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Negative intercept of the apparent zero-temperature extrapolated linear-in-T metallic resistivity
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We consider the well-known phonon-scattering-induced high-temperature linear-in-T metallic resistivity,
showing that a naive extrapolation of the effective linearity from high temperatures to T = 0 leads to an apparent
zero-temperature negative resistivity. The precise magnitude of this extrapolated T = 0 negative resistivity
depends on the temperature regime from where the extrapolation is carried out, and approaches the correct
physical result of zero resistivity at T = 0 only if the extrapolation starts from T � TD, where TD is the Debye
temperature. We establish a theoretical relationship between the negative intercept and the slope of the linear-
in-T resistivity as a function of the temperature T from where the extrapolation is carried out. Experimental
implications of our finding are discussed for the much-discussed Planckian behavior of the transport scattering
rate.
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I. INTRODUCTION AND BACKGROUND

The phonon-scattering-induced metallic resistivity is
among the very first quantum mechanical many-body prob-
lems studied in the physics literature, universally referred to
as the Bloch-Grüneisen transport theory developed originally
almost 100 years ago [1–4]. A salient feature of this theory is
a theoretical explanation for the universally observed linear-
in-temperature (T ) resistivity of essentially all metals at room
temperatures as well as an explanation for the rapid falloff
of the temperature-dependent resistivity at low temperatures,
all arising from the scattering of (mostly) acoustic phonons
by electrons, which is strongly suppressed at low tempera-
tures because of the bosonic phonon occupancy factor. The
basic theory, when combined with accurate electronic band
structure details, is in excellent quantitative agreement with
the experimental resistivity in many metals [5–8]. The cur-
rent work deals with aspects of phonon-scattering-induced
metallic resistivity, which has not been much discussed, but
may have implications for the currently active topic of strange
metals and Planckian transport [9–14].

It has been known for a long time that the high-temperature
phonon-scattering-induced metallic resistivity is linear in tem-
perature: ρ ∼ T for T � TD, where TD is the typical phonon
energy, nominally the Debye temperature, but could also be
the Bloch-Grüneisen temperature TBG for metals with low
electron density. The phonon temperature scale, TBG = 2h̄kF ,
is defined by the energy of the phonons corresponding to a
momentum of 2kF , where kF is the electron Fermi momen-
tum, but in metals TD < TBG, with TD being the maximum
allowed phonon energy and hence the high-temperature scale
is set by TD. We use TD to denote either the Debye temperature
or the Bloch-Grüneisen temperature throughout this paper
depending on whichever is lower for the specific system. Note
that with decreasing carrier density, eventually TBG becomes
the typical phonon scale when TBG < TD is reached as kF

becomes small enough [15,16].

The specific issue addressed in the current work is how
the high-T (� TD) linear-in-T metallic resistivity is modified
as T decreases from the asymptotic T � TD regime to low
temperatures. The result is, of course, well established in the
lowest-temperature (the so-called, Bloch-Grüneisen) regime,
T � TD, where the phonon-induced metallic resistivity falls
off as T 5 (or T 4) in three-dimensional (3D) (or 2D) metals
[3,4,15]. In this very low-T Bloch-Grüneisen regime, phonon
scattering is mostly unimportant as other resistive scattering
mechanisms (e.g., impurity scattering, which is mostly tem-
perature independent) dominate, and in fact, it is typically
a challenge to experimentally observe the predicted Bloch-
Grüneisen T 5 (3D) or T 4 (2D) temperature dependence of the
metallic resistivity [17–19]. The interesting regime is, how-
ever, the broad intermediate-T regime, T ∼ TD (e.g., TD/5 <

T < TD), where the phonon-scattering-induced metallic resis-
tivity is in the crossover regime, where it does not strictly
obey either asymptotic behavior of being O(T 5) for T � TD

or O(T ) for T � TD. This intermediate crossover regime is
the focus of the current work. We discuss and focus on mostly
3D metals (but present very similar results also for 2D metals
for the sake of completeness). We explicitly consider only
acoustic phonon scattering since the metallic resistivity at
high T is almost always dominated by scattering from acous-
tic phonons. (Our results and conclusions remain qualitatively
valid for optical phonon scattering also with TD being replaced
by the corresponding typical optical phonon energy.)

The interesting theoretical finding we report here is that in a
very broad experimentally relevant intermediate-temperature
(around T ∼ TD) regime, TD/5 < T < TD, the phonon-
induced metallic resistivity actually behaves as ρ(T ) ≈ A +
BT , and not simply as ρ(T ) ∼ T , where A and B are weakly
temperature dependent, with rather nontrivial behaviors (to be
discussed below). As T becomes large, A vanishes asymp-
totically for T � TD, and B becomes a constant, leading
to the well-known ρ(T ) ∼ T high-T temperature depen-
dence. But, in a large intermediate-temperature regime of

2469-9950/2024/110(7)/075151(8) 075151-1 ©2024 American Physical Society

https://orcid.org/0000-0002-9000-8975
https://ror.org/04xz38214
https://ror.org/047s2c258
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.110.075151&domain=pdf&date_stamp=2024-08-27
https://doi.org/10.1103/PhysRevB.110.075151


YI-TING TU AND SANKAR DAS SARMA PHYSICAL REVIEW B 110, 075151 (2024)

FIG. 1. The dimensionless resistivity ρ̃ as a function of dimen-
sionless temperature T̃ , defined in Eq. (2), using the BG formula
(solid line). Colored dots show some data for various metals (taken
from Fig. 1 of Ref. [20]). The dashed line indicates the apparent high-
T asymptote from the range of the available data, showing a clear
negative y-intercept. The dotted line indicates the true asymptote
ρ̃ = T̃ for T̃ → ∞. The inset shows the same solid and dotted lines
over a larger range of T̃ , showing that ρ̃ approaches the true asymp-
tote only in a temperature range much larger than the experimental
data.

experimental relevance A is finite, and, remarkably, negative.
This implies that a low-temperature extrapolation from the
high-temperature resistivity would intersect the temperature
axis at a finite value of T , and would produce an effective (in-
ferred) negative value of T = 0 resistivity based only on this
extrapolation. We emphasize that the actual (i.e., not extrap-
olated from high T ) phonon-induced resistivity crosses over
eventually (for T � TD) to a power-law behavior [O(T 5)],
and quickly vanishes at T = 0. Of course, in reality, other
contributions to ρ(T ) take over at lower temperatures, and
typically, ρ(T ) saturates to a constant T = 0 resistivity be-
cause of the dominance of resistive impurity scattering effects.

Figure 1 shows the phonon-induced behavior, ρ(T ) = A +
BT , for a number of regular metals, where the measured
resistivity of five metals is shown in dimensionless units, and
it is clear that an extrapolation to T = 0 from the high-T
(T > TD/5) resistivity manifests a negative apparent T = 0
resistivity. (We also note that the actual, i.e., not-extrapolated,
resistivity, however, curves up and saturates to a low value, as
it should, in contrast to the extrapolated resistivity.) The prob-
lem, however, arises if the resistivity could only be measured
at higher values of T (perhaps because the system goes su-
perconducting at some temperature or perhaps because lower

T values are not accessible for some reason), then, one could
make the perfectly reasonable extrapolation from the smooth
high-T (> T/TD > 0.2 in Fig. 1) and conclude that the T = 0
resistivity is negative. This would be an absurd conclusion.

In reality, one would add the impurity scattering contri-
bution to the resistivity, ρi, and get ρ(T ) = (ρi + A) + BT ,
and then an extrapolation to T = 0 would falsely indicate that
the disorder contribution to the T = 0 resistivity is ρi + A,
which is less than ρi since A is negative. We believe that
this error of estimating the T = 0 resistivity inadvertently
happens often in the experimental literature, particularly when
the material goes superconducting at some higher T , and an
extrapolation is the only way to estimate the effective T = 0
resistivity. Note that in the fine-tuned, but by no means im-
possible, scenario of ρi and A exactly canceling each other,
ρi + A = 0, such an extrapolation would produce the highly
misleading conclusion of the system having a perfectly linear-
in-T resistivity all the way to T = 0, incorrectly implying a
non-Fermi-liquid ground state. We also note that, although we
use acoustic phonon scattering for our explicit calculations,
our theoretical considerations apply to all resistive scattering
from any bosonic modes in the environment, where such a
negative intercept would be generic if the T = 0 resistivity is
inferred from a higher temperature with nominally (but not
precisely) linear-in-T resistivity. This makes our findings rel-
evant to many correlated materials (including cuprates) where
a linear-in-T resistivity often manifests with no consensus on
the mechanism underlying it, and it is thought that the lin-
earity may arise from scattering by collective bosonic modes
associated with a hidden criticality in the system [21].

The rest of the work is organized as follows. In Sec. II, we
provide the theory, establishing the high-T linearity and the
low-T Bloch-Grüneisen behavior, providing some analytical
expressions for the temperature dependence, both in high-T
and low-T limits for both 3D and 2D systems, and provid-
ing analytical and numerical details for the putative A + BT
behavior of the resistivity in the intermediate-temperature
regime as mentioned above. Section II is subdivided into three
subsections and presents several graphs providing numerical
results compared with the analytical formula in depth. We
conclude in Sec. III with a discussion on the implications of
our results for experiments.

II. THEORY AND RESULTS

We start from the Bloch-Grüneisen (BG) resistivity for-
mula arising from electron-phonon interaction [1–8,15,16]:

ρ(T ) = ρi + 2πλkBT/h̄

(n/m)e2

×
∫ ωD

0

dω

ω

(
ω

ωD

)4[ h̄ω/kBT

sinh(h̄ω/2kBT )

]2

, (1)

where n is the effective carrier density, and m the effective
mass (the exact definitions of n and m are not important in
this paper, and our result holds as long as n/m is not strongly
T dependent), ωD the Debye frequency (corresponding to the
Debye temperature TD = h̄ωD/kB), ρi is the (T -independent)
residual resistivity coming from impurity scattering.
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FIG. 2. The extracted power of the power of T̃ in ρ̃ as a function
of T̃ , showing the crossover from the low-T behavior of T 5 (T 4) in
3D (2D) to the high-T linear-in-T behavior.

The integral in Eq. (1) only depends on T/TD and goes to
1 when T/TD � 1, so it is convenient to rewrite Eq. (1) as

ρ(T ) = 2πλkBTD/h̄

(n/m)e2
· ρ̃(T̃ ), T̃ = T

TD
, (2)

where we have the dimensionless version of the BG formula,

ρ̃(T̃ ) = ρ̃i + T̃
∫ 1

0

dω̃

ω̃
ω̃4

[
ω̃/T̃

sinh(ω̃/2T̃ )

]2

, (3)

where ρ̃i is the dimensionless T̃ -independent residual resistiv-
ity, which we will set to zero in this paper except in Sec. II C.
We will mainly use the dimensionless variables (indicated by
tildes) in this paper.

The BG formula can be generalized to

ρ̃(T̃ ) = n − 1

4
T̃

∫ 1

0
dω̃ ω̃n−2

[
ω̃/T̃

sinh(ω̃/2T̃ )

]2

, (4)

where n � 2 is an integer. It has the property that ρ̃ ∼ T̃ n for
T̃ � 1 and ρ̃ ∼ T̃ with unit slope for T̃ � 1. The usual 3D
case corresponds to n = 5 and 2D systems have n = 4. We
will focus on these two cases, referring to them simply as
2D and 3D, but note that n = 3 is also possible for some 3D
materials [22]. The crossover of the power of T̃ in ρ̃ from the
low-T to the high-T behavior is shown in Fig. 2.

The integral in Eq. (4) cannot be expressed in terms of
elementary function, but one can express it as a finite sum
of polylogarithms [23]:

ρ̃(T̃ ) =(n − 1) n! ζ (n) T̃ n

−
n∑

j=0

(n − 1) n!

j!
T̃ n− j Lin− j (e

−1/T̃ ), (5)

where ζ (z) is the Riemann zeta function.

FIG. 3. The (a) high- and (b) low-T expansions of ρ̃(T̃ ) in
three dimensions up to a given order.

A. Asymptotic expansions

By expanding the integrand of Eq. (4) in terms of 1/T̃ , we
have the high-T expansion:

ρ̃(T̃ ) = T̃ − n − 1

12(n + 1)

1

T̃
+ n − 1

240(n + 3)

1

T̃ 3
+ · · · . (6)

In particular, in three dimensions we have

ρ̃(T̃ ) = T̃ − 1

18T̃
+ 1

480T̃ 3
+ · · · , (7)

and in two dimensions,

ρ̃(T̃ ) = T̃ − 1

20T̃
+ 1

560T̃ 3
+ · · · . (8)

The expansions up to the three orders in three dimensions are
plotted in Fig. 3(a) (the 2D case is visually very similar). The
important point is that, to the lowest nontrivial order, we have
(take three dimensions for example—in two dimensions 4.24
below is replaced by 4.47)

ρ̃(T̃ ) ≈ T̃

[
1 − 1

(4.24 T̃ )2

]
, (9)

which means that nonlinearity only becomes the leading be-
havior roughly when T̃ � 1/4. This explains the well-known
empirical fact that the metallic linear-in-T resistivity (e.g.,
Fig. 1) persists approximately to T̃ ∼ 0.25, and is not limited
to T̃ � 1 as most metals manifest approximate linear-in-T
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resistivity down to 50–60 K. However, before the second term
in Eqs. (6)–(9) starts to introduce noticeable nonlinearity, the
curve is already deviating noticeably from the true asymptote
(for T̃ � 1) even if it visually looks linear.

Now we turn to the low-T expansion. For T̃ � 1, the
integrand in Eq. (4) decays exponentially except for ω̃ � 1,
and hence we can set the upper limit of the integration to ∞,
giving [23]

ρ̃(T̃ ) ≈ (n − 1) n! ζ (n) T̃ n. (10)

One way to obtain subleading corrections in elementary func-
tions is to expand the integrand in e−ω̃/T̃ and integrate over the
region that we neglected. That is,

ρ̃(T̃ ) − (n − 1) n! ζ (n) T̃ n

= −n − 1

4
T̃

∫ ∞

1
dω̃ ω̃n−2

[
ω̃/T̃

sinh(ω̃/2T̃ )

]2

= −n − 1

T̃

∫ ∞

1
dω̃

ω̃n

e
ω̃

T̃

(1 + 2e− ω̃

T̃ + 3e−2 ω̃

T̃ + · · · ). (11)

Now the kth term is an elementary integral that gives e−k/T̃

times a polynomial in T̃ , and therefore we get an expansion in
terms of elementary functions. In particular, in three dimen-
sions we have

ρ̃(T̃ ) = 480 ζ (5)T̃ 5

− 4 e− 1
T̃ (1 + 5T̃ + 20T̃ 2 + 60T̃ 3 + 120T̃ 4 + 120T̃ 5)

− e− 2
T̃ (4 + 10T̃ + 20T̃ 2 + 30T̃ 3 + 30T̃ 4 + 15T̃ 5) + . . . ,

(12)

and in two dimensions,

ρ̃(T̃ ) = 4π4

5
T̃ 4

− e− 1
T̃ (3 + 12T̃ + 36T̃ 2 + 72T̃ 3 + 72T̃ 4)

− e− 2
T̃

(
3 + 6T̃ + 9T̃ 2 + 9T̃ 3 + 9

2
T̃ 4

)
+ . . . . (13)

The expansions up to the three orders in three dimensions
are plotted in Fig. 3(b) (again, the 2D case is visually very
similar).

B. Apparent asymptote in the intermediate-T regime

Note that ρ̃(T̃ ) starts to be linear-in-T̃ around T̃ ≈ 0.2
and ρ̃(T̃ ) ∼ T̃ (with unit slope) for T̃ � 1. However, we can
see in Fig. 1 that in the experimentally relevant intermediate
temperature (0.2 < T̃ < 1), even if ρ̃(T̃ ) already appears to
be linear, the tangent line is still very different from the actual
asymptote ρ̃ = T̃ for T̃ � 1. Here we study the behavior of
ρ̃(T̃ ) at such intermediate value of T̃ , by approximating

ρ̃(T̃ ) ≈ Ã + B̃T̃ (14)

around a particular intermediate temperature value T̃ ≈ T̃0.
For simplicity, we will just use the tangent line. That is,
Ã = ρ̃(T̃0) − T̃0ρ̃

′(T̃0) is the intercept and B̃ = ρ̃ ′(T̃0) is the
slope of the tangent line, and we will treat Ã and B̃ as functions
of T̃0 (i.e., where the tangent is taken). For actual experimental
data, one needs to do a linear fit around a small range of

FIG. 4. Comparison between dimensionless resistivity ρ̃ as a
function of dimensionless temperature T̃ for 2D and 3D (solid lines)
and their apparent asymptotes (dashed lines). The true asymptote is
shown as the dotted black line.

T , and hence the best-fit line will not exactly be the tangent
line at one particular value of T0. However, since the tangent
line only varies slowly with T0 as we will see, this is already
enough for our purpose of figuring out how an extrapola-
tion to T = 0 works when starting from a visually linear
higher-temperature (∼T̃0) regime. The corresponding physical
coefficients in ρ(T ) ≈ A + BT are (in three dimensions)

A = 2πλkBTD/h̄

(n/m)e2
Ã, B = 2πλkB/h̄

(n/m)e2
B̃. (15)

Figure 5 shows the numerically calculated Ã and B̃ coeffi-
cients as a function of T̃0. We can see that, in the regime just
above T̃0 � 0.2 where the ρ̃(T̃ ) starts to be visually linear, but
within the experimentally relevant regime of T̃0 � 1, Ã and
B̃ only vary slowly with T̃0, and have extrema at the inflec-
tion point of ρ̃(T̃ ). [Note that Ã′(T̃0) = −T̃0B̃′(T̃0), so their
extrema occur at the same point.] The tangent line at that point
is special since it visually looks like the asymptote if the curve
is only shown up to that range of T̃ (Fig. 4). And if some set of
experimental data is available in that range, attempted linear
fits will get very good results (since the curvature vanishes)
but the best-fit line will be similar to the local tangent instead
of the true asymptote. We call this line the apparent asymp-
tote. For larger T̃0, Ã slowly approaches 0 and B̃ approaches
1, so that the tangent line approaches the true asymptote
ρ̃ = T̃ for T̃0 � 1 as it must. However, this is only appar-
ent around T̃0 ∼ 5, which is often beyond the experimentally
relevant temperatures. The fact that the asymptotic behavior
of the resistivity being strictly linear in T (with no intercept)
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FIG. 5. The Ã (intercept) and B̃ (slope) coefficients as a function
of the target temperature T̃0. Insets show the part of the curves over a
smaller and experimentally more relevant regime of T̃0.

happens only for T � 5TD although the apparent local linear-
ity commences already near T ∼ TD/5 is not obvious and has
not been emphasized in the existing literature. This implies
that any extrapolation to T = 0 from the apparently linear T
dependence in the large intermediate temperature regime of
experimental relevance, TD/5 < T < 5TD, would lead to an
incorrect conclusion about the T = 0 resistivity.

The numerical values for the apparent asymptote in three
dimensions is

T̃0 ≈ 0.361, Ã ≈ 1.171, B̃ ≈ −0.180, (16)

and in two dimensions,

T̃0 ≈ 0.349, Ã ≈ 1.163, B̃ ≈ −0.167. (17)

One can obtain an equation of such T̃0 from Eq. (5). For
example, in three dimensions we have

Li5(1) − Li5(x) + log x Li4(x) − 1

2!
(log x)2 Li3(x)

+ 1

3!
(log x)3 Li2(x) − 1

4!
(log x)4 Li1(x) + 1

5!
(log x)5 Li0(x)

− 9

10

1

6!
(log x)6 Li−1(x) + 21

10

1

7!
(log x)7 Li−2(x) = 0, (18)

where x = exp(−1/T̃0). The transcendental equation repre-
sented by Eq. (18) is not very illuminating, albeit exact, since
it cannot be solved analytically. Moreover, this inflection point
at T̃0 occurs at the intermediate-T̃ regime where neither the

high- nor the low-T expansion can capture its behavior very
well, since, by definition, T̃ is neither large nor small in this
important intermediate-T regime. Although the high-T ex-
pansion up to 1/T̃ 3 does show an inflection point, its position
deviates from the exact value by about 30%. Therefore, we do
not have an accurate perturbative description of the apparent
asymptote.

Nevertheless, the apparent negative intercept can be under-
stood intuitively. From Eq. (9), linearity only starts around
T̃ ∼ 1/4. If we estimate the slope slightly above the onset of
linearity to be 1 and extrapolate toward T̃ = 0, we should have
an intercept that is roughly −1/4 (the actual value is closer
to −1/5). This immediately implies that any extrapolation
from the lowest-T regime (T ∼ TD/5) where the apparent
linearity first manifests, exactly what is typically done ex-
perimentally, is bound to provide a large negative intercept
for phonon-induced resistivity. By contrast, an extrapolation
from very high T (T � 5TD) provides the correct result of
ρ(T = 0) = 0. This has serious implications for the residual
resistivity at T = 0, if such a residual resistivity is extracted
by extrapolating from a T > 0 linear-in-T resistivity behavior
as discussed below.

C. Extraction of the residual resistivity

Here we set the (dimensionless) residual resistivity due to
impurity scattering, ρ̃i, in Eq. (3) to a nonzero value. Note
that its relationship to the physical impurity resistivity ρi is
(in three dimensions)

ρi = 2πλkBTD/h̄

(n/m)e2
ρ̃i. (19)

We assume ρi to be T independent as it often (but not always
[24]) is.

Figure 6 shows ρ̃(T̃ ) with various values of ρ̃i along
with the apparent asymptotes. Since the apparent intercept
(i.e., the nominal extracted T = 0 residual resistivity) equals
ρ̃i + Ã, where Ã is the negative apparent intercept for zero ρ̃i

arising just from phonon scattering, by tuning ρ̃i (which is
always positive) we can produce negative, zero, or positive
value of the apparent intercept. If experimental data are only
available in the range of 0.3 � T̃ � 0.6, one may have mis-
interpreted the apparent intercept as the residual resistivity
due to impurity by linearly extrapolating the data towards
zero temperature. Even if data are available up to a larger
temperature, one may still be tempted to fit the data linearly
(especially if the fluctuation of the data is too large to see the
small variation of the slope with T ), but its intercept will not
be a good approximation of ρi unless ρ̃i � 0.2 or T̃ � 5. The
extrapolated residual resistivity is thus prone to large errors
unless the system is so highly disordered that ρi is much larger
than the magnitude of A.

If the effective TD is known, then one can still get a rea-
sonable approximation of ρi, by compensating the intercept
with the coefficient A at the corresponding temperature range
of the available data, even if only a small linear segment of
data is available. (We mention that TD for transport may differ
from the TD inferred from specific heat measurements [3].)
However, if TD (or the distribution of TD and λ if multiple
phonon modes are effective [25]) is unknown and when one
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FIG. 6. Adding various values of constant ρ̃i to ρ̃(T̃ ) in three
dimensions to produce negative (blue), zero (green), or positive (red)
values of the apparent intercepts. Dashed lines are the apparent
asymptotes.

cannot go to low enough temperature to see the nonlinear-
in-T behavior, then it will be difficult to estimate the correct
intercept since only T0, not T̃0, is known. In this case, if the
fluctuation of the data is small enough, one may try to fit the
small variation of the slope (that is, the curvature) to extract
the phonon parameters, and hence an estimation of ρi. But
if many phonon modes are present, this procedure will only
give an effective value of TD, which is roughly, but not always
(depending on the relative sizes of λ for the individual modes),
the largest TD among the individual modes [25]. Therefore, an
accurate extraction of ρi based on only a (nearly) linear piece
of ρ(T ) data may not be possible. Of course, this problem
does not arise if one has transport data down to low enough T
values so that the ρ(T ) has effectively saturated to ρi with the
phonon scattering contribution becoming negligible because
T � TD/5 condition has been achieved. There are, however,
many situations where ρ(T ) cannot be measured to arbitrarily
low temperatures, and an extrapolation is used to estimate ρi,
which could be problematic because of the effective negative
intercept arising from phonon scattering.

III. CONCLUSION AND DISCUSSION

Using the standard Bloch-Grüneisen transport theory for
phonon-scattering-induced metallic resistivity, we show that
the metallic resistivity in a broad range of temperatures
(TD/5 < T < TD) manifests a behavior mimicking ρ = A +

BT , where A, B are almost T independent (with A < 0).
For T � TD, A tends to zero (with B becoming strictly T
independent) and the resistivity has the well-known strictly
proportional to linear-in-T high-T behavior observed in all
metals at higher temperatures. Interestingly, A and B, although
only weakly T dependent, manifest nontrivial nonmonotonic-
ity with their magnitudes exhibiting extrema as a function
of T : both the slope B and the intercept A have a maxi-
mum magnitude for T/TD ∼ 0.36. The extremum point (i.e.,
T/TD ∼ 0.36) is a nontrivial irrational number arising from
the properties of various polylogarithmic functions in the
temperature dependence. We also show that the high-T lin-
earity has a leading-order correction going as ∼TD/18T and
∼TD/20T , respectively, in two dimensions and three dimen-
sions, explaining why the apparent approximate linearity in
ρ(T ) persists to roughly to T > TD/5 since the high-T ex-
pansion turns out to be an expansion really in T/5TD rather
than just in T/TD. But the strict linearity, with ρ(T ) = BT ,
can only happen at very high T/TD where A vanishes and B
becomes T independent.

The behavior predicted in this work is routinely observed
in the experimental metallic resistivity, as is obvious from our
Fig. 1 where the resistivity of ordinary metals can be seen
to manifest the A + BT type behavior for T > TD/5. Very
similar T -dependent resistivity with clear negative intercepts
(for T > TD/5) is routinely seen in graphene [26–28] as well
as correlated materials [29–31]. We emphasize that the basic
behavior of ρ(T ) = A + BT in an intermediate-temperature
regime is not specific to just phonon scattering considered in
the current work, but for all resistive scattering from bosonic
modes, independent of the type of bosons one considers. The
TD parameter then represents the typical boson energy param-
eter for the bosons responsible for the resistive scattering.
Indeed, such an A + BT behavior in the resistivity (with a
negative intercept) can be clearly seen in Fig. 2 of Ref. [21],
where the resistivity arises from scattering by exotic bosonic
modes associated with an underlying quantum critical point.
The only necessity for the manifestation of the negative in-
tercept type behavior is for the system to be pure enough so
that the impurity contribution, ρi, to the T = 0 resistivity is
smaller than the bosonic scattering contribution at roughly
T ∼ TD/5 so that ρi does not overwhelm the extrapolation
of the apparent linear-in-T resistivity. Of course, the actual
(in contrast to the extrapolated) resistivity does not become
negative at T = 0 even for bosonic scattering since at low
enough T , the resistivity vanishes eventually as a power law.
The problem of the negative intercept is germane only when
extrapolating from an apparent linear-in-T resistivity regime
TD/5 < T < TD.

The most direct experimental implication of our work is
that one should be extremely careful in extracting an effective
T = 0 sample resistivity using extrapolation (as opposed to
measurements) from the higher-T regime where the resistivity
is roughly linear in T , as demonstrated in Fig. 1. Such an
extracted resistivity is producing an effective T = 0 resistivity
given by ρi − |A|, which is fine when ρi is much larger than
the magnitude of A, i.e., highly disordered samples, but is in
fact incorrect quantitatively, and produces an underestimate
of the actual ρi. This may have implications for the various
Planckian behaviors of strange metals much discussed in the
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literature [10,11], where the T = 0 resistivity due to disorder
scattering is subtracted out, and often an extrapolation is used
from higher-T to estimate the T = 0 resistivity because of
intervening phases (e.g., superconductivity) not allowing an
actual measurement of the resistivity down to low tempera-
tures. If an extrapolation of the linear-in-T resistivity is used
to estimate the T = 0 resistivity, then particular care is neces-
sary to ensure that the negative intercept problem discussed in
our work is not causing serious errors in the estimated residual
resistivity.

We should mention that there is the fine-tuned possibility
of the impurity scattering contribution ρi to precisely cancel-
ing the extrapolated phonon scattering intercept A, making
ρi + A = 0 in some situations, leading to the incorrect con-
clusion that the extrapolated T = 0 resistivity of the system
remains linear down to T = 0. Since ρ(T ) cannot be actually
measured down to T = 0, such extrapolations are often used
to infer a non-Fermi-liquid behavior of a linear-in-T resistiv-
ity down to T = 0 through extrapolation from a temperature
regime where the resistivity is linear—our findings reported
in this work suggest that such extrapolated conclusions could
be incorrect as a matter of principle.

One important point to note here is that just finding a
linear-in-T resistivity over a temperature range, even when
it persists to some physically low-temperature scale is not
sufficient to claim an underlying non-Fermi-liquid behavior,
which presumes that the scattering rate is linear-in-T even
at T = 0. One must ask whether the linearity is better fit
by a formula of the type A + BT , which then immediately
implies a possible Fermi liquid independent of whether A is
positive or negative. Subtracting out a hypothetical A (arising
from elastic impurity scattering) from the extrapolated resis-
tivity could be misleading because of what we find in this

work. Extrapolations are always dangerous in terms of trying
to figure out the functional form in an extrapolated regime
outside the measured domain. A trivial example is the simple
analytic function f (x) = x2/(1 + x), which goes as x2 (x) for
x � (�)1. Any extrapolation from x � 1 is insufficient to
figure out the functional form near x ∼ 0, and the extrapolated
value of f (x) for x = 0 will depend on the regime of x where
the extrapolation begins. In this particular (trivial) example,
the intercept is −1 when extrapolated from the x � 1 linear
regime [where f (x) ∼ x], but the intercept would be some
value between −1 and 0 if the extrapolation is done from a
regime where x ∼ 1 or <1. The problem with phonon scatter-
ing is of course nontrivial, but is formally similar to this trivial
example. This problem is further compounded by adding a
constant to f (x) since now the extrapolation will depend both
on this added constant and the origin of the extrapolation.
Only when f (x) extrapolates linearly all the way to zero at
x = 0 can one be sure that f (x) behaves as x near x ∼ 0. In the
presence of an added constant (akin to the impurity scattering
contribution), one must take particular care that there is no fine
tuning, which leads to such a conclusion. The real problem is
that the resistivity is never measured over a sufficiently large
range of linear-in-T regime at low enough temperatures for
one to confidently carry out an extrapolation to figure out its
effective T = 0 behavior. The clear conclusion of our work is
that particular caution is necessary in extrapolating a linear-
in-T resistivity over some range of T to T = 0 in forming any
conclusion about the actual T = 0 behavior of resistivity.
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