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Energy diffusion in weakly interacting chains with fermionic dissipation assisted operator evolution
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Interacting lattice Hamiltonians at high temperature generically give rise to energy transport governed by
the classical diffusion equation; however, predicting the rate of diffusion requires numerical simulation of the
microscopic quantum dynamics. For the purpose of predicting such transport properties, computational time
evolution methods must be paired with schemes to control the growth of entanglement to tractably simulate for
sufficiently long times. One such truncation scheme—dissipation-assisted operator evolution (DAOE)—controls
entanglement by damping out components of operators with large Pauli weight. In this paper, we generalize
DAOE to treat fermionic systems. Our method instead damps out components of operators with large fermionic
weight. We investigate the performance of DAOE, the new fermionic DAOE (FDAOE), and another simulation
method, density matrix truncation (DMT), in simulating energy transport in an interacting one-dimensional
Majorana chain. The chain is found to have a diffusion coefficient scaling like interaction strength to the fourth
power, contrary to naive expectations based on Fermi’s Golden rule—but consistent with recent predictions
based on the theory of weak integrability breaking. In the weak interaction regime where the fermionic nature of

the system is most relevant, FDAOE is found to simulate the system more efficiently than DAOE.

DOI: 10.1103/PhysRevB.110.075149

I. INTRODUCTION

Simulating transport in strongly interacting systems is a
core challenge in quantum many-body physics, with implica-
tions from strange metal physics in cuprates and iron pnictides
[1-7] to heavy-ion collisions [8—12]. Because complete nu-
merical solution of a particular Hamiltonian is generally
feasible only for small systems, transport simulations rely
on approximate numerical methods. But transport is under-
stood in terms of two largely separate languages, depending
on the degree of interaction: nearly free fermion [13] (and
nearly Bethe ansatz integrable [14-20]) systems can be under-
stood in terms of Boltzmann theory, while strongly interacting
systems are understood in terms of an increasingly detailed
theoretical understanding of how thermalization and hydrody-
namics emerge from unitary microscopic dynamics [21-25].
Cold-atom experiments highlight this gap: they can tune from
free-fermion to strongly interacting by tuning a Feshbach
resonance [26,27] or changing the geometry of a quasi-one-
dimensional ladder geometry [28]. At the same time, progress
in analytical and numerical treatment of systems showing
Bethe ansatz integrability [29], weakly broken Bethe ansatz
integrability [14-20], and strong integrability-breaking inter-
actions [22-25,30,31] suggests that quantum simulation may
not be necessary, at least for one-dimensional (1D) systems.
But classical methods have not been shown to work in the
crossover regime between weak interaction, tractable with
Boltzmann methods, and strong interaction, tractable with
recent methods. We present a matrix product operator method
for simulating transport in one-dimensional high-temperature
quantum systems that is suitable for that regime; it can treat
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both nearly-free-fermion and strongly interacting Hamiltoni-
ans.

Existing methods for strongly interacting systems become
impractical at weak interaction, lack a perturbatively small
simulation parameter controlling deviation from the exact dy-
namics, or both. Density matrix truncation (DMT) [30] works
in all ranges of integrability [32-35], but it is nontrivial to
implement and difficult to analyze. It is also uncontrolled:
like many matrix product operator methods, one checks the
accuracy of DMT simulations by looking for convergence
in bond dimension, but for large systems, practical bond
dimensions cannot approach the bond dimensions required
to exactly simulate the state. Indeed, the premise of DMT,
applied to systems that thermalize, is that most of the operator
can be discarded, because it consists of physically irrelevant
correlations.

Dissipation-assisted operator evolution (DAOE) [31] offers
a controllable approximation to a system’s dynamics with
a straightforward matrix product operator implementation—
but it is not suitable for systems near free-fermion in-
tegrability. DAOE modifies the Heisenberg dynamics to
include an artificial dissipation-like superoperator with a
parametrically small rate y. Just as depolarizing noise
with rate y reduces the amplitude of operators with
Pauli weight (number of nontrivial Pauli strings) [ at a
rate yl, the artificial dissipation reduces the amplitude
of operators with Pauli weight [ > [, at a rate y(l —L,).
Figure 1 (top) shows a cartoon of this process. It therefore
reduces the state’s complexity by decreasing the amplitude
of long operators, without changing local operators. Because
the long operators on which DAOE acts most strongly are—
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FIG. 1. Top: dissipation-assisted operator evolution (DAOE)
compared with fermionic dissipation-assisted operator evolution
(FDAOE). Where DAOE reduces widely separated quadratic fermion
operators almost to zero, FDAOE leaves them untouched; FDAOE
depolarizes operators with fermion weight greater than some cutoff
w,. Bottom left: energy density as a function of position x and time
t in the nearly-free Majorana model (2) at U = 0.3, simulated in
FDAOE. Bottom right: finite-time estimates of the diffusion coef-
ficient D. At small U, these estimates are consistent with D oc U ~*,
but not D o< U~2; the power is due to weak integrability breaking.

for chaotic, strongly interacting systems—unimportant to the
finite-time dynamics [23], one can think of the DAOE dis-
sipation superoperator as perturbatively modifying the local
dynamics. DAOE results at small but finite y can therefore be
extrapolated to the unitary y = 0 dynamics of interest, in a
manner similar to zero-noise extrapolation [36,37].

But when the system is not strongly interacting, the high-
weight operators affected by DAOE can be important to local
dynamics, and the dissipation is not a small perturbation.
In such a system, momentum occupation numbers like c;ick
(where ¢; is a fermion momentum mode annihilation op-
erator) are nearly conserved quantities, so modifying them
renders any description of the system’s hydrodynamics un-
faithful. But simple long-range fermion operators like c}:ck
have large weight when written in Pauli matrices, due to
Jordan-Wigner strings, so the artificial dissipation causes them
to decay rapidly; this artificial decay will dominate the sys-
tem’s apparent transport properties.

We modify DAOE to respect the fermionic structure
underlying weakly interacting 1D systems; we call the re-
sulting method fermionic DAOE (FDAOE). FDAOE preserves
quadratic fermion operators like chk while dissipating op-
erator components consisting of products of large numbers
of fermion operators. Like DAOE, it is efficient and easy to
implement due to its compact matrix product operator rep-
resentation. This allows us to study both strongly and weakly
nonintegrable fermionic models using the same controlled and
intuitive method.

We test FDAOE and a prior method, DMT, on a model
displaying weak integrability breaking [38]. In such models,
an integrability-breaking perturbation is added to an inte-
grable (in our case free-fermion) model. At leading order, the
perturbation dresses the integrable system’s conserved quanti-
ties, giving ballistic transport; beyond leading order it scatters

those quantities, giving diffusive transport. Reference [38]
predicts relaxation times ~U?*2", where v is a positive integer
for perturbations that exhibit weak integrability breaking and
0 for perturbations that do not.

We find that both FDAOE and DMT capture infinite-
temperature dynamical correlation functions of energy density
in such a system on short and intermediate timescales. Both
methods are limited by rapid growth of the patch of the sys-
tem they must simulate: on timescales short compared with
the scattering time, which is itself not short, energy density
spreads nearly ballistically and one must simulate systems of
diameter o vt. Although FDAOE and DMT both allow sim-
ulation at bond dimensions ~64-128, this spread still gives
cost per time step ~vt and total simulation cost ~¢>. FDAOE
is additionally limited by SVD error.

Both methods give finite-time energy density diffusion co-
efficients consistent with D ~ U~* but not the simple Fermi
golden rule D ~ U~? expected from ordinary integrability
breaking. This U* scaling confirms that weak integrabil-
ity breaking governs the system’s dynamics not only at
times short compared to interaction and hopping, where [38]
worked, but on long times as well.

The paper is organized as follows. In Sec. II we discuss
the model used for benchmarking, we give a brief overview
of weak integrability breaking, and we discuss the quantities
of interest. In Sec. III we review DAOE, and we present
our method FDAOE and describe simulations and simulation
costs. In Sec. IV we present the results and discuss the per-
formance of FDAOE compared to DAOE, and in Sec. V we
conclude.

II. MODEL AND QUANTITIES OF INTEREST
A. Model

We study the infinite-temperature energy transport of an
interacting Majorana chain

H =Y ins1 = U Y Na i Tl 1702 ey

n n

We work in the units where the quadratic “hopping” term
has been set to 1. We chose this model by starting with the
simplest example of a 1D free-fermion model with energy
conservation but without particle number conservation and
adding the most natural fermion parity-conserving interaction.
(The low-energy properties of this Hamiltonian were previ-
ously studied in Ref. [39].)

This Hamiltonian is equivalent to the spin-1/2 Hamiltonian

H= Z olof ol +U(ofor, +0i0l,) ()
n

by Jordan-Wigner transformation. We work with the spin-
language Hamiltonian (2).

We choose a model (1) with only a single conserved
quantity, the energy density, so we can study transport in
the simplest possible setting. We analyze our simulations
through the lens of a single-component diffusion equation
[22,24,31,35,40,41].

We do not expect our simulation methods to break down in
systems with multiple conserved quantities. But when a sys-
tem has multiple conserved quantities, nonlinear interactions
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between the conserved quantities can contribute significantly
to transport properties, so going beyond the linear diffusion
equation is necessary to analyze such systems [42]. Nonlinear
effects can also appear in systems with a single conserved
quantity [42—44], but previous numerical simulations in spin
chains with only energy conservation have not detected sig-
nificant nonlinear contributions to energy transport [35]. In
this work, we also do not detect significant nonlinear contri-
butions.

We have chosen an interaction that is not integrable using
the Bethe ansatz. Bethe ansatz integrable systems have an
infinite hierarchy of additional conserved quantities beyond
energy density. The methods we use throughout this paper are
designed to truncate irrelevant information while preserving
the behavior of densities of conserved quantities, which are
short-range or few-fermion operators like the energy den-
sity. So we would not expect them to be appropriate for
Bethe-ansatz integrable systems which have conserved quan-
tities with arbitrarily large operator size: see Appendix B in
Ref. [31] and Ref. [45] for more discussion of this point.

While the Hamiltonian we study in this paper has no addi-
tional conserved quantities for nonzero U, we wish to study
transport in a regime of small U, in the neighborhood of the
free-fermion point. At this free point, the model has many ad-
ditional conserved quantities that are quadratic in the fermion
operators. Such quantities are almost conserved when U is
small but nonzero, and thus they may contribute significantly
to long-time dynamics. Prior studies using tensor network
algorithms have not attempted to predict transport properties
in the nearly free-fermion regime of 1D chains, and it is not
clear whether such methods would succeed for this purpose.
On the other hand, FDAOE is designed specifically to preserve
information about the low-fermion weight quantities that are
almost conserved in the small-U regime.

B. Weak integrability breaking

In the regime of weak interactions, transport can some-
times be studied using simpler means, with the transport
coefficients computed perturbatively in linear response using
the Kubo formula, avoiding the need for simulations of oper-
ator dynamics.

However, we expect that the model studied in this paper
evades a simple perturbative analysis, as it exhibits weak
integrability breaking [38]. The core prediction of weak in-
tegrability breaking for this model is that scattering times
do not scale as predicted by Fermi’s golden rule, with the
square of the perturbation strength U, but with a different
power-law scaling. This is due to a hidden nonlocal map that
approximately transforms the Hamiltonian into a free-fermion
Hamiltonian, which we describe below. This implies that in
the perturbative calculation, current-current correlators need
to be computed to a higher order than expected to obtain a
finite result (in this case, fourth order rather than second order
in U). The simulation methods in this paper are able to recover
the unusual scaling with U without any explicit knowledge of
the weak integrability breaking.

Weak integrability breaking starts from the elementary
observation that if n(?) is a conserved quantity of some Hamil-

tonian Hy, then
", = e“xnfxo)e_“x, 3)
where X is a Hermitian operator, is a conserved quantity of
H' = ™ Hye ™™ . )
But for small A, this H’ is not so far from
H = Hy + ir[X, Hyl = H' + 00\>). (5)

When the initial Hamiltonian Hj is chosen to be an integrable
Hamiltonian with conserved quantities {n{"’}, the perturbed
quantities

ng =n +ir[X,n"] = n, + 0?) (6)
are nearly conserved. That is,
[H, ny] o< 32, ©)

in contrast to a generic perturbation that leads to matrix
elements [Hy + V, n”’] o A. Indeed, by keeping higher com-
mutators in (5) and (6), one can engineer nearly conserved
quantities with arbitrarily slow decays [H, n,] oc A%,

The challenge is to find generators X that produce a local
perturbation V of interest via V = i[X, Hy], which is only pos-
sible for select perturbations V. Reference [38] systematically
constructs a family of nonlocal generators X that produce
local perturbations when the unperturbed Hamiltonian H
is free-fermion or Bethe ansatz integrable. Specifically, the
examples of generators X that they construct are bilocal
combinations of conserved densities n(”) of Hy and their cor-
responding current operators.

For our purposes, we only need to consider one such gener-
ator X for a free Majorana chain that produces the interaction
term of Eq. (1). The appropriate generator is constructed from
a nonlocal combination of the energy density and energy
current density operators of the unperturbed Hamiltonian:

1
X= Y (e 50+ 5 S )

1
(O)—o an+1 + 2(0 +an+1)

0
Jr(z ) = O-n Un-H Un Gn+l (8)

One can check (with some purely mechanical effort) that the
interacting Hamiltonian in Eq. (1) satisfies

H = Hy + iA[X, Hy] )
with

Hy = ZinjnH—I

J

(10a)
and A = U/4.

C. Quantities of interest

If a system thermalizes, it approaches local thermal equi-
librium: after a short time, it can be described by a density
matrix

p(t) o< exp [—Zﬂxmex}, (1)
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where S, (¢) is a smoothly varying space- and time-dependent
inverse temperature, and &, is the energy density. (We consider
systems with only one conserved quantity, the energy den-
sity; a discussion of systems with more than one conserved
quantity would proceed analogously.) This state is specified
entirely by the energy expectation values trp(t)e,. For times
longer than the initial thermalization time, the energy density
correlation function

C(x, 1) = (ex(1)€0(0)) (12)

therefore captures the whole dynamics in this long-time
regime, and the extent to which it deviates from a gradient-
expansion prediction from (11) diagnoses the local thermal-
ization process.

On timescales long compared with the local thermalization
time, the system’s dynamics are given by the continuity equa-
tion and a gradient expansion of the state (11); the result is

818 = axj,
9 =Dde+--. (13)

To the extent that the system is described by the leading-order
term in the gradient expansion (13), the energy density corre-
lation function is the Gaussian C(x, t) exp[—x2 /4Dt].

But real systems are only described by (13) on timescales
long compared to the microscopic thermalization timescale.
To characterize the correlation function C(x,t) at short or
intermediate timescales, we can measure the degree to which
it spreads away from the initial point x = 0 to introduce a
time-dependent diffusion coefficient. The degree of spread is
the mean-squared displacement

2
1
V)= - 2C(x, 1) — C(x,t , 14
()V;xu)(;x(x)) (14)
where v is a (time-independent) normalization
v = ZC(x, 1) = ZC(x, 0). (15)

The time-dependent diffusion coefficient is

1d
D(t) = 5=V (). (16)

If the system is diffusive, then in the long-time limit its dy-
namics approaches the diffusion equation (13) with

D = lim D(). (17)

We estimate D(¢) by a numerical derivative of the mean-
squared displacement V (¢).

III. METHOD: FERMION DISSIPATION ASSISTED
OPERATOR EVOLUTION

A. Intuition and superoperator

Dissipation assisted operator evolution [31] intersperses
unitary time evolution with a dissipation superoperator that
reduces the amplitude on high-weight Pauli strings. That dis-
sipation superoperator is

) if lgél*}

e Vis—l)g (18)

Dry181= { if Is > 1,

where S is a Pauli string and /s is the Pauli weight of S, or the
number of nontrivial Pauli operators in S. In the /, = 0 limit,
this reduces to a depolarizing channel, hence the name “dissi-
pation superoperator”’; from the point of view of DMT [30] or
operator size truncated dynamics [24,35], it is a soft truncation
on long operators. When the dynamics of long operators is
chaotic, the details of the dynamics of long operators does
not affect local dynamical correlation functions [23,24], and
for I, > 1 the superoperator (18) modifies the local dynamics
only by modifying the rate at which the amplitude escapes
from short operators to long operators.

But for many models of interest, the dynamics of long op-
erators is not chaotic, and the DAOE dissipation superoperator
(18) dramatically changes operators of interest. In a system of
weakly interacting fermions like (1), a momentum mode such
as

1 .
n,(co) =7 Z NmMn Sin(n — m)k (19)

m<n

is a conserved quantity of the noninteracting part, and the
system’s evolution is governed by the dynamics of these
momentum modes, together with scattering between them.
After Jordan-Wigner transformation, the term 7,7, picks up
a Jordan-Wigner string between m and n, so it has Pauli
weight [, , = m — n+ 1. The DAOE superoperator projects
out operators with Pauli weight Is > I, + y~!, so it truncates
the momentum occupation number to the range I, + .
Because it changes the conserved quantities of the free model,
one expects it to drastically change the transport properties of
the interacting model.

In fermionic dissipation assisted operator evolution
(FDAOE), we replace the Pauli weight /s in the DAOE dissi-
pation superoperator (18) by a fermion weight superoperator.
To write the fermion weight superoperator, first represent each
Pauli matrix by two Majorana fermion operators

[T inamnomer |-

m>=n+1

X
= N2n+1

S|

v .
0, = N l_[ MomM2m+1 |»
m>n+1

O-yf = _i’72n’72n+1- (20)

These Majorana operators form a Hermitian, orthogonal
basis for the space of operators, so we can define our Majorana
dissipation superoperator by its action on them: if n; is a
product of Majorana operators on the sites J,

= ]n @1
jeJ
then
ns, w’].l < Wy,
M = 22
wny (1] {e_y(w’u_w*)m, Wy, > W, 22
with

w,, = |J]. (23)
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All of the terms in the momentum mode n,(co) of (19) have
Majorana weight 2, so for w, > 2 and any y,

My, (n”) =n. (24)

Unlike DAOE, therefore, FDAOE preserves the conserved
quantities of the noninteracting Hamiltonian.

The FDAOE superoperator (22) has an MPO representation
with bond dimension w, + 2 when represented by its action
on the Pauli basis related to the Majorana operators by the
Jordan-Wigner transformation, Eq. (20). We give the MPO
explicitly in Appendix A, but we outline the construction
here. As in the case of the DAOE superoperator described in
Ref. [31], the MPO representation utilizes a constant rank-4
tensor, which we denote as Wa’}]"/, with the upper indices n, n’
taking values in the local Pauli operator basis {/,X,Y, Z}.
As the FDAOE superoperator is diagonal in the basis of
operators that consist of products of Majorana operators,
it is also diagonal in the basis of Pauli strings; thus, the
only nonzero matrix elements occur in the form W'/, WXX,
W;;Y, or WaZbZ . The virtual indices a, b take values in the
set {0, 1,..., w*—1}U {(w*, +), (w*, —)}, which track the
total fermionic operator weight as measured from the left end
of the chain to the bond in question until it reaches w*, and
the fermion parity afterwards. Within each Pauli string, the
additional fermionic weight represented by the presence of an
X orY is always 1 and always flips the fermion parity, which
is tracked by the virtual index. Consequently, WX and W)Y
are zero unless a < w* and b=a+1 or a = (w*, £) and
b = (w*, F). The weights associated with / and Z, however,
are context-dependent; alone, they correspond to weights 0
and 2, respectively, but within a Jordan-Wigner string they
correspond to weights 2 and 0, swapping roles. The presence
of a Jordan-Wigner string is locally accessible as the parity of
the MPO virtual index a. In addition to tracking the fermion
weight, the MPO tensor applies a decay factor of e™" for each
unit of additional fermion weight beyond w*. Finally, the ten-
sors are contracted on the left and right ends with the vectors
v, =(1,0,...,0) and vg = (1,1,...,1); this ensures the
virtual index starts tracking the fermion weight from weight
0 on the left end of the chain and allows all values of fermion
weight on the right end. Explicit expressions for the MPO
tensors that meet these conditions are given in Appendix A.

The MPO can be written in terms of tensors that respect an
on-site spin or charge U (1); we give details in Appendix A.

B. Computing dynamical correlation functions

We seek to measure dynamical correlation functions
(ex(1)0(0)) = tr(exe™ g0, (25)

where L is the Liouvillian generated by L[-] = —i[H, -] and
where ¢, is the energy density, chosen as a parity symmetric
operator that produces H when summed over sites. [, is the
energy density of the interacting Hamiltonian, as opposed to
the energy density £ of the noninteracting Hamiltonian used

in Eq. (8).] Explicitly, we represent &, as

1
J— 4 Z Z X X X X
&x = 3 (Gx Oxt1 Ux+2) B (Gx Oy+1 ax+10x+2)

U !
+ EX (0f0i ) +054,080,) +U(070),). (26)

To measure (e,(t)ep(0)), we time-evolve the initial operator
&o by the Trotterization of that Liouvillian, interspersed with
applications of the FDAOE MPO.

In the limit of large bond dimension, the dominant cost is
truncation after MPO application. Since the FDAOE MPO has
bond dimension w, + 2, an exact truncation has cost

~d* x (ws +2)1° 27

per bond, where d is the physical on-site Hilbert space di-
mension [e.g., d =2 for a spin-1/2 Hamiltonian like (2)].
This cost comes about because the exact truncation requires
two sweeps, the first to put M,, , o e £'[go] in canonical
form and the second to do the truncation. Switching to a
so-called “zip-up” truncation, in which one truncates at each
site immediately after applying the MPO tensor, reduces the
cost to

~(wy + 2)[d* TP (28)

per bond at the cost of some imprecision [46,47].

The cost of the whole calculation can further be reduced
by noting that e~**'[g,] acts as the identity outside a light
cone of diameter ~2vt for some speed v. Both the unitary
dynamics and the FDAOE MPO M, act trivially outside that
light cone. So the cost of an MPO application at simulation
time ¢ generically grows with ¢: it is

~(wy +2)d® Y x(x, 1) ~ d(w, +2)x(6) 20, (29)

where we write y (x, t) for the bond dimension at site x and
some site ¢, and x(¢) for a typical magnitude at time . The
memory requirements are

~Qut)d® x (1) (30)

C. Simulation parameters

We use a fourth-order Trotter decomposition; specifically,
we use the three-term formula recommended by Ref. [48] that
consists of 21 layers of three-site gates for each time step. The
size of the time steps is dt = 0.1 throughout the paper. The
FDAOE MPO is applied after each time step.

After each Trotter gate and during zip-up MPO application,
we discard the smallest singular values s, such that [49]

Z s§<6 Zsé , 31
B

o discarded

where € is the SVD truncation error.

In Appendix C we discuss convergence in the cutoff ¢ and
the magnitude of the noise in the numerical derivative D(¢)
(cf. Fig. 2). We empirically find that truncating singular values
causes noise in D(¢) of magnitude

Alpreg ~ €V (1), (32)
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FIG. 2. Diffusion coefficient D(¢) as a function of time for the
nearly free Majorana model of Sec. II at interaction U = 0.3. D(¢)
is estimated via Eq. (16) using FDAOE at w, = 5 and a range of
artificial dissipations y (colored lines), and DMT at bond dimension
256 and Trotter step 0.125 (black line). (See Appendix D for DMT
convergence data.) The noise in the FDAOE D(¢) is due to an SVD
cutoff € = 10~® (see Appendix C). For plots of other U, see Fig. 7.

and we give a heuristic argument for why the noise should
have that form. We also empirically find that the magnitude of
the noise gives a reasonable estimate of the convergence error
ine.

The DMT simulations are run at Trotter step dt = 0.125
and a fixed bond dimension cap y = 256; we discuss con-
vergence in bond dimension (and other details of the DMT
simulations) in Appendix D.

IV. RESULTS

Figure 2 shows D(t) in the nearly free Majorana model
of Sec. II at interaction U = 0.3, estimated by taking the
numerical derivative of FDAOE simulations of (g.(t)g(0)).
The simulations are limited to times ¢ < 200 by the computa-
tional cost, which grows with time as the light cone of &,(¢)
grows. Each D(t) shows high-frequency noise; this is noise
is controlled by the SVD truncation cutoff, here € = 1078
(cf. Appendix C).

After an initial transient behavior, D(¢) is described by
exponential decay to a long-time limit

D(t)=D — Ae” /", (33)

Figure 2 (inset) shows |D(t) — D| in FDAOE simulations,
where D is extracted by fitting FDAOE D(¢) to the form (33).
The result appears exponential over the range of our simula-
tions, although that range is small [covering only a factor of
about 3 in decay of |D(¢) — D| for U = 0.3]. Figure 3 shows
the current-current correlator

1 d

L(J(t)f(0)> x dtD(t) (34)
in DMT simulations for U = 0.3, 0.4, 0.5. (See Appendix D
for details of the DMT simulations, including convergence
testing, Trotterization, and the definition of the current opera-
tor. Note that the current operator corresponds to a different
definition of energy density, for reasons of convenience in

—@— DI, =2 §
150 |~ @ DL =3
O Dl , =4 -
O Fw,=4,D=9491
—@— Fw, =5,D=89.47
® DMT )
%
[
100 —
Q
S @
50 *
————e - e _. e . e .
0 L . . L .
0.00 0.05 0.10 0.15 0.20 0.25

FIG. 3. Current-current correlator in DMT simulations across in-
teraction strengths U (solid lines), together with a single-exponential
fit to the r > 25 data. In each case, the correlator displays a long-
time exponential decay, supporting our choice of fit form (33) for
the diffusion coefficient. (We cannot rule out power-law behavior
at longer times, especially for U = 0.3, which displays less than a
decade of decay over the time simulated.)

analytical calculations; this explains the difference in transient
early-time behavior.) For each U the current-current correlator
displays an early-time transient decay followed by a long-time
exponential decay. For U = 0.5 this decay covers approxi-
mately two orders of magnitude, but for U = 0.3 it covers
less than a decade. As in Ref. [35], we cannot rule out that
the system displays long-time tails, but we expect that if they
exist their coefficients are small.

To characterize how the system’s long but finite-time be-
havior depends on U, we fit to the form (33) for U-dependent
time windows and consider the “asymptotic” diffusion coef-
ficient D; if the long-time tails are small or nonexistent, this
D will match the system’s true diffusion coefficient. We fit on
time windows 15/U = tin <t < fmax = 30/U; this form is
chosen by eye to avoid both the early-time nonexponential
behavior and late-time noise. The window choice is fairly
arbitrary. To characterize how the window choice affects the
fit, we take end times t,,x = 30/U — 10, 30/U, 30/U + 10,
fit for each window, compute the standard deviation of the
three resulting diffusion coefficients, and plot the result as
error bars.

Figure 4 shows the resulting diffusion coefficients for U =
0.3 as a function of the artificial decay y. We show both
FDAOE and DAOE at a variety of /,, w,. In each case, we
linearly extrapolate the smallest two points (y = 0.05, 0.1) to
y = 0. We extrapolate each fit window separately; the point
and error bar in the FDAOE extrapolation, like the point and
error bar in each of the finite-y points, show the mean and
standard deviation across the three fit windows. The DAOE
diffusion coefficients are not converged in /., in the sense
that different [, give different extrapolations to y = 0; this
indicates that DAOE is not in the perturbative small-y regime.

The FDAOE diffusion coefficients are converged in w, in
the sense that the error bars in the extrapolation to y =0
overlap: the difference between w, =4 and 5 is less than
the fit uncertainty. In judging convergence, it is important to
note that in simulations of &,(¢), FDAOE with these two w,
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FIG. 4. Diffusion coefficients extracted from D(t) via fit to ex-
ponential form (33) in FDAOE (blue lines, labeled “F” in the legend)
and DAOE (yellow-red lines, labeled “D” in the legend). DAOE does
not give consistent results across /,, even when extrapolated to y =0,
indicating that it cannot capture the crossover from free-fermion
to diffusive dynamics. FDAOE gives consistent results across w,;
the diffusion coefficients extrapolated to y =0 are D, 4 =95,
D, s = 89, against a DMT value Dpyr = 102. Error bars indicate
uncertainty resulting from the choice of fit window; they do not
include uncertainty due to Trotter or truncation error.

in fact leave the same operator Hilbert space untouched. Be-
cause the Hamiltonian and the energy density are both fermion
parity even, &,(¢) is also fermion parity even, and the lowest-
weight operators that suffer dissipation have weight w = 6,
regardless of whether w, = 4 or 5. (w, = 6 simulations were
prohibitively time-consuming.)

The FDAOE diffusion coefficients also broadly agree with
the DMT simulations (black dots in Fig. 4) and in Fig. 1. The
error bars do not all overlap, meaning the difference between
DMT, FDAOE at w,, = 4, and FDAOE at w, = 5 is not within
fit uncertainty. But the fit is not the only source of uncertainty;
DMT also has some error due to bond dimension convergence,
FDAOE has some error due to SVD cutoff, and both methods
have uncertainty due to (different) Trotter decompositions.
(See Appendix B for other interaction strengths and some
convergence data, and Appendixes C and D for discussions
of convergence.) The fit to D(¢) seems to be more sensitive to
convergence error than D(¢) itself.

Figure 4 shows that the diffusion coefficient is approxi-
mately linear in y for y < 0.15. This, together with (broad)
agreement between the different w, and agreement between
FDAOE and DMT, suggests that we can treat the FDAOE
superoperator perturbatively, although a rigorous justification
for such a perturbative treatment is lacking.

The premise of FDAOE is that weak dissipation restricted
to many-fermion operators will reduce simulation complexity,
while changing transport properties in a controlled way, which
can safely be extrapolated to the limit of zero projection.
Figure 4 establishes that the change in transport properties is
controlled, but not that simulation complexity is decreased.

Simulation complexity is controlled by bond dimension;
Fig. 5 shows the maximum bond dimension as a function
of time for U = 0.4, w, = 5. The bond dimension displays
a fast initial rise followed by a slow decay, as occurs in
other examples of dissipative operator evolution [31,50]. The

400} =005
v=0.1
~v=0.15

L ——~v=0.2
— 300 —v=0.25
Nad
g
£200 |
X |
100 | |
0 ki I ] ]
0 50 100 150
t

FIG. 5. Bond dimension saturation plot with w, = 5SandU =0.4
for various y. We can see that the bond dimension hits the peak and
falls down. Here we pick the truncation error to be 1073,

initial rise occurs as the operator &,(¢) spreads ballistically.
The long-time decay results from a split into conserved and
nonconserved operators; the nonconserved operators are de-
stroyed by the FDAOE projection [21]. Concretely, FDAOE
turns the Heisenberg dynamics into an effective Liouvillian
Lrpaoe- This effective Liouvillian has slow eigenoperators
given by the Fourier transform of the energy density and the
energy current:

Lrpaocel&i] = —iDk*%, (35)
with

& = & + ikDajs + - |

b= e,

o= e (36)

Here a is a constant related to the normalization of &; and
Jk. At long times, then, &,(t) becomes a sum of these Fourier
modes; performing an inverse Fourier transform, it becomes

eo(r) = Z[ﬁ(x, Dex +nx,)jx+ -1, (37

with in fact n(x, ) o« Do, B(x, t). [This B(x, t) is not identical
to the inverse temperature of (11), but it plays a similar role.]
At finite times this has small, decaying bond dimension; in the
long-time limit, lim,_, o, d,8(x, ) = 0, so the bond dimension
will decay to that of the Hamiltonian.

We can rephrase the argument in the picture of [21]. In
that picture, the initial energy density &y develops weight
on other energy densities €, as it evolves, but it also emits
nonconserved, ballistically spreading operators. In the exact
unitary dynamics, these nonconserved operators would give
large bond dimension. But these operators not only spread
spatially but also develop large fermion weight, so FDAOE
destroys them, leaving the energy density and its current.

To measure performance in a hardware- and algorithm-
agnostic way, we use the time complexity of SVD truncation
after application of the superoperator MPO; we call this time
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FIG. 6. (a) SVD cost with various y for fixed U = 0.3 and trun-
cation error 1078, (b) Relative error in the diffusion coefficient as a
function of SVD cost. We can see that given a fixed cost, the FDAOE
method has a faster convergence rate compared to DAOE.

complexity the SVD cost. Truncation dominates the time com-
plexity of both DAOE and FDAOE, so the SVD cost crudely
estimates the number of floating point operations needed for
the simulation. Asymptotically, the time complexity of the
SVD [51] at bond i is NDxf, where D is the bond dimen-
sion of the superoperator MPO: D = [, 4+ 1 for DAOE, and
D = w, + 2 for FDAOE. For each method we sum over bonds
at each time, and we maximize over times:

_ . 3
SVD cost = max ZD)(,(I) . (38)

Figure 6 shows the SVD cost for DAOE and FDAOE for U =
0.3 and a cutoff € = 0.3. Figure 6 (top) plots SVD cost against
the artificial dissipation rate y ; it shows that—at any fixed y—
DAGOE is one to two orders of magnitude cheaper.

But DAOE is not accurate: recall that DAOE gave incon-
sistent diffusion coefficients between lengths /,, and that none
of those diffusion coefficients agreed with DMT. FDAOE,
by contrast, can be improved (at some cost in SVD time)
by decreasing the artificial dissipation rate y. Figure 6 (bot-
tom) shows the error in the diffusion coefficient, compared
to extrapolated FDAOE simulations, as a function of SVD
cost. Where DAOE plateaus at some large, /,.-dependent error,
FDAOE error decreases as the SVD cost increases.

V. DISCUSSION

We have presented a method, fermionic dissipation assisted
operator evolution (FDAOE), for dynamics of interacting
fermions in 1+1 dimensions at high temperature. FDAOE
modifies a previous method, dissipation assisted operator
evolution (DAOE) [31], to perform a soft truncation of oper-
ators with large fermionic weight. We tested FDAOE, DAOE,
and another prior method, density matrix truncation (DMT),
on an interacting Majorana model displaying weak integra-
bility breaking. In weak integrability breaking, interactions
dress the conserved quantities of the free model, leading to
slow scattering and large diffusion coefficients. We find that
FDAOE and DMT agree and give diffusion coefficients con-
sistent with the D ~ U* scaling (U is the interaction strength),
as expected from scattering of dressed fermions. We further
found that FDAOE decreases the bond dimension of the MPO
representation of the Heisenberg picture energy density, when
combined with SVD truncation with a small error cutoff, but
we also found that the small error cutoff induces noise in the
time-dependent diffusion coefficient D(t).

That SVD cutoff indirectly controls the uncertainties in
our diffusion coefficient estimates. These uncertainties were
controlled by uncertainty in the fit to the exponential form
D(t) = D — Ae™"/*. This fit uncertainty was driven in turn
by truncation error, because we stopped the fit where trunca-
tion error [estimated by noise in D(¢)] became appreciable.
With less truncation error, we could measure D(f) deeper
into the exponential-decay regime, improving our estimates
of the asymptotic D = lim,_, o, D(¢). But most strategies for
decreasing truncation error would impose substantial run-time
and memory costs. Reducing the SVD cutoff, e.g., from 1078
to 10~°, would directly increase the bond dimension through-
out the simulation, and replacing the SVD cutoff with a bond
dimension cap would prevent the simulation from taking ad-
vantage of the decay of the bond dimension (Fig. 5).

But two strategies, measuring a current-current correlator
and using a variable SVD cutoff—may reduce truncation error
without imposing an appreciable runtime or memory cost.
Estimating D(¢) as we do, via the mean-square displacement
V(t), is costly because it requires measuring ¢(x, t) precisely
at large x. Indeed, the truncation error in D(¢) is & /€ V (¢).
Measuring a current-current correlator would avoid this prob-
lem, because the requisite spatial integral has no x? [unlike
the integral giving V (¢)]. Alternatively, one could use a time-
varying SVD cutoff e(¢) = ¢y/ V (¢)?. This would allow coarse
simulations at early times, e.g., around the bond dimension
peak in Fig. 5, and fine simulations at later times. Because the
runtime cost contains large contributions from the bond di-
mension peak, this might in fact decrease runtime cost on net.

While DMT is difficult to analyze, FDAOE can be under-
stood as a perturbative modification to the system’s dynamics.
This is consistent with our observation that the FDAOE dif-
fusion coefficient is linear in the artificial dissipation y. And
the intuition is clear: at small y, FDAOE acts weakly on few-
fermion operators, and in systems that eventually thermalize,
many-fermion operators are not important to transport. But
establishing this formally will be nontrivial; to do so will
require modifying arguments like those of [23] to work away
from the strongly interacting, chaotic limit.
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FDAOE is agnostic as to the details of the interaction.
There are many ways to split a Hamiltonian into an unper-
turbed Hy and a perturbation o U, especially if one considers
nonlocal changes of basis as in [38]. As long as there exists
some decomposition into a fermion-quadratic part and a small
nonquadratic part, though, we expect FDAOE to work. But we
expect FDAOE to work best when the nonquadratic part has
no further structure, so some analog of the chaos assumption
of [24] holds and the dynamics of many-fermion operators
is effectively random. In this way, it is somewhat surpris-
ing that FDAOE works for the weak integrability breaking
Hamiltonian, where the quasiconserved quantities provide ad-
ditional structure. The fact that FDAOE reproduces the U*
diffusion coefficients, despite having no built-in knowledge of
the decomposition of [38], is a stringent test of FDAOE, and
supports the natural belief that the particular decomposition of
[38] governs the model’s transport.

In one-dimensional fermion chains, the Jordan-Wigner
transformation produces an equivalent local Hamiltonian that
takes the form of a spin chain; a fermionic description of
the transport is unnecessary in the generic case. For this rea-
son, we have focused on weakly interacting systems, where
transport receives important contributions from the nearly
conserved quadratic fermion operators of all sizes. While
the Hamiltonian can be written as a local operator in the
spin language, these nearly conserved operators cannot. By
contrast, in higher-dimensional fermionic systems, the energy
density has no local spin representation. The dynamics of
such systems can be computed using MPS by picking a one-
dimensional ordering of the sites and using the Jordan-Wigner
representation to convert to a spin Hamiltonian, with some
terms involving nonlocal Jordan-Wigner strings. In this sce-
nario, the DAOE superoperator will cause the energy density
to decay rapidly, while the FDAOE superoperator will not.
Thus, we expect that FDAOE is the appropriate choice for
fermionic systems of all interaction strengths in higher dimen-
sions.

While we focused in this paper on infinite-temperature
transport, extending the methods to allow for finite-
temperature calculations is needed for many physical scenar-
ios of interest. In scenarios where the equilibrium state is
dominated by quadratic fermionic operators—particularly at
high temperatures with weak interactions—the FDAOE oper-
ator will only weakly perturb the equilibrium. Thus, it may
still be possible in these cases to recover the correct dynamics
using FDAOE with the extrapolation to zero dissipation rate.
For the same reason, we expect FDAOE to accurately treat
excitations over the ground state of a nearly free-fermion
system—though matrix product states are a more suitable data
structure at low temperature, because passing from states to
density matrices or Heisenberg dynamics squares the bond
dimension. We leave these questions to future studies.

Note added. We would like to bring the reader’s attention
to a related independent work [52].
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APPENDIX A: MATRIX PRODUCT OPERATOR
REPRESENTATION OF FERMIONIC DAOE

In this Appendix, we give more details on the construction
of the MPO representation of the fermionic DAOE superop-
erator M,, ,. As explained in Sec. III A, this construction
relies on the Jordan-Wigner embedding of fermionic operators
into the space of operators of qubits. This mapping maps
each Pauli string—a single product of Pauli operators or the
identity operator on each site—to a corresponding product of
Majorana operators with 0, 1, or 2 Majorana factors at each
site, up to a phase factor. Similarly, every product of Majorana
operators maps to a Pauli string. As the MPO representation
of the superoperator is by construction a linear superopera-
tor, and because the Pauli string operators form a basis for
the full space of operators, it is sufficient to confirm that
the MPO representation has the correct action on each Pauli
string.

The MPO is constructed with a constant rank-4 tensor
Wu';;”’, where n,n’ € {I,X,Y, Z}. To use a convenient notation,
we will allow the virtual indices to take values of the form
a; €{04,0_,1,,1_,...,w}, wr}, where the integer part of
the label a is used to track a fermion weight, and the subscript
s is used to track a fermion parity. There are 2(w* + 1) such
labels—however, we will find that we only use the labels
0r,1.,24,3,...and w}, w’, where for a < w* the parity
label s matches the parity of a as an integer. This results in a
set of w* + 2 total labels, and thus the bond dimension of our
MPO representation is w* + 2.
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. ,
The nonzero matrix elements of our MPO tensor W)i* are
as follows:

w!! W2, = 8ap

ay,by — "Ma

(AL)

XX YY —
Wa+,b, =W, b = 80+l,b +e yaa,w*ab,w*y

at,
XX YY —
VVQ,,ILr = WaﬂbJr = 3u+l,b +e yaa,w*ab,w*v
11 zZ -2
Wa,,b, = Wa+,b+ = Sav2.b + € 7 8auOp ur

+ eiy(sa,w*—lsb,w*- (A2)

The left- and rightmost tensor in the MPO representation are
to be contracted with vectors vt = §,, and vf = 1 on the left
and right virtual bond, respectively.

To understand this implementation of the MPO, we first
note that the nonzero elements listed guarantee a consistent
tracking of fermion parity. In more exact terms, the only
contributions to M, ,,[O] for a Pauli string O = [[; O; occur
when the parity index of the bond between site j and j + 1
matches the fermion parity of ]_[l< ; Oiforall j. This is conve-
nient, as matching the fermion parity allows us to determine
whether the basis operator O has an even or odd number of
Jordan-Wigner string factors from Eq. (20) that cross the bond
j—Jj+ L

Similarly, we can see that at all bonds the fermion weight
of the virtual index must match either the fermion weight of
]—L< ; O; or w*, whichever is smaller. When there are an even
number of Jordan-Wigner string factors, the presence of an
I in a Pauli string corresponds to a Majorana product with
0 Majorana operators on that site; if instead there are an odd
number, the presence of Z does instead. This gives the first line
of Eq. (A2). The second line corresponds to fermion weight 1
operators, which either increases the fermion weight counter
by 1 or keeps it constant if it has reached the maximum w*.
The e~ factor dissipates Pauli strings for each additional
unit of fermion weight beyond w*. Finally, in the last line
of Eq. (A2), we have Pauli string factors that correspond to
fermion weight 2 operators, which requires increasing the
fermion weight counter twice or increasing it to w* and dissi-
pating the operator by a factor of e~” or e~2", depending on
whether the fermion weight goes 1 or 2 units beyond w*.

To respect the U (1) charge symmetry, one need only do an
on-site operator change of basis from the X, Y basis to the X &
iY basis (in the spin language). This change of basis preserves
fermion parity, so there are no issues related to the Jordan-
Wigner strings.

The FDAOE tensors can be shown to respect the U(1)
symmetry as a tensor network by assigning the U (1) charges
as follows: X — iY is charge 1, X + iY is charge —1, and / and
Z are charge 0. The states on the virtual legs of the tensors are
all charge 0.

To respect U(1) spin symmetry (i.e., total §* conserva-
tion), work analogously with spin. The chain with spin can
be viewed as a chain with two sites per unit cell; the X + iY
and X — iY are assigned charges that depend on whether the
site corresponds to a spin-up mode (—1, 1, respectively) or a
spin-down mode (1, —1 respectively).

TABLE 1. Diffusion coefficients from fit to DMT D(t). Mean and
standard deviation are across three different fit-window end times.

U &t Xmax D (mean) D (std)
0.3 0.0625 128 96.8 5.7

0.3 0.125 128 106.238 14.6

0.3 0.125 256 102.367 2.38278
04 0.0625 128 39.4765 2.01023
04 0.0625 256 38.2516 0.703325
0.4 0.125 128 36.3361 0.853394
04 0.125 256 37.9766 0.126748
0.5 0.0625 128 21.1115 1.213
0.5 0.0625 256 21.3559 0.333348
0.5 0.125 128 20.1833 0.896041
0.5 0.125 256 20.6832 0.359822

APPENDIX B: D(t) AND EXTRAPOLATION FOR OTHER
INTERACTION STRENGTHS

Figure 7 shows analogs of Figs. 2 and 4 for U = 0.4 and
0.5. Figure 7 (top) shows D(t), together with fits and (in
the inset) a logarithmic difference from the D = lim;_, », D(¢)
resulting from the fit, across y. Figure 7 (bottom) shows D
from fit as a function of y, together with the extrapolation
from the last two points. Table I shows diffusion coefficients
from fit to DMT D(¢).

APPENDIX C: CONVERGENCE IN SVD CUTOFF ¢

In simulating dynamics with FDAOE we apply Trotter
gates and the FDAOE MPO; after each application, we discard
small singular values

Z s§<e Zsé . (CDH
B

« discarded

Table II shows diffusion coefficients from fit to FDAOE D(t).
Figure 8 shows D(t) for e=107%,107% at U=0.55, y=0.2.

TABLE II. Diffusion coefficients from fit to FDAOE D(t). Mean
and standard deviation are across three different fit-window end
times.

U Wy D (mean) D (std)
0.3 4.0 949121 4.37422
0.3 5.0 89.4662 2.67036
0.35 4.0 59.2131 3.09694
0.35 5.0 51.6491 1.63505
0.4 4.0 36.2878 1.60103
0.4 5.0 35.2506 491012
0.45 4.0 24.3317 1.3542
0.45 5.0 25.2716 1.03157
0.5 4.0 19.8595 2.73888
0.5 5.0 20.9656 0.495984
0.55 4.0 16.4897 0.502595
0.55 5.0 15.1526 0.807459
0.6 4.0 14.0067 0.270231
0.6 5.0 13.8689 0.562507
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FIG. 7. Analogs of Figs. 2 and 4 for U = 0.4 and 0.5. The left panel is U = 0.5 and the right one is U = 0.4. All data come from Trotter

step dt = 0.1, and the cutoff € = 1078,

The noise in each D(¢) worsens with time, and it is smaller
for € = 10~ than for ¢ = 1078, Figure 9 (top) shows the rms
noise as a function of time for U = 0.3, y = 0.05, ¢ = 1078;
there we see that it is in fact roughly proportional to the mean-
square displacement V (¢). (We describe how we calculate the
noise in Appendix C 2 below.) A heuristic a priori argument

0 50 100 150 200
t

FIG. 8. We compared D(t) with two truncation errors 10~ and
102 with U = 0.55, w, = 4, y = 0.2. We also do the exponential
extrapolation and see that D only differs by less than 5%.

(Appendix C I below) predicts a noise magnitude

ADprea(t) = an/€ V1), (C2)
where « is a fit parameter depending (in part) on the time step
dt.

Figure 9 shows the ratio of the measured noise magnitude
AD ey to the prediction ADpeq of (C2) for a variety of U, v,
and e. For short times (¢ < 25) the ratio is large. This is in
part because the prediction ADyyy is initially small, because
the mean-square displacement V' (¢) is small. Additionally,
the measured noise displays a small peak at r = 0, already
visible in Fig. 9 (top), resulting from the details of our noise
measurement procedure. For # 2> 25, the noise magnitude is
reasonably well-predicted by (C2).

1. Heuristic a priori estimate of noise in D(t)
due to SVD truncation

Heuristically, the truncation applies a random perturbation
of magnitude /€ to the operator truncated. When the operator
truncated is the Heisenberg operator &; > (¢), truncation maps

ern(t) > (1 + /eW)epn(0)], (C3)
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FIG. 9. Top: Noise magnitude at U = 0.3, y = 0.05, ¢ = 1073
compared to the prediction ADpq(t) = a /e V(1) (C2), with the fit
parameter @ chosen by eye. Bottom: noise at a variety of U, y, and
€ normalized by the prediction ADpq With @ = 1.

where V is some (not necessarily unitary) superoperator; this
changes the correlation function to

C*(x, 1) = tr(ex(1 + /eW)lern()])

=C*(x, 1) + Ve tr(e W [erp()]). (C4)

The superoperator W acts locally. To understand this, recall
that &7,2(¢) is a low-bond dimension MPO, so it has a cor-
relation length set by the leading nontrivial eigenvalue of the
transfer matrix. Perturbations like truncation heal within that
correlation length, so the superoperator W acts with a range
given by that correlation length.

Since W acts locally, estimate

tr[exWepp()] = §(x, t)tr[ever2(2)]

=&, 1)C*(x,1), (C5)
where & (x, t) is a random variable with
(ENEW, 1) = a?8,8(t — 1), (C6)

where o is some constant. Truncation then takes

C* > [1 4 /€ E(x, 1)]C* (x, 1) (C7)
and the mean-squared displacement
V() > V() =) X1+ e £(x, D)IC (x, 1)
=V () + AVirunc (0), (C8)
with
(C9)

AViune(t) = /€ ) X*C%(x, DE(x, 1),

This truncation appears as noise in the time-dependent dif-
fusion coefficient: the numerical derivative leading to the
diffusion coefficient is

D(1) = 3817 [V'(t + 8t) = V(81)] (C10)

= DPh}’S + %Bt_lAvtrunc(t)’ (Cll)

where Dphys is the “physical” contribution to the numerical
derivative, coming from the pre-truncation time step, and
the second term o< AViunc(¢) is the noise coming from the
truncation. We can then estimate the magnitude of the noise
by treating &(x,t), hence AViune, as random variables and
estimating the variance:

2
(AViune (1)) = e<[2 xZCN(xm(x,t)} >

X

=¢ Zx“C“(x, 1)

= aeV (1)’ (C12)

using (§(x,1)E(xX', 1)) = ad,8(t —t’) and sweeping some
dimensionless factors into «. The standard deviation of the
noise in D(t) is therefore

a8t~ e /2 V (¢1).

This expression includes a dependence on Trotter step &t
coming from the numerical derivative. But the numerical
derivative is not the only source of §¢ dependence. Consider,
for example, the limit of small §z. In that limit, a Trotter step
introduces only small Schmidt values, which are all discarded
by truncation: that is, the truncation can undo the effect of
time evolution. We do not claim to consider all sources of §¢-
dependence, so we sweep it into the constant . The predicted
standard deviation of the noise is then

ADpreq = a/€/2V (2).

Figure 9 shows the noise compared to the prediction; we see
reasonable agreement.

(C13)

(C14)

2. Estimating the noise magnitude

We seek to estimate the noise magnitude without reference
to a global fit like the exponential fit of Sec. IV. In brief,
we estimate noise by binning in time, averaging D(¢) in each
bin, constructing a linear interpolant between averages, and
measuring the rms deviation from the interpolant. In more
detail, we do the following:
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(i) Compute variances V; at time steps (j — 1)éz, j =1....
(Throughout this section, §r = 0.1.)
(i1) Compute time-dependent diffusion coefficients

Dy =87 Vi1 — Vj; (C15)

assign them to times

tj=(j—1/2)st. (C16)
(iii) Bin and average D(t) over bins of width n = 30, cor-
responding to a time window 3: that is, compute

B 1 nk
Dy =~ Z D;

j=nlk—1)+1

= 18) " W1 — Vase—ys1 s (C17)

assign Dy to a time

tr = (nk—1—n/2)ét. (C18)

(iv) Form a linear interpolant 7'(¢#) between the points
(fx, Dy). (For t < #;, we linearly extrapolate.)

(v) Form errors

Ej:Dj—T(Ij) (C19)

with D;, t; from step (ii).

(vi) Take the rms of E; over windows of 30 points, corre-
sponding to time windows of size 3, for ADyeqs-

APPENDIX D: DMT SIMULATIONS
1. DMT

In TEBD [53-55] one truncates an MPO with a single
SVD, resulting in a local approximation that is optimal with
respect to the Frobenius norm. But the Frobenius norm is blind
to the fact that some operators—especially local operators like
energy density—are more important than others.

Density matrix truncation [30] replaces the SVD trunca-
tion with a truncation that exactly preserves operators with
support up to some preservation diameter /s, and truncates
longer operators via SVD; it has been successfully applied to
thermalizing [30,32,35] and integrable [33,34] systems.

We implement DMT as modified in [35] for Heisen-
berg dynamics; for simplicity of implementation, we take
a preservation diameter Lyes = 3. We use a second-order
boustrophedon (sweeping, DMRG-like) Trotter decomposi-
tion, rather than the usual brickwork Trotter decomposition;
this seems to give better convergence in Trotter step.

2. Current decay
a. Diffusion coefficients and the current-current correlator
In the main text we extract the diffusion coefficient from
the variance of the energy density correlator. That correlator
is

C*(x, 1) = (ex(t)ex(L/2)). (D1)

TABLE III. Time constants for the phenomenological two-
exponential fit [Eq. (D9)] to the current-current correlation function
(D7) plotted in Fig. 10.

U T [2)
0.3 15.3 133
0.4 6.22 44.7
0.5 4.38 21.45

To extract a time-dependent diffusion coefficient, we first
compute the mean-squared displacement

2
_ 1 2 ~ee _
V()= ;Zx:x C*(x,1) (Zx:xC(x,t)) , (D2)

where v is a normalization

v=> Clx.1)=) Cx0)=(ef,) (D3)
X X
The time-dependent diffusion coefficient is
D) = Ld V(t); (D4)
24t

we estimate this via a numerical derivative. We then estimate
the physical diffusion coefficient

D = lim D(¢) (D5)
—00
by fitting D(¢) to the functional form
Dt)=D—Be ", t>1 (D6)

after some initial time 7.

It is useful to check the functional form (D6) by comput-
ing directly the derivative [%D(t). We can write %D(t) as a
correlator by repeatedly applying the conservation law 9,¢, =
Jx—1 — Jx, Summation by parts, time translation invariance,
and spatial translation invariance to the correlator C(x, t); the

result is

d 1
PO = S {J0)J0)),

7 D7)

where

Ty =Y js0), (D8)

Jx(t) is the local energy current operator, and v is the same
normalization (D3).

b. Results and convergence

Figure 10 shows the current-current correlator (J(¢)J(0))
as a function of time for U = 0.3, 0.4, 0.5. In each case,
the correlator shows fast early oscillations, followed by a
slow decay. The fast oscillations result from the definition
of the current (see Appendix D2 c). The slow decay is well-

approximated by a phenomenological functional form
(J()J(0)) = Ae /™ + Be™'/™2, (D9)

We fit to the ¢+ > 5 data to avoid the initial oscillations, and
give the resulting time constants 7 in Table III.
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FIG. 10. Top row: current-current correlator (J(¢)J(0) of Eq. (D7) computed with DMT for U = 0.3 (left), U = 0.4 (center), and U = 0.5
(right). After a fast initial oscillation, the correlator displays a slow decay well approximated by a two-exponential fit [blue line, Eq. (D9)].
Bottom row: convergence in bond dimension. All curves are at Trotter step dt = 0.125.

Figure 10 (bottom row) shows convergence of the
DMT current-current correlator in bond dimension for U =
0.3,0.4,0.5. We plot

for U = 0.3, 0.4, 0.5; in each case the Trotter step dt = 0.125
is within 10% of Trotter step dt = 0.0625.

J()J(O
(@) 0)[x] . (D10)
(I O)[x = 256] -
= — U=03
In each case, we find that CJ_ 5. (¢) is within 10% of C}’,,. 7T 1.06 o4
This 10% difference understates convergence error, be- A U T )'r
= U.0

cause Cj’(t) trends upward as the bond dimension x
increases. (The trend is unambiguous for U = 0.3, 0.5; for
U = 0.4 it is less clear, but arguably still present.) It appears
that DMT systematically underestimates C;’(r). We believe
this underestimate results from our choice of preservation
diameter. We use DMT with preservation diameter 3, meaning
it exactly preserves only those operators with support on up to
three sites, but the energy current is a four-site operator. We
believe that simulations with preservation diameter > 4 would
converge more quickly.

Figure 11 shows convergence of the DMT current-current
correlator in Trotter step dt. We plot

(J(t)J(0))[dt = 0.125]

(D11)
(J()J(0))[dt = 0.0625]

1.04

1.02

1.00

(J(t).J(0)), ratio of Trotter steps

10 20 50

FIG. 11. Trotter step convergence of the current-current correla-
tor in DMT simulations. Each curve is at bond dimension y = 256.
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FIG. 12. Top row: time-dependent diffusion coefficients D(¢) extracted from DMT simulations of the mean-square displacement V (¢) for
U =0.3,0.4, 0.5. Bottom row: bond dimension convergence of extracted D(¢); in each case, D(¢) differs between bond dimension x = 64
and bond dimension x = 256 by less than 5%. DMT simulations use Trotter step df = 0.125.

c¢. Definitions of energy density and energy current

In this Appendix, we have used definitions of energy den-
sity and energy density current that are natural in fermion
language, rather than in spin language, because the requisite
analytical calculations (especially of the current itself) were
more convenient in fermion language. In Majorana language,
the energy density is

(M)

& = iMgNgt1 — Une—1Mengi1mg42. (D12)

séM ) is symmetric under reflection about the bond (§, & + 1).

The current of this energy density ¢’ can be written
JM = =2i[Pe — iU(Ag—> + A¢—1 + Be_1 + By)
+U*(Dg—y — Cs—3 — Cs_o — Ce_1)],
P = ngngqa,
Ag = NeNs1Ne427s+4,
Bg = ngngiane43ns+4,
Ce = NeNe1Me+2Ms+4N5+5M5+65
D¢ = ngngia, (D13)

where we label the Majorana sites £ = 2, ..., 2L.

In preparation for Jordan-Wigner transformation it is help-
ful to group sites: one grouped site x corresponds to two
Majorana sites (2x, 2x + 1). The energy density (D12) is then

_ D (M)
Ex = &y + 82x+l

= iNxMoxt1 — UNox_1M2xM2xs1M2x42

+ N2t 1M2042 — Unox et 12642125433 (D14)
the current of this energy density can be written
Je=n- (D15)
Note that the total currents are not the same:
(D16a)

Ji= ge= 0
X X
JO = =Y s ] # 7. (D16b)
3 x

The difference between J and J™) explains the early-time
oscillations of the energy current in Fig. 10. Take U = 0, for
simplicity. In that case, one can check

dJ™M =0. (D17)
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FIG. 13. Relative error between Trotter steps in diffusion coeffi-
cient extracted from DMT simulations of MSD.
If we decompose

JM =g+, (D18)

where J is the total current of (D16a) consisting only of even

terms and
J= s (D19)
X
consisting of odd terms, then d,J™ = 0 implies
dJ = —dJ’ (D20)

leading to oscillations.
This is a lattice-scale phenomenon. If U (ﬁ) 0, for any but

the shortest times sg)‘:’) ~ sgﬁl and jéXM) X Jres1» SO the decay

of J broadly matches that of J™).

3. Mean-square displacement in DMT simulations

The DMT diffusion coefficients in the main text come from
the mean-square displacement V(¢), analyzed in the same
way as the FDAOE data. Figure 12 (top) shows the diffu-
sion coefficient extracted from the mean-square displacement
for U = 0.3, 0.4, 0.5; Fig. 12 (bottom) shows convergence in
bond dimension, and Fig. 13 shows convergence in Trotter
step. Bond dimension convergence error is < 3% for y = 128
compared to x = 256 (with better convergence for larger U).
Trotter error is also < 3% for times ¢ < 90, but growing.
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