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The tetragonal heavy-fermion compound CeRh,As, has intriguing low-temperature symmetry-breaking
phases whose nature is unclear. The unconventional superconducting phase is complemented by other normal-
state phases which presumably involve ordering of 4f electron multipoles supported by the Kramers doublets
split by the tetragonal crystal electric field (CEF). The most striking aspect is the pronounced anisotropic H-T
phase boundary for in-plane and out-of plane field directions. Using a localized 4f CEF model we demonstrate
that its essential features can be understood as the result of competing low-field easy-plane magnetic order and
field-induced quadrupolar order of xy type. We present calculations based on coupled multipole random phase
approximation response function approach as well as molecular field treatment in the ordered regime. We use
an analytical approach for a reduced quasiquartet model and numerical calculations for the complete CEF level
scheme. We discuss the quantum critical properties as function of multipolar control parameters and explain the
origin of a pronounced ac anisotropy of the H-T phase diagram. Finally, the field and temperature evolution of
multipolar order parameters is derived and the high-field phase diagram is predicted.
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I. INTRODUCTION

The tetragonal (space group Dj,) compound CeRh,As,
has been added to the list of heavy-fermion systems with
complex symmetry-breaking phases at low temperature and
fields. Primarily superconductivity (SC) was discovered [1]
with T, = 0.3 K and proposed [2—4] to be of unconventional
nature, in particular for field along ¢ axis it was suggested
that a transition between even and odd parity states takes
place in an external field. This transition is claimed to be con-
nected to the locally noncentrosymmetric crystal symmetry
[5] as shown in Fig. 1 and exemplified by the lack of local
inversion symmetry at the f-electron sites. This has, however,
negligible influence on the localized 4 f electrons since crystal
electric field (CEF) potentials which are odd under inversion
have no effect within the f-electron subspace. Furthermore,
the SC phase was found to be surrounded by other phases
which break the symmetry in the normal state [4,6—8] with
a zero-field Ty = 0.5 K which is a familiar scenario for heavy-
fermion compounds [9]. As for the SC phase what kind of
order parameters are involved is still unidentified but SR
experiments suggests that spontaneous magnetic moments are
formed below Tj although their size is still unknown [10].
The magnetic order has been excluded to be of ferromagnetic
(FM) type [4,6] but the ordering wave vector is so far not
known, we may conjecture that it is of antiferromagnetic
(AF) type. This may be drawn from calculated Fermi-surface
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nesting properties [11] and observed spin fluctuation peaks
[12] at the AF wave vector q = (;r, ). Furthermore, NMR
experiments [13] indicate that magnetism should be of the
easy-plane type, judging from spin fluctuations in the dis-
ordered phase. Like SC, this unidentified phase appearing
below T has, however, a striking a-c axis anisotropy of the
phase boundary shown in Fig. 2 that is incompatible with
conventional antiferromagnetism. It cannot be explained by
a simple exchange anisotropy associated with the C4, CEF
ground-state doublet. First, the anisotropy is only moderate
as expressed by similar dipolar ground-state matrix elements
in both directions. Second, such anisotropy can never lead to
the appearance of another high-field phase with strongly in-
creasing ordering temperature as is observed for in-plane field
in Fig. 2. This requires the presence of additional degrees of
freedom to be involved. A natural candidate are quadrupoles
supported by the Ce** (J = %) CEF states that consist of three
Kramers doublets where the lower two may be considered to
form a quasiquartet. At the end of Sec. II we argue in detail
which kind of quadrupole can be candidate.

Since CeRh;As; is a heavy-fermion system hybridization
with conduction electrons is present. The estimated Kondo
temperature 7* (bandwidth of heavy quasiparticles) is of the
same order as the splitting A of the quasiquartet system [6,14].
However, when considering purely the question of symmetry
breaking and the stability of multipolar phases the local 4 f ap-
proach may be a reasonable starting point despite the presence
of hybridization. This has been successfully demonstrated for
the prominent pure quartet multipole order in CeBg [15,16]
and also in the quasiquartet compound YbRu,Ge, [17,18]
which show strong and moderate hybridization effects, re-
spectively. The localized approach will also be used here for
CeRh;As; to investigate its most striking feature: the extreme
anisotropy of the normal-state phase diagram. In any case
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FIG. 1. Conventional unit cell of locally noncentrosymmetric
CeRh,As; [5]. The Ce site has Cy, symmetry and is not an inversion
center, concomitantly two inequivalent Rh as well as As sites exist.

it is necessary to investigate its predictions as a reference
point. Recent ARPES experiments [19] have indeed proposed
a predominantly localized character of 4f electrons in this
compound and support such starting point.

For the determination of the H-T phase diagrams we use
the reduced quasiquartet model in an analytical approach as
well as the full CEF level scheme with three Kramers dou-
blets in a numerical treatment. From symmetry arguments
we identify in which configuration of conjectured dipolar
and quadrupolar order parameters one may expect a strong
a-c anisotropy of the H-T phase diagram to appear. The
most convenient technique of its determination is the response
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FIG. 2. Normal-state H-T phase boundaries for CeRh;As,
adapted from Hafner er al. [6] for field direction L ¢ and Semeniuk
et al. [4] for field direction |c. The corresponding experimental
methods are indicated in the legend. Their appearance and anisotropy
is in qualitative agreement with the calculated curves in Figs. 5(a)
and 9(a). For the comparison of typical field scales see Table III.

function formalism. Starting from the bare single-site CEF
level susceptibilities we derive the coupled collective RPA
multipole susceptibilities in the external field that include the
intersite multipole interactions and follow their singularities
from the disordered side which locates the phase boundaries.
We show that the coupling of magnetic dipolar and quadrupo-
lar moments happens through mixed multipole field-induced
susceptibilities which appear only for the in-plane field direc-
tion. The field-induced mixing of the quasiquartet doublets
generates a quadrupolar ground-state moment which, through
field-induced coupling with the dipolar moment stabilizes the
ordered phase for the in-plane field. This mechanism is absent
for field along c axis and this distinction lies at the origin of the
observed anisotropy of the phase diagram which will be ex-
plained in a semiquantitative way both within the quasiquartet
model and the full CEF level scheme.

Furthermore, we show that at small intersite quadrupolar
coupling the AF and field-induced quadrupolar (FIQ) are sep-
arated, the former appearing at small and the latter at larger
fields. As the quadrupole interaction increases at a quantum
critical point (QCP) the two phase boundaries approach and
rapidly merge into a single phase boundary. We also cal-
culated the field dependence of magnetic and quadrupolar
order parameters to illustrate the change of character of the
phase diagram as function of interaction control parameters.
In addition, we comment on the in-plane anisotropy of the
critical fields and their dependence on control parameters.
Finally, we look at the very high-field behavior and show that
for the in-plane field the transition temperature of the mostly
quadrupolar phase increases up to very large values and then
drops steeply when the field strength becomes comparable to
the quasiquartet splitting.

II. CEF MODEL FOR CeRh;As, AND ITS
MULTIPOLE MOMENTS

The complete CEF Hamiltonian model comprising all three
doublets appropriate for J = % in Cy, site symmetry has been
discussed in Ref. [6]. We extend the discussion and include
the multipolar operators and the dependence of their matrix
elements on the CEF mixing parameter 6 as given in Ap-
pendix A. The latter has been determined from a fit to the
high-temperature susceptibility of CeRh,As,. It turns out that

the level sequence is F;l) (O K, ground state), I'¢c (30 K),

and F;z) (180 K) where energies are given as equivalent tem-
peratures (kg = 1). Therefore, at moderate temperatures one
has to deal only with a quasiquartet system consisting of the
lowest two doublets split by A = 30 K; this restriction is con-
venient for analytical calculations but fully numerical results
comprising all three levels will also be presented. The wave
functions of the quasiquartet are denoted by |F§?) = |lo) and
ITeo) = |20).

However, first we give a summary of all CEF properties for
clarity and orientation. The Ce ions are located on a locally
noncentrosymmetric lattice (space group D], or P4/nmm)
in layered tetragonal planes with site symmetry Cy,, highest
rotational axis is a fourfold one. The formal charge is 3+
and Hund’s rules yield a 2F5/2 ground-state configuration.
The J = % CEF Hamiltonian, written in Steven’s operator
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TABLE I. Quadrupole operator basis in Cs, symmetry expressed
in terms of angular momentum operators.

r, 0 =32 -JU + D),
I3 Op_p =JX2_J3 = %(Ji—i—ﬁ)y
Ty Oy =Jdy+ ) = 57 —J2),
re o, = JJ, +JJ,

= %[(L— —J) L+ U =T,
r? o, =J1J + ..

=3y + I+ Ty +T0)]

representation [20-22] is therefore
Herr = BYOY + BOY + B;0;. (1)

Its eigenvalues, the CEF level energies are obtained as

Epo = 4(B) — 15B)) — 6\/ (BY +20BY)° + (2v/5B2)’,
Er, = —8(BS — 15BY),

2 2
Epo = 4(By — 15B]) + 6\/ (BY +20BY)" + (2v5B3)". (2)
and the corresponding eigenstates consisting of three Kramers
doublets are given in the basis of free-ion states |[M) (|M| <
%) as
TSV} = cos O] £3) — sin0]F3),
ITe) = |£3), 3)
P} = sin@]£3) + cos 0] F3),

where 0 is the mixing angle of the two Fgl)’(z) doublets that
depends on all CEF parameters according to

1 2584
0 = — tan~" L 4)
2 B) + 20BY

and its value is 8 = 0.346zr for CeRh,As,. Therefore, the
relevant matrix elements of dipolar and quadrupolar operators
also depend on this angle. They are listed in Table IV and
plotted in Fig. 10 of Appendix A. (We note that our definition
of 6 differs to Hafner et al. [6] by setting 6 — 7 /2 — 6 and
we assume Bﬁ > 0.) The complete quadrupolar operator basis
in the above CEF state space is is explicitly given in Table I.
In a large part of the work we will use the quasiquartet model
with two doublets split by A. We stress that we use the proper
wave functions for each doublet given above corresponding to
the 6 value for CeRh; As; and not the wave functions of a fully
degenerate cubic quartet. These CEF states are unchanged in
an external field Hy parallel to the ¢ axis. However, for Hy || a
as described by the Zeeman term in Eq. (5) or in a molecular
field consisting of Zeeman term and internal polarization and
order parameters [Eq. (35)] the bare CEF states given above
are further mixed. Consequently, the matrix elements of multi-
pole operators depend on 6 as well on the applied or molecular
fields which have to be determined self-consistently. This
evaluation of matrix elements, expectation values, and suscep-
tibilities of the multipolar operators can be done either fully
numerically or semianalytically. The former case is necessary

if we consider temperatures and fields whose effective energy
scale is comparable to the lowest CEF splitting energy A. The
latter case is possible in the low field and temperature range
(h, T < A) where one may restrict to the lowest quasiquartet
states as carried out in the main text. It is important to note that
even though this inequality holds the mixing of the excited I'¢
into the ground state Fgl) by the in-plane field is the essential
mechanism for the appearance of a large anisotropy of phase
boundaries because it induces a large quadrupole moment in
the ground state as shown in Sec. IV.

For compelling reasons discussed below Eq. (5) we will
restrict our model for the order parameters and phase diagrams
inHp || ¢, a to two candidates: the magnetic dipole J, (choos-
ing external field Hy along x axis) and the electric quadrupole
O,y = (JxJy + J,J;) which break and preserve time-reversal
symmetry, respectively. This model might also be described in
a pseudospin language [15,16] using o = =+ for the Kramers
degree of each doublet and t = 1, 2 for the orbital degree of
the two doublets. In order to avoid the various necessary state
and operator mappings we here remain in the original basis of
total angular momentum operators J.

For the intersite interactions responsible for the possi-
ble broken-symmetry phases we use the most rudimentary
model containing magnetic out-of-plane (c¢) and in-plane (a)
nearest-neighbor (NN) exchange as well as a NN quadrupolar
interaction. Since both ferromagnetic and ferroquadrupolar
orders are ruled out by experimental evidence, the exchange is
assumed to be of antiferromagnetic (AF) type for both multi-
poles. This conjecture is in agreement with the observed peak
positions at q = (;r, ) in the effective Ruderman-Kittel-
Kasuya-Yosida (RKKY) interaction determined by the nesting
vector of the calculated band structure of CeRh,As, [11] and
this also matches well with the peak positions observed in
inelastic neutron scattering [12]. Together with CEF potential
and Zeeman term the model is then described by

H = Hcgr — gy poHp - ZJi

1 1 -
=3 2GS = 5 D IS + )
(ij) (i)

- % Y I204 ()05, )
(ij)

where we restricted to nearest-neighbor intersite interactions
for the multipoles. Here Hy with index “0” always refers to
the external applied field whereas later on fields with other
indices or none at all (H) refer to the internal molecular
fields that contain the effect of polarization and spontaneous
order. Since we restrict to NN (ij) sites within the tetrag-
onal plane and the c-axis exchange is subdominant as seen
from the susceptibility there are two interaction constants in-
volved: (i) the dipolar exchange constant I, = z|I°|; (I < 0)
where we suppress a possible a, ¢ exchange anisotropy (ii)
the quadrupolar effective coupling Ip = z|18|; (Ig < 0) with
z denoting the NN coordination number. We also define the
reduced external field as hg = g;uguoHp and later likewise

for the reduced molecular field h.
We now justify empirically and from symmetry arguments
why we only include the O,, quadrupole interactions in the
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above Hamiltonian and the following analysis. The zero-field
AF order is assumed to be of easy-plane type in agreement
with the preceding high-temperature susceptibility anisotropy.
Since x, y directions are equivalent we choose the J, mag-
netic moment. Then in a magnetic field along an axis o =
Z,x, Hg'J, has to belong to the same representation as the
quadrupole operator Or if there should be a mutual influence
of Or and J,. For o =z this would be O,; belonging to
the doubly degenerate Or, = (Oy;, O.,). Since for this field
direction a normal AF phase boundary is observed, there can
be no induced quadrupole and, therefore, the J2 intersite
interaction for Or, must be negligible. For o = x it will be
the Or, = Oy,. In this field direction the phase diagram is
strongly anomalous and therefore the J€ intersite interaction
for Or, should be important and included in Eq. (5). The
remaining O,>_> and 03 do not transform as o Hy J, for both
field directions and therefore may be ignored. The latter, being
the trivial representation already present in the CEF potential,
cannot act as an order parameter anyway. Therefore, if we
restrict to the two field directions mentioned the above model
Hamiltonian is adequate. At the end of Sec. IV C we will argue
that for general in-plane direction of the field not treated here
the O,>_,» quadrupole and its intersite coupling will have to
be included.

III. COUPLED DIPOLAR-QUADRUPOLAR RPA
RESPONSE FUNCTIONS

The H-T multipolar phase boundaries which we intend to
investigate are most conveniently determined by following
the line of singularities for the collective RPA susceptibil-
ities in the H-T plane that marks the onset of long-range
order. It is also essential to obtain an understanding of the
field and temperature dependence of the coexisting magnetic
and quadrupolar order parameters inside the ordered region
as may be obtained within the molecular field approxima-
tion (MFA) discussed in Sec. V. The determination of phase
boundaries is much simpler with the former method and in
fact will be carried out analytically within the quasiquartet
model. It is also possible but more time consuming within the
MFA by solving the self-consistent equation for the order pa-
rameters [Eq. (40)] searching numerically for the temperature
where they vanish. Within numerical accuracy both methods
give the same result and we prefer the former involving the
RPA susceptibilities in the paraphase.

For nonzero molecular field H all CEF levels (Kramers
doublets) are split leaving only singlets. In this case the static
homogeneous single-site (noninteracting) response function
for multipole operators X, acting on the CEF states may be
written as

X0p(T. ) =D (nl Xy |m) (m| Xy |n)
n#m

Pn — Pm
Em - En

+ﬂ[Z<n|Xa|n><n|Xﬂ|n>pn - <Xa><xﬂ>], (6)
where the first and second terms are van Vleck and Curie
contributions and 8 = 1/(kgT). The energies E, and states
|n) are nondegenerate CEF eigenvalues and eigenstates in the
molecular field h = hy — I,,(J,.) and p, = Z~'exp(—BE,)

TABLE II. Possible quadrupoles (see Table I) Or that can couple
to dipoles J for symmetry field directions [in plane (H,, H,) or out
of plane H.]. The C4, representation Or has to be contained in the
product '(H) ® I'(J). Note that [24] s @ 's =T, @I @[3 & Iy
(there is no I'; quadrupole). The other products are trivial. We
mention that the fully symmetric OY cannot be an order parameter
since it does not break any local symmetry and therefore is already
contained in the CEF Hamiltonian (1) of the disordered phase.
The case corresponding to the model in Eq. (5) is given by the
first line with (H,, 0) ® (0, J,) corresponding to a field-induced O,
quadrupole. For arbitrary in-plane field direction O,2_,» would have
to be included.

reIrJd) I s T, T
FS ®F5 (Hw [1\)®(J.X7J)) Oxz_yz Oxy
Is®T (Hy, H)) ® J. (0,2, 0.)
I ®rs H, ® (J, ) (0,2, 0.,)
rher H . ®J, 09

are their thermal occupations with Z = Zn exp(—pBE,) de-
noting the partition function. The notation (X,) denotes the
thermal expectation value of the respective operator X, . In the
dipolar molecular field h the quadrupolar interaction appears
only implicitly via the polarization (J). In the limit h — 0
this will also lead to the correct form of the susceptibilities for
the three degenerate Kramers doublets.

Now we include intersite interactions of two different mul-
tipoles on nearest-neighbor sites (i, j) as defined by Iy 5 =
> @jy 1a,8(iJ). Then the coupled 2 x 2 multipolar susceptibil-
ity matrix in X, = (A, B) operator space is given by the RPA
expression [23]

x=[1-1x7"x" %)

where / has only the diagonal matrix elements Iy, Iz. The
diagonal susceptibility elements of the matrix x are then
obtained as

s = X/(a)A(l - IBX}gB) - IAXA(I)BX)_gA
1—Iaxd — Ipxos + IAIB(XgAXgB - X/(l)BXl(?)A)

o — Xip (1= TaXia) = I Xia XAs ®
L= Iax2a — IeXgp + Ialp (X34 X85 — X5aXA5)

where we denote I, = z|I,g| and Ip = z|18|. Note that in a non-

vanishing field h the mixed multipole susceptibilities x5 =
X9 (A # B) are generally nonzero, depending on the sym-
metry of multipole operators. For the current model of three
Kramers doublets in CeRh, As; we consider the possible cases
of coupled dipole (J) and quadrupole (Or) moments listed
in Table I as incipient order parameters. This table identifies
the dipoles and quadrupoles and their respective zero-field
irreducible representations for point group Cy, which can be
mutually induced in a finite magnetic field along one of the
tetragonal axes. As discussed above it shows that the most
promising case of strong in-plane and out-of-plane anisotropy
is the combination of a I'y quadrupole and an in-plane mag-
netic ['s dipolar order parameter on which we will focus
in the following: (i) out-of-plane field Hy = (0, 0, Hy) and
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A =J, (or equivalently J;) and B = O,y; (ii) in-plane field
Hy = (Hp,0,0)and A = J, and B = O,,.

In the first case (i) we can read off from Table II that the
nondiagonal x$, vanishes identically. Then Eq. (8) decouples
to

Xou = Xla[l = luxle] s @ =AB ©
for the diagonal components and the field dependencies for
A and B are mutually independent. In the second case (ii)
of in-plane field the product J.H, belongs to the same Cy,
representation I'y as O,, and therefore there will be a nonva-
nishing nondiagonal field-induced susceptibility component
X94 = XJg; consequently, the full expressions in Eq. (8) have
to be used for the diagonal dipolar and quadrupolar RPA
response functions x;, ;, and xo,,.0,,-

IV. RESTRICTED PARAMAGNETIC
QUASIQUARTET MODEL

For understanding the mechanism of dipolar and quadrupo-
lar coexisting order and associated anisotropic phase diagram
it is essential to investigate a simplified model which may
be treated analytically giving closed solutions for transition
temperatures and critical fields. This is possible if we re-
strict to the lowest two Kramers doublets F;l), I'¢ forming
a quasiquartet split by A ~ 30K in Eq. (2). In fact if we
set the tetragonal CEF parameters like B — 0, B} — —Bu,
and Bﬁ — —5B4 in Eq. (1), A — 0 and these two dou-
blets would form the cubic I's quartet for J = % with 6 =
%tan"(«/g/Z) = 0.1347. As stressed before we use, how-

ever, the proper doublet wave functions |I‘§l)), |T¢) for the
6 = 0.3467 corresponding to CeRh,As;.

Using this simplified model naturally implies that we also
restrict to fields and temperatures of the order of the quasi-
quartet splitting A = 30 K where the upper third quartet at
180 K is not yet relevant. In fact we are mostly in the limit
T, h < A. This allows further simplifications: We can neglect
the thermal population of the I'¢ and for the discussion of the
ordered phase may approximately eliminate the excited ['¢ to
lowest order in the molecular fields. Nevertheless, the non-
dia%onal dipolar and quadrupolar matrix elements between
F;l , I'e and the associated mixing of states for in-plane fields
provide the essential mechanism to create the anisotropy of
phase boundaries.

A. Essentials of the quasiquartet model in the field

To study the H-T phase diagram we need to know the split
CEF energies and corresponding eigenstates in an applied
field. As described in detail in Sec. V it is, however, the molec-
ular fields, generically called H containing the applied field
Hj and the effect of polarization through intersite interactions
that acts on each site. In terms of this effective molecular field
H the single-site Hamiltonian is given by

H = er|T)(T'| — g/uppoH - J, (10)

r
where er = (—A/2, A/2) and |T") refer to the (shifted) CEF
energies and eigenstates of the quasiquartet consisting of
[1£) and |2+) [Eq. (1)]. The external field Hy may be ori-
ented parallel (Hy = HyZ) or perpendicular (Hy = HyX) to

<
N I L ]
o4 O — hlla

‘ l . \ !
0 0.1 0.2 0.3
h/A

FIG. 3. Splitting of the quasiquartet level scheme in the molec-
ular field & (equivalent to applied field kg for I, = 0) according to
Egs. (11) and (12). The relative size of the linear splitting of 1";” and
I'¢ is reversed when changing field direction from ¢ to a in agreement
with intradoublet matrix elements in Table I'V.

the tetragonal axis, respectively. In the paramagnetic state
it is aligned with the molecular field h = hy — 1,,(J). where
we defined h = g;uguoH previously as the reduced field in
equivalent energy units; later we will also use the dimension-
less field strength 7' = h/A normalized to the quasiquartet
splitting.

Out-of-plane case h || Z (¢ axis). Due to the diagonal J,
matrix the eigenstates will be unchanged but the Kramers
doublet (i = 1, 2) energies split described by

E; = (—D’% Fmah;  |[EF) =it). (11
The matrix elements 7.
tabulated in Table I'V.

In-plane case h || X (a axis). Now the J, matrix has nondi-
agonal elements [Eq. (A1)], therefore, the CEF states will be
mixed to new eigenstates. The corresponding mapping onto
the new basis may be done by first performing a state rotation
inside each doublet and then between the two doublets. The
result for the four split level energies is (i = 1, 2)

; used here and in the following are

E;f = cos® aiE;F + sin® aiE;F
+(—1)' sin(Rag. )(m 1), (12)

where analogous to Eq. (11) Ejl[ = (—1)’% + my;h are the
doublets split by their intrinsic linear Zeeman effect. We also
used the notation i = 2, 1 for i = (1, 2). The mixing of the
two levels is characterized by the angles o1 according to

+£2m/h mh
— oy >+ ,  (13)
A ﬂ:(maz —m,,l)h A
where the approximation holds for /A < 1. The evolution of
quasiquartet level energies in the molecular field is shown in

Fig. 3 for the two field directions. Furthermore, the eigenstates
for the in-plane field are accordingly given by

tan 2a4 =

ot + . +
|E;) = cosay|E,) —sinay|E,;),

|ES) = sinax|ES) + cosas |ES) (14)
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with |E;> =(li+)F |i—))/ﬁ denoting the individual ro-
tated Kramers doublet states in the transverse field.

For the calculation of the necessary response functions for
Jy, Oy, one must transform the zero-field multipole opera-
tor matrices in Eqgs. (Al) and (A3) (the 4 x 4 block) to the
eigenstates in the applied field: (i) For ¢ direction they are
unchanged and J,, Oy, are identical to those in Eqs. (A1) and
(A3). (ii) For a direction (H || X chosen) the transformation to
the new basis in Eq. (14) leads to

-M; 0 -M,, 0
| o M, o M
]x - _1‘4‘;+ 0 _M(;E 0 ’ (15)
0o M_ 0 M,
0 —M, 0 M,
— Mul 0 _M:z— 0
=il N o | e
i, 0 Mo 0
0 —My 0 -,
B 77 R /A
O =il"0" w0 - (7
M’Q 0 My 0

Comparing this with the c-axis field H || Z direction in
Egs. (Al) and (A3) we notice that the essential difference
are field-induced quadrupolar matrix elements MQ in the split
ground-state Kramers doublet F;l) which appear for the a-axis
field orientation but are absent in the c-axis field direction (be-
cause the latter does not mix the CEF eigenstates). Therefore,
for the latter there will be no mutual dependence of dipole
and quadrupole moments in the field, whereas for a-axis field
direction such a dependence is induced. This distinction is
at the origin of the strongly anisotropic behavior of phase
boundaries in the two field directions as derived in detail
below.

The other matrix elements for a-axis field are simply mod-
ified (or interchanged) as compared to the zero-field case.
Explicitly, we have for the dipolar operators [with 7 = (2, 1)
fori = (1,2)]

+ 2 L2 >
M; = mg; cos” o + my; sin” o F my sin 2a,

M, = m) cos2a £ (1/2)(my — my) sin 2a,

a

‘ , - (18)
M, = mgicos” a —my; sin” «,
M., = m, £ (1/2)(ma1 + ma) sin(2a)
and likewise for the quadrupolar operator
Mg = ml, sin(2a),
v (19)

M’Q = mjy cos(2a).

Importantly, the field-induced O, quadrupolar matrix element
appears between the same split ground-state wave functions
as those of the dipolar J, operator enabling their coupling
through mixed response functions. One can see the origin of
the induced matrix element directly in the low-field approx-
imation where « ~ mh/A < 7. Then Mq =~ 2m,myh/A
which shows that it is linear in & and proportional to both
magnetic and quadrupolar matrix elements between the two
doublets. Thus, the transverse field mixes a I'¢ component

into the ground state with amplitude ~m/h/A that forms
an induced quadrupole ground-state moment M, due to the
nondiagonal original quadrupole matrix element m’Q between

{" lowest and I's excited CEF Kramers doublet. This mech-
anism is decisive for the appearance of the high-field-induced
quadrupolar phase.

B. Response functions in the quasiquartet system

With the above dipolar and quadrupolar matrices in
the molecular field eigenstates we can now compute the bare
multipolar response functions in Eq. (6) that enter into the
collective RPA susceptibilities in Eq. (8). In this evaluation we
assume that the effect of the splitting of upper levels and their
thermal occupation may be neglected due to h/A, T/A K 1
and the nondiagonal matrix elements are replaced by their
zero-field values, independent of the field direction. How-
ever, the split ground-state energies, occupations, and matrix
elements have to be treated exactly. Then we obtain the fol-
lowing.

(i) Out-of-plane case h || Z (c axis):

2 6_[
X = xb = 2y om, t; T (20)

c

where 8. = 2m. h is the splitting of the F;l) ground-state
doublet in the c-parallel field. As explained above for c-
parallel field no induced quadrupole moment appears in
the ground state and therefore the quadrupolar and mixed
dipolar-quadrupolar susceptibilities are very small or vanish,
respectively.

(ii) In-plane case h || X (a axis):

2m?  2M? 8
0 a al a
= —% tanh —,
X ="A T3 2T
2m?  2M? Ky
0 _ 0 0 a
Xoo = A + Sa tanh 5T (21
2M M, 2mlm, 5
0 atvtQ a0 a
= ~ + tanh —,
%o ( 5, A ) T

where §, = 2(myy cos? o + Mg sin® w)h is the ground-state
doublet splitting in the a-parallel field. The dominant terms in
these susceptibilities are the pseudo-Curie terms originating
from the split ground state with a splitting energy 8, and
the matrix elements given in Eqgs. (18) and (19). The field
dependence of these bare response functions is presented in
Fig. 4 which demonstrates the induced nature of the mixed
response )A(;)Q.

C. Phase boundaries in the quasiquartet model

The transition to the competing multipolar phases for Hy ||
a appears when the RPA susceptibilities in Eq. (8) diverge.
This defines the phase boundary in the H-T plane separat-
ing the paraphase from the ordered phase with nonvanishing
magnetic and quadrupolar order parameters (J,) and (O,,) at
each site (Sec. V). With A = J, and B = O,, the singularity
appears if

Det (1—1x°) = 1= Luxy, — loxgo

+1nlp (Xy(')yXBQ - X.\(')QXB,V) =0 (22
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FIG. 4. Bare susceptibilities (I, = Ip = 0) as function of applied
external field hy and temperature. (a) The diagonal magnetic suscep-
tibilities are suppressed in the field while the quadrupolar and mixed
dipolar and quadrupolar (x,o = xpy) ones increase with field. The
latter is field induced, vanishing for sy = 0. The crossing of x,, and
Xyo appears in the region of the QCP in Fig. 5. (b) Susceptibilities
dominated by pseudo-Curie ground-state contribution show strong
temperature dependence while the mostly van Vleck quadrupolar one
shows very little 7 dependence at low fields.

is satisfied, where X)(?Q = ng. Using Eq. (21) for the approx-
imate bare susceptibilities this equation may be written in
a more transparent form suitable for a closed solution for
the critical temperature T.(h) where the molecular field is
given by h = hg — I,,{J,). For this purpose we introduce a
set of appropriate dimensionless control parameters for dipo-
lar as well as quadrupolar interactions characterized by the
magnetic exchange I,, = I and quadrupolar Iy = Ip effective
interaction constants, respectively [see after Egs. (5) and (8)].
They are given by

m o__ ZMgllm %.m _ Zmlzlm
h — Sa s A T A ’
72 /2
o 2, 2mylp s
éh - 8 k] éA _— A . ( )

The éZ”Q are the control parameters for the nondiagonal van
Vleck contributions to the susceptibility while the 5;1"’Q are

those for the pseudo-Curie contributions associated with the
split ground-state doublet. The latter are the more important
ones and strongly field dependent. For small fields /A < 1
we have &;" ~ 1/h due to the suppression caused by the split-
ting while ShQ ~ h due to the induced quadrupole moment in
the split ground-state doublet. Hence, for increasing field there
is a tendency to suppress magnetic order in favor of induced
quadrupolar order.

With these expressions the singularity condition (22) may
be expressed as a quadratic equation for ¢, = tanh(8,/2T):

éA(éA + Zéh)é'az + ()Om%-hQ + pQé}:n)é‘a — PmPQ
= A2 4+ B, — C =0, (24)

where we used the abbreviations p, =1—§&J and pp =

1- ég. Furthermore, we defined the geometric means £, =
(S’A”EE)% and &, = (é,;"éhQ)%. Then the solutions are {F =
[—B + /B2 + 4AC)]/(2A). Since m,; < 0 also 8 < 0 and the
physical solution is {,” = {,. The critical phase boundary is
then finally given by

8a(h)
2 tanh™! ¢,(h)’

The field dependence of the critical temperature is shown
in detail in Fig. 5(a). Thereby the magnetic exchange I,
has been fixed to reproduce the approximate experimental
value 7,,(0)/A = 0.017 and the curves are shown for different
quadrupolar interaction parameters. It shows a separation into
low-field antiferromagnetic (AF) with transition temperature
Ti: = T,,(h) and high field-induced quadrupolar (FIQ) phase
(also of staggered type) with transition temperature T, =
Tp(h). A detailed discussion will be given in Sec. VI. Here we
want to further analyze the quantum critical point (QCP) and
surrounding region where the two phases meet and merge into
one with coexisting order parameters of both types throughout
the whole field range. We are using the designation quantum
critical in the sense that a zero-temperature phase change
occurs as function of internal interaction control parameters
I, Ip [equivalently (&7, éAQ)] or external driving parameter
(the applied magnetic field 4p) on which the ground-state
energy and hence the type of symmetry breaking depends. We
are employing the RPA method in the paraphase and a mean
field treatment in the ordered phase. Therefore, the influence
of fluctuations caused by collective low-energy modes in the
ordered phase on the quantum critical properties (e.g., scaling
behavior of the order parameter close to the QCP lines or
end point) is naturally not included in our treatment. This
would require a dynamical extension of Eq. (8) for the coupled
dipolar and quadrupolar degrees of freedom in the ordered
state.

The zeros of the transition temperature in Eq. (25) are
approached at the two quantum critical fields 4= when the
denominator diverges, i.e., {,(hf) — —1 (negative because
8 < 0 due to m,; < 0). Their precise values may be read off
from Fig. 5(a) obtained from Egs. (24) and (25) but we also
may derive closed expressions for the critical fields. Setting

Ter(h) = (25)

¢, = —1 [corresponding to vanishing T, in Eq. (24)] we arrive
at the condition
28} — (omE2 + poty) + (EX +£9) =1 (26)
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FIG. 5. (a) Low-field phase boundary curves T;,.(h) = T,, (left) or
Tp (right) for magnetic exchange /,, = 0.019 and various quadrupo-
lar coupling constants Iy. Note that for Iy = 0 the critical field of
AF order for a direction would be slightly below the value for ¢
direction. For I, > 0, however, the former rapidly overtakes the latter
while at the same time a new phase boundary appears at higher
field that signifies the onset of field-induced quadrupolar (FIQ) order.
The two phase boundaries approach each other for increasing I, and
touch at the QCP end point defined by Eq. (28). The red curves are
for Iy close to the end point I, >~ 0.0116 where (1, Ip) correspond
to the dimensionless control parameters (§%, sg) =~ (0.0596, 0.633).
For even larger I, the two separate phase regions merge into one
with coexisting AF and FIQ order [see also Fig. 7(b)] for all fields.
(b) Evolution of QCP lines hE_ for AFM and FQI as function of

Ocr
quadrupolar interaction strength, merging at the QCP end point ;.

In lowest order in h' = h/A <« 1 we find & = &X' /W’ and
£ = k21, therefore, &, = £, independent of /' to this
order. Here we defined k = my;/ (Zm’az) as a measure of the
relative strength of diagonal and nondiagonal dipolar matrix
elements [Eq. (A3)]. The resulting quadratic equation delivers
the critical fields of the two QCP’s as

BB CZKZ(I—SS)%; o
(1-&R)&8 (1-&R)e8

where in addition to the geometric mean &, = (gg’sg)% we

also use the arithmetic mean £} = %(SZ’ + $AQ). From this
equation we conclude that two distinct 4 [QCP, and QCP,,

lines in Fig. 5(b)] exist for D = B> — C > 0 and merge at a
unique QCP end point for D = 0. For D < 0 the AF and FIQ
phases coexist in the whole field range and 4= no longer ap-
pears. We define the relative critical field difference of the two
phases by the ratio 8h., /2 = (W5 — W )/(WE + K7,). Then
the end point is determined by 8%../2 = 0 where explicitly

’ |K| RN(sm 0 3
8hl/2 = —————5D(EX . £5)°,
. _ 177
Dy £5) = [(si +&1) - 5]
—(1-€)(1 - €R)EX. (28)

The condition 84../2 = 0 defines a quantum critical path in
the interaction control parameter plane (§), Eg) along which
the two QCP’s have merged into a single 4. Along this path
its size is given by

1
m 0 2
g = Ik (53(1—%)) . (29)
Ex(1-£2)

Since all our discussion was limited to the small field re-
gion, i.e., also A < 1 the above formula is only valid when
EN,1— ég are moderately small. It is nevertheless useful to
discuss the limiting cases qualitatively. (i) For (§%, Eg) —
(0, 1) 1, — O the magnetic phase vanishes and is replaced
by a self-induced quadrupolar phase already at zero field.
This is possible because for ég > 1 the nondiagonal my,
leads to a spontaneous quadrupole order already without field
assistance. (ii) For (&7, .§AQ) — (1, 0) the small quadrupolar
control parameter demands a very large field A, to reach the
merging point with the magnetic transition. This behavior is
shown in Fig 6(a) and discussed further in Sec. VI.

We now comment on what one should expect for the
in-plane anisotropy of the phase boundaries when the field
is rotated perpendicular to ¢ axis. For a general field di-
rection hg = (hoy, hoy) new complications arise: First, two
different quadrupoles (O, O,>_,>) can be induced (Table II)
and, second, together with the dipoles (Jx, J,) all four mul-
tipole operators X, lead to a full bare susceptibility matrix
12 s and likewise for the RPA susceptibility matrix Xop The

resulting in-plane anisotropy will depend crucially on the ma-
trix elements and inter-site coupling of the two quadrupoles
Oy (m/Q, Ip) and O,y (m);, Ip). It is interesting to consider
an extreme case of in-plane anisotropy for Hy || (1, 1) and
Iy = 0. Then O,, and O,>_» interchange their roles, i.e., O,y
will not be induced and since Iy = 0, O,>_y» has no effect.
Then the lower critical field in Fig. 5(a) will be the same as in
the a case (for Ip = 0) and the upper one will not exist, i.e.,
we would recover the bare magnetic phase diagram for this
diagonal field direction.

Finally, in contrast to the in-plane case, the phase boundary
for the out-of-plane field Hy || ¢ is much simpler to calculate
because only the susceptibilities are decoupled according to
Eq. (9). Then the singularity for xq, (¢ = x, y) simply leads
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FIG. 6. (a) Contours of constant §A, /2 in the plane of dimen-
sionless control parameters defined in Eq. (23). Along the full red
line 6h,,./2 = 0 the QCP’s of AFM and FIQ phases merge to the
critical end point on the red line. The red and blue stars correspond
to the asymmetric interaction parameter case of Fig. 5(a), realized in
CeRh,As, and to the present (hypothetical) symmetric case in (b),
respectively. The red dashed line gives the evolution of the critical
field A, of the QCP end point (i.e., when moving on the red full line).
Away from the latter the difference i, of the two QCP,, 5 critical
fields increases rapidly (dashed and dashed-dotted black lines) in
accordance with Fig. 5(b). In (a) &/, and /., denote molecular fields
as given in Eqgs. (28) and (29). (b) Critical temperatures as function
of applied field for (hypothetical) symmetric case £} = Sg ~(0.22
[cf. Fig. 5(a) for the asymmetrical case of CeRh,As;].

to the magnetic transition temperature

8.(h)

Té(h) = — D
n(h) 2 tanh™!

(30)

L)

with the ground-state splitting now given by 8.(h) = 2m.1h
and .;%:" =&"1 - Zl)_l and the c-parallel control parameter
is now &' = 2m/§1m /8.. Furthermore, the molecular field is
given by h = hg — I,,,(J;). The resulting critical field is then
I = |mei I, formally the same as in the in-plane case 77 for
Ip = 0. In fact, the two T, (for Ip = 0) are rather similar in
Fig. 5(a).

V. DESCRIPTION OF THE ORDERED AF AND FIQ PHASES

Now we turn to a discussion of the ordered phases as
characterized by the temperature and field dependence of
magnetic and quadrupolar moments using the MFA for the
Hamiltonian in Eq. (5). Naturally this neglects the influence of
fluctuations due to low-energy collective modes in the ordered
regime. This may in particular change the scaling behavior
of order parameter close to the quantum critical line and end
point. These details are beyond the scope of our treatment
where we focus on the global structure and anisotropy of
the phase diagram for which the mean field treatment seems
adequate. Thereby, in accordance with the NN interaction
model we assume AF multipole order with sublattices A =
A, B. The effective single-site Hamiltonian containing three
molecular fields to be determined self-consistently is given by
[with E(;“f(T, H) being a constant]

Hyr =Y Hjyp(i) + E™. (31)
ir
For out-of-plane field direction (hg || ¢) there can be no
induced O,,-type quadrupole and therefore only dipolar
molecular fields are present leading to

H}(i) = Hegr(i) — [heJ2 () + 150, ()] (32)

with molecular fields associated with homogeneous polariza-
tion (J;) and staggered dipolar order parameter (J,), given by
(here A = %1 for AF sublattices . = A, B)

hz = hO - Im("Z)a
hy = Ahy; hy = —ln(Jy). (33)

For in-plane field direction (hy || a) we have a more complex
situation with three molecular fields including that of the
induced quadrupole:

Hpi(i) = Hepr(i) + H (i),
Hy (i) = —[hJ () + R Jy(0) + Oy (D], (34)

where the molecular fields corresponding to the in-plane dipo-
lar (J; ) and the induced quadrupolar (O,,) are now given by

hx = hO - [m<Jx),
By = Mhys by = =1 (Jy),
hy = Ahg; hg = —Ig(Ox,). (35)

We stress again that A is the external field and fields with
any other index or none at all (#) are molecular fields. It is
those that are determined from the self-consistency equations.
Then calculating the polarizations (J,) or (J,) for the obtained
molecular fields the external field corresponding to the self-
consistent set of molecular field may be obtained from the first
of the equations in Egs. (32) and (35). From the eigenvalues E,,
and eigenstates |n, A) of this Hamiltonian that depend on the
three expectation values the latter have to be determined self-
consistently according to (A), = ), p.(nA|A|nA). Now p, =
Z~ ! exp(—E,/T) are the occupation of (fully split) CEF levels
in the molecular fields with Z =) exp(—E,/T) denoting
their MF partition function. Using the above equations the
temperature and field dependence of (J;), (J,), = A{J,) and
(Oxy)5 = A{Oxy) may be calculated numerically using the full
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CEF level scheme. For the purpose of deeper understanding
of field-induced polarization and mutual competition of order
parameters it is, however, useful to investigate again the quasi-
quartet model within an analytical approach for the ordered
phases. We also note that the underlying (J,), is staggered
(even in the field) and the applied field is uniform, therefore,
the induced quadrupolar {Oy,), will also be staggered within
the approximations used as expressed in the last of Eq. (40).

Order parameters, polarizations, and effective molecular fields,
effective operator treatment

The staggered order parameters and homogeneous polar-
izations in Egs. (32) and (35) may be obtained analytically by
restricting to the quasiquartet model in the limit 4, T < A.
We focus mainly on the most interesting case where com-
peting order parameters exist: For in-plane field direction
(hg || @) the calculation is rather involved due to the presence
of the induced quadrupolar order parameter (Oy,). In the
quasiquartet space the MF Hamiltonian is given explicitly by
a4 x 4 matrix that has now entries at all places:

—% —mg h* im’Qhé —m;h’}r
Hl(\/[F _ —l'nalhfi_ —/% X —mA[’lh*_ —im’th‘Q ’
—imghy  —myh’ 5 —mgph’
—m h* imyht, —mgah’; 2
(36)

where we defined the complex MF expressions k), = h, +
i’hy. Unlike for the paramagnetic case of Eq. (10) the eigen-
values and eigenstates of this MF Hamiltonian can no longer
be obtained analytically. Therefore, we resort to the effective

J

operator technique [25] where, due to h/A <K 1 the effect
of the upper I'¢ doublet is eliminated and incorporated in
an effective ground-state Hamiltionian whose energies and
eigenstates can be computed analytically and likewise the
dressed matrix elements of multipole operators in the split
ground-state doublets are obtained. This procedure, based on
Brillouin-Wigner perturbation theory, leads to

N —a A 5 1. .
Hy =\ 3 a ] T =500+,
2 2

A 2
51 = —Z(malhx + Zm;m/thhQ),

A 2,
82 = Z(malhy + ZmamthhQ) (37)

The diagonal element —A* /2 is a renormalized level position
that plays no role. The effective MF energy levels E,, (n = +£),
shifted by AT of the split Fgl) ground state, are then given by

A ny o L

Er=F;518 = 75061 +&)° (38)

independent of sublattice A = A, B. The corresponding eigen-
states [,,,) (n = %) in the basis of the unperturbed |14)

doublet states are represented by the columns of the unitary
matrix

1 1 s
o\ =i 1)
Using the procedure described in Appendix B this allows to
compute the MF expectation values of operators in the case
t, h < A with the result given by

U = tan ¢ = 8,/5;. (39)

15| 2

2
(Jy) = |:—ma1 cos ¢ + Zm/am/QhQ sin ¢] tanh o + ngzhx,

2 8 2
() = —A|:—mal sin ¢ + Zm(’lm’QhQ cos ¢] tanh % + Axmfhy’
2 L 8 .2
(Oxy)s =X KmamQ(h)C sin¢ — hy cos ¢) | tanh T + AZmQ hg. (40)

With the molecular fields given in Eq. (35) this closed set
of equations for the homogeneous polarization and the two
staggered order parameters then has to be solved numerically.
They have been written in a form to make their physical
content transparent: (i) In each operator expectation value the
last term is due to the direct admixture of the the excited I'g
into the ground state Fgl) by the molecular field connected
with the same operator. (ii) For (J;) and (J,) the first terms
in parentheses are due to the direct contribution of the Fgl)
ground state to the expectation value. There is no such term
for the quadrupolar (O,) order parameter since this operator
has no (bare) matrix elements in the Kramers doublet ground
state [Eq. (A3)]. (iii)) For (J;) and (J,) the second and
for (Oy,) the only term in parentheses are due to induced
matrix elements in the Fgl) ground state caused by the

(

complementary molecular field, ie., quadrupolar Ay
for the former and dipolar Ay, h, for the latter. This
term leads to the mutual influence and competition
of order parameters. It is also useful to check the
purely magnetic case setting Ip =hg =0. Then we
obtain

) ¢ tanh b + 2w
) = —myg, cos ¢ tanh — + — s
Mal o7 T A

. 8 2
(Jy) = Amy sin ¢ tanh 7 + M hy,

(41)
where now we have the simplified |§| = 2|, |(h? + hf,)% and
tan ¢ = —(h,/h,) without the ~hg contributions.

In the paramagnetic state with ¢ =0 and (J;), =0
only the homogeneous polarization survives and is given
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by
2mahy 2
hy | a: (J,) = m, tanh 7 + Km by
m'>
= bl + 25, 2)

2me1h
ho || ¢ : (J.) = m, tanh #

Z

g |mcl |a
and the corresponding molecular fields are given by A, , =
hy — I,{J; ;). Here the arrows imply the zero-temperature
limit.

VI. DISCUSSION OF RESULTS
FOR THE QUASIQUARTET MODEL

We start our discussion with the field and temperature
behavior of the bare susceptibilities x°, without intersite in-
teractions shown in Fig. 4. The rapid reduction of dipolar
components in the field [Fig. 4(a)] is due to the ground-state
splitting which suppresses their dominant Curie terms. The
reduction is stronger for a than for ¢ direction because |m,;| >
|m1| (Table IV). The quadrupolar susceptibility which has
no ground-state contribution for zero field is almost constant
due to the dominant van Vleck term controlled by mj,. The
most important aspect is the rapid field-induced increase of
mixed X?Q susceptibilities which are allowed by symmetry, in

contrast to fo which remains zero. The decrease of dipolar

components and increase of the mixed X_\?Q suppresses the
magnetic and favors the quadrupolar instability obtained from
the interacting RPA susceptibilities in Eqs. (7) and (8). The
complementary temperature dependence is shown in Fig. 4(b)
with the expected decrease caused by the reduction of thermal
population difference in the split ground-state doublet. While
Yy, zz remain finite, the xx component is reduced to zero at
low temperatures; the latter plays no role in the ordering
instabilities.

The location of instabilities defines the H-T phase dia-
gram of the model for CeRh,As,, i.e., the phase boundaries
Tir(ho) which are presented in Fig. 5 based on the analyt-
ical calculation [Eq. (25)] for the quasiquartet model. The
magnetic exchange coupling I, is fixed such that 7.(0)/A =
0.017 corresponding to the experimental value [6]. For ab-
sent quadrupolar coupling the magnetic T..(ho) = T,,(ho)
transition temperature behaves quite similar for both field di-
rections. For ¢ direction it is slightly larger than for a direction
because as explained above the bare susceptibilities are also
slightly larger for the former case.

The near a-c isotropy of the magnetic phase diagram
for Ip = 0 means that the observed [4,6] pronounced a-c
anisotropy and strong T..(hg) increase for large fields in
CeRh;, As; demands the inclusion of other multipoles and their
interaction beyond the purely magnetic dipoles. There are
many examples in 4f compounds where this has also been
observed like, e.g., rare-earth hexaborides [16], 4f skutteru-
dites [22], and Yb compounds [17,18,26]. As we have argued
before the field-induced coupling to the O,, quadrupole with
its strong nondiagonal matrix element and resulting large bare
and field-induced susceptibilities (Fig. 4) is a prime candidate.
The effect of this inclusion on the critical field curves as

function of the O,, intersite coupling strength is immediately
seen in Fig. 5(a) as a strong increase of the (lower, AF) critical
field h_ . with Iy and the concomitant appearance of a second
transition at higher critical field hg—cr which decreases with
increasing Iy and represents a phase with primary quadrupolar
order. For hy . < h < hy, one has again a sector with fully
disordered phase. Since the two values h(jfcr characterizing
the QCP,, , for the two order parameters move into opposite
directions with increasing I this means that at a critical value
of Iy the two critical field curves will touch and merge into
one curve [the red curves in Fig. 5(a)], i.e., the disordered
sector vanishes at a QCP end point and one has coexisting
AF and quadrupolar order throughout the field range 7 < A
where the quasiquartet model is applicable. Actually, this
does not change qualitatively when performing the numerical
calculations for the full model comprising all CEF states as
discussed below. The opposite movement of the QCP,,, ,, fields
with quadrupolar coupling is presented separately in Fig. 5(b)
and it clearly demonstrates the merging in a quantum critical
end point at around Ip 2~ 0.0116. The real phase diagram in
CeRh;As; is qualitatively well described by our theoretical
results close to the QCP end point (Fig. 2). An observed
phase line with almost constant T, = T, intercepted by a
perpendicular phase boundary and after this a strong, almost
linear increase of T, = Tp with field. The behavior of the
magnetic and quadrupolar order parameters in the various
sectors of the phase diagram will be discussed below. It is
worthwhile to avert the discussion of CeRh,As, for a moment
in favor of a more general perspective. It is interesting to
follow the structure of the phase diagram and its segmentation
as function of both interaction parameters, magnetic [, as
well as quadrupolar I or better in terms of their associated
dimensionless control parameters £\’ and ég. This is presented
in Fig. 6(a). It shows the line of QCP end points in the plane
of control parameters that separates the coexistence phase
with merged critical field lines from the region where two
separate QCP,, and QCP,, still exist. The contours corre-
spond to the magnitude of the critical field splitting given in
Eq. (28). On the (full) QCP end-point line the asymmetric
values (&7, SAQ) 2~ (0.059, 0.633) correspond approximately
to CeRhyAs;. But the same qualitative phase diagram with
touching critical field curves would be obtained with more
symmetric control parameters (§Y, ég) ~ (0.219,0.219) as
shown in Fig. 6(b). In this case, however, the size of T..(0)
and Ao, with respect to CEF splitting A have increased by
a significant factor as compared to the asymmetric case of
CeRh,As; [Fig. 5(a)].

Finally, we proceed to discuss to the ordered regimes be-
low the critical field curves and investigate how the order
parameters evolve with the field and whether it agrees with
previous conjectures made from the instabilities approached
from the disordered regime. The order parameters together
with the homogeneous polarization (J,) as obtained from the
self-consistent solution of Eq. (40) are shown in Fig. 7 for
the two regions: Fig. 7(a) with separated critical fields hZ for
AFM and FIQ QCP’s and Fig. 7(b) for the coexistence case
with nonzero order parameters for the whole field range. In
the left part of Fig. 7(a) the primary AFM order parameter
first induces the quadrupole (red) and then at the critical AFM
field h,, forces it to drop to zero again. Then a disordered
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FIG. 7. Dependence of homogeneous polarization (J,) and order
parameters (J,), (Oy,) on the applied field. (a) For 1, = 0.019, I =
0.01157 in the region with separated AFM and FIQ phases and
intervening paraphase. On the upper critical field &, the order
parameters show a first-order type jump to finite value. (b) For
I, =0.019, I, = 0.0117 within merged coexistence phase. In both
cases T /A = 0.005. For intermediate I, corresponding to QCP end
point, see Fig. 8.

sector prevails up to h&r where now a primary quadrupolar

(red) order parameter reappears due to the large field- in-
duced quadrupole matrix element of the ground-state doublet.
It again induces a secondary AFM order parameter. There-
fore, when progressing from h . to harcr the magnetic and
quadrupolar order parameters interchange their roles. In the
coexistence case [Fig. 7(b)] the critical fields cease to exist
and both order parameters are finite in the whole field range.
However, their pronounced dip on the previous critical field
positions is still prominent and should lead to rather similar
thermodynamic anomalies when crossing the dip region as
compared to the case 7(a) when the critical fields are still
present. The transition region between Figs. 7(a) and 7(b)
where the upper and lower QCP’s merge into an end point
is shown in Fig. 8 in an enlarged scale. The critical value for
Ip where the two critical field curves touch and merge is very
close to the paramagnetic calculations in Figs. 5 and 9 that
corresponds to the situation in CeRh;,As;.

A
—~70.2
\%
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03

0.1

L | . | L L | h . . L
8.06 007 008 0.09 0.1 006 007 008 0.09 0.1
h/A hy/A

FIG. 8. Enlarged dependence of homogeneous polarization (J,)
and order parameters (J,), (O.,) on the applied field in the critical
QCP end-point region of Fig. 5(b). Here 1,, = 0.019 and proceeding
from lower to upper curves: Ip = 0.01165-0.011 68. Both curves are
asymmetric in A, exhibiting a first-order type jump-like behavior at

the upper critical field A,

VII. NUMERICAL TREATMENT OF CeRh,As, WITH FULL
CEF LEVEL SCHEME

The numerical evaluation of the RPA equations starting
from Egs. (6) is in principle identical to the treatment of the
quasiquartet in the preceding sections, however, this time in-
volving all six crystal-field states of the J = % multiplet. This
is important as soon as temperatures and/or applied magnetic
fields cannot be regarded as small compared to the CEF level
splittings, in particular to A.

We start with Eq. (7) as before. The general form of the
bare susceptibility 35 = x\y + x5z We use is

xiy = Tr[M(A, B) - D],
XACB = B{Tr[M(A,B)-P]—Tr[N(A) - P]Tr[N(B) - P1}.
43)

For the respective components we use indices m, n to label the
CEF states and define (2J 4+ 1 = 6)-dimensional matrices

M(A, B) = [mun(A, B)],
Mun(A, B) = (m|A|n) (n|B|m),

D = (dy),
— Pm = Py _
oo = Z—LL[1 — 5(E, ~ E,),
N(A) = [ (A)], (44)
Ny (A) = (m|Aln),
P = (pmn)a

DPmn := Pmb(En — Ep,),

1
. _ o BEn . —BE,
DPm = Ze , Z:= En e ,
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FIG. 9. Phase boundary plot for Hy || a (full line) and Hy ||
¢ (broken line) as obtained from numerical calculations for the
full J =% CEF level scheme with three Kramers doublets at
0, 30, and 180 K. (a) Low-field regime [cf. Fig. 5(a)]. (b) Full-
field range in log-log plot. The maximum corresponds to T ~
0.3A at hy/A ~ 1. The CEF parameters (Sec. II) are taken from

experiment [6].

where the expression (m|A|n) denotes a matrix element of
an operator A between states |m) and n) for finite molecular
field h. Here we replace the notion of “diagonality” with
“energy equality” to avoid numerical issues not only at zero
field (Kramers doublets) but rather also at large applied fields
when the Zeeman splitting is of the order of the crystal-field
splitting.

To determine the RPA phase boundary 7;.(h) we use the
secular equation equivalent to Eq. (22). Coming from the
paramagnetic side, / is the total molecular field in either the
x direction or the z direction, respectively. Therefore, as a
second step, we have to determine the applied field through
hy =h+1,(J,) where « =x or z depending on the field
direction [see also Egs. (35)]. Here the angular brackets de-
note the thermal expectation value calculated as the average
over the statistical operator of the mean-field Hamiltonian.
Figure 9 shows the two phase boundaries for hy parallel to
x (solid line) and z (dashed line) determined in this way for
one particular choice of parameters closely resembling the
experimental situation (Fig. 2) in CeRh,As; [4,6].

TABLE III. Summary of critical and maximum quantities (units:
A =30K, T, or K) obtained from the the theoretical results in
Fig. 9 together with two critical fields from experiments in CeRh,As,
[4,6]. The reduction factor (last column) is evidence of the Kondo
screening of moments and of similar size for both directions. The
experimental value for /(. has been determined with the magnetic

field applied in (110) direction.

Critical /extremal

quantity CEF-RPA calculation = Experiment  Ratio
N, 0.0375=195T 67T 0.33
hi., 0.071=3.69T 9T 0.41
N 1=5211T

T 0.34 =102K

hs 1.95=9640T

We now turn to the question to which extent the low-field
approximation for the quasiquartet model in Fig. 5(a) relates
with the all-numerical calculation for the full level scheme
including three Kramers doublets. This calculation is valid for
any field strength and it is interesting to follow T, to find out
its possible maximum 7,5, and corresponding maximum field
h§ ... as well as the upper critical field &g, which should oc-
cur when the Zeeman splitting becomes comparable to A and
homogeneous field polarization overwhelms the staggered or-
der. First we show again the low-field regime in Fig. 9(a).
It agrees well qualitatively with the quasiquartet results in
Fig. 5(a) with only minor numerical differences of critical
field and quadrupolar interaction parameters. The extension to
high fields is shown in a double-logarithmic plot in Fig. 9(b).
It demonstrates that the maximum occurs at T (hf, . ) =
T = 0.34A for h, .. ~ A which is in the expected range.
The very large increase of Ti, of the induced quadrupolar
phase compared to the zero-field value of the magnetic phase
is due to the large ratio of matrix elements m’Q /Ma1.

At this point it is appropriate to estimate the absolute mag-
nitude of critical fields, temperatures, and magnetic moment
in view of partly known experimental quantities. We have
shown already that the anisotropy and other basic features
of the calculated magnetic and quadrupolar phase diagram
reproduces the empirical findings in Refs. [4,6] and others. It
must be said from the outset, however, that one cannot expect
a quantitative agreement since we used a purely localized 4 f
electron approach. In reality, the Kondo screening will have
a large influence on the magnetic properties. This can be
directly seen from the ordered moment u = g;ug(Jy)o; (o =
X, z; gy = 6/7) with the saturation order parameter [Eq. (42)]
(Ju)o = 0.97 we have u = 0.83 5. There are no experiments
yet that have identified an ordering of the moments found
in uSR investigations [10] but one should expect a strong
reduction of its magnitude due to Kondo screening known also
from other magnetically ordered heavy-fermion compounds.
This may be concluded from the fact that the Kondo scale 7'*
has been reported [6,14] to be of the same order of magnitude
as the CEF splitting A. Using the scaling factor (g;ug)/A =
0.0192T~! we obtain critical and maximum field and tem-
perature values that are compared to the known experimental
values in Table III. It shows that the theoretical critical field
values are lower than the experimental ones which may again
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be attributed to the large unscreened moments in the local-
ized picture resulting in a too large Zeeman effect. Table 111
shows that the maximum quadrupolar ordering temperature
reached at Hj . =52T is T =10.2 K and the upper
critical field Hj ., = 96 T where induced quadrupole order is
finally destroyed. These exceptionally enhanced values have
not yet been identified in CeRh,As,. We note, however, that
similar large values are known from a related compound with
quadrupolar order, the cubic, genuine I'g quartet system CeBg
[15,16,27] which shows quadrupolar order already in zero
field (and induced octupole at finite field) due to the ab-
sence of splitting in cubic symmetry. It has maximum values
observed in pulsed-field experiments at (40 T, 10 K) and a
upper critical field estimated to be 80 T [27,28]. Thus, the
theoretical values obtained here in the localized 4 f-electron
approach may well give a realistic estimate in particular since
the influence of Kondo screening is strongly reduced at such
high fields.

VIII. SUMMARY AND CONCLUSION

In this work we have investigated the possible origin of the
extremely anisotropic normal-state phase diagram of tetrago-
nal CeRh,As;. We use a fully localized CEF- split 4 f -electron
model for the J = % multiplet of Ce®*. We do not include the
effect of Kondo screening leading to local moment reduction
and heavy conduction band formation. In fact, recent ARPES
experiments have suggested that CeRh,As, is close to the
localized 4 f limit [19]. Furthermore, similar examples of Ce-
hexaboride and -skutterudite compounds have demonstrated
that neglecting the Kondo screening may be an acceptable
starting point for understanding major qualitative features of
the H-T phase diagram although it may be too simple to
explain the quantitative aspects.

The starting point is the conjecture that the anisotropy
of this phase diagram is caused by a multipolar competition
of low-field magnetic dipolar and high-field-induced electric
quadrupolar order parameters. This competition has been in-
vestigated analytically within a simplified quasiquartet model
valid for low fields and temperatures and numerically for
the complete level scheme in the full range. We employ
the RPA response function technique from the disordered
side and the coupled MFA for polarization and order pa-
rameters, using effective operator technique in the ordered
regime. The results of analytical and numerical approaches
agree in the low-field regime. In the high-field case the lat-
ter predicts the phase boundary in a region not yet tested
experimentally.

The normal-state H-T phase diagram for Hy || ¢ has the
appearance of an antiferromagnet (as suggested by ©SR ex-
periments [10]) while for Hy || a another high-field phase
appears immediately after the low-field phase region. Its crit-
ical temperature rises without limitation in the field range
so far probed. We have shown that such behavior can be
explained by the presence of easy-plane antiferromagnetic
order (J,) (moments perpendicular to Hy || a) of I's symmetry
and a field-induced quadrupolar order parameter (O,,) be-
longing to I'4-type irreducible representation of Cy,. The FIQ
phase appears because the mixing of I'¢ excited state into the

ground state Fgl) where a strong matrix element (1, ) creates a
corresponding field-induced quadrupolar matrix element in
the ground state (absent for zero field) which increases rapidly
with applied field strength Hj. In the paramagnetic phase this
means that a mixed dipolar-quadrupolar susceptibility appears
such that increasing Hy leads to a divergence for the quadrupo-
lar RPA susceptibility at the induced ordering temperature.
Likewise, the coupled MF equations of homogeneous polar-
ization (J;) and order parameters (J,) and (O,y) in the ordered
regime show that in the low-field case the primary magnetic
order induces the quadrupole and vice versa in the high-field
phase. The two QCP’s where the respective order parameters
vanish enclose a disordered regime. The full-level scheme
calculation shows that the FIQ phase will extend to high tem-
peratures and fields similar as observed in the true I'g quartet
system CeBg although in this compound it is the coexistence
of primary quadrupolar and field-induced octupolar order that
drives the strong increase.

The dipolar exchange and quadrupolar effective interaction
determine the ordering temperatures and the critical fields.
When the latter increases, the disordered regime shrinks
and vanishes at a quantum critical end point. This situa-
tion corresponds closely to the one observed in CeRh;,As,.
The interaction strengths may be characterized by dimension-
less control parameters which are rather asymmetric [small
for dipolar exchange and sizable but subcritical (< 1) for
quadrupolar interaction]. This points to the fact that the zero-
field AF order is driven by the F;]) ground-state moments
and FIQ order by the field-induced moments due to F;l)—r(,
mixing. If the quadrupolar control parameter would be above
critical (>1) the quadrupolar order would likewise appear as
self-induced order already at zero field as observed, e.g., in
the J = % compound YbRu,Ge,. The near equality of the
two critical fields, i.e., the stability of the quantum critical
end point, may be obtained along a line in a sizable region
of the control parameter plane. The experimental verification
of the proposed scenario of order parameters requires a di-
agnosis of the ordered phases by various means like neutron
diffraction in external field, NMR experiments, as well as
resonant x-ray scattering. To map out the phase boundary in
the high-field regime with increased T, ultrasonic and resis-
tivity measurements in pulsed fields may be suitable. Based
on the theoretical foundations laid in this work it will also
be possible to calculate the field and temperature dependence
of some of the experimental quantities, in particular, the evo-
lution of their anomalies along the phase boundaries. These
quantities are specific heat, symmetry elastic constants, mag-
netostriction, and thermal expansion. Furthermore, dynamical
properties like collective modes in the ordered regime, in
particular for high fields, can be calculated within the theory
developed here. These further investigations will be reported
elsewhere.
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TABLE IV. Matrix elements of dipolar and quadrupolar opera-
tors [see Egs. (A1)—(A3)] in the basis of the crystal-field doublets.
The primes indicate matrix elements between doublets of different
symmetry, a and c label respective in-plane and out-of-plane matrix
elements, Q denotes the quadrupole matrix elements. The CEF mix-
ing angle for CeRh,As; is 8 = 0.3467 [6], the variation with 6 is

shown in Fig. 10.

Matrix element CEF expression CeRh,As,
My 1/2 + 2 cos 260 -0.63
Mea 1/2 0.5
a1 —(+/5/2)sin 26 —0.92
Mg 3/2 1.5
m, —4/2sin 6 —1.25
me3 2 sin 20 1.65
Mas (+/5/2)cos 26 —0.63
m, V2cosb 0.66
my, V2(\/5cos 6 + 3 sin6) 5.23
mpy, —/2(+/53sin0 — 3 cos9) —0.83

APPENDIX A: MULTIPOLAR OPERATORS IN THE J = %
CEF STATE BASIS OF CeRh;As,

Here we give details about the multipolar operators and
their matrix elements in the representation using the CEF
states of Eq. (3) as basis. Table IV holds a compilation of
the general expressions (depending on CEF mixing angle
0) of the nonzero matrix elements of dipolar and quadrupo-
lar operators (for the latter see Table I). It is obvious that
the quadrupolar matrix element my, for CeRhyAs, is com-
paratively strong enabling the pronounced field induction of
the O,, quadrupole. The 0 variation of (nonconstant) ma-
trix elements is shown in Fig. 10. The relevant multipole
order parameters necessary for the analysis are represented

| m|?
w
:

oL

o/

FIG. 10. Selected nonzero matrix elements between the com-
ponents |F§'>) and I'g) of the quasiquartet for the quadrupole
component O, and the dipole operators as a function of the
mixing angle 6. The quadrupole matrix element (solid line) is
normalized to its maximum value |m’Q(6maX)|2 =28 with O, =

2 tan~'[(1/3)v/19 — 24/70] &~ 0.2967r. The thin vertical line de-

notes 6 = 0.3467 taken from experiment [6].

by 16x 6 ¥natrices using the 21row agld column sequences
{ITS0), ITD), IT6s), Do), IT9), T2}

dipolar I's operators

0  my 0 m, 0 M3
Myl 0 m, 0 mg 0
7 0 m, 0 my 0 m,
Tl o m, 0 mp O m, 0 ’
0 my 0 my, 0 —Mg1
Mg 0 m), 0 —Mg1 0
0 —my 0 m, 0 —mg
Myl 0 —m, 0 My3 0
=i 0 m, 0 —My) 0 m, |.
N R 0 My 0 —m, 0 ’
0 —Mg3 0 m, 0 mg1
My3 0 —m, 0 ‘ —My 0
(AD)
dipolar I'; operator
meq 0 0 0 me3 0
0 -mgq O 0 0 —M3
7= 0 0 Mo 0 0 0
: 0 0 0 -—-mo|l O 0 ’
mes3 0 0 0 1-— meq 0
0 -mg O 0 0 —(1 —myey)
(A2)
quadrupolar I'y operator
0 0 —myg 0 0 0
0 0 my, 0 0
—my 0 0 0 Moy
0 0 My 0 0 0
0 0 0 —mp, 0 0
(A3)

Within the quasiquartet model subspace the respective
top left 4 x4 blocks (separated by thin lines) repre-
sent the multipoles within the corresponding sequence
{|F;2), |F§£)), |Te+), |ITe—)} of quasiquartet states. Since we
want to calculate the H-T phase diagram we also need these
operators expressed in terms of the eigenstates in an external
field corresponding to the total local Hamiltonian for each site.
For H || ¢ there is no change while for H || a the multipoles in
quasiquartet subspace are given in Eqgs. (15), (16), and (17).

APPENDIX B: EXPRESSIONS FOR EFFECTIVE
OPERATORS IN THE EFFECTIVE GROUND-STATE
DOUBLET

For the calculation of order parameters in Sec. V we need
to compute the diagonal elements of multipole operators with
the eigenstates of the effective Hamiltonian (37) described by
Eq. (39) which contain the admixture effects with the upper
I's level. For an operator A = J, J,, O,, this is achieved by
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defining the dressed operator A [H is defined in Eq. (34)]:
(k| Aege|1)

1
=Au — A Z (CkHy ) (lALL) + (kIATw) (el Hy )],
n

(B1)
where k, [ runs over the unperturbed |1+) ground-state dou-
blet and w over the unperturbed |24) excited doublet states
of the quasiquartet. The diagonal matrix elements in the
split ground-state doublet of the MF effective Hamiltonian
[Eqg. (37)] are then given by

(U |AlYm) = ZU,fk*U,ﬁ(klAeffll) = (W, Aer), (B2)
kl

where the |y,,;) are the column vectors in Eq. (39). Further-
more, we defined the Hermitian matrix {W,;*}y, = UU} =
(Wi or explicitly (n = %)

1 1 —ne'*®
‘/‘/ - — .
n 2 ( ne*lkqb 1 . (B3)

Using these diagonal elements and the thermal occupations of
split ground-state levels [Eq. (38)] the self-consistent order-
parameter equations [Eq. (40)] may be derived.
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