynamics of the tensors Sμν involves in turn the av-
erages Sμνλ = 〈:ŝμŝν ŝλ:〉, and so on. The simplest way to
break this chain of equations is by replacing S23 → S2S3 and
S13 → S1S3 in Eqs. (A1b) and (A1c), which explicitly assumes
the second-order coherence to be equal to one. Below we
present the results of this approximation by analyzing the
bifurcations of the fixed points of Eqs. (A1) under these
substitutions in the region of pumping rates 0 < W < �, as-
suming also 0 < γ < � and αε > 0.

For small W there is only one static solution, which cor-
responds to formation of the condensate in the Y linearly
polarized state, defined by the ây annihilation operator. The
values of the spin components are

S0 = W

2

(
1

� + γ − W
+ 1

� − γ − W

)
, (A2a)

S1 = W

2

(
1

� + γ − W
− 1

� − γ − W

)
< 0, (A2b)

S2 = S3 = 0. (A2c)

It can be shown by making small perturbation of equa-
tions around this fixed point and performing linear stability
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analysis that this condensate becomes unstable for W > Wc,
where critical pumping value Wc corresponds to αε|S1| =
(� − W )2 + ε2 and can be found as the root of equation

[(� − Wc)2 − γ 2][(� − Wc)2 + ε2] = αγ εWc. (A3)

There is a pitchfork bifurcation at W = Wc, which results in
the appearance of two stable symmetry breaking fixed points
for W > Wc, describing the possibility of formation of two
elliptically polarized condensates with positive (S3 > 0) and
negative (S3 < 0) handedness. The components of the Stokes
vector in this case are

S1 = −g2 + ε2

αε
, (A4a)

S2 = −g

ε
S3, (A4b)

S3 = ± 1

αg

[
αγ εW − (g2 − γ 2)(g2 + ε2)

]1/2
, (A4c)

S0 = 1

g

[
W + γ (g2 + ε2)

αε

]
, (A4d)

FIG. 6. Showing the dependences of the spin components on the
pumping W . The parameters are � = 1, γ = 0.5, ε = α = 1, and
they correspond to the bifurcation value Wc ≈ 0.378.

where g = � − W . The Stokes components as functions of
W are shown in Fig. 6, taking the positive value of S3 in
Eq. (A4c).
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