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Motivated by the prospect of a two-dimensional square-lattice geometry for semiconductor spin qubits, we
explore the realization of the parity architecture with quantum dots. We present sequences of spin shuttling
and quantum gates that implement the parity quantum approximate optimization algorithm (QAOA) on a lattice
constructed of identical unit cells, such that the circuit depth is always constant. We further develop a detailed
error model for a hardware-specific analysis of the parity architecture, and we estimate the errors during one
round of parity QAOA. The model includes a general description of the shuttling errors as a function of the
probability distribution function of the valley splitting, which is the main limitation for the performance. We
compare our approach to a superconducting transmon qubit chip, and we find that with high-fidelity spin shuttling
the performance of the spin qubits is competitive or even exceeds the results of the transmons. Finally, we discuss
the possibility of decoding the logical quantum state and of quantum error mitigation. We find that already
with near-term spin qubit devices, a sufficiently low physical error probability can be expected to reliably
perform parity QAOA with a short depth in a regime where the success probability compares favorably to
standard QAOA.
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I. INTRODUCTION

In the pursuit of quantum computing, the question of the
ideal hardware platform is still unanswered. Among the con-
testants, spin qubits in gate-defined quantum dots (QDs) [1]
stand out with their unique promise of leveraging the so-
phisticated manufacturing capabilities of the semiconductor
industry once a design based on scalable building blocks is
devised [2–4]. This, combined with their small size of only a
few tens of nanometers per QD, may allow for the fabrication
of quantum computers with millions of qubits that can easily
be mass-produced [5].

While the gate fidelities are approaching the threshold to
quantum error correction [6–8], serious challenges must still
be overcome on the road to spin-based quantum computing.
The most prominent are environmental electric noise [9,10],
cross-talk and residual exchange interaction within dense ar-
rays of qubits [11–14], and the demanding space requirements
of the voltage gates and control electronics [2–4].

A possible means of addressing those problems could
be spin shuttling, coherently moving the qubits between
sites—with different functionality—on the chip on demand.
Shuttling can be realized either in the conveyor-mode where
a sliding potential well smoothly displaces the qubit [15,16],
or as a bucket brigade by coherent tunneling between adjacent
QDs [17–19]. While the latter variant requires a high degree
of individual control [20,21], conveyor-mode shuttling with
potentials formed by dedicated gates is showing promise for
success [16,22,23]. In silicon heterostructures, the degenerate

conduction-band minima lead to an additional pseudospin,
namely the valley degree of freedom, whose splitting is deter-
mined by the microscopic properties of the interface [24,25].
Local minima of the valley splitting can be a major challenge
for conveyor-mode shuttling, however their occurrence can
be reduced by engineering the semiconductor heterostructure
[26–31] or adjusting shuttling trajectories [32].

A major objective in the development of spin qubits is the
creation of connectivity between qubits in two dimensions.
Inevitably for error-corrected quantum computing [33], this
milestone could also make the parity architecture [34,35]
a viable way to advance the performance of spin qubits.
In the parity architecture, the logical state of the quantum
computer is encoded by physical qubits that represent the
parity of the logical spins [see Figs. 1(a) and 1(b)]. While
introducing a qubit overhead, this encoding removes the re-
quirement for long-distance interactions, and the redundant
information allows for quantum error mitigation [36] and
quantum error correction [37] for bit-flip errors. Furthermore,
it allows the execution of the parity quantum approximate op-
timization algorithm (QAOA) [38,39] and reduces the circuit
depth of cornerstone algorithms such as the quantum Fourier
transform [40,41].

The QAOA is a gate-based algorithm for solving combina-
torial optimization problems on a digital quantum computer
[42–44], inspired by adiabatic quantum computing, where
a quantum state is evolved adiabatically under a Hamil-
tonian representing the cost function of the optimization
problem in order to approximate its ground state [45]. Here,
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FIG. 1. (a) Visualization of the parity architecture. (b) An op-
timization problem on logical qubits 1–5 can be expressed by
assigning one physical qubit i j in panel (a) to each logical interaction
Ji j . This allows implementing the problem Hamiltonian with local
fields, while constraints must be enforced on plaquettes of four or
three adjacent qubits (gray). Note that it is also possible to compile
higher-order interaction terms to an arbitrary chip layout [35]. For
the decomposition of the constraints in parity QAOA, the qubits
are organized in rows 0, 1, 2, . . . (blue and orange). (c) Half of
the circuit that enforces the constraints of the parity transformation
during parity QAOA [39]. The lattice is separated into ribbons of
adjacent rows on which CNOT (red arrows pointing from control to
target) and ZZ gates (green lines) are applied in successive steps 1–4.
All ribbons with an even-numbered top row can be treated in parallel,
followed by all ribbons with an odd-numbered top row in parallel.

adiabatic time evolution is replaced by an alternating se-
quence of parametrized small-angle rotations corresponding
to a problem and driver Hamiltonian, respectively. The pa-
rameters are then optimized in a quantum-classical feedback
loop. The first proof-of-principle demonstrations of QAOA
were shown on existing quantum hardware [46–48], and the
algorithm may be a suitable candidate to prove a quantum ad-
vantage for nontrivial problems with a few hundred qubits and
gate fidelity below the error correction threshold [43,49,50].
However, it remains challenging to achieve the connectivity
required for an arbitrary problem Hamiltonian, which con-
tributes to a nonoptimal scaling of resources with the problem
size and complexity [47,50]. This problem is alleviated by the
parity architecture [34,38].

We find that spin qubits can efficiently implement the
parity architecture even compared to more mature platforms
since their native gates naturally fit the demands for parity
QAOA and thus require little additional transpilation. Differ-
ent strategies are currently under investigation for realizing a
two-dimensional lattice of spin qubits, which perfectly suits
the parity architecture. Its possibility of working with local
fields and nearest-neighbor interactions allows leveraging the
fast, albeit short-range, two-qubit gates, one of the main ad-
vantages of spin qubits.

In this article, we investigate the performance of parity
QAOA on two scalable spin qubit architectures based on shut-
tling and modularization of the chip. We develop the shuttling
sequences for implementing the algorithm on these archi-
tectures, and we show that parity QAOA can be efficiently
executed even though the topology of the chips is not a square
lattice, as required in the original proposals. This result is of

relevance for many hardware platforms that suffer from a low
connectivity, and it is of particular interest for spin qubits,
where the realization of fully connected two-dimensional ar-
rays is hindered by cross-talk and the space required for the
fan-out of the voltage gates.

Generic error models have been used to analyze the per-
formance of parity QAOA, although they do not allow us
to reliably gauge the performance of real hardware. Here,
instead, we introduce a realistic error model based on recent
experimental, theoretical, and computational results for an
in-depth performance analysis of parity QAOA. Based on our
error model, the error probability of a single physical qubit is
estimated. We find that with just slightly optimistic assump-
tions for the future development of the spin qubit coherence
time, a full round of parity QAOA is feasible on both architec-
tures, with the possibility to further enhance the performance
by error mitigation. We note that the error probability is in a
regime where simulations estimate a higher success rate for
parity QAOA compared to standard QAOA [36], and where
parity QAOA can address nontrivial problems [51].

Although the main result of the article—the analysis of
the algorithmic performance—is specific to the hardware un-
der consideration, this prediction of good performance of an
algorithm tailored to the parity architecture under a realistic
noise model suggests that the parity architecture is a suitable
candidate for demonstrations on different types of noisy near-
term quantum hardware. In particular, we make a comparison
with a chip consisting of capacitively coupled transmons in
the same layout as the modular spin qubit architecture. For an
optimal shuttling velocity and an engineered valley splitting,
the performance of parity QAOA with spin and superconduct-
ing qubits is comparable, and a shuttling-based spin qubit
processor can surpass even optimistic assumptions for the
transmon qubits.

The remainder of this article is organized as follows. In
Sec. II a brief introduction to parity quantum computing is
provided, followed by our proposed implementation of the
parity QAOA algorithm on a spin qubit quantum processor in
Sec. III. In particular, Sec. III A focuses on the case of a sparse
shuttling-based architecture, and Sec. III B focuses on the case
of a modular architecture where the registers are connected
by spin shuttling. In Sec. IV the error model for all relevant
processes is introduced. In Sec. V A the performance of the
QAOA on both architectures is investigated in the presence
of realistic errors, and in Sec. V B the results are put into
context with superconducting transmon qubits. In Sec. VI
the possibilities for error mitigation and the decoding of the
quantum state are discussed. Finally, in Sec. VII the results
are summarized and the paper is concluded.

II. INTRODUCTION TO PARITY QUANTUM COMPUTING

Here we provide an introduction to the parity architecture
in general (Sec. II A) and the parity QAOA in particular
(Sec. II B).

A. Parity architecture

Consider an optimization problem encoded in a spin-glass
problem Hamiltonian with N qubits and K interactions of the
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form

Hop =
N∑

i=1

Jiσ
(i)
z +

∑
j<i

Ji jσ
(i)
z σ ( j)

z

+
∑

k< j<i

Ji jkσ
(i)
z σ ( j)

z σ (k)
z + · · · , (1)

where the coefficients Ji, Ji j, . . . denote the coupling
strengths, and σ (i)

z denotes the Pauli-Z operator acting on
logical qubit i. The parity architecture [34,35] maps this
Hamiltonian to the parity Hamiltonian

Hparity =
K∑

m=1

J̃mσ̃ (m)
z + c

K−N+D∑
l=1

Cl (2)

with K physical qubits, where each interaction between log-
ical qubits in Hop was mapped to a local field term with
strength J̃m on physical qubit m with associated Pauli-Z op-
erator σ̃ (m)

z , e.g., Ji jσ
(i)
z σ

( j)
z �→ Jmσ̃ (m)

z , and c > 0 denotes a
constant. The physical qubits represent the parity of a set of
logical qubits, i.e., their σz-eigenvalue indicates if the respec-
tive logical qubits are in the same or opposite eigenstate. As
the Hilbert space is thereby enlarged and contains nonphysical
states, K − N + D constraints

Cl = −σ̃ (l1 )
z σ̃ (l2 )

z σ̃ (l3 )
z

[
σ̃ (l4 )

z

]
(3)

on three or four qubits, represented by the last sum in
Hparity, are introduced [34,35]. Here, D denotes the number of
ground-state degeneracies of Hop, and the square brackets in
Eq. (3) indicate that the fourth qubit involved in the interaction
is optional. This mapping is illustrated in Fig. 1(a).

The indices li in Eq. (3) are chosen such that all the logical
indices involved in Cl occur an even number of times across all
li. The constraints Cl stabilize the space of logical states, i.e.,
of states that have a correspondence in Hop and are therefore
valid. Crucially, the interactions Cl can be implemented be-
tween qubits in geometrical proximity on a two-dimensional
(2D) grid with nearest-neighbor connectivity [see Fig. 1(a)].
Therefore, only geometrically local interactions are required
for solving optimization problems of arbitrary order on digital
or analog quantum devices, which is particularly important in
the noisy intermediate-scale quantum (NISQ) era [49] where
implementing long-range interactions remains a challenge.
Furthermore, the implementation of the constraint operators
on digital quantum computers can be parallelized very effi-
ciently. It was shown that the parity architecture is suitable
for analog [34] and digital quantum optimization [38] as well
as universal quantum computing [37]. We note that the parity
architecture can also be viewed as an error correction code
for bit-flip errors, at the cost of implementing nontransver-
sal logical Rx rotations, resulting in nonlocal physical gates.
However, for the NISQ algorithm, such as the QAOA, we
do not strive for full error correction, which is why we can
exploit the parity architecture to remove long-range interac-
tions. Therefore, performing the parity transformation and
adding the constraint operators to the resulting Hamiltonian
allows for an implementation of quantum annealing and the
quantum approximate optimization algorithm [42] with only
local operations, and, for the latter, in constant circuit depth.

B. Parity QAOA

The quantum approximate optimization algorithm
(QAOA) [42] aims at solving optimization problems encoded
in an N-qubit problem Hamiltonian Hop by preparing a
solution candidate state

|ψ (β, γ )〉 =
p∏

j=1

Ux(β j )Uop(γ j ) |+〉 (4)

for an optimization problem on N qubits. Here, the initial
state |+〉 denotes the state where all qubits i are in an equal
superposition of the eigenstates of σz, (|0〉i + |1〉i )/

√
2, the

unitary

Uop(γ ) = e−iγ Hop (5)

represents the time evolution operator under the problem
Hamiltonian, and

Ux(β ) =
∏

i

e−iβσ̃ (i)
x (6)

is the so-called driver unitary. The 2p parameters
β = (β1, . . . , βp) and γ = (γ1, . . . , γp) are optimized in
a quantum-classical feedback loop by using a quantum
computer to compute the energy expectation value
〈Hop〉 = 〈ψ (β, γ )| Hop |ψ (β, γ )〉, and employing a classical
routine to optimize β and γ with respect to 〈Hop〉 until
some termination criterion is reached. The candidate ground
state obtained as an optimization result is then determined
by reading out all qubits. By using the parity Hamiltonian
Hparity as the problem Hamiltonian and separating the local
field term and the constraint term into two separate QAOA
unitaries, extending the search space by � = (�1, . . . , �p) to
3p classical parameters, parity QAOA [38] is obtained.

Note that it is possible to implement the QAOA in the
parity architecture without the constraint terms by allowing
more complex and nonlocal driver operators [52]. However,
this approach exhibits a circuit depth growing linearly with
the system size. In this work, we stick to the original proposal
of explicitly implementing the Cl terms in this work, and we
exploit the geometric locality of these operators.

In its explicit form, parity QAOA requires single-qubit op-
erations on all qubits and an implementation of the three- and
four-body constraints arising from the parity transformation,
thus preparing the final state [38]

|ψ (β, γ,�)〉 =
p∏

j=1

Uz(γ j )Uc(� j )Ux(β j )|+〉, (7)

where the unitary

Uz(γ ) = e−iγ
∑

i J̃i σ̃
(i)
z (8)

is the time evolution under the problem Hamiltonian after the
parity transformation. The operator

Uc(�) = e−i�
∑

l σ̃
(l1 )
z σ̃

(l2 )
z σ̃

(l3 )
z σ̃

(l4 )
z (9)

enforces the constraints on all plaquettes l . This total time
evolution is repeated for a number of rounds p.

The operators Ux and Uz can be trivially implemented with
single-qubit rotations, and it has been shown [38,39] that also
Uc can be implemented in constant depth. We choose the
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FIG. 2. The spin bus platform under consideration [4]. (a) The
electrons (blue and orange dots) are stored in shuttling lanes
(black lines); qubits are labeled 1–4 in each unit cell. The elec-
trons can be conveyed to manipulation (dark gray squares) or
initialization/readout zones (dark gray circles); T-junctions provide
connectivity between qubits in two dimensions. The vertical shuttling
lanes are controlled globally. The segment holding qubits 1–4 can be
considered a unit cell of the lattice. For the purpose of the QAOA,
the electrons are separated in even (blue) and odd (orange) rows
indicated by the dashed lines. They correspond to the rows from
Fig. 1. (b) One unit cell with four qubits, highlighted by the dashed
box. We assume that qubits 1, 3, and 4 are placed 1.25 µm from
the T-junction (and the manipulation zone, in the case of qubit 3).
The classical control electronics and the gate fan-out can find space
between the unit cells. (c) Corresponding plaquettes of four-qubit
constraints (light gray) of the parity architecture. The labels denote
the qubits’ position in their unit cell.

decomposition from Ref. [39], which is shown in Fig. 1(c),
to achieve the latter. This approach separates the square grid
of qubits into ribbons of two neighboring rows each. The
constraints are then enforced by a sequence of CNOT and ZZ

gates, which can be executed in parallel on each ribbon and
furthermore allows parallelization of all ribbons that include
an even-numbered top row of qubits in the first step and
ribbons with odd top rows in the second steps. The rows are
indicated in Figs. 1, 2, and 5. In this work, for simplicity, we
consider the case with an implementation of all constraints in
the sequence of eight time steps from Fig. 1(c), where at each
boundary between two plaquettes both qubits are included in
the respective constraints [34] (i.e., square plaquettes only).
More general problems [35] can be treated by including addi-
tional CNOT gates between steps 2 and 3 [39].

Apart from the advantages of solely local interactions and a
constant circuit depth for QAOA, the parity architecture offers
the advantage of an intrinsic possibility for error mitigation.
The redundant information held by the additional qubits can
be exploited to read out several spanning trees of the logical
system in order to detect and correct constraint violations, ei-
ther due to quantum errors or because of constraint violations
by the mixer unitary [36]. The latter can also be avoided by
using constraint-preserving driver operators [52], however at
the cost of giving up the constant circuit depth. Even though
physical errors reduce the success rate for finding the ground
state, it was shown that the decoding of the spanning trees

still grants a high success rate and can outperform standard
QAOA [36].

III. PARITY QAOA WITH SPIN QUBITS

In this section, we present an implementation of the parity
QAOA on two possible two-dimensional electron spin qubit
architectures: an extremely sparse architecture entirely based
on spin shuttling [4] in Sec. III A, and an architecture with
small, dense registers of QDs connected by shuttling links [2]
in Sec. III B. Here, the mapping to the chip layout and the
compiled shuttling and gate sequences are given; a compar-
ison of the performances will follow in Sec. V A. Animated
versions of the gate and shuttling sequence can be found in
the supplemental material [53].

A. Implementation on a sparse spin bus architecture

Recently, the so-called spin bus architecture, Fig. 2, was
proposed [4]. There, the electrons are stored in shuttling
lanes defined by periodically interconnected voltage gates,
which allow a smooth conveyor-mode shuttling of the charge
by applying phase-shifted sinusoidal voltages to each set
of connected gates [16,22,23]. The shuttling lanes form
a two-dimensional lattice with dedicated manipulation and
initialization/readout zones to which the electrons can be
shuttled on demand. This architecture has the advantage of
high connectivity and promises a long coherence time, since
the electrons can be stored far from the detrimental effects
of the micromagnets at the manipulation zones. Due to its
sparse nature, it can be expected to suffer from little crosstalk
and it creates space for the voltage gates and classical control
electronics. The architecture is sketched in Fig. 2.

Unlike Ref. [4], we assume that each unit cell contains four
electrons and two manipulation zones, doubling the number
of qubits at the cost of the additional input lines for one
conveyor per cell. Thus, the number of qubits is doubled with
only a moderate increase in complexity. We expect this to be
beneficial for near-term devices limited by the requirements of
room-temperature control. Furthermore, the increased density
of qubits results in shorter shuttling paths within the unit cells,
thus mitigating shuttling-related errors. Alternatively, it would
also be possible to carry out the operations sequentially while
storing electrons not involved in shuttling lanes, thus reducing
complexity at the cost of a slightly reduced performance.

The constraints are implemented by the gate sequence
shown in Fig. 3 for the set of ribbons consisting of even
top and odd bottom rows, followed by the circuit in Fig. 4
for the set of ribbons consisting of odd top and even bottom
rows. Due to the nonequivalent positions of the qubits in the
unit cell, these two cases need to be treated separately. The
shuttling and gate operations can be performed in parallel
on all unit cells, achieving an optimal circuit depth. Due
to the global control of the vertical shuttling lanes, some
electrons are shuttled unnecessarily, as shown in Fig. 3. How-
ever, with high-fidelity shuttling sufficient for several tens
of micrometers, we do not expect this short excess distance
to be problematic; averaging quasistatic noise by shuttling
(motional narrowing) might even enhance the coherence of
an idle qubit.

During the constraint circuit, every bulk qubit—which is
not located on the edge of the physical device—is a target
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FIG. 3. Circuit for implementing the parity constraints on rib-
bons of an even top and an odd bottom row if executed on each
unit cell in parallel. The arrows indicate the operation of spin con-
veyors; gate operations are indicated near the manipulation zone.
The coloring represents the time ordering of the sequence: from red
to light blue to lime to pink as indicated in the top right corner.
Due to the global vertical shuttling lanes, some electrons are moved
unnecessarily, for example qubit 4 in steps 1 and 3 and qubit 1 in
step 4. Note that qubit 1 leaves its unit cell and undergoes a gate in a
different cell in step 3, then returns in step 4, such that the second ZZ

gate is between qubits from different unit cells. Steps 1–4 correspond
to steps 1–4 in Fig. 1(c).

and control of two CNOT gates each and participates in two ZZ

gates, while qubits at the boundary of the lattice experience
fewer gates. Qubit 1 is shuttled over a distance of 42.5 µm
with our assumptions on the size of the unit cell and idles for
46.25 µm/v + 2TZZ, where v is the shuttling velocity and TZZ

is the time required for a ZZ gate. Qubit 2 is shuttled over
62.5 µm and idles for 26.25 µm/v + 2TZZ, qubit 3 is shuttled
over 26.25 µm and idles for 62.5 µm/v + 2TZZ, while qubit 4
moves by 61.25 µm and idles for 27.5 µm/v + 2TZZ. This is
not counting the shuttling of step 1 for the even-odd ribbons
since it can be absorbed into the single-qubit gates of the
driver term. The shuttling velocity v is a critical parameter
for the duration of the algorithm and also for the strength of
the errors, as will be discussed in Sec. IV. The discrepancy
in shuttled distance between the qubits is due to the fact
that qubits 2 and 4 are moved to a foreign unit cell in order
to implement the constraints on the odd-even ribbons, while
qubit 3 is favorably placed close to two manipulation zones
and is thus highly connected without much movement.

The circuit for the execution of single-qubit gates, required
for implementing Ux and Uz, is shown in Fig. 4 in the panel
SQG. In a single-qubit gate step followed by the constraint
circuit, qubits 1 and 3 can be returned to the manipulation
zone after the operation on qubits 2 and 4 is complete, thus
simplifying step 1 from the even-odd rows, Fig. 3. Alterna-
tively, all qubits can be returned to their idling position, e.g.,
to wait until they are read out at the end of the algorithm.
The former version adds 8.75 µm (2.5 µm, 6.25 µm, 6.25 µm)
of shuttling on qubit 1 (2, 3, 4), while the latter adds 10 µm
(5 µm, 7.5 µm, 10 µm) on qubit 1 (2, 3, 4).

FIG. 4. Circuit for implementing the parity constraints on rib-
bons of an odd top and an even bottom row (1–4) if executed on
each unit cell in parallel, as well as for single-qubit gates (SQGs).
To implement the constraints on this set of ribbons, qubits 2 and 4
are shuttled to an adjacent unit cell in step 1 and return in step 4.
The third step is separated in 3.1, which includes the gate, and step
3.2, which restores the final configuration of step 1 such that the final
CNOT gate and the shuttling in step 4 can be performed easily. The
circuit SQG for implementing arbitrary single-qubit gates Ui on all
qubits i can be followed by returning the qubits to their home position
(initial configuration of step 1 in Fig. 3), or by returning qubits 1 and
3 to the manipulation zone (final configuration of step 1 in even-odd
ribbons) if the single-qubit gate is followed by a constraint step.

Initialization and readout, the remaining building blocks of
any algorithm, are performed by successively shuttling each
qubit from or to the initialization/readout zone. To initialize
each qubit to an arbitrary state, electrons 1, 3, and 4 can be
stopped at the manipulation zone they pass on the way to their
starting position, and qubit 2 can be routed on a detour to
either manipulation zone.

B. Implementation on a modular architecture

A tradeoff between the typical dense array of QDs [54] and
the extremely sparse spin bus is an architecture where dense
registers of a few qubits are connected by coherent quantum
links, as depicted in Fig. 5 [2,3]. This retains the advantages of
dense arrays—fast gates and a small footprint—while creating
space for the fan-out of voltage gates and classical electronics.
Here, we consider a minimal version of this modular architec-
ture, where registers of 2 × 2 QDs are connected via diagonal
conveyor-mode shuttling lanes in two dimensions, as depicted
in Fig. 5.
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FIG. 5. The modular architecture under consideration [2].
(a) Registers of 2 × 2 QDs are interconnected via diagonal shuttling
lanes. Manipulations are performed on-site, and we assume that one
site per register is equipped for readout, shuttling serves for connec-
tivity only. Here, a unit cell consists of two registers denoted by a and
b with eight qubits in total, since it is favorable to mirror the registers
alternately. This architecture provides space for classical electronics
and the gate fan-out in between the registers. (b) Corresponding
plaquettes of the parity architecture. The labels denote the qubits’
position in their unit cell.

A sequence of operations for implementing the constraint
term on this architecture is shown in Figs. 6 and 7. Here, a
number of SWAP operations cannot be avoided since each qubit
is coupled to only three direct neighbors, which is not ideal
for realizing the parity architecture. Again, we find that for
the constraint term all bulk qubits are controls and targets of
two CNOT gates each, and they participate in two ZZ gates and,
additionally, ten SWAP gates. Furthermore, all qubits at posi-
tions 1 and 3 in the unit cells are shuttled by 40 µm and idle

FIG. 6. Circuit for implementing the parity constraints on
ribbons of even top and odd bottom rows in a modular architecture
if executed on each unit cell in parallel. Arrows and lines within
the registers indicate two-qubit gates, while arrows between the
registers indicate the operation of shuttling lanes. The time ordering
is indicated by the colors, from red to light blue to lime to pink as
indicated in the top right corner. The steps 1–4 here correspond to
the decomposition of the circuit in Fig. 1(b) and on the spin bus in
Fig. 3.

FIG. 7. Circuit for implementing the parity constraints on rib-
bons of an odd top and an even bottom row in a modular architecture
if executed on each unit cell in parallel. Here, the lower connectivity
compared to the spin bus is apparent, as each qubit is subject to a total
of 10 SWAP gates in order to implement the required interaction. The
steps 1–4 correspond to those in Fig. 1(b) and the implementation on
the spin bus in Fig. 4. In steps 1 and 4, the pulses for the gates can
be applied globally to all registers since all QDs in the nonaddressed
register are vacant. Note that in steps 1 and 4 the qubits 1a–4a and
1b–4b in the mirrored registers undergo the same operations, albeit
in different order.

for 80 µm/v + 2TZZ + 2TCNOT, while all qubits at positions 2
and 4 are shuttled by 60 µm and idle for 60 µm/v + 2TZZ +
2TCNOT. It is possible to replace eight SWAP gates per qubit
with hopping between neighboring QDs within the registers if
an alternative circuit is used and empty registers are available
at the edges of the lattice (see Appendix A).

Single-qubit gates can be performed on-site in each QD
and do not require shuttling, and we assume that one QD
per register is equipped with a readout apparatus, allowing us
to measure and initialize all qubits in four successive steps
combined with SWAP gates or other operations to transfer the
spin projection between neighboring QDs. In summary, time
and operations are comparable on both architectures, with
the addition of 10 SWAP gates in the modular architecture.
The spin bus is able to implement a single round of QAOA
≈10 µm/v faster than the modular architecture, including ini-
tialization and readout.

IV. GATE AND ERROR MODEL

In this section we introduce our error model, which is
applied to both hardware layouts. There are three general
sources of errors:

(i) Errors from the quantum operations on the qubits.
(ii) Errors from the shuttling processes.
(iii) Errors from initialization and readout.
For the specific details of the hardware platform, we

assume electron spins confined in QDs in a Si/SiGe het-
erostructure. This choice is motivated by the outstanding
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coherence properties of QDs in isotopically purified silicon
[1], the demonstration of high-fidelity quantum gates [6–8],
and the recent successes of electron conveyors in this material
[22,23]. Thus, all necessary building blocks for our architec-
ture are available.

A. Gate errors

We assume that each manipulation zone in the spin bus
architecture and each register in the modular architecture is
equipped with a micromagnet. Thus, single spin manipulation
can be accomplished by means of electric dipole spin reso-
nance. Lowering the tunnel barrier between two adjacent QDs
gives rise to a nearest-neighbor exchange interaction [1]. We
decompose all two-qubit gates into gates that are well-proven
and optimized [1,6,7].

The gate errors are modeled using the Kraus represen-
tation of imperfect quantum channels [55] where the error
probabilities are chosen in order to describe realistic error
rates. For single-qubit gates, we assume a depolarization
channel with a probability of pd = 10−3 [4,6–8], thus the
density operator ρ f after a single-qubit gate Ui on qubit i is
given by ρ f = ∑

k Kk,iρ0K†
k,i, where K0,i = √

1 − pd Ui and

Kk,i = √
pd/3 σ̃

(i)
k for k = x, y, z with the Pauli operators σ̃

(i)
k

of qubit i and the input density matrix ρ0.
The default entangling two-qubit gate in QDs

equipped with a micromagnet is the controlled
phase gate, CPα = diag(1, 1, 1, eiα ), in the basis
{|0, 0〉, |0, 1〉, |1, 0〉, |1, 1〉} [6,7]. Similar to the single-qubit
gates, we assume that the errors of the CP gate are captured
by a phase-flip channel with probability pφ = 10−3 and a
bit-flip channel with probability pb = 10−6 on both qubits,
taking into account that dephasing is the limiting error
mechanism for spin qubits. However, the circuits presented in
the previous section require the two-qubit gates ZZ, CNOT, and
SWAP. These are synthesized from CP and single-qubit gates
by concatenating the respective quantum channels.

The gate ZZ(i, j)
α = exp(iασ̃ (i)

z σ̃
( j)
z ) between qubits i and j

with rotation angle α is obtained from the decomposition

ZZ(i, j)
α = CP(i, j)

−2αR(i)
z (α)R( j)

z (α) (10)

with the single-qubit rotation R(i)
z (α) = e−iασ̃ (i)

z /2 around the z
axis of qubit i. Note that the ZZ gate and its error are symmetric
between the two qubits.

Analogously, the CNOT gate with control qubit i and target
j can be represented as

CNOT(i, j) = H ( j)CP(i, j)
π H ( j) (11)

with the Hadamard gate H . A SWAP gate is then obtained by a
sequence of three CNOTs:

SWAP(i, j) = CNOT( j,i)CNOT(i, j)CNOT( j,i). (12)

These composite gates can reliably be performed with a
high fidelity in Si/SiGe quantum dots with micromagnets
[6,7], although we expect that it is possible to engineer
a more efficient version of the SWAP gate realized by the
exchange coupling or by including a physical position swap
via shuttling.

Qubits idling for a time t will suffer from dephasing with a
characteristic timescale T2 and relaxation with a characteristic
timescale T1 due to environmental noise. A conservative lower
bound for T2 is the pure dephasing time T ∗

2 . These are mod-
eled with the Kraus representation of a phase damping and
amplitude damping channel [55]. For t 	 T2, T1 the probabil-
ities for these channels can be approximated as pφ,idl = t/T2

(pr,idl = t/T1) for dephasing (relaxation). If the dephasing is
dominated by quasistatic noise, the decay of the coherences is
described by a Gaussian by the choice pφ,idl = (t/T2)2 [1].

As an optimistic estimate, we use T1 = 1 s for both archi-
tectures and T2 = 20 µs for the modular layout [56], although
this number can improve significantly if dynamical decou-
pling is applied [1]. The spin bus allows storing the electrons
further away from the detrimental field of the micromagnet,
which couples the spin to electric field fluctuations, as well as
the SETs and charge reservoirs, which are sources of Johnson
noise. Thus a longer dephasing time can be expected. Using
SiMOS QDs without a micromagnet as a reference, we take
T2 = 100 µs as an optimistic estimate for the spin bus layout
[1]. Note that in both architectures, shuttling has an effect
similar to dynamical decoupling and can increase a qubit’s
coherence time due to motional narrowing [21,22]. This is
particularly relevant if a qubit is shuttled back and forth to
and from a manipulation zone along the same path: Inverting
the qubit state before the return allows the removal of certain
adiabatic effects, such as deterministic variations of the qubit
frequency during the shuttling [21]. This is trivially done in
the modular architecture and is possible for most shuttling
paths in the spin bus. Idling mostly occurs while qubits are
waiting for the completion of shuttling processes or gates
on other qubits. Typical timescales are T1q = 100 ns for the
duration of a single-qubit gate and T2q = 50 ns for the duration
of a native two-qubit gate [4].

B. Shuttling errors

In both architectures we assume conveyor-mode shuttling
of electrons, and we have to take into account that the
chosen host material exhibits near-degenerate valleys
[24,25,57]. A detailed derivation of shuttling errors can
be found in Ref. [21]; however, we extend the model for the
effects of the valley pseudospin in order to take into account
the recent discoveries concerning the dependence of the
valley splitting on the alloy disorder [27–29].

Both valley splitting Ev and valley phase ϕ will follow
a random trajectory along the shuttling path. Assuming that
spin-valley relaxation hot spots [58–60] are avoided, the main
effect of the valley is dephasing [21]. Due to nonadiabatic
shuttling, the electron may have a random weight in the ex-
cited valley state and thus accumulate an unpredictable phase.
To capture this effect, we assign each location x along the
shuttling path a valley Hamiltonian

H ′
v (x) = Ev (x)

2
(eiϕ(x)|v−〉〈v+| + e−iϕ(x)|v+〉〈v−|), (13)

with the ±z valley states |v±〉 [25]. At each point x the valley
splitting and phase are drawn from distributions PEv

and Pϕ ,
respectively.
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Since the position is time-dependent, x = vt with shuttling
velocity v, transforming H ′

v into its instantaneous eigenbasis
with the unitary U leads to a term that causes transitions
between the instantaneous valley eigenstates,

Hv = U †H ′
vU + ih̄U̇ †U (14)

= Ev

2
τz + h̄ϕ̇

2
(11 − τx ), (15)

where τz = |ev〉〈ev| − |gv〉〈gv| and τx = |gv〉〈ev| + |ev〉〈gv|
are the Pauli z and x matrices for the instantaneous valley
eigenstates. Approximating the differentiation as a quotient
results in ϕ̇(t ) = ϕ/t = vϕ/x, where x is the mini-
mal distance at which a different valley splitting is resolved,
and ϕ is the difference in valley phase over this distance. A
reasonable assumption for x is the dot size [32]. The differ-
ence ϕ is a random variable whose probability distribution
function can be obtained from a convolution of the distribution
functions of the summands,

Pϕ =
∫ π

−π

dφ Pϕ (φ)Pϕ[−(ϕ − φ)]. (16)

In the limit of a large valley splitting relative to the varia-
tion of the valley phase, Ev/h̄ϕ̇ � 1, the probability of finding
the electron in its excited valley state after moving it over
a distance of x is easily obtained from the solution of the
Schrödinger equation for a two-level system in the adiabatic
frame [21],

pe,v = |〈ev|e−iHvx/h̄v|gv〉|2 (17)

= (h̄vϕ/x)2

E2
v + (h̄vϕ/x)2

sin2 (θ ), (18)

θ =
√

E2
v + (h̄vϕ/x)2

x

2h̄v
. (19)

Given the probability distributions, the average excitation
probability over the distance x is thus

p̄e,v =
∫ ∞

0
dEv

∫ π

−π

d(ϕ) PEv
(Ev )Pϕ (ϕ)pe,v. (20)

Consequently, the average probability for finding the electron
in the excited valley state after moving a distance L = nx is
given by

pv = 1 − (1 − p̄e,v )n ≈ p̄e,vL/x. (21)

In Ref. [29], a Rice distribution was found for the val-
ley splitting Ev , and the numerical results of the same
reference suggest Pϕ ≈ 1/2π and thus Pϕ ≈ 1/2π . Conse-
quently, pv only depends on the two parameters of the Rice
distribution—corresponding to the mean valley splitting and
its variance—the shuttling velocity, dot size, and traveled
distance. Our model for pv is easily adapted to more accu-
rate distribution functions unveiled by future research and
hardware-specific distributions measured from individual de-
vices by simply evaluating Eq. (20).

In accordance with Ref. [21] we then include an adiabatic
contribution

pad = 2lδω
c L/(vT2)2 (22)

to the dephasing, due to fluctuations of the spin splitting
with the correlation length lδω

c . The fluctuations of the spin

splitting can originate from surrounding nuclear spins, mag-
netic field gradients, and spin-orbit coupling. This expression
accounts for motional narrowing, which partly protects the
shuttled spin. However, this effect is expected to be reduced
in isotopically purified silicon, since the electric fluctuations
dominating the noise in the absence of nuclear spins have a
comparably large correlation length. Note that the effect of
deterministic and reproducible variations of the spin splitting
can be removed by calibration.

We choose a dot size of x = 20 nm and estimate a
noise correlation length of lδω

c = 1 µm. The latter is very
conservative, but the effect of motional narrowing is strongly
suppressed in that order of magnitude already. The dephasing
during the shuttling is then described by the Kraus represen-
tation of a dephasing channel with the probability

pdeph = 1 − (1 − pv )(1 − pad ) ≈ pv + pad. (23)

Relaxation of a shuttled spin is described by an amplitude
damping channel with the probability L/vT1 + 10−4L/10 µm,
where the second term emerges due to spatially varying trans-
verse spin-orbit components [21].

Note that after averaging the valley effects, this is only
the expected shuttling error in a typical shuttling lane. Due
to its probabilistic nature, the valley splitting may strongly
fluctuate between different shuttling lanes on a given device.
Thus, all fidelity estimates obtained from this model represent
an expectation value averaged over a large number of devices.

A number of possible shuttling errors are neglected in
this description. These include the temporary breaking of a
moving quantum well into a double well, which may harm the
orbital state of the electron, the loss or capture of an electron,
and the jumping of a moving electron to an adjacent empty
well of the conveyor. This is justified if disorder in the device
is sufficiently low. Experimental observations show that these
types of errors are not detrimental to shuttling [16,22,23], and
if relevant they can be reduced by technological optimization.

C. State preparation and measurement

In the spin bus architecture, readout and initialization
are performed in dedicated zones. In the modular architec-
ture, it is assumed that one QD per register is coupled to
a readout/initialization apparatus. The starting point of the
initialization is the singlet ground state of two electrons in an
auxiliary QD, which is separated into two QDs by an adiabatic
sweep. For readout, the same adiabatic sweep is performed in
reverse, merging the electron to be measured into one dot with
a reference electron. Due to the Pauli exclusion principle, only
totally antisymmetric two-electron spin states are allowed in
a single QD. Thus, depending on the regime of operation,
this implements either a singlet-triplet measurement or a spin-
parity measurement [1].

The adiabatic sweep can be performed with a fidelity as
high as Fm = 0.999 [4], and the subsequent charge detection
verifying the outcome of the sweep can be expected to have
an error probability of O(10−5) in devices optimized for spin
shuttling [16]. The high fidelity of the adiabatic process re-
quires a relatively long time, however. We assume a readout
time of Tr ≈ 5 µs per electron [4].
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FIG. 8. Average error probability after one round of QAOA for (a) the spin bus with T2 = 100 µs and (b) the modular architecture with
an optimistic T2 = 100 µs, and (c) with a realistic T2 = 20 µs. In all panels, the color (style) of each line encodes the mean Ēv (variance σ 2

Ev
)

of the distribution of the valley splitting. The less weight the distribution has near Ev = 0, the better the algorithm performs and the broader
the window of feasible shuttling velocities becomes. Since T2 	 T1, the curves converge towards the scenario of a dephased qubit with almost
intact spin projection.

V. PERFORMANCE ESTIMATES
IN THE PRESENCE OF NOISE

In this section, we evaluate the gate sequences devised
in Sec. III, including the errors described in Sec. IV. Sub-
sequently, in Sec. V B, the result is put into context with
other architectures, and a comparison with superconducting
transmon qubits is given.

A. Performance of the spin qubit architectures

The time evolution of the qubit density matrix ρ is modeled
by means of the Kraus operators for each operation. For sim-
plicity, only one unit cell with periodic boundary conditions
is modeled, undergoing one round of QAOA. This procedure
will not return the correct output state of the algorithm, but
is sufficient for estimating the physical errors by comparing
the imperfect output state ρerr with the ideal output state ρid

without errors. Note that a single round of QAOA can deliver
only a coarse approximation of the ground state, and generally
the performance of QAOA improves with increasing number
of rounds [46–48,50]. The fidelity

F =
(

tr
√√

ρidρerr
√

ρid

)2

∈ [0, 1] (24)

is a measure for the probability to find the unit cell in its de-
sired output state, where no qubit suffered from an error [55].
Thus, we introduce the average single-qubit error probability
p1q. Assuming that errors on the four individual qubits are
independent, p1q is obtained from F = (1 − p1q )4.

The single round of QAOA is followed by a readout of all
qubits. The probability to observe an error on a single qubit at
the end of the total circuit is thus

ε = 1 − (1 − p1q )FrFm, (25)

where Fr is the fidelity of the shuttling and idling in the
readout step, and Fm is the fidelity of the measurement itself.
This total physical single-qubit error probability is plotted for
the spin bus architecture in Fig. 8(a) and for the modular
architecture with both an optimistic assumption for T2 that can

possibly be achieved by dynamical decoupling in Fig. 8(b) as
well as with a realistic T2 in Fig. 8(c).

The results here are obtained with pφ,idl = t/T2. In the case
of a Gaussian decay, pφ,idl = (t/T2)2 of the coherences due
to low-frequency noise, the performance is found to be con-
siderably better, in particular for slow shuttling. We discuss
this case in Appendix B. Realistically, a result between those
extremes can be expected.

Both architectures show the same general dependence on
the distribution of the valley splitting and the shuttling veloc-
ity, although the spin bus performs slightly better even in case
of identical dephasing [cf. Figs. 8(a) and 8(b)], despite the
comparable amount of shuttling and idling. This is due to the
fact that in the modular architecture a total of ten SWAP gates
are required as additional steps, which are decomposed into
30 CP and 60 Hadamard gates, introducing additional errors,
as discussed in Sec. III.

The error probability ε shows the interplay of the main
dephasing mechanisms: If the algorithm requires a long time,
the qubits will strongly dephase due to their finite T2. This
is mitigated by increasing the shuttling velocity v, which
lowers the error probability at first. However, as v increases,
the nonadiabatic errors of the shuttling increase, such that all
curves finally converge to the case of a fully decohered spin
for large v. This leads to the emergence of an optimal shuttling
velocity.

The probability distribution function of the valley splitting,
characterized here by its mean Ēv and variance σ 2

Ev
, deter-

mines the strength of the nonadiabatic effects and thus the
optimum. In particular, a distribution with a large weight near
Ev = 0 is problematic for shuttling. Reducing the spread σ 2

Ev

of the distribution and increasing its mean Ēv by engineering
the interface of the semiconductor heterostructure will result
in both a lower average error and a broader window of v

in which near-optimal results can be expected. Increasing
the mean valley splitting to Ēv ≈ 200 µeV with a standard
deviation of σEv

≈ 30 µeV or less—which is well within the
theoretically predicted range of distributions [29]—a single-
qubit error probability as low as ε ≈ 0.037 (ε ≈ 0.069) is
observed for the spin bus (modular) architecture. If the noise
is dominated by low-frequency components, even lower error
probabilities are expected (see Appendix B).
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Note that these estimates rely on averaged quantities. In
an actual device, the errors may be far stronger than es-
timated here due to individual components deviating from
the expected performance, e.g., a shuttling lane with a lo-
cal dip of the valley splitting. Such a component can be
avoided by adapting the shuttling sequence in order to min-
imize its harmful effects at the cost of detours and additional
idling [35].

B. Context and comparison with superconducting qubits

We finally assess the utility of the spin qubit device for
near-term algorithms. Proposition 2 of Ref. [51] states that
there is a maximum depth for a quantum optimization al-
gorithm that consists of a fraction f1 ( f2) of single- (two-)
qubit gate layers with local error probability p1 (p2): Above a
total of

Dmax = log ε−1

2( f1 p1 + f2 p2)
(26)

layers, there is a classical algorithm that can sample from a
Gibbs state in polynomial time, with an error ε||Hop|| with
respect to the output of the noisy quantum algorithm. As-
suming that the errors are dominated by shuttling and idling,
rather than gate errors—which is justified by the observations
in Fig. 8—we estimate p1(2) by assuming that the errors are
equally distributed over the shuttling and idling time. Then
we weight them by the share of single- and two-qubit layers
of the total distance and duration, as discussed in Sec. III A.

For the spin bus architecture with optimal shuttling veloc-
ity, we find that with ε = 0.1 there are Dmax � 280 gate layers
possible before the quantum advantage is lost. While this esti-
mated circuit depth is comparable with or less than what other
hardware platforms with stationary qubits currently promise
[46–48,51], we emphasize that this corresponds to p ≈ 31
rounds of parity QAOA independent of the system size. In
more conventional architectures, where layers of SWAP gates
are used to emulate the required connectivity between station-
ary qubits, the number of layers scales with the system size,
thus with O(102) qubits Dmax allows only a few rounds of
QAOA [50]. This astounding result is achieved by abstracting
the problem to the parity architecture, which naturally fits the
spin bus topology. In the following, we discuss further options
for quantum error mitigation in order to recover the noisy
output state.

For a more substantive comparison, we adapt the per-
formance analysis to superconducting transmon qubits. For
technical convenience, we assume a chip layout that matches
the topology of the modular spin qubit architecture, where
the interaction between the qubits is mediated by capacitive
coupling, as opposed to nearest-neighbor exchange and spin
shuttling. The resulting two-dimensional grid is composed
of square and octagonal tiles alternately. The capacitive cou-
pling allows for native CZ gates. The implementation of parity
QAOA for transmon qubits is analogous to the circuit pre-
sented in Sec. III B, omitting the shuttling steps, which makes
a comparison between the two hardware platforms straight-
forward. Note that we expect a square lattice of transmon
qubits to perform slightly better due to the additional SWAP

gates required by the modular architecture, as discussed in
Sec. III B.

The gate fidelity for transmon qubits can reach up to
≈0.9999 for single-qubit gates and 0.998–0.999 for two-qubit
gates [61,62], although the in-system performance of simulta-
neous two-qubit gates is typically lower and can be ≈0.996%
[63,64]. We model this with depolarization channels for
both single- and two-qubit gates with error probabilities of
pd,1qg = 3 × 10−4 and pd,2qg = (1 × 10−3) − (5 × 10−3), re-
spectively. These gates can be performed within T1q ≈ 20 ns
and T2q ≈ 50 ns. Realistic values for decoherence and relax-
ation times in current transmon devices are T2 ≈ 100 µs and
T1 ≈ 115 µs [62,65,66]. We assume a readout and initializa-
tion fidelity of Fm = 0.995 and we assume that all qubits can
be read out simultaneously [65]. Compared to the spin qubits,
the gates of the transmons are faster and have similar gate
fidelity (slightly lower for in-system performance) and with a
similar T2, and no shuttling is required.

We estimate the performance of the transmon chip in anal-
ogy to the spin qubits. With optimistic assumptions for the
two-qubit gate fidelity, we find that the error can be between
ε ≈ 0.043 for a choice of pd,2q = 2 × 10−3 and ε ≈ 0.027
for a choice of pd,2q = 10−3, corresponding to FCZ ≈ 0.9987
and FCZ ≈ 0.9993, respectively. This result is slightly better
than the optimal outcome for modular spin qubits, although
of a comparable magnitude. We note that the optimal result
obtained from the spin bus, whose topology naturally matches
the parity architecture, lies well within the range defined by
the optimistic transmon chip.

Using the more conservative estimate of pd,2q = 5 × 10−3,
corresponding to FCZ ≈ 0.9967, which was observed for si-
multaneous two-qubit gates integrated in a two-dimensional
grid of 67 qubits [63,64], we find ε ≈ 0.087. Both spin qubit
architectures can reach and exceed this performance. The spin
bus with optimized shuttling velocity can outperform this
transmon chip for all considered distributions of the valley
splitting, leaving a wide margin for the optimization of the
semiconductor heterostructure.

In the limit of low-frequency noise resulting in a
Gaussian decay of the coherences, Appendix B, both spin
qubit architectures can outperform the transmon qubits even
for the optimistic choice of gate fidelities. The superconduct-
ing qubit platform is hardly affected by the choice of exponen-
tial or Gaussian decay, since the execution time of the algo-
rithm is much faster than T2, with gate errors being the limiting
factor.

VI. DECODING AND ERROR MITIGATION

In the previous section, we assessed the expected single-
qubit error probabilities for one round of QAOA both with
the spin bus and a modular architecture. To evaluate the to-
tal algorithm performance, one needs to consider that parity
QAOA is typically evaluated by measuring all qubits and
then reconstructing the logical state from so-called spanning
trees—subgraphs of N − 1 physical qubits connected by ex-
actly one path that spans over all N logical qubits [36]. One
such spanning tree is sufficient for reconstructing the logi-
cal state up to a global spin-flip. In the error-free case, all
spanning trees yield the same logical state, which corresponds
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to the output state of the algorithm. If, however, physical er-
rors occur, different logical states are obtained from different
spanning trees. In that case, the logical state with the lowest
energy is accepted as the optimal result. Considering the error
probabilities computed in the previous section, both architec-
tures operated with optimal shuttling velocity can reach the
low-error regime where parity QAOA has a clear advantage
over conventional QAOA: Simulations of small noisy systems
have shown that parity QAOA equipped with the classical
postprocessing of the spanning trees can still have a high
success probability, even exceeding the success probability of
standard QAOA with an ideal system [36].

This is sufficient for the treatment of optimization prob-
lems, although it does not allow for a decision on whether the
accepted result is the output of the algorithm or was produced
by random noise. For some instances, it may also be bene-
ficial to decode the readout results in a way that allows the
reconstruction of the output state, which is particularly crucial
in view of future applications of universal parity quantum
computing [37]. We continue to evaluate the performance with
respect to those two aspects. In Ref. [67], an estimate is given
for an upper bound for the probability of the decoding to fail
and result in the acceptance of the wrong logical state from
the parity architecture.

This upper bound for the decoding error probability decays
exponentially with the number of logical qubits. Based on
the estimated wiring complexity, we assume that a spin bus
processor with up to 50 unit cells can be operated with room-
temperature controls [4], which allows for up to 20 logical
qubits. Together with the physical error probability ε ≈ 0.037
(ε ≈ 0.069) of the spin bus (modular) architecture, this results
in a decoding error probability of � 2.5% (� 13.2%) with
realistic gate errors. This represents an upper bound only, and
the actual probability is expected to be much lower with a
sophisticated decoding scheme. For example, when applying
belief propagation, the decoding error probability can be ex-
pected to be below 1% for 6 (8) or more logical qubits, i.e., 15
(28) physical qubits [67].

For the spanning tree readout, we expect that, with a re-
liable algorithm, the correct output state is observed more
frequently than random states. This can be exploited to de-
cide whether the accepted result is also the correct output.
To do so, we assume that n spanning trees of N − 1 qubits
are read out and used for decoding. We also assume that
they are distributed evenly over the chip in order to access
all information, such that all qubits are included in one tree
before any qubit is included in a second. With N logical
and thus K = N (N − 1)/2 physical qubits, this means that
all physical qubits are part of �n(N − 1)/K� = �2n/N� or
�2n/N� + 1 spanning trees. The number of qubits that are part
of �2n/N� + 1 trees is n(N − 1) mod K .

Thus, with one physical error on the chip, there is a
chance of finding �2n/N� incorrect trees with probabil-
ity 1 − [n(N − 1) mod K]/K and of finding �2n/N� + 1
incorrect trees with probability [n(N − 1) mod K]/K . The
expected number of incorrect spanning trees with one physical
error is thus

〈ninc〉(1) =
⌊

2n

N

⌋
+ 1

K
[n(N − 1) mod K]. (27)

Each further error will also introduce 〈ninc〉(1) incorrect
spanning trees, but has an increasing chance to affect trees that

already return the incorrect logical state. Thus, the expected
number of incorrect results can be computed recursively for
the mth error

〈ninc〉(m) = 〈ninc〉(m − 1)

+ max

[
1 − 〈ninc〉(m − 1)

n
, 0

]
〈ninc〉(1), (28)

where the max was included in order to avoid artifacts from
the discrete computation. Consequently, with m physical er-
rors, on average

〈nok〉(m) = n − 〈ninc〉(m) (29)

spanning trees can be expected to return the correct logical
state.

Inverting 〈nok〉(m) and assuming that the physical errors
are independent and equally distributed allows us to find the
probability distribution

Pε,K (〈nok〉) = B[m(〈nok〉)|ε, K] (30)

of 〈nok〉, where B(m|ε, K ) is a binomial distribution of the
number of errors m with the physical error probability ε and
qubit number K . We now define 〈nok〉x such that in a fraction
x of the experimental runs more than 〈nok〉x spanning trees
returning the correct output state can be expected:

〈nok〉x∑
〈nok〉=0

Pε,K (〈nok〉) = 1 − x. (31)

A logical state is accepted once it is obtained from more than
〈nok〉x spanning trees, where x parametrizes the expectation
that a fraction x of the runs should allow for a positive decision
to be made. Choosing a smaller x will result in a lower rate of
erroneous positive decisions at the cost of requiring more runs.

As a measure of the reliability of the algorithm, we com-
pute the probability for obtaining at least 〈nok〉x spanning trees
returning an identical logical state from an entirely random
outcome of the algorithm (ε = 0.5):

pfail =
n∑

〈nok〉=〈nok〉x

P0.5,K (〈nok〉). (32)

This estimate can be viewed as a statistical test based on the
probability distribution Pε,K , whether the output state could
plausibly arise from a random result.

The probability pfail of accepting a random state as al-
gorithm output, regardless of it being the best solution to
the problem or not, is shown in Fig. 9 for the example of
the spin bus architecture with different shuttling velocities,
x = 0.9 and the choices of n = N and n = 2N . Naturally,
pfail decreases with the qubit number because the probability
for repeatedly observing a random result decreases fast with
system size. The curves may show a small jump due to the
discrete nature of the spanning trees, since a change in 〈nok〉0.9

by 1 can be significant for a low number of logical qubits; this
can be seen in the solid orange and dashed black curves.

Some curves with a high ε furthermore show a big jump
to pfail = 1. This can be explained by the fact that, for a too
large error ε and a too strict x, 〈nok〉x will also decrease when
the number of qubits is increased and may fall to 0 such
that no decoding is possible. In that case, the decoding is not
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FIG. 9. Decoding based on the readout of spanning trees for up to
20 logical qubits. Main panel: Probability pfail of accepting a random
state as algorithm output computed with x = 0.9 for the spin bus
as a function of the number of logical qubits, with Ēv = 100 µeV,
σ 2

Ev
= (20 µeV)2. A number of n = N (2N) spanning trees are de-

coded in the solid (dashed) curves. Increasing the system typically
suppresses the decoding error; however, small jumps due to the
discrete nature of spanning trees may occur (orange curve), and
for a too large physical error the decoding may not be scalable.
The requirements can be lowered by increasing the number n of
spanning trees. The lines only serve as a guide to the eye. Inset:
Maximal fraction x of experiments, xmax, that allows a decision about
which state is the correct output state for any system size (scalable
decoding) as a function of the error probability ε. If x = 1, the output
state is reliably recovered from the decoding of the spanning trees
for all qubit numbers; if x = 0, no decision is possible on whether
the output is random or not, from a certain system size upwards. In
between, decoding is still possible in general but works only for a
fraction x of all attempts.

scalable. By increasing the number of spanning trees, n, more
redundant information is used and thus higher error rates can
be tolerated.

In the inset of Fig. 9, xmax is shown, which is the maximal
x where 〈nok〉x does not decrease with the qubit number, as
a function of the physical error probability. For xmax = 1 it is
possible to reliably recover the output state of the algorithm,
and increasing the number of qubits improves decoding. For
xmax = 0, the decoding may work for small systems but will
fail at a certain qubit number, that is, the algorithm will still
produce a candidate solution of the optimization problem, but
it is impossible to decide whether the result was produced
by the algorithm or noise. In the intermediate regime, the
decoding still works as usual, and increasing the system size
improves the error mitigation capabilities, but also introduces
a finite probability that no decision can be made on the output
of the algorithm. Based on the results of Sec. V A, parity
QAOA can be performed and decoded reliably with the spin
bus and the modular architecture with an optimistic value for
T2, achieved by dynamical decoupling.

VII. SUMMARY AND CONCLUSIONS

In this paper, we investigated the implementation and
performance of the parity QAOA algorithm on two differ-
ent electron spin qubit architectures, one based on electrons
sparsely distributed over intersecting shuttling lanes (spin bus)
and one where 2 × 2 arrays of QDs form a lattice of registers
interconnected by shuttling. We presented shuttling and gate
sequences for realizing all elements of parity QAOA on both
platforms. While straightforward for the spin bus, the modular
chip layout discussed here requires 10 successive SWAP gates
to achieve the required connectivity. Alternatively, SWAP gates
can be traded for hopping between adjacent QDs.

To consider realistic errors, we developed a model that
allows for estimating the mean shuttling error as a function of
the probability distribution of the valley splitting and the val-
ley phase. Assuming Si/SiGe as host material and conveyor
mode shuttling with realistic parameters for gate error rates,
dephasing, and valley splitting, we find that both architectures
can complete one round of parity QAOA with a low single-
qubit error probability. The spin bus slightly outperforms the
modular architecture due to the need for additional SWAP

gates in the latter. The performance delivered by both plat-
forms for parity QAOA after optimizing the shuttling process
can exceed the results expected from typical superconducting
transmon qubits. This result not only points out the synergy
between the parity architecture and spin qubit hardware but
also shows that spin qubits can be serious contenders among
the leading quantum computing platforms.

Our error analysis suggests that the main limitations
are dephasing from intervalley transitions if the shuttling
is nonadiabatic and dephasing from environmental noise if
the shuttling is too slow. Engineering the Si/SiGe interface
[27–29] and Si quantum well [30,31] to deterministically en-
hance the valley splitting or adjusting the shuttling path and
velocity to avoid excitations can further reduce the minimal
error by allowing for a higher shuttling velocity. Protecting
the spins from charge noise and prolonging their lifetime by
dynamical decoupling can make the algorithm more robust at
low velocities as well.

Finally, we discussed the possibilities for quantum error
mitigation based on the results of the error model. While
parity QAOA has an intrinsic error mitigation capability, we
show that it is not guaranteed that the actual outcome of
the algorithm can be identified. Nevertheless, our estimations
indicate that the physical errors of both spin qubit platforms
are low enough to decode the final state with a high success
probability. This is accomplished either with dedicated decod-
ing schemes such as belief propagation or with the classical
postprocessing of spanning trees that is commonly used in
conjunction with parity QAOA.

Other studies have shown that a direct implementation of
QAOA requires much higher gate fidelities than currently
available in any platform to achieve a quantum advantage for
problems whose coupling topology does not match that of the
hardware [46–48,50]. The combination of the parity encoding
with an architecture that is well-matched to its requirement
paints a more optimistic picture. The cost for this advantage is
a quadratic overhead in the number of qubits. Importantly, this
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increase in qubit number can be leveraged without requiring
a higher fidelity, implying a much better scalability of parity
encoded QAOA problems.

Our results highlight that a two-dimensional spin qubit
platform can indeed serve as a natural implementation of the
parity architecture even if the connectivity does not directly
correspond to a square-lattice geometry. Thus, the utility of
spin qubits for quantum computing tasks such as solving op-
timization problems can be advanced by alleviating the need
for long-range interaction and by allowing for constant-depth
QAOA with the possibility of quantum error mitigation. The
results presented here show that parity QAOA may be in
reach of near-term spin qubit devices, promising a substantial
quantum advantage for a large class of problems once a qubit
number on the order of a few thousand is achieved. It can
be expected that future improvements of the qubit coherence
make universal parity quantum computing viable. This will
provide an advantage by reducing the circuit depth of cor-
nerstone quantum algorithms such as the quantum Fourier
transform, while relying exclusively on nearest-neighbor in-
teractions and single-qubit gates [37].

We note that we considered only a minimal modular ar-
chitecture, the performance with larger registers is an open
question to be addressed in the future. Other promising di-
rections are the use of resonator [68–72] and RF readout
[73–76] of spin qubits for measurement-based parity quan-
tum computing [41] and the use of a hybrid formulation of
parity QAOA which reduces the number of constraints that
are enforced explicitly and allows a modularization of the
code [52]. The latter can be useful for the evolution of the
modular design with larger registers. For future research in
order to unlock the full potential of spin qubits equipped with
the parity architecture, it is also relevant to explore whether
electron or hole spin qubits can provide special advantages,
and it may be beneficial to revisit and further optimize the
native gate set of the platform for the interactions required
here.
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FIG. 10. Alternative circuit for implementing the parity con-
straints on ribbons of an odd top and an even bottom row in a
modular architecture if executed on each unit cell in parallel. This
sequence can replace the steps 1.1 and 1.2 of Fig. 7, and its reverse
can replace step 4 of Fig. 7. Effectively, some SWAP gates are replaced
by transitions between the QDs of a module, indicated by horizontal
arrows. Thus, four SWAPs in steps 1 and 4 each can be avoided. The
remaining SWAP gates are required for the subsequent steps.

APPENDIX A: ALTERNATIVE SEQUENCE
FOR THE MODULAR ARCHITECTURE

For the modular architecture, the parity constraints can also
be realized with a circuit where eight SWAP gates are traded
for coherent transitions between the QDs within a unit cell
and thus requires only two SWAP gates per qubit. This alter-
native sequence is shown in Fig. 10. The amount of shuttling
operations is the same, with the exception that the electrons
are now shuttled to vacant dots within the neighboring unit
cells instead of adjacent sites, and the other gates remain
unchanged. Thus, this approach can be a beneficial alterna-
tive if the fidelity of one intramodule transfer outperforms a
SWAP gate.

With our assumptions, the fidelity of a single SWAP is ex-
pected to be � 99.6%. The transport within the module can be
realized by utilizing the plunger and barrier gates for conveyor
mode-shuttling or by phase-coherent bucket brigade shuttling
in a double quantum dot. A fidelity per hop approaching this
threshold was demonstrated in SiMOS devices [77,78]. In
Si/SiGe, the probability of spin-flip errors has been shown
to be in the required range for high-fidelity shuttling [79], and
theoretical estimates predict a fidelity above the threshold to
make this alternative viable [20].

APPENDIX B: PERFORMANCE IN THE PRESENCE
OF LOW-FREQUENCY NOISE

The dominating source of dephasing in semiconductor
spin qubits is considered to be charge noise, electric field
fluctuations with a power spectral density S(ω) ∝ 1/ωα ,
α ≈ 1 [1]. The low-frequency noise gives rise to a Gaussian
decay of the coherences. Compared to the case of rapid fluctu-
ations, this leads to an improved performance of the shallow
algorithm discussed here for instances in which the passive
dephasing is the limiting factor. We investigate the case of
quasistatic noise by estimating the average single-qubit error
probability ε with pφ,idl = (t/T2)2 as probability for the de-
phasing channel during the idling of the qubits. The results
are depicted in Fig. 11.
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FIG. 11. Average error probability after one round of QAOA with pφ,idl = (t/T2)2 for (a) the spin bus with T2 = 100 µs and (b) for the
modular architecture with an optimistic T2 = 100 µs and (c) with a realistic T2 = 20 µs. The examples plotted here correspond to Fig. 8 in the
case of quasistatic noise. The reduced dephasing during short idling times improves the performance for slow shuttling, while the dephasing
due to nonadiabatic effects at high v is unaffected.

As a consequence, the error probability for a low shut-
tling velocity v is considerably reduced. Thus, the optimal
result is found for slower shuttling and with a lower minimal
error probability. Towards higher shuttling velocity, where
the errors are dominated by nonadiabatic effects, the effect

vanishes. With a mean valley splitting of Ēv ≈ 200 µeV and
a standard deviation of σEv

≈ 30 µeV or less, a single-qubit
error around ε ≈ 0.005 (ε ≈ 0.034) is observed for the spin
bus (modular) architecture.

[1] G. Burkard, T. D. Ladd, A. Pan, J. M. Nichol, and J. R.
Petta, Semiconductor spin qubits, Rev. Mod. Phys. 95, 025003
(2023).

[2] L. M. K. Vandersypen, H. Bluhm, J. S. Clarke, A. S. Dzurak,
R. Ishihara, A. Morello, D. J. Reilly, L. R. Schreiber, and M.
Veldhorst, Interfacing spin qubits in quantum dots and donors—
hot, dense, and coherent, npj Quantum Inf. 3, 34 (2017).

[3] O. Crawford, J. R. Cruise, N. Mertig, and M. F. Gonzalez-Zalba,
Compilation and scaling strategies for a silicon quantum pro-
cessor with sparse two-dimensional connectivity, npj Quantum
Inf. 9, 13 (2023).

[4] M. Künne, A. Willmes, M. Oberländer, C. Gorjaew, J. D. Teske,
H. Bhardwaj, M. Beer, E. Kammerloher, R. Otten, I. Seidler, R.
Xue, L. R. Schreiber, and H. Bluhm, The spinbus architecture:
Scaling spin qubits with electron shuttling, Nat. Commun. 15,
4977 (2024).

[5] A. M. J. Zwerver, T. Krähenmann, T. F. Watson, L. Lampert,
H. C. George, R. Pillarisetty, S. A. Bojarski, P. Amin, S. V.
Amitonov, J. M. Boter, R. Caudillo, D. Correas-Serrano, J. P.
Dehollain, G. Droulers, E. M. Henry, R. Kotlyar, M. Lodari,
F. Lüthi, D. J. Michalak, B. K. Mueller et al., Qubits made by
advanced semiconductor manufacturing, Nat. Electron. 5, 184
(2022).

[6] X. Xue, M. Russ, N. Samkharadze, B. Undseth, A. Sammak, G.
Scappucci, and L. M. K. Vandersypen, Quantum logic with spin
qubits crossing the surface code threshold, Nature (London)
601, 343 (2022).

[7] A. R. Mills, C. R. Guinn, M. J. Gullans, A. J. Sigillito, M. M.
Feldman, E. Nielsen, and J. R. Petta, Two-qubit silicon quantum
processor with operation fidelity exceeding 99%, Sci. Adv. 8,
eabn5130 (2022).

[8] A. Noiri, K. Takeda, T. Nakajima, T. Kobayashi, A. Sammak, G.
Scappucci, and S. Tarucha, Fast universal quantum gate above

the fault-tolerance threshold in silicon, Nature (London) 601,
338 (2022).

[9] E. J. Connors, J. J. Nelson, H. Qiao, L. F. Edge, and J. M.
Nichol, Low-frequency charge noise in Si/SiGe quantum dots,
Phys. Rev. B 100, 165305 (2019).

[10] E. J. Connors, J. Nelson, L. F. Edge, and J. M. Nichol,
Charge-noise spectroscopy of Si/SiGe quantum dots via
dynamically-decoupled exchange oscillations, Nat. Commun.
13, 940 (2022).

[11] W. Huang, C. H. Yang, K. W. Chan, T. Tanttu, B. Hensen,
R. C. C. Leon, M. A. Fogarty, J. C. C. Hwang, F. E. Hudson,
K. M. Itoh, A. Morello, A. Laucht, and A. S. Dzurak, Fidelity
benchmarks for two-qubit gates in silicon, Nature (London)
569, 532 (2019).

[12] I. Heinz and G. Burkard, Crosstalk analysis for single-qubit and
two-qubit gates in spin qubit arrays, Phys. Rev. B 104, 045420
(2021).

[13] I. Heinz and G. Burkard, Crosstalk analysis for simultaneously
driven two-qubit gates in spin qubit arrays, Phys. Rev. B 105,
085414 (2022).

[14] I. Heinz, A. R. Mills, J. R. Petta, and G. Burkard, Analysis and
mitigation of residual exchange coupling in linear spin qubit
arrays, Phys. Rev. Res. 6, 013153 (2024).

[15] J. M. Taylor, H. A. Engel, W. Dür, A. Yacoby, C. M. Marcus, P.
Zoller, and M. D. Lukin, Fault-tolerant architecture for quantum
computation using electrically controlled semiconductor spins,
Nat. Phys. 1, 177 (2005).

[16] I. Seidler, T. Struck, R. Xue, N. Focke, S. Trellenkamp, H.
Bluhm, and L. R. Schreiber, Conveyor-mode single-electron
shuttling in Si/SiGe for a scalable quantum computing archi-
tecture, npj Quantum Inf. 8, 100 (2022).

[17] H. Flentje, P. A. Mortemousque, R. Thalineau, A. Ludwig,
A. D. Wieck, C. Bäuerle, and T. Meunier, Coherent

075302-14

https://doi.org/10.1103/RevModPhys.95.025003
https://doi.org/10.1038/s41534-017-0038-y
https://doi.org/10.1038/s41534-023-00679-8
https://doi.org/10.1038/s41467-024-49182-4
https://doi.org/10.1038/s41928-022-00727-9
https://doi.org/10.1038/s41586-021-04273-w
https://doi.org/10.1126/sciadv.abn5130
https://doi.org/10.1038/s41586-021-04182-y
https://doi.org/10.1103/PhysRevB.100.165305
https://doi.org/10.1038/s41467-022-28519-x
https://doi.org/10.1038/s41586-019-1197-0
https://doi.org/10.1103/PhysRevB.104.045420
https://doi.org/10.1103/PhysRevB.105.085414
https://doi.org/10.1103/PhysRevResearch.6.013153
https://doi.org/10.1038/nphys174
https://doi.org/10.1038/s41534-022-00615-2


SCALABLE PARITY ARCHITECTURE WITH A … PHYSICAL REVIEW B 110, 075302 (2024)

long-distance displacement of individual electron spins, Nat.
Commun. 8, 501 (2017).

[18] T. Fujita, T. A. Baart, C. Reichl, W. Wegscheider, and L. M. K.
Vandersypen, Coherent shuttle of electron-spin states, npj
Quantum Inf. 3, 22 (2017).

[19] A. R. Mills, D. M. Zajac, M. J. Gullans, F. J. Schupp, T. M.
Hazard, and J. R. Petta, Shuttling a single charge across a one-
dimensional array of silicon quantum dots, Nat. Commun. 10,
1063 (2019).

[20] F. Ginzel, A. R. Mills, J. R. Petta, and G. Burkard, Spin shuttling
in a silicon double quantum dot, Phys. Rev. B 102, 195418
(2020).

[21] V. Langrock, J. A. Krzywda, N. Focke, I. Seidler, L. R.
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Schreiber, Spin-EPR-pair separation by conveyor-mode sin-
gle electron shuttling in Si/SiGe, Nat. Commun. 15, 1325
(2024).

[23] R. Xue, M. Beer, I. Seidler, S. Humpohl, J.-S. Tu, S.
Trellenkamp, T. Struck, H. Bluhm, and L. R. Schreiber, Si/SiGe
QuBus for single electron information-processing devices with
memory and micron-scale connectivity function, Nat. Commun.
15, 2296 (2024).

[24] B. Koiller, X. Hu, and S. Das Sarma, Exchange in silicon-based
quantum computer architecture, Phys. Rev. Lett. 88, 027903
(2001).

[25] M. Friesen and S. N. Coppersmith, Theory of valley-orbit
coupling in a Si/SiGe quantum dot, Phys. Rev. B 81, 115324
(2010).

[26] A. L. Saraiva, M. J. Calderón, X. Hu, S. Das Sarma, and B.
Koiller, Physical mechanisms of interface-mediated intervalley
coupling in Si, Phys. Rev. B 80, 081305(R) (2009).

[27] B. P. Wuetz, M. P. Losert, S. Koelling, L. E. A. Stehouwer, A.-
M. J. Zwerver, S. G. J. Philips, M. T. Mądzik, X. Xue, G. Zheng,
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M. Rimbach-Russ, A. Sammak, G. Scappucci, and L. M. K.
Vandersypen, Shuttling an electron spin through a silicon quan-
tum dot array, PRX Quantum 4, 030303 (2023).

075302-16

https://doi.org/10.1126/science.abo6587
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2022-12-07-870
https://doi.org/10.1038/s41567-021-01356-3
https://doi.org/10.1103/PRXQuantum.3.030304
http://link.aps.org/supplemental/10.1103/PhysRevB.110.075302
https://doi.org/10.1038/s41565-023-01491-3
https://doi.org/10.1038/s41534-020-0276-2
https://doi.org/10.1103/RevModPhys.54.437
https://doi.org/10.1103/PhysRevB.72.155410
https://doi.org/10.1103/PhysRevB.71.205324
https://doi.org/10.1103/PhysRevLett.110.196803
https://doi.org/10.1038/s41534-023-00781-x
https://doi.org/10.1146/annurev-conmatphys-031119-050605
https://arxiv.org/abs/2304.11119
https://doi.org/10.1126/science.adh9932
https://doi.org/10.1088/2058-9565/abe519
https://doi.org/10.1109/IEDM19573.2019.8993458
https://doi.org/10.1103/PhysRevA.93.052325
https://doi.org/10.1038/nature25769
https://doi.org/10.1103/PhysRevApplied.15.044052
https://doi.org/10.1103/PhysRevB.99.245306
https://doi.org/10.1103/PhysRevB.100.245427
https://doi.org/10.1103/PhysRevB.108.125437
https://doi.org/10.1103/PhysRevLett.110.046805
https://doi.org/10.1103/PhysRevX.8.041032
https://doi.org/10.1038/s41565-019-0400-7
https://doi.org/10.1038/s41565-019-0443-9
https://doi.org/10.1038/s41467-021-24371-7
https://doi.org/10.1038/s41467-022-33453-z
https://doi.org/10.1103/PRXQuantum.4.030303

