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The theory of the shift current is thus far geometrical without being topological. This means that the real-space
displacement of a photoexcited quasiparticle depends on the geometric Berry phase, but the Berry phase is
not quantized to a rational multiple of 2π in any known material. I rectify this status quo by introducing a
new class of topological insulators whose band topology is only compatible with a noncentrosymmetric space
group. For such insulators, it is impossible to continuously tune the k-dependent shift vector to zero throughout
the Brillouin zone. Suitably averaged, the shift vector is quantized to a rational multiple of a Bravais lattice
vector. Even with wide band gaps, the frequency-integrated shift conductivity greatly exceeds e3/h2, and is at
least three orders of magnitude larger than the conductivity of the prototypical ferroelectric BaTiO3. The large
conductivity is attributed to an interplay between quantized intra- and interband Berry phases. In particular,
topological defects of the interband Berry phase can enhance the shift current, even for unpolarized insulators
with negligible intraband Berry phase.
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I. MOTIVATION AND RESULTS

The uniform illumination of a homogeneous but noncen-
trosymmetric material generates a direct photocurrent [1]. Part
of this photocurrent originates from the real-space displace-
ment (or shift) of photoexcited quasiparticles as they vertically
transit between bands [2]. A geometric theory of the excitation
shift current has developed based on geometric interpretations
of the electron polarization [3–5] and the dipole matrix ele-
ment [6]; the real-space shift has been related to a geometric
Berry phase [2,7–9] which may take any generic value—it
is not symmetry-fixed to a rational multiple of 2π in any
known material. The present theory of the shift current is thus
geometrical without being topological—lacking the defining
quality of quantization that is robust against perturbations.1

Why was no quantized geometric phase found in pre-
vious investigations [11–16] of the excitation shift current
in topological materials? Because it is possible to contin-
uously deform the insulating tight-binding Hamiltonian (or
semimetallic low-energy Hamiltonian) to be centrosymmetric
with vanishing shift current, while remaining in the same
topological phase, as illustrated in Fig. 1(a). This implies
for the studied classes of topological materials that nontrivial
topology of the wave function is not, by itself, a sufficient
condition for a nontrivial shift; further supplemental condi-
tions must be added to ensure the shift, e.g., proximity to a
topological phase transition [16], tilting [11–13], or warping
[15] of energy dispersions.

Aiming to forgo all supplemental conditions, this work
introduces a new class of topological insulators for which
wave-function topology is a sufficient condition for a non-
trivial shift. The introduced class contrasts from previous

1Topological invariants exist for the circular photogalvanic effect
[10] and the photovoltaic Hall effect [6].

case studies in being essentially noncentric, meaning that the
topologically nontrivial phase of matter exists only in crystal
classes without a center of inversion, as illustrated in Fig. 1(b).
In other words, the lack of centrosymmetry is essential to
meaningfully distinguish between phases that are topologi-
cally trivial vs nontrivial.

The sufficient condition for a nontrivial shift reads as
follows:

(P1) For essentially noncentric topological insulators, a
geometric quantity exists that inputs band wave functions and
outputs an integer; if this integer is nonzero, the k-dependent
photonic shift vector cannot be continuously tuned to zero
throughout the Brillouin zone.

The photonic shift vector Sε
b′k←bk is the real-space shift of

an electronic quasiparticle as it transits from band b to band
b′ (at fixed wave vector k), by way of emitting or absorbing
a photon with linear polarization vector ε.2 In terms of the
multiband Berry connection Ab′bk = 〈ub′k|i∇kubk〉cell,

3

Sε
b′k←bk = − ∇k arg ε · Ab′bk + Ab′b′k − Abbk. (1)

We will refer to Abb as the intraband Berry connection
for the bth band; the interband Berry phase (arg ε · Ab′bk)
is the argument of the complex-valued, band-off-diagonal
Berry connection, which enters the theory through the
dipole-transition matrix element eEωε·Ab′b, with [E (r, t ) =
εEωei(q·r−iωt ) + complex conjugate] being the incident electric
wave.

2The geometric interpretation of the phononic shift vector is
discussed in a companion paper which focuses on the steady pho-
tovoltaic current [17].

3This inner product involves integrating the intracellular coordinate
over the primitive unit cell, with the normalization 〈ubk|ub′k〉cell =
δb,b′ .
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FIG. 1. (a) Phase diagram of conventional topological materials:
the topologically nontrivial phase of matter straddles the boundary
between centrosymmetric and noncentrosymmetric (i.e., “noncen-
tric”) Hamiltonians. (b) Phase diagram of essentially noncentric
topological materials: the topologically nontrivial phase of matter is
only compatible with a noncentric Hamiltonian.

If the shift vector is viewed as a vector field over k-space,
then proposition (P1) implies there exists topologically non-
trivial fields which cannot be continuously deformed to the
zero vector field; two representative examples are illustrated
in Figs. 2(a) and 2(b). The “geometric quantity” in proposition
(P1) is expressed in Eq. (10) as a sum of a quantized intraband
Berry a quantized interband Berry phase; the latter quantity is
associated to topological defects (in momentum space) of the
interband Berry connection, as illustrated in Fig. 2(c).

In evocative terms, the topological knot of the electronic
wave function carries an unremovable polarity; in precise
terms:

(P2) For an essentially noncentric insulator with a re-
flection symmetry, averaging the shift vector over either
reflection-invariant k plane gives exactly a Bravais lattice
vector.

There being two such k plane gives two independent vec-
tors: Save

0 and Save
π/Rx

. The direction of �Save: = Save
0 +Save

π/Rx

may be interpreted as the polar axis of the electronic wave
function. A nonzero �Save connects different primitive unit
cells and may be described as intercellular. The associ-
ated shift current is expected to be larger than in existing

FIG. 2. Representative plots of the shift vector field for a
two-dimensional essentially noncentric insulator. The horizontal
component of each arrow is proportional to Sx

x and the vertical
component to Sx

y . The vector fields in panels (a) and (b) are con-
tinuously deformable into each other and share identical topological
invariants: averaging the shift vector over either reflection-invariant
line (colored red and green) gives exactly a primitive Bravais lattice
vector. (c) A vortex in the shift vector field indicates a topological
defect of the interband Berry connection.

shift-current materials where intracellular charge transfer oc-
curs between atoms in one unit cell [18,19]. The analogs of
Save

0 and Save
π/Rx

for two-dimensional insulators are obtained
by averaging the shift vector over reflection-invariant k lines,
as illustrated in Figs. 2(a) and 2(b).

Propositions (P1) and (P2) are topological principles to
guide the search of materials with large shift currents. To
quantify how large, I will use a figure of merit expressed in
terms of the fundamental geometric quantity—the photonic
shift connection [6]:

C j
ib′bk = |Ajb′bk|2S j

ib′bk; S j
ib′bk = �i · S

�j
b′k←bk. (2)

In our adopted shorthand for the shift vector, i, j ∈ {x, y, z}
label the Cartesian axes and �i, �j are unimodular directional
vectors. Likewise, Ajb′bk = �j·Ab′bk. The shift connection
enters the expression of the excitation shift current as
the average velocity (in the ith direction) of a shifting
quasiparticle: e3|E2

ω|C j
icvδ(h̄ω−εc+εv )/h̄, given by the

shift vector multiplied by the photoexcitation transition
rate, namely the rate an electron is photoexcited from a
fully filled valence band (with energy εv) to a fully empty
conduction band (εc) by a monochromatic light source with
photon energy h̄ω and linear polarization �j. Motivated by a
broadband light source (e.g., solar light) with a spectral peak
that is as wide as a typical band, I integrate the rate over all
optical excitations between the two bands lying closest to
the Fermi level; the resultant quantity is proportional to the
Brillouin-zone-integral of the shift connection:

F j
i =

∫
BZ

d3kC j
icv. (3)

I adopt F j
i as a dimensionless figure of merit. This figure is

proportional to the frequency-integrated excitation shift
conductivity:4

2F j
i

e3

h2
=

∫
σ

exc, j
iω

∣∣
T =0dω. (4)

This nonlinear conductivity is defined through the excitation
shift current: jexc, j

i = σ
exc, j
iω |Eω|2; the subscript (T = 0)

reminds us that we are photoexciting a zero-temperature
insulator. The excitation shift conductivity is closely related to
a measurable transient photocurrent, as elaborated in Sec. IV.

For essentially noncentric insulators with a band gap Eg

[minimized over the Brillouin zone (BZ)], a band width Ew

(maximized between conduction and valence band), a polar
axis parallel to y, and a reflection symmetry mapping x→−x,
I propose that:

(Q1) For Eg � Ew, |F x
y | 	 1 and is roughly proportional to

the magnitude of the intercellular shift vector �Save.
Because �Save is equivalently viewed as a Z2-valued in-

variant taking values in a two-dimensional (2D) Bravais lattice
with all lattice periods set to unity, proposition (Q1) epito-
mizes a maxim that to maximize the excitation shift current

4The prefactor of 2 in Eq. (4) reflects the spin degeneracy of bands
in insulators with negligible spin-orbit coupling. σ

exc, j
iω translates to

�i · σexc
�jω in the companion paper [17].
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is to maximize a topological invariant. Proposition (Q1) also
challenges a widely held expectation that small band gaps are
necessary for large excitation shift currents in topological ma-
terials [11–13,16,20]. Because being topologically nontrivial
is a global property of the entire band, the largeness of σ exc,x

yω
extends over a frequency range that is potentially comparable
to the band width; this makes wide-gap essentially noncentric
insulators suited for photoexcitation by solar light, since the
solar spectrum has a broad peak covering 2 to 3 eV.5

(Q2) For Eg 
 Ew, F x
y diverges as |Eg|−1/2 in the approach

to a topological phase transition.
This suggests an application to ultrafast infrared detection

without an external bias voltage, which obviates the problem
of the dark current in semimetallic photodetectors [21].

To compare with predicted values for F j
i , Tan and Rappe

have computed (by first principles) the longitudinal F j
i for

950 noncentrosymmetric, nonmagnetic materials [20], find-
ing: (a) |F y

y | ≈ 10−2 for the prototypical ferroelectric insulator
BaTiO3, with y parallel to the polar axis, and (b) |F y

y | ≈ 3
for SrAlSiH represents the best-performing insulator with
Eg � 1 eV; the former material has been experimentally
benchmarked [22,23] but not the latter.

For a further comparison with typical values of σ
exc, j
iω , let

us assume that an essentially noncentric insulator has a band
width of Ew = 1 eV and that �Save is proportional to a primi-
tive Bravais lattice vector �B, with || �B|| = Ry. Proposition (Q1)
then implies that the magnitude of the frequency-averaged
shift conductivity

∣∣〈σ exc,x
yω

〉
ave

∣∣ � 0.1 mA V−2 × ||�Save||
Ry

, (5)

with ||�Save||/Ry an integer-valued topological multiplier. In
contrast, the largest peak value σ

exc, j
iω among five polar com-

pounds {XTiO3(X = Ba, Pb), LiAsS2, Y AsSe2(Y = Li, Na)}
was calculated to be 0.05 mAV−2 in magnitude [22,24].

The comparative largeness of |F x
y | (for essentially non-

centric insulators) originates from an interplay between the
intra- and interband Berry phases: a large intraband Berry
phase does not necessarily result in a large shift current if
topological defects of the interband Berry phase are present;
conversely, a large shift current can be solely attributed to
these topological defects—for insulators with trivial intraband
Berry phase. Such interplay has not been considered in pre-
vious works [25,26] which maximize the shift current solely
by optimizing the polarization, which is closely related to the
intraband Berry phase [3–5]. Only with a unified characteriza-
tion of both intra- and interband Berry phases can one achieve
a complete topological theory of the shift current.

Such a theory is developed in Sec. II, with the goal of
establishing propositions (P1–P2) for essentially noncentric
insulators. Section III presents two model Hamiltonians of
essentially noncentric insulators to corroborate propositions
(Q1–Q2). The theory and models will first be established in
the simplest possible context: a point group generated by a
single reflection, a Bravais lattice with a monatomic basis, and

5The potential for shift-current materials as solar cells is discussed
in a companion paper [17].

a low-energy Hilbert space given by two bands. Section IV
recapitulates our results with a different set of motivations,
as well as elaborates on experimental implications for the
transient and steady photovoltaic currents. I end the paper by
suggesting guidelines for an ab initio-based, high-throughput
search for noncentric insulators with nontrivial optical vortic-
ity, and a different set of guidelines to search for essentially
noncentric insulators.

An Appendix clarifies some mathematical niceties as well
as generalizes the theory and models in the main text.
Appendix A presents a rigorous formulation of a topological
invariant that depends not only on the intraband Berry connec-
tion, but also on the interband Berry connection. Appendix B
extends the theory beyond the simplifying assumptions made
in the main text; in particular, the extension to (N>2) bands
leads naturally to identifying essentially noncentric insulators
as having “delicate topology” [27,28]. Throughout this work,
I employ the tight-binding approximation for the Berry and
shift connections, which is generally an uncontrolled approxi-
mation; Appendix C discusses how the approximation may be
justified, as well as highlights an under-appreciated pitfall.

II. THEORY OF ESSENTIALLY
NONCENTRIC INSULATORS

Let us attempt to deduce the geometrical invariants of an
essentially noncentric insulator from basic principles. One
clue to determining the geometric quantity alluded to in
proposition (P1) is that a nontrivial shift requires [1] the
absence of spatial centrosymmetry. Let us therefore imagine
what the geometry of band wave functions would look like if
these wave functions were to maximally break centrosymme-
try, in a manner of speaking. More precisely, by viewing the
Berry curvature (�vk = ∇ × Avvk) and the band-off-diagonal
Berry connection as geometrical vector fields over momentum
space, we will try to concoct fields that do the opposite of what
centrosymmetry imposes.

A. Berry-curvature invariant that breaks centrosymmetry

Because the curvature transforms as a pseudovector under
crystallographic point-group operations, �z·�vk = �zv(kx,ky ) =
+�zv(−kx,−ky ) holds for any two-dimensional, centrosymmet-
ric insulator; the theory will be extended to three dimensions
later. To “maximally” break centrosymmetry, let me (i) invert
the sign in the centrosymmetry constraint to obtain: �zvk =
−�zv,−k, and (ii) ask that the curvature integral (over half the
BZ) be quantized to a nontrivial integer:

RTPv :=
∫

BZ/2
�zv

d2k

2π
∈ Z. (6)

The first condition is guaranteed by time-reversal symme-
try; the sign difference in the symmetry constraints originates
from time reversal having an antiunitary [29] representation T̂
squaring to the identity, in contrast with the unitary represen-
tation of spatial inversion.

The second condition [Eq. (6)] is possible if one introduces
a reflection symmetry: x→−x and specifies BZ/2 to be the
positive-kx half of the BZ. [The integral of the curvature over
the negative-kx half of the BZ simply equals minus RTPv due
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to time-reversal symmetry.] To specify the action of reflection
symmetry, I consider a reduced Hilbert space given by the
highest-energy valence band and the lowest-energy conduc-
tion band, and assume that this Hilbert space is spanned by
two basis Wannier orbitals per primitive unit cell. (The restric-
tion to two bands simplifies the initial presentation, but will
be relaxed in Appendix B.) Picking one representative unit
cell, the two Wannier orbitals are labeled ϕe and ϕo, with the
subscript indicating that one orbital is reflection-even and the
other reflection-odd; I assume for now that both ϕ are centered
at the same location, such that all the “Wannier centers” form
a rectangular lattice with a single-site basis and with periods
Rx and Ry in the x and y directions, respectively—this being
a natural assumption if the two Wannier orbitals are atomic
orbitals of the same atom. (The assumption of a single-site
basis will also be relaxed in Appendix B.) These assumptions
on the Wannier orbitals translate to a symmetry constraint
σ3h(k)σ3 = h(−kx, ky) on the k-periodic, two-by-two matrix
Hamiltonian h(k), with σ3 the Pauli matrix representation of
reflection. Eigenstates of h(k) are denoted |ubk〉 with corre-
sponding energies εbk, with b = v (respectively, c) for the
valence (respectively, conduction) band, and εc > εv for all
k.

1. Proof that RTPv is integer-valued

Stoke’s theorem allows to equate RTPv = [Zv,π/Rx −
Zv,0]/2π , with Zb,kx the Berry-Zak phase acquired by parallel-
transporting a Bloch state in band b ∈ {v, c} over a k-loop with
fixed kx:

Zb,kx =
∮

Aybb(kx,ky )dky, (7)

with Abbk the intraband Berry connection for the tight-binding
eigenstate |ubk〉. Denoting the parity (even versus odd) of a
mirror-invariant Bloch state in band b by p(b, kx ), it follows
from a known relation [3] between the Berry-Zak phase and
the positional center of Wannier orbitals that

for kx = 0 and
π

Rx
,

Zb,kx

2π
=1

y[ϕp(b,kx )]

Ry
, (8)

with =1 denoting an equality modulo one, and y[ϕe] the
y-positional center of the reflection-even basis Wannier or-
bital. The assumption of a single-site basis guarantees that
y[ϕp(b,0)] =Ry y[ϕp(b,π/Rx )], implying that Zb,π/Rx −Zb,0 can
only be an integer multiple of 2π , with this integer uniquely
defined by insisting that the wave function is analytic over
BZ/2. A representative, nontrivial example of the Berry-Zak
phase is plotted in Fig. 3(a), with Zb,kx continuously increas-
ing by 2π as kx is advanced from 0 to π/Rx; the reflection
symmetry guarantees [30] that Zb reverts to its original value
upon further advancing kx by π/Rx. Viewing kx as an adia-
batic parameter, Zb,kx represents the pumping of one quantum
of charge over half an adiabatic cycle, and a reverse pump
over the next half. This may be called a reverting Thouless
pump,6 in contrast with the nonreverting pumps studied by
Thouless [32].

6Reverting pumps have been previously studied in contexts unre-
lated to nonlinear optics [27,28,31].

FIG. 3. (a) A reverting Thouless pump is revealed by a nontrivial
dispersion of the valence-band Zak phase Zv,kx [Eq. (7)]; Zv was
computed with parameters α = 2β = 0.9 in the model of Sec. III A.
(b) A trivial pump for α = 2β = 1.1.

B. Optical vortices break centrosymmetry

For the interband Berry connection field Axcvk, centrosym-
metry is “maximally” broken by introducing vortices, namely,
quantized circulations of the phase field arg Axcv around a
k-point where optical transitions vanish. For clarification, con-
sider that |Axcv|2 is proportional to the probability transition
rate of resonant light absorption; I refer to |Axcv|2 as the opti-
cal affinity between conduction and valence bands; unlike the
dipole-transition matrix element or the interband connection
Axcv , the affinity |Axcv|2 is gauge-invariant, i.e., unchanging
under transformation of |ubk〉 by a k-dependent phase factor.
k-points where the affinity vanishes are called optical zeros.
Optical vortices are optical zeros surrounded by a nontrivially
circulating phase field.7

To visualize the circulation of the phase field, it is useful
to introduce a Hamiltonian-vector interpretation of optical
zeros and vortices: without loss of generality, I express h(k) =
d(k)·σ+hid (k)I2×2 as a dot product of a real three-vector d
(the Hamiltonian vector) with σ: = (σ1, σ2, σ3), plus a term
proportional to the two-by-two identity matrix. Applying the
identity

Axcv = 〈uc|∂kx h|uv〉cell/i(εc − εv ), (9)

one deduces that an optical zero (with a nonzero energy gap)
exists if and only if d×∂kx d = 0. Since two real parame-
ters (two spherical angles) need be tuned to align a vector
d to be collinear with ∂kx d, optical zeros generically form
(d−2)-dimensional submanifolds of the d-dimensional BZ.
For d = 2, let us suppose an optical zero exists at the isolated
wave vector k0. For k slightly deviating from k0, d and ∂kx d
slightly deviate from being collinear. If k is advanced in a
small circle around k0, then the two vectors maintain their

7The first example of an optical zero that is not an optical
vortex is discussed in Sec. III A 3. Though the phase of Axcv

is gauge-dependent, the circulation of the phase around a vor-
tex is gauge-invariant, assuming that the gauge transformation
|ubk〉→|ubk〉eiθbk preserves the analyticity of |ubk〉 with respect to k.
The only way to change the phase circulation is with a discontinuous
gauge transformation. Note that for insulators with trivial Chern
invariants, the existence of wave functions which are analytic (with
respect to k) and periodic over the Brillouin torus is guaranteed by
the Grauert-Oka theorem; see references in footnote 12 of Ref. [33].

075159-4



QUANTIZATION OF INTRABAND AND INTERBAND BERRY … PHYSICAL REVIEW B 110, 075159 (2024)

noncollinearity and are able to rotate relative to each other,
like two partner dancers locked in the closed position.8 The
relative rotation of ∂kx d around d (as k makes a full circle)
defines an integer-valued rotation number that is equivalent to
the winding number of the phase field arg Axcv .

Because of the unitary-antiunitary distinction in the rep-
resentations of spatial and temporal inversions, the former
symmetry constrains Axcvk ∝ Axcv,−k (with a proportionality
phase factor that is analytic in k), while the latter symmetry
constrains Axcvk ∝ Axcv,−k (with the accent denoting complex
conjugation). It follows that centrosymmetry-related vortices
have the same circulation while time-reversal-related vortices
have the opposite. Thus, the presence of any optical vortex in
a time-reversal-invariant Hamiltonian implies that centrosym-
metry is broken.

C. Shift obstruction relation

Having identified two topological quantities that are fun-
damentally incompatible with centrosymmetry, I now relate
their linear combination to an integral of the shift vector:

Vortx + 2RTPv = −�S = S0 −S(π/Rx ), (10)

with Vortx (the net optical vorticity) defined as the net circu-
lation of all vortices of Axcv in BZ/2,9 and S(kx ) defined as
the line-averaged shift (in units of the lattice period b) of all
quasiparticles with wave number kx,

S(kx ) =
∮

Sx
ycv(kx,ky )

dky

2π

= Zc,kx − Zv,kx

2π
−

∮
∂ky arg Axcv

dky

2π
. (12)

�S is thus the difference in line-averaged shifts between the
two mirror-invariant k lines.10 In deriving Eq. (10), I applied
that time-reversal symmetry guarantees the existence of Bloch
functions (for both bands) that are analytic and periodic func-
tions of k [36]; hence, Axcv is a meromorphic function of k
with discontinuities only at the optical vortices, and assumed
in a generic situation that no vortices lie at a mirror-invariant
wave vector; use was also made of the complementary rela-
tion between the curvatures of conduction and valence bands:
�zvk = −�zck, [37] which leads to RTPv = −RTPc. Let me
further remark on Eqs. (10)–(12):

8https://en.wikipedia.org/wiki/Closed_position
9The net vorticity is uniquely defined by

Vortx =
∫

∂ky arg Axcv(π/Rx ,ky )
dky

2π
−

∫
∂ky arg Axcv(0,ky )

dky

2π
, (11)

with conduction-band and valence-band wave functions that are an-
alytic over BZ/2. If one allows for the wave function to be defined
over patches that cover BZ/2 and are mutually related by transition
functions [34], then the net vorticity loses its unique definition.

10One can equivalently view �S as the line integral (or circulation)
of the shift vector along a k-rectangle whose two (of four) sides
are mirror-invariant. Quantized circulations of an analogous shift
vector have previously been studied in the context of interfacial
reflection [35].

(a) A closer inspection of Eq. (12) reveals that the line-
averaged shift is integer-valued for mirror-invariant values of
kx. This follows from substitution of Eq. (8), with y[ϕe] =
y[ϕo] guaranteed by the lattice basis being monatomic. Com-
bining this result with the symmetry constraint that Sx

xcvk
vanishes at all mirror-invariant wave vectors, we deduce that
optically excited quasiparticles with kx = 0 are shifted by
exactly S0 primitive lattice vectors parallel to the polar axis,
on average. We thus arrive at proposition (P2), with the in-
tercellular shift vectors: Save

0 = S0Ry�y and Save
π/Rx

= Sπ/Rx Ry�y.
(I will refer to the dimensionless scalars S0 and Sπ/Rx as
“intercellular shifts,” and �S as the “relative intercellular
shift.”) It is worth emphasizing that the averaging process is
essential for quantization, i.e., the shift vector at any specific
k is not quantized.

(b) Suppose Vortx+2RTPv in Eq. (10) is nonzero, and one
has the ability to perturb the tight-binding Hamiltonian h(k)
and therefore modify Sx

ycvk. Despite Sx
ycvk being modifiable at

each k, there exists a continuous range of possible pertur-
bations where Vortx+2RTPv is invariant.11 One would then
encounter a shift obstruction: a topological obstruction against
continuously tuning the shift vector to zero for all k; this is
proposition (P1) in the introduction. For this reason I refer to
Eq. (10) as the shift obstruction relation.12

(c) A 2D reflection-symmetric insulator with RTPv = 0
is deemed topologically trivial under every known classi-
fication scheme based on the intraband Berry connection:
stable topology [38–40], fragile topology [41–44], deli-
cate topology [27,28], topological quantum chemistry [45],
symmetry-based indicators [46], and wilson-loop character-
izations [43,44,47,48]. What the shift obstruction relation
reveals is that even such “trivial” insulators can have a non-
trivial interband optical vorticity, implying that at least one
of the two intercellular shifts is nonzero. Conversely, being
topologically nontrivial (in the common usage of these words)
is not a sufficient condition for a shift obstruction, because it
is possible for the interband-Berry-phase contribution (Vortx)
to cancel out the intraband-Berry-phase contribution (RTPv).

D. Implications for the photonic shift connection

What directly enters expressions for the excitation shift
current is the photonic shift connection Cx

ycv = |Axcv|2Sx
ycv ,

whose value I now estimate for essentially noncentric insu-
lators. An estimate is also presented for our figure of merit:
the BZ-integrated shift connection [Eq. (3)].

(i) Eg�Ew: If one is not close to a band-gap-closing,
topological phase transition, then the characteristic scale of
variation for the optical affinity is the BZ period. I there-
fore estimate the BZ-averaged optical affinity as 〈|Axcv|2〉 ∼
(Rx/2π )2 by dimensional analysis, with (Rx, Ry, Rz ) being

11The conditions that preclude a discontinuous change in
Vortx+2RTPv are discussed in Appendix A.

12While all quantities in the shift obstruction relation [Eq. (10)]
were derived to be integer-valued for essentially noncentric insula-
tors, actually Eq. (10) holds for any two-band insulator—with the
caveat that RTPv and �S generically deviate from integer values,
thus precluding a shift obstruction.
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the lattice period in the (x, y, z) directions, respectively. (This
estimate is not affected by the possible existence of optical
zeros, which occupy a measure-zero subregion of the BZ.)
Assuming the average intercellular shift 〈S〉 = [S0+Sπ/Rx ]/2
is nonzero and independent of kz, the BZ-averaged shift vector
is estimated as 〈Sx

y 〉 ∼ 〈S〉Ry. Then our figure of merit [cf.
Eq. (3)] F x

y ∼ ∫
d3k〈|Axcv|2〉〈Sx

y 〉 = 2π〈S〉Rx/Rz. This is a
plausibility argument to support proposition (Q1), with the
identification �Save = 2〈S〉Ry�y. If 〈S〉 were to vanish but not
the individual intercellular shifts, then Cx

ycvk ∼ R2
xRyS0/(2π )2

for kx ≈ 0. These estimates will be corroborated by model
Hamiltonians in the next section.

(ii) Eg 
 Ew: Close to a topological phase transition, the
minimal band gap (Eg) over the BZ enters as a new scale
in the problem. Most directly, it enters in the denominator
of Eq. (9), leading to a divergence of the optical affinity for
k at the band-touching point; less directly, 〈uc|∂kx h|uv〉cell in
the numerator of Eq. (9) may also depend implicitly on Eg.
The net effect of the explicit and implicit dependencies is
that the optical affinity may diverge as |Eg|−2+α , with α � 0.
I distinguish between first-class phase transitions where the
optical affinity diverges as |Eg|−1 and second-class transitions
where the affinity diverges as E−2

g . Due to these divergences,
F x

y may potentially also diverge and greatly exceed the esti-
mates made for Eg � Ew in the previous paragraph; but this is
not self-evident a priori, because of the potentially nontrivial
k-dependence of the shift connection near the wave vector of
closest interband contact. Two models will be presented in
the next section: one for which the phase transition is second
class but F x

y does not diverge (and instead displays a weaker
kink-type nonanalyticity), and a second model for which the
phase transition is first class and F x

y diverges as |Eg|−1/2.

III. MODEL HAMILTONIANS OF ESSENTIALLY
NONCENTRIC INSULATORS

Beside corroborating propositions (P1–P2, Q1–Q2), the
models below are meant to illustrate the complementary roles
of the intraband Berry-Zak phase and the interband optical
vorticity in determining the intercellular shifts, as well as
to give intuition on the type of tight-binding hoppings that
result in a shift obstruction. One potentially surprising finding
is that nontrivial optical vorticity (with a trivial Berry-Zak
phase) leads to a large frequency-integrated shift conductivity,
despite the shift connection vanishing at the k-position of
the optical vortex. Special attention is focused on identifying
nonanalyticities of shift-related quantities at various types of
topological phase transitions.

A. Model with second-class phase transition

1. Flatband limit with zero optical vorticity

To realize a simple 2D model Hamiltonian with a reverting
Thouless pump, I begin with the standard parametrization of
a real-valued, unit-norm three-vector by two spherical angles:
d = [sin(θ ) cos(φ), sin(θ ) sin(φ), cos(θ )], then replace (θ, φ)
by dimensionless wave numbers (qx, qy): = (kxRx, kyRy) and
define the Hamiltonian h(k) = d(k)·σ. Take special note of
the replacement of θ∈[0, π ] with qx∈[−π, π ]. The motiva-
tion for this strange construction of the Hamiltonian is now

FIG. 4. Shift vector field for the flatband model, with lattice
constants set to one. The vector field is plotted over BZ/2; the field
over the other half of the Brillouin zone is fixed by time-reversal
symmetry. Averaging the shift vector over either reflection-invariant
k line (colored red and green) gives the intercellular shift.

evident: d(k) covers the unit-norm sphere as k is varied over
BZ/2; this covering happens again (but with opposite ori-
entation) over the other half of the BZ. Applying Berry’s
relation between the Berry curvature and the solid angle
subtended by d(k), [49] I establish that RTPv = 1. This can
be alternatively established by computing the Zak phase as
Zv = π [1− cos(qx )].

By construction, the energy gap (separating flat conduction
and valence bands) equals 2||d(k)|| = 2, which defines the en-
ergy scale for my dimensionless Hamiltonian. One may verify
the forementioned reflection symmetry of the Hamiltonian,
as well as a time-reversal constraint T̂ h(k)T̂ −1 = h(−k) with
T̂ = σ3K . The Fourier transform of h(k) gives a real-space-
dependent Hamiltonian with two intraorbital hoppings over
(x, y) = (Rx, 0), and one interorbital hopping over (Rx, Ry);
the presumed insignificance of hoppings parallel to the po-
lar axis (y) requires that the Wannier orbitals are highly
anisotropic. This requirement is in line with expectations that
ideal shift-current materials necessarily have strongly delo-
calized and highly anisotropic covalent bonds [20,22]. It is
hoped that the simplicity of my model (having only three
independent hoppings) offers a generalizable insight to the
type of covalent bonding that is conducive to shift currents.

While flat bands are often associated to atomic insulators
with a trivial shift connection, the flat bands in my model
arise purely from the intersite hopping matrix elements, and
the shift connection can be calculated as

Cx
ycvk = − εαβδ

4
nα

(
∂ky∂kx nβ

)(
∂kx nδ

) =
[

R2
x

4

][
Ry cos(qx )

]
,

with all indices on the Levi-Cevita tensor contracted with
indices on n: = d/||d||. The n-vector expression for the shift
connection manifests its sole dependence on the wave func-
tion, i.e., the position on the Bloch sphere. The quantity
in the first (respectively, second) square bracket is identifi-
able with |Axcvk|2 (respectively, with Sx

ycvk). Because of the
k-independence of the optical affinity, there are no optical
vortices: Vortx = 0. Integrating Sx

ycvk = Ry cos(qx ) over each
reflection-invariant k line [cf. Eq. (12) and Fig. 4] gives the
intercellular shifts as S0 = 1 = −Sπ/Rx ; the last equality, in
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FIG. 5. (a) Phase diagram, with each phase is labeled by the
invariants: {−Vortx, RTPv,S0,Sπ/Rx }. The yellow region indicates
the average intercellular shift 〈S〉 = 0; the dark blue region indicates
〈S〉 = −1/2. (b) Figure of merit (F x

y,2D) corresponding to the phase
diagram, with the numerical value for F x

y,2D indicated by a color bar.

combination with the previously established RTPv = 1, estab-
lishes agreement with the shift obstruction relation [Eq. (10)].
While the BZ-integral of Cx

ycv vanishes, Cx
ycv has a peak with

maximum value R2
xRyS0/4 at kx = 0, corroborating an esti-

mate made in Sec. II. We see as a matter of principle that large
values of the shift connection are attainable even if the band
gap is infinitely larger than the band width: Eg/Ew = ∞.

2. Deviating from the flatband limit

To demonstrate the robustness of the above topological
invariants, I introduce nearest and next-nearest interorbital
hoppings in the x direction, which corresponds to the Hamil-
tonian term: δh(k) = [α sin(qx )+β sin(2qx )]σ1. Let us first
consider a small deviation from the flatband limit, such that
we remain in the same topological phase. The shift vector
fields for (α, β ) = (1/5,−1/4) and (1/4, 1/8) are illustrated
in Figs. 2(a) and 2(b), respectively. These picture panels may
be compared to the flatband limit in Fig. 4. We see that
the vector fields are continuously deformable but maintain
a certain rigidity: the average of the shift vector over each
reflection-invariant k line is invariant.

With larger values of (α, β ), one can induce a topological
phase transition so that Cx

ycv has a nonzero BZ-average. The
resultant phase diagram is shown in Fig. 5(a), with each phase
labeled by four integer invariants: {−Vortx, RTPv,S0,Sπ/Rx };
the phase-transition lines are of two types that we subse-
quently deal with in turn.

3. Optical phase transition

The lines α+2β = 1, α−2β = 1, and α−2β = −1 are
colored red in Fig. 5(a), and mark optical phase tran-
sitions where the energy gap remains nonzero but the
optical affinity vanishes at the reflection-invariant wave vector
(kx, ky) = (0, π ), (π, π ), and (π, 0), respectively. Approach-
ing a generic point on an optical transition line, a pair of
reflection-related optical vortices (with opposite circulation)
are either nucleated or annihilated, depending on the direction
in which one approaches the transition point.

To visualize this process, I employ the Hamiltonian-vector
interpretation of optical vortices [introduced near Eq. (9)] to
track the k-locations of optical zeros and vortices—by plotting
||d×∂kx d|| over the BZ. For instance, increasing α = 2β = 0
from zero, the minimal optical affinity vanishes at the optical

FIG. 6. (a)-(b) Zeroes of ||d × ∂kx d|| reveal optical zeros, with
d the vector in the Hamiltonian h(k) = d(k)·σ+hid (k)I2×2. The
model parameters are α = 2β = 1/2 and 5/8, respectively, for pan-
els (a) and (b). Panel (c) plots the line-averaged shift S(kx ) [Eq. (12)]
for α = 2β = 5/8. All lattice periods have been set to one.

phase transition α = 2β = 1/2, as illustrated in Fig. 6(a); this
optical zero has vanishing circulation, but can be interpreted
as the merging of a pair of optical vortices with canceling
circulations. Indeed, by further increasing α = 2β to 5/8, the
pair of vortices split away in Fig. 6(b).

Each of the vortices manifests as a circulation in the shift
vector field [illustrated in Fig. 2(c)] as well as a unit dis-
continuity in the kx-dependent line-averaged shift [illustrated
in Fig. 6(c)]. However, the intraband-Berry-phase invariant
RTPv is unchanged across an optical phase transition, because
the energy gap does not vanish.13 The invariance of RTPv

and the unit change in optical vorticity jointly imply that the
relative intercellular shift must change by one unit, according
to the shift obstruction relation [Eq. (10)].

4. Energetic phase transition

The (α = 1) line is colored green in Fig. 5(a), and marks an
energetic phase transition where the energy gap closes at only
two nonsymmetric wave vectors: q = (±π/2, π ). For any
point in the left half of the phase diagram (α < 1), RTPv = 1
is deducible by energy-gap-preserving continuity to the flat-
band limit: (α, β ) = (0, 0). Across the α = 1 line, the Zak
phase Zv (π/2) changes discontinuously by π , resulting in
RTPv = 0 for α > 1.

To understand the π discontinuity, consider that the ky-
dependent Hamiltonian at fixed qx = π/2 (and for any value
of β) has a Hamiltonian vector with components: d1 =
cos qy+α, d2 = sin qy, d3 = 0. Viewing (d1, d2) as a two-
vector on a plane, the two-vector makes one full revolution
around the origin as qy is advanced by 2π , if |α|<1. Oth-
erwise, no net revolution is made. This discontinuity in
revolution number manifests as the Zak phase equaling π

for |α|<1, and equaling zero otherwise. This discontinuous
change in the Zak phase (at qx = π/2) converts a reverting
Thouless pump [illustrated in Fig. 3(a)] to a trivial pump
[Fig. 3(b)].

A unit change in RTPv (that arises from a band touching at
a nonsymmetric wave vector) implies that the optical vorticity

13For an insulator with trivial Chern invariants, the existence of
wave functions which are analytic (with respect to k) and periodic
over the Brillouin torus is guaranteed, which implies the intraband
Berry connection is also analytic and periodic. See references for the
Grauert-Oka theorem in footnote 12 of Ref. [33].
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must change by two units, to satisfy the shift obstruction
relation.14 How the optical vorticity changes by two (across
α = 1) is a process of vorticity inversion: an optical vortex is
“swallowed” (at the band touching point) then “spat out” with
opposite circulation.

To understand this inversion, we return to the Hamiltonian-
vector interpretation: recall that an optical vortex is an optical
zero with nontrivial circulation, and an optical zero is a wave
vector k0(α) where d × ∂kx d = 0. α = 1 marks a transition
where d and ∂kx d change from being parallel to antiparallel;
this is possible because d(k0(α)), being proportional to the
energy gap, vanishes at the transition point. The inversion in
the orientation of d implies that, as k is advanced in a small
circle around k0, the sense of relative rotation (between d and
∂kx d) is also inverted—this is why the optical vortex flips its
circulation.

5. Figure of merit

Over the same range for the Hamiltonian parameters
(α, β ), Fig. 5(b) shows a numerically generated plot of the
dimensionless figure of merit F x

y,2D: = (2π/Rx )
∫

BZ d2kCx
ycv ,

which is the 2D analog of F x
y in Eq. (3). The numerical

value for F x
y,2D indicated by a color bar on the right of the

figure panel. Comparison of Figs. 5(a) and 5(b) reveals:
(i) A positive correlation of F x

y,2D with the average inter-
cellular shift 〈S〉; the latter quantity vanishes in the yellow
region of Fig. 5(a), and equals −1/2 in the dark blue
region.

(ii) Phases with different 〈S〉 are separated by optical phase
transitions [indicated by red lines in Fig. 5(a)]. Suppose one
defines a trajectory on the phase diagram starting from 〈S〉 =
0 (yellow region) and ending at 〈S〉 = −1/2 (dark blue re-
gion), there is a continuous crossover in the value of F x

y,2D from
0 to about −10, if the trajectory does not start or end too close
to an optical transition line. If the same trajectory does not
intersect an energetic transition line (colored green), then the
crossover (of F x

y,2D) is not just continuous but smooth. One can
verify the smoothness by asymptotic analysis: fixing α = 2β

and parametrizing the approach to the optical transition line
(α+2β = 1) by a new variable δ = α−1/2; one finds that the
shift vector diverges as 1/δ, but this divergence is canceled by
the vanishing of the optical affinity: |Axvc|2∝δ2.

(iii) In contrast, there is a nonanalyticity of F x
y,2D across

the energetic phase transition (green line, α = 1), because
both the shift vector and the optical affinity diverge. For a
quantitative analysis, let me introduce a new variable Q by
Q+1 = α = 2β. One finds that |Q| is simply the minimal
energy gap over the BZ, Sx

ycv diverges as |Q|−1, and |Axvc|2
diverges as Q−2; the latter observation implies that the phase
transition is second-class, according to the classification made
in Sec. II D. By dimensional analysis, one deduces that F x

y,2D
equals the sum of an analytic function of Q plus a nonanalytic
power series: a1/|Q|+a2sgn[Q]+a3|Q|+ . . .. For this model,

14The relative intercellular shift is invariant across α = 1; �S can
only change if either the energy gap or optical affinity vanishes at a
mirror-invariant k, as elaborated in Appendix A.

FIG. 7. (a) Kink-type nonanalyticity of the figure of merit F x
y,2D,

for a second-class phase transition. (b) Divergent nonanalyticity for a
first-class phase transition modelled in Sec. III B: red squares repre-
sent a numerical integration, and blue dots represent an analytically
derived formula: −π 2/qa.

one can prove a1 = a2 = 0,15 leading to a kink-type nonan-
alyticity which is faintly visible in Fig. 5(a) as a darkening
localized to the (α = 1) line, but is more evident in Fig. 7(a)
where F x

y (α, β ) is shown as a three-dimensional surface plot.
(iv) Recall an earlier observation that F x

y,2D ≈ −10 in the
trapezium-shaped phase on the right corner of Fig. 5(a).
This phase represents an insulator with trivial Chern number
and trivial reverting pump (RTPv = 0); overall, this insulator
would be considered trivial by the standard classification of
topological insulators based on the intraband Berry connec-
tion. The largeness of |F x

y,2D| is thus solely attributed to the
nontrivial interband optical vorticity (Vortx = 1). This attri-
bution may surprise some readers, because the existence of
an optical vortex implies that the optical affinity (hence, also
the shift connection) vanishes at the k-position of the vortex.
However such vanishing occurs only in a measure-zero k-
region with codimension two, i.e., only at isolated points in a
2D BZ. There is a competing and manifestly dominant factor:
the vortex induces large variations of the shift vector over half
the BZ period (according to the shift-obstruction relation),
resulting in the average intercellular shift being −1/2 and
|F x

y,2D|	1.
One may view h(k)+δh(k) as a kz-independent Hamilto-

nian for a 3D insulator that is constructed by stacking many
layers of the 2D insulator with weak interlayer coupling.
Then the 2D figure of merit (of the 2D insulator) is simply
proportional to the 3D figure of merit (of the 3D layered
insulator): F x

y,2D = (Rx/Rz )F x
y , with a proportionality factor

that is a ratio of lattice periods and is typically ≈ 1. Then the
observations made in (i)–(iv) above have 3D analogs which
support proposition (Q1). In particular, F x

y ≈ −10 with 〈S〉 =
−1/2 is just slightly larger than an order-of-magnitude esti-
mate (F x

y ∼2π〈S〉Rx/Rz) made in Sec. II. However, because
the leading nonanalyticity of F x

y is of the kink-type: ∼|Eg|,
proposition (Q2) does not apply to the second-class phase
transition of this model.

15This is partially understandable from the shift connection being
odd under (δqx+Q/2)→(−δqx+Q/2) for sufficiently small |Q| and
|δqx|; here, δqx = qx−π/2 is the wave number measured from the
point of closest, interband contact.
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B. Model with first-class phase transition

To have F x
y diverge as |Eg|−1/2 [proposition (Q2)], I offer a

different model Hamiltonian: h(k) = −(z†σz)·σ with

z(k) =
(

z1

z2

)
=

(
sin qx

sin qy + i
(
qa + ∑

j=x,y cos q j − 2
)). (13)

(qx, qy) = (kxRx, kyRy) are dimensionless wave numbers, and
qa is a real-valued tuning parameter that induces the band gap
(=2z†z) to close when qa = 0, 2, and 4; there are no optical
transitions induced by qa. I will focus on the qa = 0 transition
where the band gap closes at k = (0, 0); an effective, low-
energy Hamiltonian describing the transition is obtained by
truncating the Taylor expansion of z(k) with respect to k:

ht (k) = −(z†
t σzt ) · σ, zt (k) =

(
qx

qy + iqa

)
. (14)

Reflection and time-reversal symmetries manifest as
σ3h(k)σ3 = h(−kx, ky) and h(k) = h(−k), respectively.

The form of the Hamiltonian is inspired by previous mod-
els of reverting Thouless pumps that are protected by a
different crystallographic symmetry: rotation [27,28,31]. By
design, RTPv changes by unity across qa = 0, which may
be understood from a 2π -discontinuity of the Zak phase
Zv (kx = 0) at a reflection-invariant k line. (This contrasts with
the π -discontinuity of the Zak phase at a nonsymmetric k
line studied in the previous second-class phase transition.)
A rough understanding of the 2π -discontinuity follows from
inspecting the normalized, valence-band eigenvector solution

to ht (k): |uv (k)〉 = (−qy+iqa, qx )/
√

z†
t zt , and realizing that

the phase of |uv (0, ky)〉 changes by 2π as (qy, qa) is varied
over a circle with radius (q2

y+q2
a )1/2.16 For |qa|	1, one de-

duces RTPv = 0 from the simple form of the Hamiltonian
h(k) ≈ q2

aσ3; thus, it must be that RTPv = −1 for qa∈(0, 2).
What of the optical vortices? For large |qa|, there are

four vortices positioned at wave vectors (qx, qy) ≈ (±π/2, 0)
and (±π/2, π ), with small corrections (of order 1/qa) to the
qx-component of these positions. The two vortices in BZ/2
have opposite circulation; hence, the vorticity invariant Vortx
vanishes. As qa approaches 0 from the negative side, two of
the four vortices merge at the band-touching point and then
mutually annihilate, leaving behind a net vorticity Vortx = −1
for qa∈(0, 2).

Having determined RTPv and Vortx, the shift obstruc-
tion relation tells us that the relative intercellular shift
�S vanishes for qa<0 and equals +1 for qa∈(0, 2). Be-
cause of the integer-quantization of S0 and S(π ), the
parities of �S and S0+S(π ) = 2〈S〉 must equal. A

16For a more direct proof, consider that the valence-band eigenvec-
tor solution to h(k) is |uv (k)〉 = (−z2, z1)/z†z, which is practically
unchanged as one tunes qa across zero, except for

√
q2

x+q2
y small

enough to be comparable to |qa|. This implies that the 2π -
discontinuity of the Zak phase Zv,0 [for h(k)] can be derived from
a 2π -discontinuity of the continuum analog of the Zak phase:
Zctm

v = ∫ ∞
−∞ Ayvv(0,ky )dky, with the Berry connection Ayvv a functional

of the eigenvector solution of ht (k). This solution being simply
(−qy+iqa, qx )/||q||2, one deduces Zctm

v = πsgn[qa], as desired.

calculation gives explicitly that 〈S〉 = 0 for qa<0 and
〈S〉 = −1/2 for qa∈(0, 2). At the mid-point (qa = 1) between
two energetic phase transitions, I numerically evaluate F x

y,2D =
(Rx/2π )

∫
Cx

ycvd2k ≈ −39, which is a factor of four larger
than the analogous value for the previous model (Sec. III A 5).

The energetic phase transition is accompanied by the op-
tical affinity diverging as q−2

a , and the shift vector diverging
as q−1

a . Identifying 2z†z|k=0 = 2q2
a as the minimal band gap

Eg, we deduce that the phase transition is first-class. From
asymptotic analysis, F x

y,2D ≈ c1/qa ≈ c1(2/Eg)1/2 for suffi-
ciently small |qa|, with c1 a dimensionless constant. One can
analytically evaluate c1 = −π2/

√
2, which is confirmed also

by a numerical integration in Fig. 7(b).
Finally, if we view h(k) as a kz-independent Hamilto-

nian for a 3D insulator, then the divergence of the 2D
figure of merit also applies to the 3D figure of merit: F x

y =
(Rz/Rx )F x

y,2D, giving us proposition (Q2); one deduces also
that F x

y ≈ −39(Rz/Rx ) for 〈S〉 ≈ −1/2, in support of propo-
sition (Q1).

IV. DISCUSSION AND OUTLOOK

The well-known topological insulators (e.g., the Chern [50]
or Z2 topological insulators [51–54]) are compatible with
having a center of inversion, hence, compatible with a zero
bulk photovoltaic current. There exists a less-known class of
topological insulators which are essentially noncentric, mean-
ing that the topologically nontrivial phase of matter exists only
in crystal classes without a center of inversion. This work was
motivated by the question of whether essentially noncentric
topological insulators can have large excitation shift currents
with large band gaps. This work establishes an affirmative
answer for a subset of essentially noncentric insulators that
are polar.

There has been a fruitful tradition of identifying what
properties a topological insulator absolutely cannot have,
e.g., zero quantum entanglement [55–58], analytic Bloch
functions,17 symmetric Wannier functions which are local-
ized to various degrees [27,33,44,45,59,60], trivial Berry-Zak
phase [43,44,47,61,62]. This work demonstrates that some
essentially noncentric insulators are characterized by a shift
obstruction: the inability to continuously tune the photonic
shift vector to zero throughout the Brillouin zone (BZ). This
obstruction depends on the difference between an intraband-
Berry-phase invariant (the reverting Thouless pump) and
an interband-Berry-phase invariant (the optical vorticity), as
shown in Eq. (10) for two-band Hamiltonians, and in Eq. (B3)
for (N>2)-band Hamiltonians.

The shift obstruction exemplifies a new class of topolog-
ical invariants that depend on both the intra- and interband
Berry connections; by “interband,” I mean the connection
between valence and conduction bands.18 One implication is
that the topological theory of nonlinear optical responses does
not reduce or simplify to the standard theory of topological

17For related references, see Ref. [36] and footnote 12 in Ref. [33]
18My emphasis on topological aspects of the interband Berry con-

nection is philosophically akin to a recent Riemannian-geometrical
interpretation of the dipole matrix element [6].
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insulators; this standard theory is based on the characteriza-
tion of the intraband Berry connection but not the interband
Berry connection. Topological insulators which are trivial
in the standard classification can have nontrivial invariants
in the “optopological” classification presented here. This
classification is demonstrated in Appendix B 2 to be an op-
topological generalization of “symmetry-protected delicate
topology” [27,28], in the sense that the meaning of a topo-
logical invariant defined for a two-band Hamiltonian can be
extended to an (N>2)-band Hamiltonian, subject to condi-
tions on the symmetry representations of all N bands.

A. Experimental implication: Transient versus steady
photovoltaic current

A nontrivial shift obstruction generically implies a large
frequency-integrated excitation shift conductivity (σ exc, j

i ); this
is supported by a plausibility argument (Sec. II) and model
calculations (Sec. III). Largeness has been quantified by a
figure of merit F j

i , that we define as the BZ-integral of the
photonic shift connection in Eq. (3). Equation (4) shows
2F j

i
e3

h2 to be the frequency-integrated shift conductivity due
to interband photoexcitation of a zero-temperature insulator,
assuming that excitons are weakly bound [9].

As explained in a companion paper [17], the excitation
shift current associated to σ

exc j
i is the transient photovoltaic

current that follows the onset of radiation. Specifically, set-
ting time t = 0 at the onset, we consider the photovoltaic
current at t < τe-p, with τe-p ∼ 100 fs a typical time scale
for electron-phonon collisions. In this early time regime, the
photoexcited electron-hole system has not relaxed (within a
band) or recombined (across the band gap); thus, the transient
current is essentially the excitation shift current [17]. The tran-
sient photocurrent (∝σ

exc j
i ) may either be measured directly

with an ultrafast oscilloscope (with subpicosecond resolution)
or indirectly by measuring the emitted radiation induced by
pulsed photoexcitations [19,63,64].

The shift obstruction relation [Eq. (10)] implies that opti-
cal vorticity can induce a large transient shift current. There
are two competing effects of vorticity: while it is well-
known that the photonic shift connection vanishes locally
at the k-position of the vortex center, vorticity also induces
large variations of the photonic shift vector over the scale
of the BZ period [according to Eq. (10)], suggesting plausi-
bly that the momentum-integrated shift connection is large.
A model calculation in Sec. III A identifies this BZ-wide
shift-vector variation as dominating over the local vanishing
of the shift connection. Thus, if one is interested in induc-
ing a large transient photovoltaic current by a broadband
light source, then even materials with a trivial intraband
Berry phase (i.e., negligible polarization) may be looked
upon as favorable candidates—if they have nontrivial optical
vorticity.

While the above argument for vorticity-induced shift vari-
ations has been verified for essentially noncentric insulators,
actually the argument more generally applies to any insulator
with optical vorticity; indeed, any insulator can host stable
optical vortices, because the robustness of optical vortices

depends only on the discrete translational symmetry, and not
on any crystallographic point-group symmetry.19

Beyond early time transient behavior, the steady photo-
voltaic current comprises not just the excitation shift current,
but also includes: (i) additional components of the shift cur-
rent due to interband recombination and intraband relaxation,
[2] which have their own wave-function-geometric interpreta-
tion; [17] (ii) a nonshift (“ballistic”) contribution [68], which
originates from an asymmetry of the quasiparticle distribu-
tion [ f (k) �= f (−k)] induced by intraband scattering,20 and
(iii) a photon-dragged current that is entrained to the photon
momentum [72,73]. The full impact of optical vorticity on
the steady photovoltaic current has not been elucidated, but
it is now apparent that the optical vorticity results in the
steady shift current being highly sensitive to the light
polarization [17].

The topological perspective of the shift vector potentially
has utility beyond the bulk photovoltaic effect. For instance,
the shift vector also plays an important role in second har-
monic generation [7,8,74] and in ultrafast optical rectification
for frequencies above the band gap [18]. The latter effect emits
THz radiation that is desirable for spectroscoscopy.

B. Outlook for material searches

Ab initio-based, high-throughput searches for topological
materials have largely focused on band inversion as a diag-
nosis criterion for being topologically nontrivial [45,75–77].
To clarify the meaning of “band inversion,” there exists for
trivial insulators21 a natural ordering (on the energy axis)
of the representations of certain crystallographic point-group
symmetries, and for nontrivial insulators this ordering is in-
verted. For instance, if the rotational (respectively, parity)
representations are inverted, then one is guaranteed to have
a topological Chern insulator (respectively, Z2 topological
insulator) [78,79]; neither of these insulators is essentially
noncentric, and therefore each is compatible with a zero
bulk photovoltaic current. In contrast, our newly introduced
class of essentially noncentric topological insulators are not
band-inverted, which may be verified from the model Hamil-
tonians in Sec. III, as well as model extensions described in
Appendix B.22

If not “band inversion,” then what serves as a diagnosis
criterion for large shift currents? One answer that was pro-
posed in Ref. [25] is to compute the interband polarization
difference, assuming that optical vortices are absent. Such a
computation requires to average the intraband Berry phase

19In this respect, optical vortices are the optopological analogs of
Weyl points in topological (semi)metals [65–67].

20A large shift current does not necessarily imply a large ballistic
current. A typical peak value for the frequency-dependent ballistic
conductivity is 30 µA/V2 in magnitude [69–71], which is small com-
pared to the large shift conductivity we predict.

21In this context, a trivial insulator has a valence subspace that is a
band representation [44].

22Being un-inverted and still topologically nontrivial occurs for
some “fragile” topological insulators [37,44,80] and all known “del-
icate” topological insulators [27,28,81].
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over a reduced Brillouin zone, [4] while fixing the phase of
the wave function over the entire BZ in the “optical gauge”
[25], which is a computationally expensive procedure. More-
over, if vortices were present, then the interband polarization
difference has questionable relevance to the shift current. It is
therefore advantageous to directly relate the shift vector, the
intraband Berry-Zak phase and the optical vorticity on equal
footing, without the ad hoc assumption that the vorticity van-
ishes. This relation is precisely given by the shift obstruction
relation [Eq. (10)]. One lesson learned from this relation is
that the interband polarization difference is not a general crite-
rion for large excitation shifts; largeness is generally attributed
to an interplay of the intra- and interband Berry phases, with
both quantities either competing or synergizing.

1. Materials with nontrivial optical vorticity

Given the prominent role played by optical vorticity in
the transient and steady shift current (Sec. IV A), one would
like to identify nontrivial vorticity in a candidate noncentric
material. This identification can be automated for a high-
throughput ab initio search. Here is one possible algorithm:

(a) Identify pairs of “optically active” bands within an
energy interval determined by the desired application, e.g.,
for solar-cell applications, the energy interval is determined
by the solar spectrum. For each pair, ensure that one band
lies in the valence subspace, and the other in the conduction
subspace.

(b) For each pair of optically active bands labeled by c
and v, compute the affinity |Ajcv|2 on a k-mesh over the
Brillouin zone, for j = x, y, z. The affinity is calculable from
existing ab initio techniques[22,82–84] with at least one of
these techniques being fully automated for high-throughput
calculations [84].

(c) For any k on this mesh, if the affinity lies below a pre-
decided threshold, then perform a gradient-descent algorithm
to determine if the affinity is reducible to zero (within some
reasonable tolerance).

(d) As an optional step to filter out false candidates, com-
pute the photonic shift vector (S�j

cv) on a k-mesh. This vector
diverges exactly at the vortex center, and will appear anoma-
lously large for a k-point that is sufficiently close to the vortex
center. The shift vector is also calculable from existing ab
initio techniques [22,82–84].

(e) For the final test, compute

Vortloop
j = −

∮
S

�j
cvk·

dk
2π

(15)

over a small k-loop encircling the hypothesized k-location of
the optical vortex,23 as illustrated in Fig. 8. The candidate
fails the test if Vortloop

j = 0; for the generic optical vortex,

23Equation (15) reduces to the winding number of the interband
Berry phase:

∮ ∇k arg Ajcv·dk/2π for an infinitesimal k-loop. For
numerical simulations on practical k-meshes, one can disentangle
inter- from intraband contributions to Eq. (15) by scaling the size
of the k-loop; the intraband contribution is proportional to the area
enclosed by the k-loop (by Stokes theorem), while the interband
contribution is insensitive to the size of the k-loop.

FIG. 8. In a three-dimensional Brillouin zone, optical vortices
generically form lines. One representative line is colored green.

Vortloop
j = ±1; nongeneric vortex with Vortloop

j = ±n (n =
2, 3, . . .) can also exist on k lines of high symmetry.

Beyond high-throughput search algorithms, a Chern-
vorticity theorem developed in Ref. [17] predicts the existence
of optical vorticity in topological semimetals, Chern insula-
tors and insulators proximate to a trivial-Z2 topological phase
transition; the latter is exemplified by the polar semiconductor
BiTeI [17].

2. Essentially noncentric materials

The present theory predicts large shift currents for essen-
tially noncentric insulators with the polar point groups Cs

and Cn (n = 2, 3, 4, 6). Insulators within this subset of space
groups should be filtered according to the symmetry repre-
sentations of bands near the Fermi level (cf. Appendix B 2,
as well as discussions of the “mutually disjoint” condition
in Ref. [28]). For candidate materials that survive filtration,
I propose to compute the intercellular shift vector (or the
generalized intercellular shift in Appendix B 1), which is an
average of the photonic shift vector S j

icv over mirror- and/or
rotation-invariant cross-sections of the BZ.24 For topologi-
cally nontrivial insulators with Cs symmetry, the transverse
intercellular shift was demonstrated here to be large, with the
shift current parallel to a polar axis and the light polarization
orthogonal to any polar axis. A further calculation of the
intraband Berry-Zak phase [62,85] will reveal whether a shift
obstruction (if present) derives from a linear combination of
the reverting Thouless pump and optical vorticity, as per the
shift obstruction relation [Eq. (10)].

Future investigations will likely expand the list of non-
centrosymmetric space groups that allow for essentially
noncentric insulators with large shift currents. The existence
of essentially noncentric topological insulators is known for
other polar point groups (e.g., C4v , C6v[37]) as well as non-
polar point groups;25 however, the shift current response for

24In contrast, the usual practice in the ab initio community is to
compute the k-dependent shift connection over the BZ and integrate
the connection to obtain either σ

exc, j
iω or

∫
σ abb

s dω. My proposal
to compute the intercellular shift requires minimal modification of
existing ab initio packages, and merely redirects the spotlight to a
different shift-related quantity defined over fewer k-points.

25A case in point is the Hopf insulator [31,86]. Most studied models
of the Hopf insulator have a rotational axis, but this axis is removable
because the Hopf invariant is well-defined without any point-group
symmetry.
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these insulators has never been been investigated. It is hoped
that this work sparks the interest to do so.

3. Post-submission addendum

A subsequent work by Jankowski and Slager has demon-
strated that the excitation shift conductivity (of the circular
photogalvanic current), when integrated over frequency and
suitably averaged over possible orientations of the current
and electric field, is topologically quantized in certain models
of antiferromagnetic insulators with neither P (parity) nor T
(time-reversal) symmetry, but having the composed PT sym-
metry [87]. This represents a quantized shift invariant for the
transient photocurrent induced by circularly polarized light,
which differs from our analysis of the linear photogalvanic
effect.
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APPENDIX A: TOPOLOGICAL INVARIANTS
THAT DEPEND ON THE INTERBAND

BERRY CONNECTION

This Appendix answers three related questions: (i) What
exactly is meant by “topological invariance” if the invariant
depends on the interband Berry connection? (ii) What exactly
is meant by “continuously tuning” in proposition (P1)? What
are the conditions that preclude a discontinuous change in
Vortx+2RTPv in the shift-obstruction relation [Eq. (10)]?

In the common use of “continuously tuning,” continuity
(with respect to k) is imposed on the intraband Berry connec-
tion of the valence band, and guaranteed by the assumption
that the band gap Eg(k) is nonzero. If a nonvanishing gap
(throughout the BZ or some cross-section of it) is a suffi-
cient condition for an invariant to be insensitive to symmetric
Hamiltonian perturbations, then such an invariant (e.g., RTPv)
will be called an intraband invariant.

In optical phenomenon, we encounter nonintraband invari-
ants such as Vortx whose definition assumes not only that the
wave function is continuous over BZ/2 (as guaranteed by a
nonzero band gap), but also that the interband Berry connec-
tion Axcvk = 〈uc|i∂kx uv〉cell is continuous at all mirror-invariant
k. It is possible for Axcv to diverge when the band gap goes
to zero, as is evident from the identity Eq. (9). Even if the
band gap were everywhere nonzero, the existence of optical
vortices would make Axcv vanishing and discontinuous. Both
types of discontinuities are ruled out at a k-point if both
the energy gap and optical affinity are nonvanishing at that
k-point.

This discussion motivates a new definition: if the nonvan-
ishing of the gap (in some BZ region) and the nonvanishing
of the affinity (in a possibly distinct BZ region) are sufficient
conditions for an invariant to be insensitive to perturbations,

FIG. 9. (a) Intersection of a loop of optical zeros with the
mirror-invariant k plane at kx = 0. Red and blue distinguish between
different segments of the optical-zero loop with opposite circula-
tions. The net vorticity Vortx (kz ) is discontinuous at two values of
kz where the yellow pane meets either green pane. (b) Representative
example of optical-zero loops that extend across a nontrivial cycle of
the Brillouin torus.

such invariant (e.g., Vortx,S0) that is not an intraband in-
variant will be called an interband invariant. Vortx relies on
the gap being nonvanishing over BZ/2 and the affinity being
nonvanishing for all mirror-invariant k, whileS0 relies on both
gap and affinity being nonvanishing for wave vectors with
kx = 0.26 Because the shift obstruction relies on the insensi-
tivity of the relative intercellular shift, the obstruction is also
an interband invariant.

For three-dimensional, essentially noncentric insulators
with mirror-invariant k planes, all interband invariants
(Vortx,�S) in the shift-obstruction relation are generally
piecewise-continuous, integer-valued functions of a third
wave number kz. Discontinuities can occur at isolated values
of kz where a line of optical zeros intersects the mirror-
invariant k plane, as illustrated in Fig. 9(a); the intersection
point may be viewed as the merging of two optical vortices
with opposite circulation, as distinguished by red and blue
in Fig. 9(a). The kz dependence of interband invariants can
be ignored for the 3D insulating models explored in Sec. III,
which are all made from stacking 2D insulators in the z
direction with weak interlayer coupling; a representative ex-
ample is illustrated in Fig. 9(b). For essentially noncentric
(semi)metals, the intraband invariant RTPv may also be a
piecewise-continuous, integer-valued function of kz.

APPENDIX B: GREATER VARIETY OF ESSENTIALLY
NONCENTRIC INSULATORS

The main principles of essentially noncentric insulators
have been formulated and exemplified in the simplest context,
which however involves a few restrictive assumptions: (i) a
Bravais lattice with a monatomic basis, (ii) a reduced Hilbert
space of two bands, and (iii) a point group generated by a sin-
gle reflection. The first restriction is relaxed in Appendix B 1
and the last two in Appendix B 2. It is hoped that a greater va-
riety of essentially noncentric insulators increases the eventual
probability of finding a material realization.

26This difference is because S0 is an integral of the shift vector
which is gauge-invariant (hence, uniquely defined) at each k; how-
ever, Vortx is an integral of ∂ky arg Axcv which is not gauge-invariant
at each k; to uniquely define Vortx requires that both valence-band
and conduction-band wave functions be analytic over BZ/2.
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1. Beyond a monatomic basis

Thus far, I have assumed that the reduced Hilbert space is
spanned by two Wannier orbitals per unit cell, and that the two
orbitals in one representative unit cell are centered on the same
location. (This restriction need not apply to Wannier orbitals
outside the reduced Hilbert space.) Here we relax the spatial
restriction and allow the two orbitals (in one representative
cell) to be centered at different locations, subject to the con-
straints imposed by the space group.

Suppose the reflection-even orbital ϕe is centered at po-
sition we, and ϕo at wo, then the tight-binding Hamiltonian
becomes nonperiodic in translations by reciprocal lattice vec-
tor: h(k+G) = e−iG·wh(k)eiG·w. w here is a diagonal matrix
with diagonal elements we and wo. This nonperiodic rela-
tion is necessary [28] to maintain the mod-one equivalence
between the tight-binding-approximated Berry-Zak phase and
the Wannier center [cf. Eq. (8)], and justifies our interpretation
of the tight-binding-approximated shift vector as a positional
displacement.

Generically, the line-averaged shift [Eq. (12)] at a
reflection-invariant value for kx is no longer integer-valued:
S0 =1 (y[ϕp(c,0)]−y[ϕp(v,0)])/Ry. (I remind the reader that
y[ϕe] is the y component of the Wannier-center position
we, and p(b, 0) is the parity of the Bloch state in band b
and with wave number kx = 0.) However, if the valence-
band parities of both mirror-invariant k lines are identical
[p(v, 0) = p(v, π/Rx )] and likewise for the conduction band
[p(c, 0) = p(c, π/Rx ) �=p(v, 0)], then the shift obstruction
relation [Eq. (10)] holds, with RTPv and �S remaining
integer-valued; this follows from a simple generalization of
the proof in Sec. II. The case of identical valence-band par-
ities [p(v, 0) = p(v, π/Rx )] is exemplified by the first-class
model in Sec. III B, implying that the previous assumption of
a monatomic basis is not needed for the quantization of �S.

It would seem for models with identical valence-band pari-
ties that proposition (P1) is preserved but (P2) lost. However, a
statement exists for models (with or without identical parities)
that is a close analog of (P2):

(P2′) For essentially noncentric, 2D insulators with a re-
flection symmetry, a geometric quantity exists that inputs
band wave functions over a reflection-invariant k line (say,
kx = 0) and outputs an integer S̆0 with the following mean-
ing: when a mirror-invariant quasiparticle (with kx = 0) is
optically excited, it is displaced (on average) by S0Ry�y in
the direction of the polar axis, with S0 that is generically
non-integer-valued. This displacement vector connects the
center of a reflection-even Wannier orbital ϕ′

e with the center
of a reflection-odd Wannier orbital ϕ′

o. In the standard tight-
binding formalism, each Wannier orbital ϕ in the tight-binding
Hilbert space is assigned to a primitive unit cell centered at a
Bravais lattice vector ( nx[ϕ]Rx, ny[ϕ]Ry ), with nx and ny∈Z.
S̆0 = ny[ϕ′

e]−ny[ϕ′
o] if the conduction-band parity p(c, 0) is

even; otherwise, S̆0 = ny[ϕ′
o]−ny[ϕ′

e].
I refer to S̆0 as the generalized intercellular shift. To de-

fine S̆0 in terms of the band wave function: suppose two
representative orbitals ϕe and ϕo with respective positions we

and wo are assigned to the same cell, i.e., n j[ϕe] = n j[ϕo]
for j = x and y. Then perform a unitary transformation on
the k-nonperiodic Hamiltonian to translate ϕo to lie atop ϕe:

h(k)→h̆(k) = U (k)−1h(k)U (k), with U (k) a diagonal matrix
with diagonal elements 1 and eik·(we−wo). h̆(k) is a k-periodic
Hamiltonian with the same band energies as h(k), but with a
modified wave function denoted by |ŭck〉 and |ŭvk〉. Then S̆0

is defined exactly as S0 in Eq. (12), but with the functional
dependence on ubk replaced by a functional dependence on
ŭbk.27 In the particular case that we = wo, the unitary matrix is
trivial, and the generalized intercellular shift reduces exactly
to the previously defined intercellular shift in Eq. (12).

2. Beyond two-band, reflection-symmetric Hamiltonians

For the purpose of counting, one band corresponds to
a linearly independent Bloch function over the BZ. For an
(N>2)-band Hamiltonian with Nc conduction bands (indexed
by c1, . . . , cNv

) and (Nv = N−Nc) valence bands (indexed
by v1, . . . , vNv

), I define the N-band intercellular shift by
summing over all interband intercellular shifts between the
valence and conduction subspaces:

S
(N )
0 =

Nc∑
i=1

Nv∑
j=1

∫
Sx

yciv j (0,ky )
dky

2π
. (B1)

The utility of this definition is that if all Bloch states (in
the conduction subspace and with wave number kx = 0) are
parity-even, and all Bloch states (in the valence subspace
and with kx = 0) are parity-odd, then the N-band intercellular
shift remains quantized to integer values.28 (This statement

27A generalized reverting Thouless pump invariant can also be
similarly defined with ubk in Eq. (6) replaced by ŭbk. This general-
ization extends the meaning of a reverting pump beyond what has
been considered in previous literature [27,28,31]. In the language
developed in Ref. [28], the generalized pump exists assuming the
the “mutually disjoint” symmetry condition, but not needing the
“iso-orbital” condition. A physical implication of the generalized
pump is the existence of surface states that interpolate across the bulk
gap, for an ideal (nonrelaxed, nonreconstructed) surface termination
that is compatible with the chosen unit cell [28].

28Proof of quantization: from the definition of the shift vector in
Eq. (1) and the definition of the Berry-Zak phase in Eq. (7), we obtain

2πS
(N )
0 = −

∑
i j

∂ky arg Axciv j (0,ky )dky+Nv

∑
i

Zci,0−Nc

∑
j

Zv j ,0.

(B2)

The first of the three terms is a sum of phase winding numbers
and therefore takes values in 2πZ. Under the just-stated assumption
on the parities of the Bloch states,

∑Nc
i=1 Zci,0/2π =1

∑Nc
i=1 y[ϕi

e]/Ry,
with {ϕi

e}Nc
i=1 labeling all reflection-even Wannier orbitals in a repre-

sentative primitive unit cell. (If this identity is not apparent to the
reader, then I recommend Sec. VIII C in Ref. [28] for a closely
analogous proof with greater detail.) Likewise,

∑Nv

j=1 Zv j ,0/2π =1∑Nv

j=1 y[ϕ j
o]/Ry for the reflection-odd Wannier orbitals in the same

representative unit cell. For a monatomic basis of the Bravais lattice,
y[ϕi

e] = y[ϕ j
o] for all i and j; hence, Nv

∑Nc
i=1 Zci,0−Nc

∑Nv

j=1 Zv j ,0 =
2πZ, completing the proof for S

(N )
0 ∈Z. If the assumption of a

monatomic basis is relaxed, then the generalized N-band intercellular
shift S̆N (0)∈Z has the meaning of the net change in the primitive unit
cell label when all NcNv interband optical excitations are accounted
for.
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holds as well if “odd” is interchanged with “even.”) If the
just-mentioned parity condition applies also to Bloch states
with kx = π/Rx, then there exists an N-band shift obstruction
relation:29

S
(N )
0 −S

(N )
π/Rx

=
Nc∑

i=1

Nv∑
j=1

Vortxciv j + N RTPv ∈ Z. (B3)

S
(N )
π/Rx

is defined as in Eq. (B1) but with 0 replaced by π/Rx;
Vortxb′b =∫ (

∂ky arg Axb′b(π/Rx,ky ) − ∂ky arg Axb′b(0,ky )

)
dky

2π
∈ Z (B4)

is the net optical vorticity between bands b′ and b, and

RTPv =
Nv∑
j=1

∫
BZ/2

�zv j

d2k

2π
∈ Z (B5)

is the returning Thouless pump of the Nv-band valence sub-
space. The reader may verify that Eq. (B3) reduces to the
previously obtained shift obstruction relation [Eq. (10)] for
N = 2.

To recapitulate from a broader perspective, we began with
a topological invariant that was previously defined for an
M-band Hamiltonian, and were conditionally able to extend
the meaning of this invariant to an (N>M )-band Hamiltonian.
This condition specifies the allowable symmetry represen-
tations for all N bands in both conduction and valence
subspaces. Conversely stated, the condition may be violated
by adding a (topologically trivial) band with a disallowed
symmetry representation to either conduction or valence sub-
space. The consequence of violating the condition is that the
N-band intercellular shift is no longer quantized to integer
values. These, in a nutshell, are the hallmark attributes of
symmetry-protected delicate topology—a notion that has been
studied for intraband invariants [27,28] but is hereby extended
to interband invariants.

Currently, all known examples of delicate topological insu-
lators are essentially noncentric,30 in the sense that the topo-
logical distinction between trivial and nontrivial insulators (as
distinguished by intraband invariants) is only meaningful for
space groups without centrosymmetry [27,28,31,81,86]. This
offers a rich playing field to search for interband invariants
related to the shift current. To give a flavor of the possibilities,
the reverting Thouless pump (RTP) has been theoretically
explored in a wide variety of Pn-symmetric Hamiltonians
[27,28,31], where an n-fold rotational symmetry plays a role
analogous to the reflection symmetry in this paper. A known

29To derive this relation, apply Stoke’s theorem to convert line
integrals of the intraband Berry connection Aybb to area integrals of
the intraband Berry curvature �zb. Then apply the complementary
relation between the curvatures of conduction and valence bands:∑Nv

j=1 �zv j k = − ∑Nc
i=1 �zcik [37], which leads to RTPv = −RT Pc.

30Beyond insulators, there exists a phononic three-band touching
point that is both delicate-topological and compatible with cen-
trosymmetry [88]. It may be possible to generalize the homotopy
invariant of this three-band touching to a centrosymmetric, three-
band insulator.

mod-n equivalence [27,28] between the RTP and Hopf in-
variants suggests the existence of mod-2n shift obstruction
relations that relate the intercellular shift, the Hopf invariant
and the optical vorticity. In this context, the intercellular shift
is defined by averaging the shift vector over rotation-invariant
k lines, rather than a mirror-invariant cross-section of the BZ
[cf. Eq. (12)].

APPENDIX C: THE TIGHT-BINDING APPROXIMATION
OF THE SHIFT CURRENT: JUSTIFICATION

AND PITFALLS

Having alluded to subtleties of the tight-binding approx-
imation of shift quantities, I now elaborate on the nature of
this approximation (Appendix C 1), provide a semiempirical
(Appendix C 2) and rigorous (Appendix C 3) justification for
the approximation, and finally highlight an under-appreciated
pitfall of the approximation that is specific to two-band tight-
binding models (Appendix C 4).

1. Nature of the approximation

The shift connection is expressible in terms of the
matrix elements of the non-Abelian Berry connection. In
the rigorously justified theory involving a Schrödinger-type
Hamiltonian, [7] the Berry connection is defined by Ãll ′ =
〈ũlk|i∇kũl ′k〉cell, with ũlk(r) = ũlk(r+R) the intracell com-
ponent of the Bloch function that is periodic in lattice
translations, and r a continuous spatial coordinate within the
primitive unit cell. However, throughout this work, I have
approximated the Berry connection as All ′ = 〈ulk|i∇kul ′k〉cell,
with ulk(α) the eigenvector of an N-band tight-binding Hamil-
tonian, and α a discrete intracell coordinate taking only N
values. The error Ã−A in the discrete-space approximation
has an explicit expression [Eq. (B8) in Ref. [47]] in terms
of matrix elements of the continuous-position operator in the
basis of Wannier orbitals (there being N such orbitals per
primitive unit cell); the approximation is equivalent to drop-
ping all off-diagonal elements of the position operator in the
just-mentioned Wannier basis—a point of view emphasized
in Ref. [83]. Because Ã−A requires a correction, there is an
analogous correction (derived explicitly in Ref. [83]) to ap-
proximating the photonic shift connection C̃ j

ib′b = |Ã jb′b|2S̃ j
ib′b

by C j
ib′b = |Ajb′b|2S j

ib′b; here and henceforth, Õ is defined by
O[ũlk], for O that was previously defined as a functional
of ulk.

2. Semiempirical justification of the approximation

The discrete-space approximation is generally uncon-
trolled, in the sense that no known small parameter exists to
bound the error: δC = C̃ j

ib′b−C j
ib′b. (A small parameter exists

in specific cases, as elaborated in Appendix C 3.) The next-
best course of action is to compare δC to C̃ in ab initio-based
studies where Wannier functions of a continuous spatial co-
ordinate can be accurately obtained. These studies have been
carried out for a number of materials [83,89]; the most severe
relative error [in the discrete-space approximation of σ̃

j
iω] is
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reported as ≈ 50% for BC2N, and for frequencies close to
a band-edge excitation [89]; the error is significantly milder
over most other frequencies, and this holds for the other
material case studies as well. A plausible conclusion from
these studies is that it is safer for a tight-binding theorist
to report a value of

∫
σ

j
iωdω (integrated over a frequency

range comparable to the bandwidth) rather than σ
j

iω at specific
frequencies—this being another motivation for my choice of
the figure of merit F j

i in Eq. (3). This point of view is not
universally adopted [90].

3. Rigorous justification of the approximation

There is at least one context where δC is demonstrably
negligible relative to C̃—in the proximity to a first-class phase
transition in essentially noncentric insulators (Sec. III B).
More precisely, there exists a small parameter s (proportional
to the square root of the minimal energy gap Eg) that allows
to asymptotically compare δC and C; one can prove that
δC/C ∼ s as s→0. This implies not only that the asymp-
totic behavior F x

y ∼ (Eg)−1/2 [proposition (Q2)] is preserved
if δC is accounted for, but also that the coefficient c1 in
F x

y ≈ c1(2/Eg)1/2 is unchanged by δC. The conclusion that
δC is asymptotically irrelevant possibly generalizes to more
classes of topological phase transitions, since the limit of van-
ishing energy gap is also the limit of long spatial wavelength,
rendering short-wavelength variations [of ulk(r) within a unit
cell] asymptotically irrelevant.

4. Discrete-space approximation for two bands

The discrete-space approximation of the shift conductivity
is especially dangerous when used in conjunction with two-
band,31 time-reversal-invariant tight-binding models. Even if
resonant excitations occur only between two bands, the shift
connection generally receives contributions from virtual exci-
tations to other intermediate bands, as has been made explicit
by sum-over-states formulas in Refs. [90,91]:

C̃ j
ib′bk = −Im

ṽ
j
b′b

(εb′b)2

[
〈ũb′ |∂ki∂k j H |ũb〉cell

− ṽi
b′b�

j
b′b + ṽ

j
b′b�

i
b′b

εb′b

+
∑

b′′ �=b′,b

(
ṽi

b′b′′ ṽ
j
b′′b

εb′b′′
− ṽ

j
b′b′′ ṽ

i
b′′b

εb′′b

)]
, (C1)

with ṽ
j
b′bk = i〈ũb′ |e−ik·r[Ĥ, r j]eik·r|ũb〉cell/h̄ being a matrix

element of the bth component of the velocity operator,
εb′b = εb′k−εbk being a difference in band energies, H (k) =

31To clarify, time-reversal symmetry imposes that the minimal
tight-binding model of an insulator has four bands, counting spin.
I assume that the spin-orbit interaction is negligible and focus on one
spin sector having only two bands. The Kraut-von Baltz selection
rule (explained below) applies for negligible spin-orbit interaction.

e−ik·rĤeik·r being the single-particle Bloch Hamiltonian, and
�i

b′b = ∂kiεb′−∂kiεn being a difference in band velocities.
I assume that the Schrödinger-type Hamiltonian has the

form Ĥ = p2/2m+U (r, p) with U that is at most linear
in the canonical momentum p.32 Under this assumption,
〈ũb′ |∂ki∂k j H |ũb〉cell vanishes for b′ �= b, and the longitudinal
shift conductivity (σ̃ i

i ) vanishes if one neglects all “virtual
excitations,” i.e., if one neglects any excitation to an inter-
mediate band that is not either of the two bands of greater
interest. Precisely, I mean that the summation term on the
right-hand side of Eq. (C1) is much smaller than the middle
term on the right-hand side; this assumption may hold when
the band-energy difference |εb′b| is much smaller than |εb′b′′ |
and |εbb′′ |, for any b′′ �= b, b′. The vanishing of σ̃ i

i under these
assumptions was first proven generally in Ref. [91] and will
thus be called the Kraut-von Baltz selection rule. A more
precise statement is that C̃i

ib′bk = 0 if virtual transitions are
ignorable for that particular value of k, as can be verified from
Eq. (C1) if the first and third terms (on the right-hand side) are
dropped. In ab initio-derived models, it is possible that C̃i

ib′bk
approximately vanishes over some regions of the Brillouin
zone where |εb′bk| become unusually small, while remaining
nonzero in other regions.

Unfortunately, the selection rule has been under-
appreciated [20] or misinterpreted [90] in recent works that
purport to predict a value for σ i

i (or upper limit for
∫

σ i
iωdω)

based on two-band tight-binding models. In interpreting
either of these works, one can take one of two positions:

(i) Suppose virtual excitations are exactly zero, then σ̃ i
i =

0, according to Kraut-von Baltz. It is also possible for the two-
band tight-binding approximation (σ i

i ) to be nonzero. Indeed,
the two-band-tight-binding-approximated shift connection is
expressible in a form closely analogous to Eq. (C1):

Ci
ib′bk = −Im

vi
b′b

(εb′b)2

[
〈ub′ |∂2

ki
h2−band|ub〉cell

− vi
b′b�

i
b′b + vi

b′b�
i
b′b

εb′b

]
, (C2)

with h2-band(k) a two-band tight-binding Hamiltonian; one
finds that Ci

i can be nonzero because 〈uc|∂2
ki

h2-band|uv〉cell is
generically nonzero, as was correctly argued in Ref. [90].
Ci

i �= 0 and C̃i
i = 0 are manifestly consistent statements, im-

plying that the correction δC = C̃i
ib′b−Ci

ib′b (explicitly derived
by Ibanez-Azpiroz-Tsirkin-Souza [83]) exactly cancels Ci

ib′b.
This potentially surprising cancellation follows from adopting
a pathological assumption.

(ii) Suppose virtual excitations to a third band are nonzero,
then the Kraut-von Baltz selection rule does not hold.
Then any two-band, tight-binding Hamiltonian cannot be a
complete model of the longitudinal shift current, and any

32As was emphasized in Ref. [82], 〈ũb′ |∂ki ∂k j H |ũb〉cell might be
nonzero for ab initio calculations where the pseudopotential U may
be nonlinear in p. This is in principle one way to evade the selection
rule, though further quantitative studies are needed to quantify this
evasion.
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expression [90] (or upper limit [20]) for σ i
i that depends only

on parameters of a two-band, tight-binding Hamiltonian has
questionable value.33

It is worth remarking that even a minor absolute error in
miscalculating the longitudinal shift connection is amplified
to infinity in a calculation of the longitudinal shift conductiv-
ity, if the joint density of states diverges—which unfortunately
was the case in the band-edge calculations of Ref. [90].

33Naively equating Eq. (C1) with Eq. (C2), one may be tempted to interpret the 〈ub′ |∂2
ki

h2-band|ub〉cell term as encoding the virtual transitions
outside of the two-band subspace:

〈ub′ |∂2
ki

h2-band|ub〉cell
?≈

∑
b′′ �=b′,b

(
ṽi

b′b′′ ṽi
b′′b

εb′b′′
− ṽi

b′b′′ ṽi
b′′b

εb′′b

)
. (C3)

However, the exact formula for a general N-band tight-binding Hamiltonian is

b′ �= b : 〈ub′ |∂2
ki

hN-band|ub〉cell = εb′b(i∂ki + Aib′b′ − Aibb)Aib′b

+ vi
b′b�

i
b′b + vi

b′b�
i
b′b

εb′b
−

∑
b′′ �=b′,b

(
vi

b′b′′vi
b′′b

εb′b′′
− vi

b′b′′vi
b′′b

εb′′b

)
, (C4)

which differs substantially from the hypothesized interpretation. Moreover, for a two-band Hamiltonian, the summation term in Eq. (C4) drops
out, expressing the simple fact that one needs a (N>2)-band Hamiltonian to describe virtual transitions outside of a two-band subspace.

Thus, if a two-band tight-binding model is the preferred
method, then it is safer to predict the transverse shift con-
ductivity

∫
σ

j
iωdω (with i ∼=/ j) rather than the longitudinal

conductivity
∫

σ i
iωdω. This is one motivation for why only

the transverse conductivity
∫

σ x
yωdω (with y parallel to the

polar axis) was explicitly calculated for the two-band models
in Sec. III.
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