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We apply density functional theory to investigate interactions between electronic and vibrational states in
crystal defects with multimode dynamical Jahn-Teller (JT) systems. Our focus is on transitions between orbital
singlet and degenerate orbital doublet characterized by E ⊗ (e ⊕ e ⊕ · · · ) JT coupling, which frequently occurs
in crystal defects that are investigated for applications in quantum information science. We utilize a recently
developed methodology to model the photoluminescence (PL) spectrum of the negatively charged split nickel-
vacancy center (NiV−) in diamond, where JT-active modes significantly influence electron-phonon interactions.
Our results validate the effectiveness of the methodology in accurately reproducing the observed 1.4 eV PL
lineshape. The strong agreement between our theoretical predictions and experimental observations reinforces
the identification of the 1.4 eV PL center with the NiV− complex. This study highlights the critical role of
JT-active modes in affecting optical lineshapes and demonstrates the power of advanced techniques for modeling
optical properties in complex systems with multiple JT-active frequencies.
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I. INTRODUCTION

Electronic degeneracy occurs in molecular structures
or point defects in solids with highly symmetric atomic
configurations, leading to the intricate coupling between elec-
tronic and symmetry-lowering vibrational degrees of freedom
known as the Jahn-Teller (JT) effect [1–4]. If the coupling is
not too strong, the system exhibits a dynamical aspect, where
there is no change in the local symmetry and no splitting of
degeneracy, but rather an alteration in the nature of the vi-
bronic states [5]. This phenomenon is known as the dynamical
Jahn-Teller (DJT) effect [3].

The dynamic interplay between electronic and ionic de-
grees of freedom can influence specific, measurable properties
of the electronic system [6]. Furthermore, the closely inter-
twined electronic and vibrational components can generate a
distinct array of vibronic states, giving rise to specific fea-
tures within emission or absorption spectra. The emergence
of such spectral attributes was first discussed in the pioneer-
ing paper on the DJT effect by Longuet-Higgins et al. [3].
This research examined the lineshape of the orbital singlet
A to orbital doublet E transition in an E ⊗ e DJT system.
They used an effective single-degenerate-mode model to de-
pict the motion along a symmetry-breaking direction, which
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dynamically couples electronic states. In this fundamental
description of the JT effect, they demonstrated that the line-
shapes for A → E transitions exhibit two intensity peaks, a
hallmark of a JT-active system. While this single-mode model
correctly describes the general features of simple DJT sys-
tems, it raises the question of its precision in characterizing
systems with many JT-active modes. In her theoretical work,
O’Brien [7] showed that with strong vibronic coupling, the
issue of many frequencies can be approximated by an effective
model of a single-degenerate mode. She later affirmed that this
simplification efficiently describes the optical lineshapes of
the two-degenerate-mode system E ⊗ (e ⊕ e) [8]. However,
the effectiveness of the single-effective mode method is not
guaranteed in cases of weak coupling; a multimode approach
is necessary, as demonstrated by studies simulating the pho-
toemission spectrum of C−

60 [9,10].
Recent advancements in exploring crystal defects as quan-

tum systems for technological applications have sparked
a renewed interest in the DJT effect within color centers
[11–16]. A primary challenge in analyzing the DJT effect in
such systems is the electron-phonon coupling to a continuum
of vibrational frequencies. Therefore, theoretical investiga-
tions often employ the single-effective mode model to explore
spectral and magnetic properties. In addition, when modeling
optical sidebands in DJT systems involving many vibrational
modes, the standard Huang-Rhys (HR) theory, developed for
adiabatic states, is typically employed to capture contribu-
tions from JT-active modes [13,14,16]. A recent study [17]
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highlighted the limitations of both the single-mode model
and HR theory in accurately simulating optical lineshapes
by examining the absorption lineshape of the A → E triplet
transition in the negatively charged nitrogen-vacancy (NV)
center in diamond. In that work, some of the present authors
developed a rigorous methodology based on density func-
tional theory (DFT) calculations to overcome these limitations
and accurately model multimode E ⊗ (e ⊕ e ⊕ · · · ) DJT
systems [17].

In this paper, we apply this recently developed method-
ology to elucidate the photoluminescence (PL) spectrum of
the negatively charged split nickel-vacancy center (NiV−)
in diamond [16]. In the previous application of the method
to the absorption spectrum of the negatively charged NV
center in diamond [17], the JT coupling was minor relative
to the contribution from electron-phonon coupling involv-
ing symmetry-preserving a1 modes. While the theory did
allow for obtaining the correct weight distribution in the ab-
sorption lineshape, the DJT effect did not yield any sharply
visible spectral features from the JT-active modes. In the
NiV− case, however, the influence of JT-active modes with
eg symmetry is more than three times greater than that of
symmetry-preserving a1g modes, leading to noticeable JT-
specific features in the optical lineshape that we are able
to reproduce using our methodology. By comparing opti-
cal lineshapes derived from standard HR theory applied to
JT-active modes against those obtained through rigorous treat-
ment of DJT multimode systems, we demonstrate that HR
theory alone cannot adequately explain the observed spectral
features.

II. NiV− CENTER IN DIAMOND

Nickel is a common impurity in diamond produced un-
der high-pressure and high-temperature conditions, creating
identifiable features that can be detected using optical and
electron paramagnetic resonance methods [18–21]. A notable
fingerprint of the nickel impurity is the 1.4 eV PL line [18],
which is associated with the NiV− center [16]. The atomic
configuration of this system is depicted in Fig. 1(a). The impu-
rity ion resides precisely at the inversion center between two
adjacent vacancies, resulting in the point-group symmetry of
the defect being D3d , displaying spin-doublet configurations
in both the ground and optically excited states [16] [Fig. 1(b)].

The molecular orbital model for this center can be con-
structed by considering the presence of six carbon dangling
bonds surrounding the nickel atom and the contribution of
five 3d atomic orbitals of Ni [16]. This atomic basis results
in a total of 11 molecular orbitals. In the ground state, seven
orbitals constitute filled closed shells located deep within
the valence band. The highest energy orbital among these is
a1g [Fig. 1(c)], which is essential in the considered optical
transition. The remaining four orbitals form two degenerate
doublets with eu and eg symmetry within the band gap. The
eu orbitals are filled with three electrons, forming an orbital
doublet with Eu symmetry. This state can be described by
a single determinant wave function, as shown in Fig. 1(c).
This Eu electronic state constitutes an Eu ⊗ (eg ⊕ eg ⊕ · · · )
DJT system where eg symmetry vibrational modes couple the
components of degenerate electronic states (Eux and Euy).

FIG. 1. (a) Atomic structure of the split nickel-vacancy (NiV−)
center in diamond. (b) Electronic level diagram of NiV−. (c) Elec-
tronic configurations in the single-electron picture of ms = 1/2 spin
sublevels of the ground |2Euy〉 and excited |2A1g〉 single-determinant
wave functions.

In contrast, the optically excited state is an orbital singlet
with A1g symmetry. In this state, one of the spin minority a1g

electrons is promoted to the eu orbital, resulting in a single-
determinant wave function depicted in Fig. 1(c).

When considering the electron-phonon interaction during
an optical 2A1g → 2Eu transition, the symmetry-breaking JT-
active vibrational modes of eg symmetry and the symmetry-
preserving modes of a1g symmetry participate in the transi-
tion. The participation of the a1g symmetry modes can be
described using the customary adiabatic HR theory [22].

The arrangement of optically active states in NiV− is
formally equivalent to a generalized problem of A-to-E ⊗
(e ⊕ e ⊕ · · · ) transition [3,8], often observed in trigonal and
octahedral symmetry systems. Therefore, in the subsequent
theoretical description, the electronic Eu and A1g, along with
the vibrational eg and a1g symmetries, will be denoted by E ,
A, e, and a, emphasizing the applicability of theory across
systems with similar symmetry.

III. VIBRONIC BROADENING OF OPTICAL EMISSION

The theory for vibronic broadening of optical lineshapes
for A → E transitions and the analysis of multi-mode E ⊗
(e ⊕ e ⊕ · · · ) JT systems is detailed in Refs. [17,23]. Here,
we briefly review the formulas describing the PL lineshape
of the A-to-E transition; we refer the reader to the original
references for a complete derivation.

A. Vibronic states

As the initial state in the emission process (labeled by i)
is an excited state characterized as an orbital singlet, we can
express its vibronic wave function in an adiabatic form:

|�i;kl〉 = χa
i;l (Qa)χ e

i;k (Qe)|A〉, (1)

where χa
i;l (Qa) and χ e

i;k (Qe) are the harmonic components of
the vibrational wave function, corresponding to the a- and
e-symmetry modes, with the quantum numbers l and k la-
beling different harmonic excitations. Q describes the set of
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symmetry-adapted normal coordinates. The term |A〉 denotes
the electronic wave function, which in the static adiabatic
approximation depends only on the electronic degrees of
freedom.

The vibronic wave function within the degenerate elec-
tronic manifold of the final (ground) state, labeled by f ,
corresponding to the JT-active state, is expressed as

|� f ;nm〉 = χa
f ;n(Qa)|� f ;m〉, (2)

where χa
f ;n(Qa) represents the harmonic states of the modes

with a symmetry. The JT component of the problem is
captured by

|� f ;m〉 = χ e;x
f ;m(Qe)|Ex〉 + χ

e;y
f ;m(Qe)|Ey〉, (3)

where |Ex〉 and |Ey〉 represent a basis that transforms as
Cartesian irreducible representations of the degenerate dou-
blet of electronic states, and χ e;α

f ;m(Qe) are corresponding
ionic prefactors that must be determined by solving the JT
problem [17]. The quantum numbers n and m, respectively,
label the harmonic and vibronic excitations of the system.

B. Emission lineshape

Within the zero-temperature limit (T = 0 K) of the
Franck-Condon approximation, the normalized luminescence
intensity L(h̄ω) is expressed as [17]

L(h̄ω) = Cω3A(h̄ω), (4)

where C is a normalization constant, and A(h̄ω) is the spectral
function that holds the information about the shape of the
phonon sideband.

In the case of A → E transition, the spectral function is
described by a specific mathematical expression [17]:

A(h̄ω) =
∫

Aa(h̄ω − h̄ω′)Ae(h̄ω′)d(h̄ω′). (5)

This equation represents a convolution of two spectral
functions corresponding to a- and e-symmetry modes:

Aa(h̄ω) =
∑

n

∣∣〈χa
f ;n

∣∣χa
i;0

〉∣∣2
δ
(
EZPL + εa

f 0 − εa
f n − h̄ω

)
,

Ae(h̄ω) =
∑

m

[∣∣〈χ e;x
f ;m

∣∣χ e
i;0

〉∣∣2 + ∣∣〈χ e;y
f ;m

∣∣χ e
i;0

〉∣∣2]
× δ

(
εe

f 0 − εe
f m − h̄ω

)
. (6)

In this formulation, the terms ε
γ
αn represent the energy eigen-

values of the vibrational/vibronic quantum mechanical level
n within the electronic state α, corresponding to the symmetry
γ of the vibrational degrees of freedom. EZPL denotes the
zero-phonon line (ZPL) energy.

C. Coupling to a modes

To simplify the estimation of overlap integrals 〈χa
f ;n|χa

i;0〉
entering Aa(h̄ω), we employ the equal-mode approximation
[17,24]. This approach assumes that the vibrational modes
of the initial state are identical to those of the final state,
thereby reducing the problem of calculating the vibrational
structure of the ground state alone. Within this approximation,

the evaluation of the spectral function Aa(h̄ω) can be achieved
using the generating function approach [17,22,25]:

Aa(h̄ω) = 1

2π

∫ ∞

−∞
eiωt G(t )e−γ |t | dt,

G(t ) = exp

[
− iEZPLt

h̄
−Sa+

∫
eiωt Sa(h̄ω) d(h̄ω)

]
. (7)

The function G(t ) is the generating function for lumines-
cence, and parameter γ accounts for additional broadening
effects not captured by the theory. The variable S(h̄ω) =∑

k Skδ(h̄ω − h̄ωk ) is the spectral density of the electron-
phonon coupling, where Sk = ωk�Q2

k/(2h̄) is the partial HR
factor [26] of a-symmetry mode k, and �Qk signifies the
alteration of the equilibrium geometry upon optical transition
along the direction of vibrational mode ηk;α (in mass-weighted
form) of frequency ωk . We calculate �Qk by employing the
force Fα exerted on atom α of mass Mα as induced by the
electronic transition [17]:

�Qk = 1

ω2
k

∑
α

Fα√
Mα

ηk;α. (8)

D. Coupling to e modes

In the case of e symmetry modes, the spectral function
Ae(h̄ω) must be calculated by explicitly solving the vibronic
problem Ĥ = Ĥ0 + ĤJT for states described by Eq. (3),
where [4]

Ĥ0 = Cz

∑
k;γ∈{x,y}

(
− h̄2

2

∂2

∂Q2
kγ

+ 1

2
ω2

k Q2
kγ

)
(9)

describes the motion within the harmonic potential and

ĤJT =
∑

k;γ∈{x,y}
Cγ

√
2h̄ω3

k KkQkγ (10)

characterizes the linear JT interaction. Here, ωk represents the
angular frequencies of vibrations, derived as eigensolutions
of the zero-order Hamiltonian [Eq. (9)], and Kk denotes the
dimensionless vibronic coupling constants [8]. The index k =
1, . . . , N encompasses all pairs of degenerate e-symmetry
vibrations. The matrices Cγ act on orbital states, and in the
Cartesian representation of degenerate orbitals have the fol-
lowing form [27]:

Cx =
(

0 1

1 0

)
, Cy =

(
1 0

0 −1

)
, Cz =

(
1 0

0 1

)
.

Following symmetry arguments from Refs. [3,8,17], we
represent the JT Hamiltonian ĤJT in the basis of states of
Ĥ0, which are also eigenstates of the quasi-angular mo-
mentum Ĵ = Ĵel + Ĵph. Here, Ĵel = h̄

2 σ̂y acts on the orbital
component of the wave function, whereas in the Cartesian
representation σ̂y is the Pauli matrix. Ĵph = Cz

∑
k Lk quan-

tifies the total angular momentum of e symmetry harmonic
modes, where Lk = h̄(n̂k+ − n̂k−) represents the angular mo-
mentum operator for a k vibrational doublet. Here, n̂k± =
a†

k±ak± defines the number operator for right- and left-hand
phonons, expressed through second quantization operators
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ak± = 1√
2
(akx ∓ iaky), with akx and aky directly linked to nor-

mal modes Qkx and Qky. In this basis, the eigenstates of Ĥ0

are denoted by |n1l1 . . . nN lN ; E±〉, with orbital wave functions
|E±〉 = 1√

2
(|Ex〉 ± i|Ey〉) having quantum numbers jel = ± 1

2 .
Here, nk = nk+ + nk− represents the total number of phonons,
and lk is the angular momentum quantum number for each k
vibrational doublet. The matrix elements of Ĥ0 and ĤJT are
then formulated as follows [17]:

〈n1l1, . . . , nN lN ; E±|Ĥ0|n1l1, . . . , nN lN ; E±〉
=

∑
k

h̄ωk (nk + 1), (11)

〈n′
1l ′

1, . . . , n′
N l ′

N ; E−|ĤJT|n1l1, . . . , nN lN ; E+〉

=
√

2
∑

k

Kk h̄ωkδl ′k lk+1

⎡
⎣∏

j �=k

δn′
j n j δl ′j l j

⎤
⎦

×
[√

nk−lk
2 δn′

knk−1 +
√

nk+lk+2
2 δn′

knk+1

]
. (12)

Since Ĵ commutes with ĤJT, the solution for Ĥ can be found
separately for each total quantum number j = jel + ∑

k lk ,
taking the following form:

|� f ;m〉 = χ e;+
f ;m (Qe)|E+〉 + χ e;−

f ;m (Qe)|E−〉
=

∑
s={+,−}

∑
nl

Cs
f ;mnl|n1l1 · · · nN lN ; Es〉, (13)

where C±
f ;mnl are coefficients obtained through diagonaliza-

tion.
In this new basis, the bracketed term in Eq. (6) can be

expressed as |〈χ e;+
f ;m|χ e

i;0〉|2 + |〈χ e;−
f ;m|χ e

i;0〉|2. To calculate these
overlap integrals for e-symmetry vibrational modes, similarly
to a modes, we use the equal-mode approximation, which
assumes that the vibrational shapes and frequencies of the
A orbital manifold are well-represented by the zero-order
Hamiltonian of the ground state [Eq. (9)]. Furthermore, in the
zero-temperature limit, these overlaps are calculated between
the zero-phonon state of the excited manifold, denoted as
χ e

i;0 = |00 · · · 0〉, and all vibronic states of the E manifold.
Given that

∑
k lk is conserved, only vibronic solutions where

j = ±1/2 (with jel = ±1/2 and
∑

k lk = 0) are relevant for
this analysis.

IV. FIRST-PRINCIPLES METHODS

The electronic structure and optical excitation energies
of the NiV− center in diamond were investigated through
spin-polarized DFT. To calculate the excited state energy and
geometry within the framework of Kohn-Sham (KS) DFT,
we employed the delta-self-consistent-field (�SCF) method
[28–30]. In this approach, an a1g electron from the lower-lying
occupied KS orbital was excited to an empty eu orbital, as il-
lustrated in Fig. 1(c). We utilized the r2SCAN functional [31],
which combines the numerical efficiency of rSCAN [32] with
the transferable accuracy of SCAN [33]. Notably, this func-
tional has demonstrated excellent performance in capturing
the structural and electronic characteristics of other deep-level
defects in diamond [34]. Our calculations were conducted

within 4 × 4 × 4 supercells, encompassing 512 atomic sites,
with the Brillouin-zone sampling centered at the � point. The
projector-augmented wave method was employed, utilizing a
plane-wave energy cutoff of 600 eV. These calculations were
performed using the Vienna Ab initio Simulation Package
(VASP) [35].

A. Zero-order vibrational modes

Determining vibrational modes within the Eu state, specif-
ically pertaining to both a and e irreducible representations,
requires an approach that excludes the influence of first-order
(ĤJT = 0) and higher-order JT couplings. To achieve this sep-
aration of contributions, we employ an ab initio methodology,
as discussed in detail in Ref. [23].

In this approach, we consider an electronic configuration
characterized by fractional KS orbital occupation, namely
a2

1ge1.5
ux e1.5

uy . This electronic configuration approximates an
ensemble state of two degenerate configurations (a2

1ge1
uxe2

uy

and a2
1ge2

uxe1
uy), effectively suppressing all JT interactions

while preserving the inherent geometry associated with D3d

symmetry. Within this configuration, we employ the finite-
difference method, as implemented in the Phonopy software
package [36,37], to compute the vibrational structure, ensur-
ing that the vibrational modes are well defined with respect to
their irreducible representations.

B. Vibrational structure and relaxation profile in the dilute limit

Moderately sized supercells, which are computationally
amenable to explicit DFT calculations, pose challenges in
accurately capturing the vibrational structure of defects due
to periodic boundary conditions and a limited number of vi-
brational degrees of freedom. To overcome these limitations
and achieve high-accuracy and high-resolution lineshapes, we
adopt an embedding methodology [17,22]. This approach re-
lies on the short-range character of interatomic interactions
and allows for the computation of vibrational structures within
significantly larger supercells. More details about the embed-
ding methodology are provided in Sec. 1 of the Supplemental
Material [38].

To accurately capture the relaxation profile in the dilute
limit, we assess the relaxation component �Qk for each vi-
brational mode. This is achieved by employing Eq. (8), which
utilizes forces that are already converged within the explicitly
accessible supercell. These forces are then projected onto the
vibrational modes of a system encompassing tens of thou-
sands of atoms. This methodology captures the participation
of low-frequency modes and provides a detailed description
of the vibrational characteristics in these extensive systems.

C. Vibronic coupling parameters

In the linear JT theory, the adiabatic potential energy sur-
face of the JT-active manifold takes the form of a sombrero
hat [4]. This surface can be effectively investigated using
DFT [17]. Allowing the relaxation along an e-symmetry di-
rection from the high-symmetry configuration (obtained using
the fractional occupation), one can monitor the geometry
change �QJT that quantifies vibronic coupling in the case
of the linear JT coupling. By projecting �QJT onto a pair
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k of e-symmetry normal modes, one can estimate vibronic
coupling pertaining to the k vibrational doublet:

K2
k = ωk�Q2

k

2h̄
, (14)

where �Q2
k = �Q2

kx + �Q2
ky describes the projection of k-

doublet normal coordinates along the relaxation �QJT and
can be estimated by directly measuring displacements along
each pair of normal coordinates or through the application of
Eq. (8), which utilizes force-based calculations. This method
allows the estimation of vibronic coupling constants using ab
initio means.

D. Effective modes and diagonalization

Diagonalizing the Hamiltonian H = H0 + HJT, which
includes many vibrational modes, presents a significant com-
putational challenge due to the large size of the matrices. To
address this complexity, we employ a strategy that utilizes
a limited set of effective modes [17]. Initially, we define
the density of the JT coupling as K2(h̄ω) = ∑

k K2
k δ(h̄ω −

h̄ωk ). We then approximate this density with K2
eff (h̄ω) =∑Neff

n=1 K̄2
n gσ (h̄ω̄n − h̄ω), where gσ represents a Gaussian

function characterized by a width σ . This approximation in-
corporates Neff effective vibrations, each parameterized by a
frequency ω̄n and a corresponding vibronic coupling strength
K̄2

n . The parameters K̄2
n , ω̄n, and σ are optimized to en-

sure that K2
eff (h̄ω) closely matches K2(h̄ω). This approach

enables using fewer effective modes Neff  N , making di-
agonalization more tractable. To ensure the reliability of the
computed spectral functions, we monitor their convergence
as a function of the number of effective modes. Additionally,
when constructing the basis for H, we limit the total number
of excited phonons, ntot = ∑

k nk , to a predefined threshold
and also track the convergence of our results as this limit
increases.

V. RESULTS AND COMPARISON
WITH EXPERIMENT

We calculated the optical excitation energy as the energy
difference between the adiabatic potential energy surface min-
ima of the 2Eu and 2A1g states. The obtained value of 1.36 eV
aligns closely with the experimental ZPL energy of 1.40 eV
and is consistent with previous theoretical results using the
HSE functional, which yielded 1.37 eV [16].

A. Coupling parameters

To obtain the vibrational structure of the ground state
and relaxation profiles required to compute electron-phonon
coupling parameters for both HR and JT couplings, we em-
ploy the embedding methodology described in Sec. IV B.
Details and parameters of this methodology, along with con-
vergence tests, are provided in Sec. 1 of the Supplemental
Material [38]. This approach enabled the modeling of a large
18 × 18 × 18 supercell, which comprises 46 655 atoms. We
calculated the spectral densities for two distinct types of in-
teractions: the coupling for a-symmetry modes, represented
by S(h̄ω), and the JT coupling for e-symmetry modes, de-
noted by K2(h̄ω). To achieve a smooth description of the
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FIG. 2. Spectral densities for (a) HR electron-phonon coupling
S(h̄ω) in units of 1/meV, associated with a1g-symmetry phonons,
and (b) JT linear coupling K2(h̄ω). In (b), red stems represent
the effective modes with their respective frequencies ωn and cou-
pling strengths K̄2

n . The red dashed line illustrates the spectral
density obtained using the effective mode approximation K2

eff (h̄ω) =∑Neff
n=1 K̄2

n gσ (h̄ω̄n − h̄ω). Both panels also include the total parame-
ters Stot and K2

tot.

electron-phonon interaction, the delta functions were approx-
imated using Gaussian functions with a variable width, σ ,
which linearly decreases from 3.6 meV at ω = 0 to 1.5 meV
at the highest energy phonon. Our results are illustrated in
Fig. 2. Figure 2(a) shows the spectral density S(h̄ω) for the
HR electron-phonon coupling in units of 1/meV, specifically
linked to a1g-symmetry vibrational modes. Figure 2(b) depicts
the spectral density for the JT linear coupling K2(h̄ω). Fig-
ures 2(a) and 2(b) also include values for cumulative metrics:
the total HR parameter Stot = ∑

k Sk and the total JT coupling
K2

tot = ∑
k K2

k .
Both Sk and K2

k define changes in the adiabatic potential en-
ergy surface and are directly linked to relaxation energies. The
expression �Ea = ∑

k h̄ωkSk represents the relaxation energy
along the symmetry-preserving direction consequent to the
vertical transition A → E . Conversely, �EJT = ∑

k h̄ωkK2
k

accounts for the JT relaxation, which describes the system’s
progression along the e-symmetry direction from a high-
symmetry to a low-symmetry lowest-energy configuration.
Our calculations yield �Ea = 18.8 meV and �EJT = 63.5
meV, indicative of a highly pronounced JT contribution to the
overall electron-phonon interaction.

B. Spectral functions

The spectral function Aa(h̄ω) for a-symmetry modes,
shown in Fig. 3(a), was calculated using the generating func-
tion approach [Eq. (7)]. The γ parameter was set to 0.35 meV
to match the linewidth of the experimental ZPL. Notably,
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FIG. 3. (a) The spectral function Aa(h̄ω) for a-symmetry modes;
(b) the spectral function Ae(h̄ω) for e-symmetry modes. In (b), we
compare spectral functions derived from the dynamical Jahn-Teller
theory (solid red line) and the Huang-Rhys theory (dashed blue line).

Aa(h̄ω) exhibits a rapid decay to lower energies, becoming
negligible for spectral features more than 170 meV below the
ZPL. This result contrasts with the experimental lineshape
extending to 300 meV below the ZPL [18] (see Fig. 4), indi-
cating that symmetry-preserving modes alone cannot explain
these experimental features.

We calculated the spectral function Ae(h̄ω) for e-symmetry
modes using two distinct methodologies, as depicted in
Fig. 3(b). In the HR approach, e modes were treated anal-
ogously to symmetric a modes. This involves interpreting
�QJT as a displacement between two harmonic potentials, a
method previously employed for NiV− [16]. In contrast, the
DJT treatment begins with the diagonalization of the vibronic
Hamiltonian Ĥ = Ĥ0 + ĤJT [refer to Eqs. (11) and (12)]
using a selected set of effective modes. For the NiV− case,
it was determined that a count of Neff = 18 effective modes,
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0.000

0.002

0.004

0.006

L
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in
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e
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FIG. 4. Theoretical normalized luminescence lineshapes (in
units of 1/meV) calculated using Huang-Rhys theory (dashed blue
line) and dynamical Jahn-Teller theory (solid red line), juxtaposed
with the experimental spectrum from Ref. [18], recorded at 77 K.

indicated by red vertical lines in Fig. 2(b), suffices to achieve a
spectral resolution of σ = 5 meV. Further convergence details
are provided in Sec. 2 of the Supplemental Material [38].
Following the calculation of the vibronic states [Eq. (13)], we
estimate the overlap integrals contributing to Ae(h̄ω) [Eq. (6)]
and approximate delta functions with Gaussian functions hav-
ing a width of 5 meV.

Figure 3(b) clearly shows that the JT treatment yields sub-
stantially different results compared to the HR function. The
DJT spectral function extends more than 300 meV below the
ZPL, whereas HR theory produces pronounced features up to
170 meV below the ZPL but decays below this energy. It is
evident that DJT theory is crucial for accurately describing
the overall extent of the experimental lineshape.

C. Luminescence lineshapes

The final luminescence lineshapes, derived from Aa(h̄ω)
and Ae(h̄ω) using Eqs. (4), are showcased in Fig. 4 alongside
the experimental curve from Ref. [18], recorded at 77 K.
Although the lineshape derived from HR theory is consistent
with the findings of Ref. [16], it fails to capture the experi-
mental trend, underscoring the limitations of the HR approach
in describing optical features associated with dominant JT
interactions. In contrast, the lineshape obtained from the mul-
timode DJT method (solid red curve in Fig. 4) shows excellent
agreement with the experimental spectrum, accurately captur-
ing all spectral features as well as the intensity redistribution.
By integrating the ZPL region (above −15 meV), the Debye-
Waller factor is estimated to be 35% for the HR theory and
41% for the DJT theory. The DJT approach thus predicts a
higher ZPL intensity, with a sideband that is more extended
compared to that predicted by HR theory.

As an extension to our investigation of phonon sidebands,
we employed the multimode vibronic solution detailed in
Eq. (13) to calculate the Ham factor p [6] for the low-
est vibronic state, which influences spin-orbit interaction in
DJT systems. This factor quantifies the reduction in purely
electronic spin-orbit splitting, λ0. Under the assumption of
stationary ions, the intrinsic splitting λ0 is estimated for
electronic orbitals. In contrast, the experimentally observed
coupling derived from vibronic states is represented by λ =
pλ0. The formula for p is given by p = ∑

nl |C+
f ;mnl|2 −∑

nl |C−
f ;mnl|2 [14]. We compute a value p = 0.157. The result

obtained with the single-mode approximation [16] was p =
0.124. The similarity in these values indicates that, at least for
the case of the NiV− center in diamond, a multimode analysis
may not be crucial for effectively capturing the spin-orbit
quenching.

VI. CONCLUSIONS

In this study, we addressed the challenge of accurately
modeling systems where Jahn-Teller (JT) interactions play
a dominant role. Utilizing a multimode dynamical JT (DJT)
approach, we were able to capture the complex optical
lineshapes observed in systems characterized by strong JT
interactions, specifically in the negatively charged nickel-
vacancy center (NiV−) in diamond.
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The methodology developed in Ref. [17], which was ini-
tially applied to a case where JT effects were relatively weak,
has now been rigorously tested and validated in a scenario
where these interactions have a pronounced impact on spectral
features. The findings confirm that a multimode approach is
crucial for reproducing accurate optical lineshapes and match-
ing experimental observations.

Looking ahead, the implications of this refined JT
methodology extend beyond merely reproducing spectral
lineshapes. Future research should apply the methodol-
ogy to predicting spectra, and explore how the approach
can describe other electron-phonon related processes, such
as nonradiative rates and temperature broadening of the
zero-phonon line (ZPL). These directions promise to fur-
ther our understanding of JT effects, potentially leading
to enhanced control and manipulation of electronic and
optical properties of defects and impurities in semiconduc-
tors as well as emitters and qubits applied in quantum
technologies.
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