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By merging algorithmic Matsubara integration with discrete pole representations we present a procedure to
generate fully analytic closed form results for impurity problems at fixed perturbation order. To demonstrate the
utility of this approach we study the Bethe lattice and evaluate the second-order self-energy for which reliable
benchmarks exist. We show that, when evaluating diagrams on the Matsubara axis, the analytic sums of pole
representations are extremely precise. We point out the absence of a numerical sign problem in the evaluation,
and explore the application of the same procedure for real-frequency evaluation of diagrams. We find that real-
frequency results are subject to noise that is controlled at low temperatures and can be mitigated at additional
computational expense. We further demonstrate the utility of this approach by evaluating dynamical mean field
and bold diagrammatic self-consistency schemes at both second and fourth order and compare to benchmarks
where available.
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I. INTRODUCTION

The Matsubara formalism for Feynman diagrammatics is
a cornerstone of computational condensed matter physics that
appears throughout the literature on finite temperature meth-
ods for computing many-body systems. The vast majority
of applications use only the lowest-order diagrams such as
those for polarization, random-phase approximation, GW , and
the second-order self-energy. These key low-order diagrams
find application in a wide range of quantum chemistry and
materials physics problems. Not surprisingly there are many
problems for which low-order diagrams are insufficient and
this leads to renormalized perturbative approaches and self-
consistent schemes in an attempt to capture essential features
of higher-order diagrams [1–10].

Moving beyond low orders is rarely straightforward.
However, in the case of noninteracting problems recent
advancements allow one to automatically evaluate internal
temporal integrals using algorithmic Matsubara integration
(AMI) [11] which produces expressions analogous to those
typically used at low orders and has been applied to compute
a variety of properties of the Hubbard model [12–17] as well
as the real-frequency response functions needed to obtain the
correlation exchange kernel in the jellium model [18–21].
Using AMI relies on contour integration methods to evaluate
nested Matsubara sums and therefore hinges on having ac-
cess to the analytic pole structure of a diagram’s constituents
which typically means that the states (or bands) have known
analytic form or energies that can be represented in a diagonal
basis [22,23]. This prevents the method from being used for
iterative or self-consistent calculations in most cases. One
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path around this is to use a full spectral decomposition of a
diagram for which the internal integration space grows and
becomes quickly intractable as order increases, again limiting
evaluation to low-order diagrams [19].

In this paper we explore the use of pole decompositions
on Matsubara axis Green’s functions and test their utility
for evaluating convolutions of Green’s functions that arise in
Feynman diagrams. Using the semicircular density of states as
the simplest possible test case we invoke discrete pole decom-
positions of the Matsubara axis Green’s function: the discrete
Lehmann representation (DLR) and the Prony representa-
tion [24,25]. We then evaluate the second-order self-energy
using the full spectral representation as well as derive an
analogous expression for the self-energy based on either pole
decomposition. We find that results for the self-energy em-
ploying a discrete pole representation are extremely stable
and accurate on the Matsubara axis and can be obtained at
a small fraction of the computational expense when compared
to the full spectral representation. We show how the method
can be applied iteratively for data on the Matsubara axis and
show that the converged result can be directly evaluated near
the real-frequency axis with a finite regulator. We find that
doing so suffers from oscillatory errors due to discretization
and suggest methods of mitigating this issue. Finally, we show
the method can be extended to arbitrary orders, demonstrate a
self-consistency loop performed at fourth order, and highlight
differences from lower-order self-consistency.

II. METHODS

A. Standard spectral representation

Feynman diagrams are composed of products of Green’s
functions with arguments both internal and external to
the diagram. For simplicity, we will restrict discussion to
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a self-energy diagrammatic expansion at order m. Each
mth-order diagram must be summed over m independent
internal Matsubara frequencies, {iνi} = (iν1, . . . , iνm), but
contains a product of 2m − 1 Green’s functions, m of which
have independent labels in {iνi}, and the remaining m −
1 have dependent labels that are some linear combination
of {iνi} as well as an external Matsubara frequency, iνx.
We annotate such a linear combination as �α · �ν where �ν =
(iν1, . . . , iνm, iνx ) and �α is a vector of the same length rep-
resenting coefficients with values ±1 or 0.

An arbitrary self-energy diagram will take the form

�(iνx ) =
∑
{iνi}

H ({iνi}, iνx ) (1)

where H ({iνi}, iνx ) is a product of Green’s functions given by

H ({iνi}, iνx ) = G(iν1) . . . G(iνm)G(�α1 · �ν) . . . G(�αm−1 · �ν).
(2)

After a Matsubara sum is performed each term will also be
in the form of Eq. (2) allowing the Matsubara sums to be
performed in sequence.

The spectral representation for a single Green’s function is
an integral representation given by

G(iνn) =
∫ ∞

−∞

A(x)

iνn − x
dx, (3)

where the spectral density, A(x), is a function of a real fre-
quency, x, and in the case of causal functions is related to the
imaginary part of the Green’s function on the real-frequency
axis. One can then apply the spectral representation of Eq. (3)
to each Green’s function in Eq. (2) and this is the typical
spectral representation of a Feynman diagram which, drop-
ping overall prefactors and interaction terms, would appear in
the form

�(iνx ) =
∑
{iνi}

∫∫
A(x1) . . . A(x2m−1) (4)

×
m∏

�=1

1

iν� − x�

m−1∏
j=1

1

�α j · �ν − x j+m
dx1 . . . dx2m−1.

(5)

This is useful because the order of Matsubara integration
and spectral integration can be interchanged, and the Mat-
subara sums can be performed analytically since the product
of kernels is identical to a product of noninteracting Green’s
functions. The Matsubara sums for any such diagram can
be symbolically generated via AMI for which computational
tools exist [11,26,27]. The result of those summations will be
in the form

�(iνx ) =
∫∫

A(x1) . . . A(x2m−1)

× I (β, {xi}, iνx )dx1 . . . dx2m−1 (6)

where I (β, {xi}, iνx ) is given by

I (β, {xi}, iνx ) =
∑
terms

F (β, {xi})
∏

G0(iνx, {xi}). (7)

Here F (β, {xi}) is an analytic function containing sums and
products of Fermi and Bose distribution functions and their

derivatives, G0 are noninteracting Green’s functions arising
from the kernel of the spectral representation, and the sum
is over terms that typically factorize at intermediate steps in
the Matsubara summation. The form of I (β, {xi}, iνx ) will be
distinct for each diagram topology but can be automatically
generated by the AMI procedure [26,27].

This general spectral representation can be used for any
choice of spectral density, and so is not restricted to noninter-
acting problems while the Matsubara sums are still trivially
constructed using AMI or, in the case of Green’s function
expansions, via other direct analytic approaches [28]. Most
importantly, the analytic continuation of the external fre-
quency iνx → ω + i0+ is allowed after Matsubara sums are
performed. However, the limitations of this approach are se-
vere. One has added to the original problem of summing m
independent Matsubara frequencies a new set of (2m − 1)
nested integrals with infinite bounds. In many cases the prod-
uct of spectral functions is very sparse, leading to a numerical
sign (phase) problem when using stochastic methods that
typically worsens as order increases. For that reason, this
is typically only done for lowest-order diagrams such as a
particle-hole bubble, � = GG, or the GW approximation,
� = GW , since the number of spectral integrals in these cases
is only two, and these can be further reduced to just two
one-dimensional integrals. Finally, the form of Eq. (7) holds
and can be analytically continued for two-point correlation
functions where there is a single external frequency. In the
case of multipoint correlators there are multiple Matsubara
frequencies that need to be analytically continued and this
complication is nontrivial to resolve [29,30].

B. Discrete pole representations

1. Discrete Lehmann representation

The DLR [24,31,32] is a pole representation [33–37] for
functions that have a spectral decomposition that can be well
approximated in a truncated form

G(iωn) =
∫ 	

−	

K (iωn, x)ρ(x)dx, (8)

where ρ is the density and the kernel is given by K (iωn, x) =
1

iωn−x when represented in Matsubara frequencies. The for-
mulation of DLR in the frequency domain assigns a set of
frequencies along the imaginary axis, {iωDLR}, that are deter-
mined uniquely for a given choice of 	 and an error tolerance
at a temperature β to ensure that the kernel is well approxi-
mated in the domain [−	,	] based on a discrete set of poles
along the real axis, {ωk}. If this can be accomplished then the
Green’s function can be approximated as a sum over a finite
set of poles {ωk} with weights gk as

G(iωn) ≈ GDLR(iωn) =
r∑

k=1

K (iωn, ωk )gk . (9)

In essence the intent is to leverage the flexibility in defining
ρ(x) in Eq. (8) and is equivalent to assuming

ρ(x) =
r∑

k=1

gkδ(x − ωk ). (10)

075158-2



FEYNMAN DIAGRAMMATICS BASED ON DISCRETE POLE … PHYSICAL REVIEW B 110, 075158 (2024)

In the limits of both r,	 → ∞, the weights should be
continuous and if gk → A(ωk ) then the normal spectral rep-
resentation is recovered.

2. Prony approximation

The Prony approximation [25] results in a pole decompo-
sition of the form

GP(z) =
r∑

k=1

gk

z − ωk
. (11)

The fit to the function is generated by first mapping an interval
of the non-negative imaginary axis to a unit circle. The Prony
approximation then generates a set of poles and weights to
satisfy G(iωn). There are two variants of the Prony approxi-
mation we will discuss. The first, which we call Prony analytic
continuation (PRONYAC), is the Prony representation as pre-
sented in Ref. [25] (see also Refs. [38,39]) that can be used
on discrete data for G(iωn) as a form of analytic continuation
to the real-frequency axis. The PRONYAC method generates a
set of complex poles ωk in the lower-half plane with complex
weights gk . The resulting function is valid for arguments z
in the entire upper-half plane and along the real axis. In
this paper we use PRONYAC as a form of numerical analytic
continuation which for sufficiently high-quality data on the
Matsubara axis should provide a causal analytic continuation.

For the purposes of evaluating Feynman diagrams, the
function generated by PRONYAC is not straightforward to
implement, since the function generated by PRONYAC only
approximates the retarded Green’s function in the upper half
of the complex plane but does not approximate the advanced
Green’s function in the lower half of the complex plane. In
this paper, we modify the holomorphic mapping in the Prony
formalism to generate a symmetrized function valid in both
the upper- and lower-half planes resulting in a function with
poles that are real, as well as pairs of complex poles that are
complex conjugates. This introduces poles directly on the real
axis, similar to DLR. Nevertheless, the Prony approximation
generates a minimal pole representation of the symmetrized
function that can then be employed interchangeably with DLR
since they are valid in both upper- and lower-half planes. For
the purposes of performing Matsubara sums, we will use this
second form of the Prony approximation, and approximate
the Green’s function on the Matsubara axis with G(iωn) ≈
GP(iωn).

3. Analytic continuation of diagrams involving
pole representations

Above we have introduced notation for the DLR and
the symmetrized Prony Green’s functions, GDLR and GP

respectively. Much of the discussion in the following sec-
tions pertains to either representation. We will use GD to
represent either discrete pole representation. Given a single-
particle Green’s function on the Matsubara axis, the density
is related to the imaginary part of the analytic continuation
of the Green’s function, ρ(ω) = − 1

π
ImG(iω → ω + i0+). It

is straightforward to see from the discrete nature of the pole
representations that we cannot analytically continue the dis-
cretized GD and have any hope of reconstructing the original
continuous function on the real-frequency axis. This is not

surprising since no information regarding the function on the
real-frequency axis is required to generate a pole representa-
tion. It is therefore the case that G(ω + i0+) �= GD(ω + i0+)
for any finite number of poles.

However, when evaluating the analytic continuation in
practice one includes a finite regulator iωn → ω + i
 which
should produce a sufficiently accurate result for a sufficiently
small choice of 
. We therefore expect that G(ω + i
) =
GD(ω + i
) for a sufficiently large 
, and given the con-
straint along the imaginary axis that G(iω0) = GD(iω0) (to a
controllable precision) we are guaranteed that the pole repre-
sentation will produce the correct function at low energies for

 ≈ π/β. Therefore, as temperature decreases towards zero

 can be made arbitrarily small. In the case of a discrete
representation of a single Green’s function on the Matsubara
axis, one would not analytically continue using DLR or the
symmetrized Prony Green’s functions. These are by construc-
tion not well behaved on the real axis. Instead other methods
are preferable such as NEVANLINNA [40–42] or the above
mentioned PRONYAC [25].

In what follows we are interested in using pole representa-
tions to evaluate sums over products of GD Green’s functions.
The above arguments lead us to expect that such diagram
evaluations can be analytically continued directly so long as a
sufficiently large regulator is employed, where size is defined
by the scale of π/β.

4. Matsubara sums of products of GD

When given a Green’s function, or product thereof, on the
Matsubara axis with a set of known poles, the Matsubara sums
can be performed analytically via contour integration. For
example, to treat the sum over a particular function H (iωn),
assumed to be a product of single-particle Matsubara Green’s
functions defined in both the upper-half and lower-half planes,
one solves the auxiliary problem of integrating H (z) multi-
plied by a Fermi or Bose function to match the statistics of
iωn. This is then integrated along two contours; C1, along
the real axis closed in the upper-half plane, and C2, along the
real axis in the negative direction and closed in the lower-half
plane. These contours enclose the poles of the Fermi or Bose
functions [ f (z) and n(z) respectively] which are the set of
Matsubara frequencies {iωn} as well as the set of poles, {z0},
of H (z). In the case of fermions, the sum of C1 and C2 gives∮

C1+C2
f (z)H (z)dz = 0 = − 1

β

∑
iωn

H (iωn)

+
∑
{z0}

Res[ f (z)H (z)]z0 . (12)

We see right away that the value of H (z) as a continuous func-
tion on the real axis does not appear in the right-hand equality,
and only the poles of H (z) contribute. It is tempting therefore
to replace the representation of H (iωn) with a discrete pole
representation, ∑

iωn

H (iωn) ≈
∑
iωn

HD(iωn), (13)

where for a sufficiently high precision representation of
the Green’s function we presume that HD is given by an
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appropriate product of GD Green’s functions. Since Eq. (12)
holds for both H (z) and HD(z) one can approximate the orig-
inal Matsubara sum:

1

β

∑
iωn

H (iωn) ≈
∑
{ωk}

Res[ f (z)HD(z)]ωk . (14)

A similar relation holds for bosonic frequency summation
with replacement of f (z) → −n(z).

This simple relationship allows for the systematic sequen-
tial evaluation of a series of nested Matsubara sums over
frequencies iνi where each has poles given by the sets {ωki} as
needed in Eq. (1). Each ki runs a range of values from 1 → ri

as in Eqs. (9) and (11). This gives a result analogous to Eq. (6):

�(iνx ) ≈
∑

k1,k2,...,k2m−1

gk1 . . . gk2m−1

× F (β, {ωki})
∏

G0(iνx, {ωki}). (15)

We see from this expression that there is a one-to-one corre-
spondence between the discrete spectral amplitudes, gki , and
the standard spectral functions, A(xi ), in Eq. 6. The auxiliary
integrations over the continuous valued set of real frequencies
{xi} are now discrete summations over the poles {ωki}. It is
important to note that the G0 functions that appear in Eq. (15)
do not arise from the discretization of the density ρ(x) but are
actually the kernel of Eq. (8) and therefore have a well-defined
analytic continuation such that iνx in Eq. (15) can be safely
analytically continued to the real-frequency axis.

If this representation of Matsubara sums is accurate for a
manageable number of poles then the reduction in complexity
for renormalized perturbative problems is enormous even at
low orders. There are two key advantages. First, it replaces
the arbitrary sampling of each integration axis with a fixed
scaling of (r)2m−1. Second, when performing iterative cal-
culations it bypasses the evaluation of a real-frequency axis
density, ρ(x), a process that requires generating a dense grid
of real frequencies in order to resolve the salient features of a
possibly unknown function. Instead one only needs to evaluate
the self-energy along the Matsubara axis in order to generate
a next approximation of G({iωDLR}) or at an appropriate set
of Matsubara points in the upper-half plane for the Prony
approximation.

All of this advantage, however, hinges delicately on the
accuracy of Eq. (15) which cannot be clearly estimated based
on accuracy constraints of a DLR or Prony fit.

C. Test case

In what follows we test our approach on a Bethe lattice,
an impuritylike problem with no momentum dependence, and
a semicircular density of states for which there is a known
analytic solution. The semicircular density of states is given
by A(ω) = 1

2πt2

√
4t2 − ω2 and the Matsubara Green’s func-

tion in the upper-half plane is given by G(iωn) = i
2t2 (ωn −√

ω2
n + 4t2). In this representation the bandwidth is 4t and we

operate in units of t = 1.

III. RESULTS

A. Matsubara-frequency axis

We first explore evaluation of the self-energy on the Mat-
subara axis. As a starting point, using the semicircular density
of states we compute the second-order self-energy using the
full spectral representation of Eq. 6, �(2)

spec(iνx ) for which the
Matsubara sums can be performed by hand. In the case of
DLR, we generate for the semicircular density of states the
Green’s function at {iωDLR} from which the poles, {ωk}, and
weights, gk , are determined using LIBDLR [31]. In the case
of Prony, we generate for the semicircular density of states
the Green’s function at a finite set of Matsubara points in
the upper-half plane {iωn} from which the poles, {ωk}, and
weights, gk , are determined using PRONYAC, part of the GREEN

package [25,43–45].
The second-order contribution in the full spectral represen-

tation is given by

�(2)
spec(iνx )

=
∫∫∫

A(x1)A(x2)A(x3)

× [ f (x1) − f (x2)][n(x2 − x1) + f (−x3)]

iνx + x1 − x2 − x3
dx1dx2dx3,

(16)

where f (x) and n(x) are Fermi and Bose distribution functions
respectively. The analogous expression making use of the GD

Green’s functions is

�D(iνx ) =
∑

k1,k2,k3

gk1 gk2 gk3

×
[

f
(
ωk1

) − f
(
ωk2

)][
n
(
ωk2 − ωk1

) + f
( − ωk3

)]
iνx + ωk1 − ωk2 − ωk3

.

(17)

Both �spec and �D are presented here assuming only simple
poles. In both cases when poles coincide the expressions pro-
duce removable divergences and can be treated properly using
AMI. For brevity we forego these details.

For comparison, we evaluate �D and �spec and plot the
imaginary parts in Figs. 1(a) and 1(b) for β = 5 and 20 respec-
tively. The analytic sums �DLR and �P are visually identical
to the integral of the spectral representation for all Matsub-
ara points. This result is extremely stable to variation in the
discrete pole representation, and we scrutinize the accuracy
of the comparison in Fig. 1(c). We plot the absolute deviation
of DLR and Prony pole representations from the benchmark
spectral result, �� = |�D − �spec|, as a function of the num-
ber of poles, r, for the zeroth Matsubara frequency. We also
show the deviation �� = |�DLR − �P| to illustrate the be-
havior of the pole representations relative to each other. We
see that with respect to the �spec benchmark both the DLR and
Prony representations converge to the same result, with a de-
viation within the error estimate of the benchmark, 1 × 10−7.
This suggests that both methods are converging to a correct
physical value. One sees that the deviation between the two
pole methods does not plateau and that continued increase in
the accuracy of the pole representation gives agreement with
the two approaches on the scale of 1 × 10−9 by r = 21. We
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FIG. 1. Imaginary part of self-energy in Matsubara frequencies iνx for the full spectral, DLR, and Prony representations. (a) β = 5. (b) β =
20. (c) Absolute difference for iν0 at β = 5. Horizontal dashed line represents the uncertainty estimate of �spec.

believe this represents an essentially exact numerical result,
that is also the physically correct value. It is worth noting the
difference in computational expense between Eq. (6) for �(2)

spec
and Eq. (15) for the pole representations. Both have nearly
identical analytic form and therefore similar computational
expense per evaluation of the integrand/summand. Without
prior knowledge of A(xi ) the computational expense of the
three nested integrals in �(2)

spec is extremely large. Our estimate
of �(2)

spec(iν0) in Fig. 1(c) was evaluated to an absolute accuracy
of 2 × 10−7 and required on the order of 107 function evalua-
tions. In contrast the pole representations require precisely r3

evaluations. We see that even for a small number of poles the
DLR and Prony results are extremely accurate. At r = 5 the
DLR result is accurate within 2% of the spectral result while
only requiring 53 = 125 function evaluations. This improves
exponentially such that by r = 8 the relative difference is
1 × 10−6 for 83 = 512 evaluations.

Even for only a second-order self-energy, this computa-
tional advantage is enormous and will grow exponentially as
the diagram order increases. The pole representations have
shifted the spectral integration weight to a finite and known
set of {ωk} poles. This is in contrast to high-order integration
of continuous functions where an integration routine needs
to search for where the integrand has value. Doing so one
encounters sampling issues such as a numerical sign problem.
This is not the case here, where one simply evaluates a discrete
set of predetermined points where all the weight has been
placed. There is no longer a sign problem because there is
no stochastic component or variance. While there remains an
exponential expense in the number of poles we foresee oppor-
tunities for approximations of the pole representations where
one removes poles with small gk values, but note that such
exclusions should be performed with care since in principle
their impact would be uncontrolled.

We note that there exist sparse methods for evaluating dis-
crete Matsubara sums [34,46]. If applied to this second-order
problem on the Matsubara axis those approaches will exhibit
similar scaling dependent upon the size of the basis used.

B. Real-frequency axis

Turning to real frequencies, we evaluate Im�(2)
spec and

Im�
(2)
D replacing the external frequency iνx → ω + i
 and

present results for a choice of 
 = 0.1 for β = 5 and 20 in
the first and second rows of Fig. 2 respectively. One notes that
the Prony and DLR results oscillate around the benchmark
from the full spectral case. These oscillations have a number
of origins, including overfitting, but are largely due to the
fact that GD is not the physical function on the real axis, but
has been discretized, and the oscillations originate from the
spacing of the real-frequency poles.

We see from the left-hand column of Fig. 2 that for a fixed
choice of the regulator 
 the region at small ω for β = 5 has
severe oscillations and that these are dampened by decreasing
temperature to β = 20. In the case of DLR, we see that the
oscillations that are absent at low frequency return at higher
frequency. In the case of the Prony approximation the result
is well behaved both at low and high frequencies and exhibits
oscillatory behavior at intermediate points. Importantly, in all
cases we find that these oscillations are not fundamental to the
evaluation, meaning that distinct pole representations will find
distinct oscillatory patterns, and therefore these oscillations
can be mitigated in a number of ways. First, we can generate
the self-energy for a variety of slightly different DLR/Prony
fits, and use the average of the result to suppress the

FIG. 2. Imaginary part of self-energy for frequency iωn → ω +
i
 for β = 5 and 20 using spectral, DLR, and Prony representations.
Analytic continuation is performed using 
 = 0.1.
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FIG. 3. Iterative scheme for perturbative calculation.

oscillations. A second approach is to artificially increase the
basis size r by creating a new pole representation as an aver-
age over two or more fits. This increases the number of poles
and allows us to generate finer grids.

We do the latter in the right-hand column of Fig. 2. At fixed

 and β we merge a number of DLR/Prony representations
of GD to generate a larger basis and use this to perform the
same calculation. In each case we see strong reduction in
oscillations on the real-frequency axis. Finding an optimal
way to accomplish this would be an important contribution in
the future. To summarize, results in real frequency are more
sensitive to the details of the pole representation, but appear
controllable by increasing the number of DLR/Prony nodes.

What is truly desired is analytic continuation in the 
 →
0+ limit, which the above approach cannot accomplish,
though it remains a useful approach to check other forms of
numerical analytic continuation. We illustrate also in Fig. 2
the analytic continuation of PRONYAC with the same regula-
tor, which very accurately reproduces the benchmark spectral
result with no spurious oscillations. The causal nature of
PRONYAC makes it a powerful numerical analytic continuation
tool when combined with the high precision Matsubara axis
data generated using our AMI toolset.

C. Self-consistent calculations

There are two obvious paths forward using the pole
representations for self-consistent calculations. The first is
self-consistent perturbation theory, or bold diagrammatics,
which we can evaluate to any order but here restrict to second
order. This is therefore equivalent to the well-known GF2
method. The second is dynamical mean field theory (DMFT)
using the second-order diagram as a solver. These calculations
can be done using either DLR or the Prony representations.
Since both are controlled and produce virtually identical re-
sults on the Matsubara axis we present in this section results
using the DLR where we leverage the sparseness of the DLR
representation that only requires measurement of r points
along the imaginary axis {iωDLR}.

1. Self-consistent GF2

Given a Green’s function at the DLR Matsubara points
{iωDLR} we find the DLR representation of the Green’s func-
tion that is a good estimate at all Matsubara points. We
can then evaluate a self-energy directly at the points needed
{iωDLR} and using the Dyson equation get a new estimate
which can then be used to iteratively compute the next esti-
mate of the self-energy. This iterative scheme is depicted in
Fig. 3. We perform the self-consistent perturbation theory for
second order using the DLR representation and plot the con-
verged results in Fig. 4 for β = 5 and 20 assuming a Hubbard

FIG. 4. Imaginary part of the GF2 self-energy in Matsubara fre-
quencies iνn after self-consistency procedure for different U values.
Left, β = 5; right, β = 20. DLR representation used r ≈ 25 for
β = 5 and r ≈ 40 for β = 20.

interaction in the range of U/t = 1 → 6 which we suppress in
the final result to plot on the same scale. The overall behavior
of iterative perturbative methods at low orders typically biases
the system towards having a metallic characteristic, indicated
by the relative difference of the first two Matsubara frequen-
cies [47,48]. Results appear behaved and insensitive to the
detailed choice of the DLR representation.

2. DMFT self-consistency

Here we explore the use of the DLR representation as a
diagrammatic solver for DMFT where benchmark results are
readily available. The self-consistency loop is that of Fig. 3
except that in each iteration the Green’s function must be
replaced with a Weiss field in the form G (iωDLR) = iωDLR +
μ − t2Gimp(iωDLR) [49,50]. We then find the DLR represen-
tation of G and use this for the next step of the diagrammatic
expansion as depicted in Fig. 5.

We compute this first using the DLR representation which
requires only the set of {iωDLR} and then as a benchmark
using the standard second-order theory formulated on the
imaginary-time axis via the TRIQS package [51]. Results for
both are shown in Fig. 6 for β = 5 and 20, the DLR using
solid-colored points, and the DMFT benchmark using open
points. Since both are performed to second order they are
mathematically equivalent and we find perfect agreement be-
tween the methods. There is again a computational advantage
at play, as the DLR representation requires substantially fewer
evaluations for each iteration replacing continuous integra-
tions with a handful of discrete sums, and in this case does
not rely on a Fourier transform from imaginary times. Further,
since every DMFT iteration is the evaluation of a closed-form
result, there is no stochastic error and we expect our result
to be accurate to high precision. We note that one could also
use the converged self-energy to do a final iteration of Eq. 15
for which we perform analytic continuation iνn → ω + i


FIG. 5. DMFT self-consistency loop.
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FIG. 6. Imaginary part of the converged DMFT self-energy in
Matsubara frequencies iνn for different U values. Left, β = 5 with
r ≈ 27 poles; right, β = 20 with r ≈ 40 poles. Comparison DMFT
results generated with the TRIQS package [51].

using either the DLR or Prony pole representation. A pre-
ferred alternative is to leverage the extreme precision of the
DLR+AMI approach on the Matsubara axis to constrain other
forms of numerical analytic continuation, such as PRONYAC.
Nevertheless, a direct evaluation remains possible as a means
of verifying numerical analytic continuation.

D. Beyond second order

Up to this point we have rigorously shown the utility
of pole representations for producing analytic closed form
results for second-order self-energies, where reliable bench-
marks exist, while asserting that this can be used for any
diagrammatic expansion. To support this claim, we repeat
the self-energy calculations up to fourth order. This involves
evaluating two third-order diagrams, the sum of which is zero
for particle-hole symmetric problems such as this, as well as
12 fourth-order diagrams. Of the 12 fourth-order diagrams,
three include self-energy insertions, leaving nine skeleton di-
agrams that would be evaluated if doing self-consistency as
in Fig. 3. The DMFT self-consistency would require all 12
fourth-order diagrams. We present results at U = 4 and β = 5
for the imaginary parts of the second-, third-, and fourth-order
skeleton series after a single iteration in Fig. 7. These param-
eters were selected since the fourth order is comparable in

FIG. 7. Imaginary part of skeleton self-energy at orders 2 → 4
in Matsubara frequencies iνx using a DLR representation for r = 14
at U = 4. (a) β = 5. (b) β = 20.

FIG. 8. Left: Imaginary part of the converged DMFT self-energy
in Matsubara frequencies iνn generated using DLR representation at
β = 20 and U = 2. Right: Spectral function A(ω) using PRONYAC.

amplitude to the second order. An important check, we see
that we recover to high precision the zero contribution from
the two third-order diagrams, the sum of which returns values
on the scale of 1 × 10−6. Interestingly, the DLR imposed here
does not necessitate more poles as order increases and similar
to data for second order in Fig. 1 we find that the result for the
imaginary part of �(4)(iω0) converges by r = 14. The reason
for this is straightforward. The pole representation assigns an
accuracy target to the single-particle Green’s function, and
increasing the accuracy requires more poles and also finer
resolution of the pole amplitudes. While it is true that many
poles with weights on the order of 1 × 10−5 are required
for high accuracy in the Green’s function, since fourth-order
diagrams include convolutions of seven Green’s functions,
poles with such small amplitude become irrelevant, and only a
small number of heavy weight poles are needed to accurately
reflect the higher-order diagrams.

With this in mind we perform self-consistency within the
DMFT framework including self-energies up to fourth or-
der that are iterated to convergence. We present these in the
left-hand frame of Fig. 8 contrasted to the earlier result at
second order. Here we have chosen the weak coupling case of
U = 2 and β = 20. We see that the corrections at fourth order
are not small. While the two curves are qualitatively similar,
one should recall that small changes on the Matsubara axis
can have substantial impact on real-frequency properties. To
illustrate this, we contrast the real axis results in the Fig. 8
right-hand frame for the noninteracting, second-order DMFT,
and fourth-order DMFT solutions. These curves represent the
analytic continuation with no numerical regulator, 
 = 0+,
enabled by PRONYAC. We see that while low frequency fea-
tures of A(ω) are the same, near the band edge, what was
a shoulder at second order is now a peak at fourth order, a
hallmark feature of metal-insulator transitions.

We note that single-shot self-energy calculations at fourth
order have been performed in the past. For example, Ref. [52]
laboriously derives integral expressions for the fourth-order
diagrams which, for particle-hole symmetric problems, col-
lapse from 12 diagrams to four unique sets of three
diagrams [53,54]. They extract the imaginary contributions to
�(4) using a partial spectral representation, leaving a dozen or
more integrals to be performed. In our case, we automatically
generate the necessary closed-form analytic expressions using
AMI, allowing us to evaluate both the real and imaginary
parts simultaneously as well as perform self-consistency at
minimal computational expense while not being restricted
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to particle-hole symmetric problems. We note that other ap-
proaches involving the DLR representation merged with the
hybridization expansion show promising results as well [55]
and have introduced additional simplification that could be
adapted to the context of this paper.

IV. CONCLUSIONS

We have outlined a path to performing renormalized di-
agrammatic calculations by generating a pole representation
of the Green’s function. We compute GF2 and DMFT self-
consistencies for the Bethe lattice using the discrete Lehmann
representation combined with algorithmic Matsubara integra-
tion. Results are well behaved and essentially exact on the
Matsubara axis. We also demonstrate that the result can be
analytically continued to the real-frequency axis We have
combined this approach with algorithmic Matsubara integra-
tion, which allows us to evaluate any diagram using either
a DLR or Prony representation. To demonstrate this we
evaluate the bold diagrammatic resummation up to fourth
order at each iteration (one might call this GF4). Our results
represent an exact and purely analytic result of the self-
consistency with the only error coming from the expansion
into a DLR/Prony basis which is controllable and vanish-
ingly small. We foresee many opportunities for extending
this paper. In particular, we note that the procedure is not
restricted to impurity problems. Alternatively, one can take
a converged result on the Matsubara axis from a preferred
method such as DMFT (including cluster extensions such
as DCA [56,57], dual fermions [58,59], or dynamical vertex
approximation [60]), generate a pole representation, and then
use the GD Green’s function to evaluate any diagrammatic ex-
pansion of interest on both the real- and imaginary-frequency

axes. This would be particularly impactful for density-density
correlation functions and conductivities that cannot be ex-
panded around the noninteracting solution [61,62] and we
expect this can also be adapted to problems in quantum
chemistry [1,9,22,23,63–66]. More generally, merging pole
representations of Green’s functions, effective interactions,
and vertex functions for evaluating Feynman diagrams would
open the doors to a wide array of renormalization procedures
that might be tuned to specific problems or applications.
We note as well that other approaches for real-frequency
evaluation exist, and might yield similarly useful results via
pole representations [30,67]. For example, one can merge
the DLR representations of bosonic two-point or three-point
functions as a tool for collapsing the diagrammatic expan-
sions [32,35,68,69]. We emphasize that Eq. (15) is general
and can be applied to any problem while similar expressions
for polarization and other low-order diagrams are trivially
converted to the pole representation. Finally, we surmise that
alternate pole representations might be constructed that do
not suffer from discretization issues on the real axis [25] or
that use as a constraint smoothness criteria for analytically
continued low-order diagrams for a particular choice of 
.
Such a representation would allow for optimal evaluation on
the real-frequency axis without the irregularities present in
this paper.
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