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Intrinsic instabilities in Fermi glasses
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We study in this paper the effect of weak, short-ranged interaction on disordered metals. Through analyzing the
interaction matrix elements between different eigenstates of the noninteracting and corresponding Hartree-Fock
single-particle Hamiltonian, we argue that as a result of localized single-particle eigenstates around the Fermi
surface, the quasiparticle states on the Fermi surface are unstable toward formation of magnetic moments for
arbitrary weak (but finite) repulsive interaction in the thermodynamic limit. This is a mechanism very different
from the case of strong interaction U ∼ WB (WB = bandwidth) or the quantum Griffiths effect where local mo-
ments are formed at small localized regions where coupling to the surrounding is weak. Numerical simulations
are performed to verify our analysis. We further propose within a Landau Fermi-liquid-type framework that our
result is applicable for general electronic systems with weak, short-ranged interaction as long as the quasiparticle
states exist and are localized. An analogous result is obtained for attractive interaction, suggesting that Fermi
glass state is intrinsically unstable in arbitrary dimension.
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I. INTRODUCTION

Interacting disordered systems have been a major area of
research in condensed matter physics because of the many
interesting physics associated with disordered systems, in-
cluding Fermi glass [1–4], Coulomb glass [5–7], Wigner
crystal [8,9], many-body localized (MBL) states [10–12],
anomalous metal states [13–15], etc. The problem is difficult
theoretically because of the absence of an effective theoreti-
cal framework where interaction and disorder can be treated
together systematically.

Based on an analogy with Fermi liquid theory Anderson
proposed that for weak enough short-ranged repulsive interac-
tions, the ground- and low-energy excited states of disordered
fermion systems with localized single-particle states evolve
continuously as the interaction is turned on [1,2] and the
ground state remains a paramagnetic insulator with localized
quasiparticles (Fermi glass) (see also Ref. [16]).

However, using a linear stability analysis, Milovanović
et al. found that in the presence of disorder, instability toward
local magnetic moment formation occurs for strong enough
repulsive interaction U ∼ WB (WB = bandwidth) near metal-
insulator transition or at small spatial regions weakly coupled
to the surrounding (a quantum Griffiths effect) [17]. More
recently, Pilati and Fratini [18] found in quantum Monte Carlo
calculations that the instability toward the formation of local
moments occurs when the Fermi surface crosses the mobility
edge. Experimentally, there are extensive studies on local
moment formation in doped semiconductor materials such as
Si:P, etc. [19–22].

Other approaches to the problem include calculations on
a cluster of a few (up to eight) spins by Walstedt et al. [23],
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renormalization group approach [24,25], and quantum Monte
Carlo method [18].

In this paper, we point out that instability toward magnetic
moment formation occurs rather naturally for single-particle
states on the Fermi surface when the states are localized. In
this case, magnetic instability occurs across states with en-
ergy |ξa| � Ū/Ld on Fermi surface for repulsive interaction,
where Ū ∼ strength of interaction, and Ld is the localization
volume in units of lattice spacing. This occurs even for weak
interaction Ū � WB. An analogous result also applies for
attractive interaction. The result is a direct consequence of the
qualitatively different nature of interaction matrix elements
between localized electronic states when compared with ex-
tended states and is not related to statistically rare events
associated with quantum Griffiths effect. The formation of
magnetic moment on Fermi surface can be demonstrated in
Hartree-Fock (HF) or first-order perturbation theory.

To understand this surprising result, we study the effects
of weak, short-ranged interaction on disordered electronic
systems. In Sec. II we shall analyze the interaction matrix
elements between the eigenstates of the noninteracting and
the corresponding Hartree-Fock single-particle Hamiltonians,
and we point out the qualitative difference between effects
of interaction on localized and extended electronic states. In
Secs. III and IV we construct the effective Hamiltonians in
first-order perturbation and Hartree-Fock theory and show that
the paramagnetic ground state formed by doubly occupying
the lowest 2N effective single particle energy levels is unstable
to spontaneous formation of local magnetic moments for re-
pulsive interactions (and correspondingly, local fermion pairs
for attractive interaction) across states with energy |ξa| �
Ū/Ld on the Fermi surface as a result of the specific nature
of the interaction matrix elements between localized states.
This instability is not detectable by usual linear stability anal-
ysis [17] because of an intrinsic limitation of linear response
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theory, which we explain in detail in Appendix A. Our result
is summarized in Sec. V where we propose within a Fermi-
liquid type framework that our result is expected to remain
robust for general shot-ranged, repulsive interaction as long
as quasiparticle states exist and are localized around the Fermi
surface.

II. INTERACTION MATRIX ELEMENTS

In general, the Hamiltonian of a disordered fermionic
system can be written as H = H0 + H ′ where H0 is the
noninteracting disordered Hamiltonian and H ′ represents in-
teraction between fermions. For concreteness, we consider a
general lattice spin-1/2 fermion model of the form

H0 = −
∑
i jσ

ti j (c
†
iσ c jσ + H.c.) +

∑
iσ

(Wi − μ)niσ ,

H ′ =
∑
iσ jσ ′

1

2
U σσ ′

i j niσ n jσ ′ , (1)

where c(c†)iσ are spin-σ fermion operators on lattice site
i, σ = ± 1

2 and μ is the chemical potential. The first term in H0

represents the hopping of fermions between different lattice
sites with hoping matrix element ti j and the second term rep-
resents an onsite disordered potential Wi which can be chosen
to be a random variable distributed uniformly between −W/2
and W/2. H ′ describes the interaction between fermions. We
consider short-ranged interactions in this paper where U σσ ′

i j
is nonzero only when the distance |�ri − �r j | is less than a few
lattice sites.

The (single-particle) eigenstates of the noninteracting
Hamiltonian H0 are given by∑

j

(h0i j − μδi j )φ
a(�r j ) = ξaφ

a(�ri), (2)

where h0i j = −ti j + Wiδi j . The Hamiltonian can be written in
the eigenstate representation of the fermion operators c(c†)aσ

defined by

ciσ =
∑

a

φa(�ri )caσ and c†
iσ =

∑
a

φa∗(�ri)c
†
aσ . (3)

Substituting the above representations into Eq. (1), we obtain
the Hamiltonian in H0-eigenstate representation,

H =
∑
aσ

ξac†
aσ caσ + 1

2

∑
abce
σσ ′

U σσ ′
abcec†

aσ cbσ c†
cσ ′ceσ ′ , (4)

where

U σσ ′
abce =

∑
i j

U σσ ′
i j φa∗(�ri)φ

b(�ri )φ
c∗(�r j )φ

e(�r j ).

We emphasize that the indices a, b, c, e are eigenstate indices
and are not related to momenta of particles.

For comparison, we also introduce the eigenstates of the
HF Hamiltonian, given by

HHF = −
∑
i jσ

tHF
i j (c†

iσ c jσ + H.c.) +
∑

iσ

W HF
i niσ , (5a)

where

tHF
i j = ti j + U σσ

i j 〈c†
jσ ciσ 〉 ,

W HF
i = Wi +

∑
jσ ′

U σσ ′
i j 〈n jσ ′ 〉 , (5b)

where 〈· · ·〉 denotes self-consistently determined ground-state
expectation value. We have assumed that U ↑↑

i j = U ↓↓
i j ,U ↑↓

i j =
U ↓↑

i j and a nonmagnetic HF ground state is found in the self-

consistent HF theory, with 〈c†
j↑ci↑〉 = 〈c†

j↓ci↓〉 and 〈n j↑〉 =
〈n j↓〉. For attractive interaction, a Cooper instability occurs
which we shall discussed later. The HF single-particle states
are given by∑

j

(
hHF

i j − μδi j
)
φα

HF(�r j ) = Eαφα
HF(�ri ), (6)

where hHF
i j = −tHF

i j + W HF
i δi j . We introduce also the HF-

eigenstate representation of the fermion operators c(c†)ασ ,
given by

ciσ =
∑

α

φα
HF(�ri)cασ and c†

iσ =
∑

α

φα∗
HF(�ri )c

†
ασ . (7)

In the following, we shall analyze the interaction matrix el-
ements U σσ ′

abce between eigenstates φa(�ri )′s of H0 and U σσ ′
αβγ ζ

between eigenstates φα (�ri)′s of HHF. We shall see that our
analysis gives the same qualitative result in both cases as long
as the single-particle states are localized.

We first consider localized eigenstates φa(�ri) of H0, In this
case we may write

φa(�ri ) ∼ 1

Ld/2
e− |�ri−�xa |

2L and |φa(�ri)|2 ∼ 1

Ld
e− |�ri−�xa |

L (8)

for |�ri − �xa| � L where �xa is the center of the localized state
a and L is the localization length. In this case, we expect
there is small wave-function overlap between states that are
far from each other and the matrix element U σσ ′

abce decays expo-
nentially as the distance between the states |�xp − �xq| � L for
any (p, q) = (a, b, c, e). The matrix element is sizable only if
|�xp − �xq| < L for all (p, q) = (a, b, c, e). In this case the order
of magnitude of U σσ ′

abce can be estimated as

U σσ ′
abce =

∑
i j

U σσ ′
i j φa∗(�ri)φ

b(�ri )φ
c∗(�r j )φ

e(�r j )

∼
( ∑

j

U σσ ′
(�ri − �r j )

)

×
( ∑

i

φa∗(�ri)φ
b(�ri)φ

c∗(�ri)φ
e(�ri )

)

∼ Ū σσ ′ 1

L2d
(Ld ) = 1

Ld
Ū σσ ′

, (9)

where Ū σσ ′ = ∑
j U σσ ′

(�ri − �r j ) represents the “average
strength × the range of the interaction potential” and∑

i φ
a∗(�ri)φb(�ri )φc∗(�ri)φe(�ri) ∼ Ld ∼ volume where the

wave functions overlap substantially. The estimation is valid
as long as L � range of the interaction potential.
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It is useful to look at the disorder-average of U σσ ′
abce, which is

given by

〈
U σσ ′

abce

〉
dis ∼ Ū σσ ′

Ld
× Pabce,

where Pabce ∼ ( Ld

V )3 is the probability of finding all four states
within distance L from each other and V is the volume of the
system [27].

Notice that for a = b and c = e,U σσ ′
aacc = ∑

i j U σσ ′
(�ri −

�r j )|φa(�ri )|2|φc(�r j )|2 ∼ 1
Ld Ū σσ ′

and 〈U σσ ′
aacc〉dis ∼ Ū σσ ′

Ld ×
Paacc ∼ ( Ū σσ ′

V ) is much larger than 〈U σσ ′
abce〉dis because the

probability of finding two states within distance L (∼Ld/V ) is
much larger than the probability of finding four states within
distance L; i.e.,

〈
U σσ ′

aacc

〉
dis ∼

(
Ū σσ ′

V

)
� 〈

U σσ ′
abce

〉
dis ∼

(
Ū σσ ′

V

)(
Ld

V

)2

.

(10)

In particular, 〈U σσ ′
aaaa〉dis ∼ 1

Ld Ū σσ ′
as there is no probability

correction factor associated with finding the same state a.
We now compare the above results with the case of ex-

tended states where

φa(�ri ) ∝ 1√
V

eiua (�ri ) and |φa(�ri )|2 ∝ 1

V
, (11)

where ua(�ri ) is a real number function and we obtain U σσ ′
abce ∼

U σσ ′
aacc ∼ U σσ ′

aaaa ∼ Ū σσ ′
/V .

Physically, a fermion in extended state a interacts with all
other fermion states in the system with matrix element of
order Ū/V , and its properties are determined by the collective
behavior of the whole system. However, for localized states, a
fermion in state a interacts only with states within a distance
L, but with a much stronger interaction ∼Ū/Ld . Its behavior
is determined by local fermion environment in this case.

It is quite obvious that our result is independent of the
precise form of H0 or the detailed behavior of single-particle
wave functions. It depends only on the assumption of local-
ization of the single-particle wave function and the interaction
potential is short-ranged. In particular, the same qualitative
conclusion would be obtained for eigenstates φα (�ri ) of HHF as
long as the eigenstates of HHF are also localized.

To verify the above result, we perform a numerical sim-
ulation of U ↑↓

aacc where a and c are eigenstates of H0 on a
t-t ′-W -Hubbard-model on a 60 × 60 square lattice,

H = −t
∑
〈i j〉σ

(c†
iσ c jσ + H.c.) − t ′ ∑

〈〈i j〉〉σ
(c†

iσ c jσ + H.c.)

+
∑

iσ

(Wi − μ)niσ + U
∑

i

ni↑ni↓, (12)

where the t, t ′ terms are the nearest- and next-nearest-
neighbor hopping, respectively. We choose t = 1,

t ′ = 0.6, μ = 0 and W = 9 in our simulation, corresponding
to an average localization length L ∼ 7.65 [29]. The same set
of parameters is used in all our numerical simulations below.
The matrix element U ↑↓

aacc is computed as a function of dis-
tance d between two eigenstates a and c where d is defined as
the separation between max(|φa(�ri )|) and max(|φc(�ri)|). The

FIG. 1. (a) Simulation raw data for U σσ ′
aacc as a function of distance

where a, c are eigenstates of H0. (b) The average 〈U σσ ′
aacc〉 as a function

of distance.

results are shown in Fig. 1(a) where each data point corre-
sponds to a randomly chosen pair of states (a, c) from 400
states near the band center with energy range from ∼ − 0.91t
to ∼0.26t for five randomly chosen disorder configurations.
The average 〈U ↑↓

aacc〉 as function of distance is shown in
Fig. 1(b) where we find that although there exists large
fluctuations in U ↑↓

aacc, 〈U ↑↓
aacc〉 decays exponentially as expected

with a decay factor ∼1.12L which is close to the localization
length L.

We shall show in the next two sections that the volume in-
dependence of the average interaction matrix elements 〈U σσ ′

aaaa〉
for localized states is what leads to the magnetic instability of
states around Fermi surface. This instability does not occur
for extended states.

III. EFFECTIVE HAMILTONIAN IN FIRST-ORDER
PERTURBATION AND HF THEORY

For very weak interaction we can study the system in first-
order perturbation theory. In this case the wave functions of
the system remain as eigenstates of H0 and H ′ only provides
energy corrections to the eigenstates which are specified by
the occupation numbers {naσ } of H0. The resulting first-order
energy takes the form

E (1) = 〈
0|H |
0〉

=
∑
aσ

ξanaσ + 1

2

∑
acσσ ′

(
U σσ ′

aacc − δσσ ′U σσ
acca

)
naσ ncσ ′ . (13)

It is interesting to note that the same form of energy is
obtained in the HF theory where the many-body states |
HF〉
are formed by occupying the single-particle eigenstates of HHF

({φα
σ }) with energy

EHF = 〈
HF|H |
HF〉

=
∑
ασ

εαnασ + 1

2

∑
αβσσ ′

(
U σσ ′

ααββ − δσσ ′U σσ
αββα

)
nασ nβσ ′ ,

(14)

where n′
ασ s are the occupation number of the

single-particle state φα
σ , εα is the expectation value

of H0 for the single-particle state φα
σ and U σσ ′

ααββ =∑
i j U σσ ′

i j |φα
HF(�ri )|2|φβ

HF(�r j )|2[30].
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As E (1) and EHF has the same form of energy we shall
simplify notation and use the same label a and c to denote
single-particle eigenstates of both H0 and HHF in the follow-
ing when we consider the energies of different states in E (1)

or EHF.
An eigenstate of E (1) or EHF is characterized by a set

of occupation number {naσ } of single-particle states. In both
cases the energy required to add one particle to an unoccupied
single-particle state a is

E1(a) = ξa +
∑
cσ ′

(
U σσ ′

aacc − δσσ ′U σσ
acca

)
ncσ ′ , (15a)

whereas the energy for adding two particles in states a
and c is

E2(a, c) = E1(a) + E1(c) + (
U σσ ′

aacc − δσσ ′U σσ
acca

)
. (15b)

Notice that an extra interaction term between the two added
particles appears in E2(a, c).

A necessary condition for ground-state stability is that
E1(a) > 0 and E2(a, c) > 0 when we add particles to any
(unoccupied) states a, c in the ground state since otherwise we
can lower the system’s energy by adding one or two fermions
to state a, c. Similarly, we expect E1(a) < 0 and E2(a, c) < 0
when we remove particles from any (occupied) states a, c in
the ground state. We shall examine the stability of Fermi Glass
state using these criteria in the following.

We note that as HHF is determined self-consistently from
{φα

σ }, the values of ξα,U σσ ′
ααββ and U σσ

αββα will be modified
slightly when we add or remove a few particles to/from the
system. We shall see that these small differences will not
affect our conclusion as long as the qualitative behavior of
the states {φα

σ } are not modified by adding or removing a few
particles to/from the system.

IV. INSTABILITIES OF THE FERMI
GLASS GROUND STATE

Naively the system’s ground state |�0〉 is formed by doubly
occupying the lowest 2N energy levels of H0 (first order per-
turbation theory) or HHF (in HF theory). We shall show here
that this state is unstable toward formation of local fermion
pairs for attractive interaction in first order perturbation and
in HF theory as long as there exist a finite density of states on
the Fermi surface and the single-particle states we consider
are localized.

We start by adding a spin-σ fermion to a state a above
the Fermi surface. We assume E1(a) > 0 as otherwise the
Fermi glass state is already unstable. Now we add another
electron with spin −σ to the same state a. Using Eq. (15b)
the excitation energy in this case is

E2(a, a) = 2E1(a) + U ↑↓
aaaa.

For attractive interaction, U ↑↓
aaaa is negative, and if 2E1(a) <

|U ↑↓
aaaa|, then we have E2 < 0, which violates the stability

criteria and the ground state becomes unstable. In this case
the ground state of the system is formed by doubly occupying
all states a with energy E1(a) < |U ↑↓

aaaa|/2. A single-particle
excitation on the Fermi surface of the new ground state will
acquire an energy gap ∼|U ↑↓

aaaa|/2 although the energy for
adding a pair of (↑↓) fermions on state a remains gapless.

Applying a similar analysis for repulsive interactions, it
is easy to see that the Fermi glass ground state is unstable
toward removing two fermions in a state a below the Fermi
surface with E1(a) < 0 if E2(a, a) = 2E1(a) + U ↑↓

aaaa > 0. In
this case, we expect the real ground state is formed by doubly
occupying all states a with E1(a) < −U ↑↓

aaaa/2 and singly oc-
cupying states a with energy −U ↑↓

aaaa/2 < E1(a) < 0, i.e., the
ground state becomes spin-polarized.

The above considerations have physical implication if
there exists finite density of fermion states with 2|E1(a)| <

|U ↑↓
aaaa| ∼ Ū ↑↓

Ld [see Eqs. (9) and (10)]. In this case the smallest
plausible value of |E1(a)| is given by |E1(a)| ∼ energy level
spacing of the bulk system ∼1/[V N (0)], indicating that such
instability occurs generally when both L and N (0) are finite.
Notice that the above analysis does not require large enough
Ū ↑↓ or spatial regions with large fluctuations in the disorder
strength.

The argument suggests that a finite portion of single-
particle states with |E1(a)| < Ū ↑↓

Ld are unstable and the density

of such states is of order n ∼ Ū ↑↓
2Ld × N (0). Notice that for ex-

tended systems |U ↑↓
aaaa| ∼ Ū ↑↓

V and the instability occurs only
when Ū ↑↓N (0) > 2, i.e., the instability occurs only for strong
enough interaction. Therefore, we expect that for repulsive
interaction a magnetic phase transition occurs when the Fermi
surface crosses the mobility edge. For given Ū ↑↓ and N (0) �=
0. the density of magnetic moment is zero in the conducting
phase where L → ∞, and increases linearly with L−d in the
insulating phase.

We note that in reality spatial regions with large fluctua-
tions in the disorder strength exists in disorder systems and
magnetic moments associated with quantum Griffiths effect
exists in general and would smear out the magnetic transition
we discuss here.

We can extend our analysis to instabilities associated with
multiple particle excitation. As an example, we consider two
particle excitation occupying two different states a, c. In this
case, following above argument, we expect that instability oc-
curs if U σσ ′

aacc ∼ U σσ ′
acca � Ū ↑↓/Ld . However, this happens only

when states a and c are within distance L. The probability
for this to occur is of order ∼ U

Ld × N (0) × Ld , and instability
occurs only when UN (0) ∼ 1, which is much less important
than the instability associated with excitation occupying the
same state a.

To confirm our analysis we perform a Monte Carlo
simulation of the ground state of the repulsive t-t ′-W -
Hubbard-model [Eq. (12)] in first-order perturbation theory
where the ground-state occupation numbers {naσ } are deter-
mined by minimizing E (1) with respect to {naσ }. The results
are shown in Fig. 2(a) where we plot the average occupation
numbers 〈na〉dis = 〈na↑ + na↓〉dis as a function of energy of the
states a and the data points are fitted by 〈na〉dis = 2

eβ(ξa−μ)+1
with β,μ being fitting parameters (note that β is not the
temperature here). In this simulation, we choose total number
of particles N = 3000 and perform 105 Monte Carlo steps
for each disorder configuration for 15 disorder configurations.
We obtain β−1 ∼ 2.63 U

L2 for small U in our simulation and
the instability of the Fermi surface at energy range |ξa| �
U/Ld toward formation of local magnetic moments [in the
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FIG. 2. (a) The average distribution 〈na〉dis = 〈na↑ + na↓〉dis over
15 disorder configurations for three different values of U . (b) The
corresponding number of polarized spins as a function of UN (0),
where N (0) is the density of states at Fermi surface.

weak interaction regime UN (0) � 1] is clear. We find that
the number of polarized spins increases linearly with U for
small U . The number of polarized spins increases faster for
larger U [Fig. 2(b)], indicating that instabilities associated
with more than one single-particle states become important
when U increases. We emphasise here that this instability
associated with the interaction matrix element U ↑↓

aaaa is not
detectable by usual linear stability analysis because of an
intrinsic limitation of linear response theory which we shall
explain in Appendix A.

Our result is also supported by an earlier numerical
work employing quantum Monte Carlo simulation on a
continuous-space Hamiltonian for repulsive Fermi gas in
which the system is subjected to a correlated speckle disor-
der [18]. It was shown that the system strongly favors the
paramagnetic-to-ferromagnetic transition when the Fermi sur-
face approaches the vicinity of the mobility edge. Our analysis
suggests that besides the quantum Griffiths effect, the en-
hancement of the interaction diagonal matrix elements U ↑↓

aaaa
when quasiparticle states on Fermi surface become localized
is another mechanism behind this observation.

For attractive interaction, it is expected that a super-
conducting ground state will be formed for arbitrary weak
interaction in a self-consistent BCS mean-field theory [31]
and the effect of preformed local fermion (Cooper) pairs
occupying the same state a will be superseded. We show
in a separate paper that the superconductor spectral gap is
enhanced by these preformed local fermion pairs in a modified
BCS theory [32].

V. BEYOND PERTURBATION
AND HARTREE-FOCK ANALYSIS

The localization-induced instability of the Fermi glass state
in first-order perturbation and HF theory lead us to consider
the general situation of disordered spin-1/2 fermion systems
with short-ranged repulsive interaction. Following a Fermi-
liquid type analysis, Fleishman and Anderson [33] argued that
for weak, short-ranged interaction, the quasiparticle states on
the Fermi surface can be described by an effective single-
particle Hamiltonian with a generic form Heff = H0 + (μ),
where Re(μ) is a random Hermitian matrix representing
the interaction-induced self-energy on the Fermi surface and
Im(μ) = 0 (stability of Fermi surface). The eigenstates of

Heff represent the “wave function” of quasiparticles on the
Fermi surface and are localized if Heff is “random” enough
in three dimensions (Fermi glass).

Assuming the validity of a Fermi-liquid type phenomenol-
ogy we can write down a corresponding Landau energy
functional describing low-energy excitations in the Fermi
glass state, where

δELD({δnaσ )}) =
∑
aσ

ξaδnaσ + 1

2

∑
aσ ;a′σ ′

faσ ;a′σ ′δnaσ δna′σ ′,

(16)

where δnaσ represents the fluctuation of quasiparticle occu-
pation number naσ on the Fermi surface, ξa is the single
quasiparticle energy and faσ ;a′σ ′ is the Landau interaction.
Comparing Eq. (16) with Eqs. (13) and (14), we find that
ξa = E1(a) and

faσ ;a′σ ′ = U σσ ′
aaa′a′ − δσσ ′U σσ

aa′a′a

in first-order perturbation or HF theory, with a and a′ de-
noting the eigenstates of H0 or HHF. In Landau Fermi liquid
theory language, the instability of the Fermi glass state in
first-order perturbation or HF theory is associated with the
volume-independence of forward scattering amplitude faσ ;a−σ

which is of order Ū
Ld . More generally, it is well known that

singular forward scattering term faσ ;aσ ′ which remains finite
when system volume V → ∞ leads to instability of the Fermi
liquid state as long as the density of states on the Fermi
surface N (0) is finite [34–38] and our results from first order
perturbation and HF theory are just another examples of this
general phenomenon.

More generally, we expect that the singular forward scat-
tering amplitude we observe in our analysis is a general
property of localized quasiparticle states in systems with
weak, short-ranged interaction. For localized quasiparticles a
and a′, faσ ;a′σ ′ should not depend on the system volume and
can only depend on the distance d between the two localized
states when d � L if interaction does not induce long-ranged
effective interactions between localized quasiparticles. In par-
ticular, for a = a′, the only length scale which is available is
the localization length and we anticipate that faσ ;a−σ can only
scale with the size of the quasiparticle wave function ∼1/Ld ,
and instability always occur if both L and the density of states
N (0) are finite, as demonstrated in our analysis.

Summarizing, based on a careful analysis of interaction
matrix elements in first-order perturbation and Hartree-Fock
theory, we show the existence of instability of Fermi surface
toward formation of local magnetic moments for short-ranged
repulsive interaction (and formation of local Fermion pair for
attractive interaction) if the eigenstates on the Fermi surface
are localized. The instability is driven by electron localization
and is not associated with quantum Griffiths effect or strong
electron-electron interaction. We further propose within a
Landau Fermi-liquid type framework that our result is appli-
cable for general electronic systems with weak, short-ranged
interaction as long as the quasiparticle states exist and are
localized, suggesting that Fermi glass states are intrinsically
unstable.

We also note that we have assumed implicitly that U σ (−σ )′
aaaa s

are of the same sign as a changes when we refer to “attractive”
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or “repulsive” interaction. This is the case for Hubbard inter-
action we discuss in this paper. For general form of interaction
U σσ ′

i j this assumption may not be correct and both polarized
spins and local fermion pairs may exist together in the ground
state (see also Ref. [39]). In this case, the system becomes
frustrated and spin glass or superconducting glass states may
occur. We shall address these more exotic possibilities in
future papers.

Finally we note that our analysis can be generalized to sys-
tems with spin-orbit coupling and the similar conclusion will
be reached as long as inversion symmetry is not destroyed as
the Kramer’s degeneracy will be preserved (see, for example,
Ref. [40]).
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APPENDIX A: FAILURE OF LINEAR
INSTABILITY ANALYSIS

In this Appendix, we explain why commonly used instabil-
ity analysis based on linear response theory fails to detect the
Fermi glass instability we discuss in this paper. We start with
the HF Hamiltonian for the Hamiltonian Eq. (12) in the main
text with repulsive Hubbard interaction U ,

HHF = −
∑
i j,σ

ti jc
†
iσ c jσ +

∑
i,σ

(Wi + U 〈ni,−σ 〉)c†
iσ ciσ . (A1)

Following Ref. [17] we apply a small magnetic field Hb =∑
i Bi(ni↓ − ni↑) to HHF.
Following usual linear response theory, the change of

an observable A under perturbation is given by δ〈A(t )〉 =
Tr(δρA), with δρ being the change in the density matrix due
to Hb, where

δρ = i

h̄

∫ t

−∞
dt ′[ρHF, HbI (t ′)] (A2)

from Schrödinger equation and the corresponding change in
magnetization is given by

〈δM(t )〉 = i

h̄

∫ t

−∞
dt ′ Tr{ρHF[HbI (t ′), MI (t )]}, (A3)

where the subscript I denotes the interaction picture in
the eigenstate basis of HHF. Introducing ciσ = ∑

a φa(�xi )caσ ,
where φa(�xi ) are the single-particle eigenstates of HHF, the
magnetization operator Mi and the perturbation Hb can be
written as

Mi = ni↑ − ni↓ =
∑
aa′

Maa′φa∗(�xi )φ
a′

(�xi ) (A4a)

and

Hb = −
∑
aa′

Baa′Maa′ , (A4b)

where Maa′ = c†
a↑ca′↑ − c†

a↓ca′↓ and Baa′ = ∑
i Biφ

a∗(�xi )

φa′
(�xi ). Substituting the above expressions into Eq. (A3) and

taking Fourier transform we obtain for time-independent B′
is,

〈δMaa′ 〉 =
∑
aa′

χaa′Baa′ , (A5)

where

χaa′ ∼ − f (Ea) − f (Ea′ )

Ea − Ea′
, (A6)

f (Ea) being the Fermi-Dirac distribution and Ea is
the HF single-particle energy of state a. Replacing
Bi → Bi + Uδ 〈Mi〉 and correspondingly Baa′ → Baa′ +∑

c,c′ Uaa′cc′ 〈δMcc′ 〉 we obtain the self-consistent equation

〈δMaa′ 〉 =
∑
aa′

χaa′

(
Baa′ +

∑
c,c′

Uaa′cc′ 〈δMcc′ 〉
)

, (A7)

which is the same result as that in Ref. [17], with the suscepti-
bility matrix written in eigenstate basis. As χaa = 0 it is clear
that the diagonal interaction matrix Uaaaa does not contribute
to the self-consistent equation. However, the a = a′ term is
exactly what is responsible for the Fermi glass instability we
discuss in this paper. In the following, we explain why χaa = 0
in linear response theory.
We consider a general many body system with Hamiltonian H
and eigensates |A〉. In the eigenstate basis, the density matrix
ρ at equilibrium is given by ρ = ∑

A e−βEA |A〉 〈A|. In the
presence of a perturbation there are two possible changes to
the density matrix which can be formally written as

δρ1 + δρ2 =
∑

A

δ
(
e−βEA

)|A〉〈A| +
∑

A

e−βEA (|δA〉〈A|

+ |A〉〈δA|). (A8)

The first term δρ1 represents a change in the thermodynam-
ics factor e−βEA without changing the states |A〉 whereas the
second term δρ2 comes from the change in the eigenstates un-
der external perturbation (dynamical effect). Ordinary linear
response theory only accounts for the second term in Eq.(A8),
i.e., (see, for example, Ref. [30])

∑
A

e−βEA (|δA〉〈A| + |A〉〈δA|) = i

h̄

∫ t

−∞
dt ′[ρHF, HbI (t ′)],

and δρ1 is absent in linear response theory. This is fine when
calculating linear responses of the system under external per-
turbation starting from the “correct” ground state. However,
problem may arise when we apply linear response theory to
instability analysis of ground state as we shall illustrate in the
following example.
We consider a single-a Hamiltonian H0 with only one single-
particle state a and two spin species,

H0 =
∑

σ

ξanaσ + Una↑na↓, (A9)

and consider a small perturbation Hb = Ba(na↓ − na↑) on the
system.
Treating Hb as perturbation it is easy to see that δρ2 = 0 in
ordinary linear response theory for any density matrix of form

ρ =
∑

A

aA|A〉〈A|,
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FIG. 3. DOS per unit volume for different disorder strengths. We
have set t ′ = 0.6t and taken average over 15 disorder configurations.

where |A〉 are eigenstates of H0 and a′
As are arbitrary coef-

ficients. This is because ρ commutes with Hb (or Hb does
not modify the eigenstates |A〉), independent of the values of
a′

As and we would conclude that the system is stable when
we apply linear stability analysis to this system, even when
aA does not correspond to the density matrix of the system
in thermal equilibrium. Notice, however, that Hb changes the
eigen-energies Ea and thus the thermodynamics factor e−βEa

More explicitly, H0 can be diagonalized easily with the eigen-
states {|a ↑ −a ↓〉 , |0〉 , |a ↑〉 , |−a ↓〉} with corresponding
energies {2ξa + U, 0, ξa − Ba, ξa + Ba} and it is easy to see
that for ξa < 0, the doubly occupied state {|a ↑ −a ↓〉} has
higher energy than the singly occupied (spin-polarized) states
when ξa + U > 0 at B = 0. Usual instability analysis based
on linear response theory cannot detect the instability of the
doubly occupied state as the doubly occupied state is an
eigenstate of the system which is not modified by Hb. The
instability of the doubly occupied state as ground state of the
system is a pure thermodynamic effect.

Returning to our problem of stability of Fermi glass state, we
see that the external perturbation can be written as δb = δb1 +
δb2, where

δb1 =
∑

a

Baa(c†
a↓ca↓ − c†

a↑ca↑),

δb2 =
∑
a �=a′

Baa′ (c†
a↓ca′↓ − c†

a↑ca′↑), (A10)

where the first term commutes with HHF and produces no ef-
fect in linear-response theory. The second a �= a′ term predicts
instability toward local moments formation only at regions
where the impurity sites is weakly coupled to the rest of
the system or when interaction U ∼ WB is strong enough
(Ref. [17]). What we discover in this paper is that the effect
associated with the Baa term (or the Uaaaa ∼ 〈U 〉 1

Ld term)
should be examined more carefully for localized eigenstates
φa. We compare the eigenstate energies of the Hartree-Fock
(and first order perturbation) Hamiltonian carefully, and show
that instability toward formation of local moment (for re-
pulsive U ) at the Fermi surface occurs for arbitrary small
(but finite) U in the thermodynamics limit V → ∞ be-
cause of the Uaaaa term. The linear stability analysis based
on usual linear response theory cannot detect this insta-
bility because of the intrinsic limitation of linear response
theory.

APPENDIX B: SOME DETAILS OF OUR
NUMERICAL CALCULATIONS

In our simulation, we adopted a periodic boundary con-
dition for the (60 × 60) square lattice. We set the disorder
strength W/t = 9 which is comparable to the bandwidth of
the energy spectrum (∼8.8t) at W = 0.

The density of states (DOS) per unit volume (area in 2D)
with different disorder strengths for t ′ = 0.6t is shown in
Fig. 3. The large peak in the DOS reflects the existence of
Van Hove’s singularity in the W = 0 limit.
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