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A many-body quantum system whose topological defects are conserved, abundant, and mobile is a correlated
quantum liquid. Since topological defects can be classified by homotopy groups, each homotopy identifies a
class of quantum liquids. Here we explore the quantum liquids based on the π3(S2) homotopy group, i.e.,
Hopf fibration. Their topologically nontrivial dynamics emerges from the interlinking between magnetic flux
or skyrmion loops in the charge and spin sectors respectively. We lay down a field theory foundation for
analyzing such states by naturally incorporating the well-known framing regularization into the theory, and
constructing the appropriate topological Lagrangian terms. We show that at least two strongly correlated phases
of interlinked loops can exist in d = 3 spatial dimensions at zero and low-finite temperatures. These phases
are closely related to the chiral quantum anomaly and do not have an obvious topological order, but they
are distinguished from the trivial disordered phase by a generalization of the Wilson loop operator. In d = 4
spatial dimensions, interlinked loops are able to produce topological order at zero temperature, featuring charge,
angular momentum, and braiding fractionalization. We discuss some possible experimental signatures of loop
entanglement in the quantum noise of charge currents.

DOI: 10.1103/PhysRevB.110.075148

I. INTRODUCTION

Topological defects profoundly influence the dynamics as
a result of their resilience to perturbations. The most intricate
example is topological order, a nonlocal many-body quan-
tum entanglement which produces a ground-state degeneracy
on topological manifolds without spontaneous symmetry
breaking [1–4]. Topological order based on charge current
vortices is realized in two-dimensional fractional quantum
Hall liquids, and exhibits charge and exchange statistics frac-
tionalization. Other kinds of topological defects from charge
or spin degrees of freedom can support topological orders in
higher dimensions [5]. A more subtle aspect of topological
dynamics concerns the quantum fluctuations of a “classical”
topological invariant on topologically trivial manifolds [6].
No smooth transformations of fields can alter the topologi-
cal invariant formulated in the continuum limit, but quantum
tunneling events, called instantons, can. Instantons may be
strongly suppressed. The topological protection that defects
enjoy normally amounts to a linear confining action potential
between an instanton and an anti-instanton. This neutralizes
the instantons and leaves only the topological index pre-
serving fluctuations to shape the dynamics at large scales.
However, even in that case, sufficiently strong thermal fluctua-
tions can deconfine the instantons and cause a phase transition
to a phase without any topological protection mechanism [6].

In this paper, we study the topological dynamics associ-
ated with “hopfions”, the topological defects classified by the
π3(S2) homotopy group [7–9]. The simplest realization of
such defects are interlinked loops and knots in three spatial di-
mensions [10], but their mathematical structure and quantum
fluctuations introduce various complications. The loops can
be built with either charge or spin currents. The former are

vortices and the latter are skyrmions. Both are theoretically
described as interlinked quantized flux loops of a U(1) gauge
field. One of our main results is that hopfions can exist in
two entangled loop phases with a conserved Hopf topological
invariant. The phase transition to a disentangled state occurs
at a finite temperature [6]. There is no requirement that latent
heat, spontaneous symmetry breaking, or topological order
be associated with such a transition; instead, the loop dis-
entanglement is similar to the Berezinsky-Kosterlitz-Thouless
transition [11–13], but occurring in three spatial dimensions.

One strategy for the detection of loop disentanglement,
which we explore here, is based on the quantum noise
spectrum of electron currents. We will show that the chiral
quantum anomaly [14–20] is directly related to the Hopf in-
dex, so correlated Dirac and Weyl semimetals might provide a
measurement platform. But, the correlation between the Hopf
index and current fluctuations is more general. We expect that
this correlation, and the transition itself, would be much more
prominent with emergent U(1) gauge fields in solids instead of
the natural gauge field. Vortex fluctuations in superconductors
are one possible source of such a gauge field. There are exper-
imental indications via Nernst effect [21–23] that vortices are
present even in the pseudogap normal phase of cuprates, so
they could live in an entangled phase. Related indications of
incoherent Cooper pairing are found in other studies [24,25].
Another type of an emergent U(1) gauge field can arise from
the magnetism in heavy-fermion materials or chiral mag-
nets, especially quantum-disordered magnets [26–28]. If local
magnetic moments are thermally or quantum-mechanically
disordered but retain fluctuating skyrmion loops, the emergent
gauge field, which one would associate with the “topological”
Hall effect, can carry a Hopf index and undergo the disentan-
glement topological phase transition at a certain temperature.

2469-9950/2024/110(7)/075148(28) 075148-1 ©2024 American Physical Society

https://orcid.org/0000-0003-0122-5415
https://ror.org/02jqj7156
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.110.075148&domain=pdf&date_stamp=2024-08-26
https://doi.org/10.1103/PhysRevB.110.075148
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Our main goal is to develop a physical insight and theoret-
ical formalism for exploring these possibilities. A particular
challenge is that multiple types of topological defects can
drive phase transitions, in addition to many conventional
mechanisms. Monopole fluctuations in d � 2 dimensional
compact U(1) gauge theories are understood fairly well
[29–39], but hopfions have been observed and considered so
far only as topological defects without significant dynamics
[40–53], or as a background Berry curvature for Hopf band
insulators [54–65]. We emphasize here that hopfions in d = 3
and d = 4 spatial dimensions can drive independent topolog-
ical phase transitions across which the flux loops survive (i.e.,
monopoles are suppressed) but lose a well-defined structure
of interlinks. This requires at least some dedicated length
scale in the problem other than the lattice constant. The lack
of such a scale keeps the phase diagram simple and with-
out any unconventional entangled states, as in the case of
plain bosonic lattice models [32,35]. If a quantum liquid has
a conserved topological invariant, it can exhibit topological
order [5]. However, this is not implied. We will argue that the
conserved Hopf index induces topological order in d = 4 spa-
tial dimensions, generalizable to d = 4n (n ∈ N). In contrast,
Hopf index conservation stabilizes a pseudogap phase in d =
3, which is perhaps related to correlated symmetry-protected
topological (SPT) phases [66,67] by the likely ability to host
gapless states on the system boundary.

The only topological defects of SU(2) spin configurations
in d = 3 spatial dimensions are hedgehogs and hopfions.
They are classified by π2(S2) and π3(S2) homotopy groups
respectively. Hedgehogs are equipped with a point singularity
and enjoy topological protection against quantum fluctuations
[5,6,68], while hopfions are nonsingular configurations simi-
lar to d = 2 skyrmions. Since electrons carry both charge and
spin, their charge and spin currents are closely intertwined.
If electron’s spin current exhibits a topological structure, its
charge current will reflect the same structure unless spin and
charge are deconfined. The charge analog to a hedgehog is
a monopole. The binding of monopoles to hedgehogs is a
“topological” magnetoelectric effect, and the equivalent phe-
nomenon in two spatial dimensions, vortex-skyrmion binding,
is a “topological” Hall effect. There are also charge cur-
rent configurations analogous to hopfions. They are usually
classified by the second Chern number of the U(1) bundle
[10,19,20], and their association with the Hopf index of the
π3(S2) homotopy group is rarely mentioned [69]. But, here
we wish to explore the topological connections between the
charge and spin dynamics, so we will adopt the classification
of spin defects for the charge sector.

The rest of the paper is organized as follows. Section II
introduces the Hopf invariant and explains its quantization and
topological protection in physical terms. We first review the
construction of the Hopf index from gauge fields in Sec. II A,
and then connect it to the Gauss’ linking number in Sec. II B
where it becomes apparent that matter must be coupled to
the gauge field in order to resolve the framing regularization
problem. Section II C considers generic Lagrangian density
terms capable of stabilizing correlated quantum liquids with
a conserved Hopf index. In Sec. III we study the quantum
liquids of Hopf topological defects in d = 3 spatial dimen-
sions, which can be potentially realized in some correlated

materials. We demonstrate in Sec. III A the conservation of
the Hopf index despite the natural quantum processes which
create, annihilate and link or unlink the flux loops. A further
analysis of instanton events with renormalization group, pre-
sented elsewhere [6], establishes the topological stability of
a correlated entangled-loop phase at low temperatures. We in
fact identify two Hopf indexes for every gauge field coupled
to matter, and thereby two corresponding loop disentangle-
ment transitions. In Sec. III B, we formulate and explore the
field equations for a prototype system that can host hopfions.
This reveals the natural coupling between the charge and spin
dynamics from which the “topological” Hall and magneto-
electric effects, as well as the chiral magnetic interaction,
emerge. We also seek manifestations of topological order but
find none, at least in the simple considered theory framework.
Nevertheless, we argue in Sec. III C that certain signatures
of the conserved Hopf entanglement could be observable in
the quantum noise correlations and specific heat. We pay a
special attention to the chiral quantum anomaly and explain
in a simple manner how it is related to the Hopf index; from
that point of view, the chiral anomaly might provide a window
into the loop-entanglement transition in materials with Dirac
or Weyl quasiparticles. By analogy with topological order, we
briefly discuss a mechanism for anomaly fractionalization.

Four-dimensional topological order based on hopfions is
finally explored in Sec. IV. It features charge and angular
momentum fractionalization (Sec. IV A), fractional braiding
statistics between particles and two-spheres (Sec. IV B), topo-
logical ground-state degeneracy (Sec. IV C), and a correlation
between the charge and spin sectors (Sec. IV D). All conclu-
sions are again summarized in Sec. V, and discussed in the
view of remaining open problems. A generalization of the
Hopf invariant to higher dimensions is presented in Appen-
dices B for the spin sector and C for the charge sector.

In this paper, we use units h̄ = c = 1 and Einstein’s con-
vention for the summation over repeated indices. Spatial
directions are denoted by Latin letters i, j, k, · · · ∈ {1, . . . , d},
and space-time directions by Greek letters μ, ν, λ, · · · ∈
{0, 1, . . . , d}. Indices of Levi-Civita tensors εμνλ··· inside man-
ifold integrals always correspond to the directions locally
tangential to the manifold.

II. THE TOPOLOGY OF LOOP ENTANGLEMENT

Thermodynamic phases of mobile topological defects are
sharply distinct from fully disordered phases as long as a rel-
evant topological charge (invariant) is conserved. Fractional
quantum Hall liquids are examples of such phases. They can
be generalized to higher spatial dimensions d > 2 by utilizing
πd−1(Sd−1) homotopy groups where the relevant topological
defects are monopoles and hedgehogs in the charge and spin
sectors respectively.

Here we study the analogous unconventional dynamics of
the topological defects characterized by the π3(S2) homotopy
group. The relevant topological invariant is the Hopf index.
Physically, the quantum liquids in this class are made of en-
tangled and interlinked flux loops. While a classical snapshot
of such a state may look chaotic like a bowl of spaghetti (with
each spaghetti strand wrapped into a loop), we will show
that quantum dynamics combined with loop entanglement
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stabilizes unconventional strongly correlated topological
phases, which need not be classifiable as topological order.

A. Hopf index

Hopf index N ∈ Z is a topological invariant which charac-
terizes configurations of a three-component unit-vector field
n̂(x) in a three-dimensional space without boundaries, x ∈ S3.
Since the set of n̂ vectors is equivalent to a unit-sphere S2, and
a simple d = 3 space without boundaries is a three-sphere
S3, the Hopf invariant distinguishes equivalence classes of
the π3(S2) homotopy group. Two configurations n̂(x) with
different Hopf invariants cannot be smoothly transformed into
each other. We will construct the Hopf index and demonstrate
its topological invariance by physical arguments in several
stages.

Using Einstein’s notation n̂a for the components of the
vector n̂, we define the chirality

Ji = 1
2εi jkε

abcn̂a(∂ j n̂
b)(∂kn̂c) (1)

and observe that its flux∫
S2

d2x η̂iJi = nφ0, n ∈ Z (2)

is quantized in the units of φ0 = 4π on any closed surface S2.
The integer n is the topological invariant of the π2(S2) homo-
topy group, also known as Pontryagin index, and η̂i is a unit
vector locally perpendicular to the surface S2. A field n̂a(x, y),
which becomes uniform at large distances r = (x2 + y2)1/2

can carry a quantized Pontryagin index on every z = const.
plane because all points at infinite r can be effectively identi-
fied, turning each plane into a sphere S2 = R2 ∪ {∞}. Such
a field configuration is a skyrmion line. We may smoothly
deform the field n̂a(x) to focus its nonzero flux (2) into a finite
region r < R and leave a uniform chirality-free configuration
n̂a → const. at all points r > R; the skyrmion thickness R
can become arbitrarily small, yet the topological Pontryagin
index cannot change under these smooth transformations. We
may also arbitrarily reshape the skyrmion line. Generally,
skyrmion lines can form closed loops; line terminations are
not allowed because the ensuing Pontryagin index change
across the termination point cannot be obtained from a smooth
spatial variation of n̂a.

In the first step of Hopf index construction, we specialize
to the vector fields n̂a which carry an arbitrary set of infinitely
thin skyrmions loops Cl . The corresponding chirality (1) is a
singular function of coordinates

Ji(x) = φ0

∑
l

nl

∮
Cl

dxl,i δ(x − xl ), (3)

where nl are integers, xl ∈ Cl is the set of points on the
flux filament Cl , and δ is the Dirac δ function of a three-
dimensional vector. The flux (2) is quantized with n = nl on
any open manifold S2 → A which intersects the filament l .
Let us interpret the chirality as an “electric current density”;
the “current” carried by each loop Cl is quantized, Il = nlφ0.
The “magnetic field” B. which obtains from all “currents” is
given by Ampere’s law (up to an unimportant factor),

J = ∇ × B. (4)

If the loops are interlinked, then the total current passing
through the loop Cl is∑

m

NlmIm =
∫

Al

d2x η̂ · J =
∮

Cl

dx · B. (5)

Here, Al is a surface bounded by Cl , η̂ is the unit vector locally
orthogonal to it, and Nlm is the number of times the loop m
wraps around the loop l . We allow l = m on the left-hand
side and denote by Nll the self-linking number; if Nll �= 0,
then the loop l is a knot. Note that inside the filament l and
along its contour Cl we have Ildx = Jdxdal , where dal is the
infinitesimal area element of the l-filament’s cross section. So,
after multiplying (5) by Il and summing over all loops l , we
get ∑

l,m

NlmIl Im =
∫

d3x B · J. (6)

Finally, we recall the “current” quantization Il = nlφ0; the last
equation becomes

N =
∑
l,m

Nlmnl nm = 1

φ2
0

∫
d3x B · J. (7)

The number N is evidently an integer.
From this point on, we will interpret the “current density”

J as a curl of a gauge field A,

J = ∇ × A. (8)

The integer (7) becomes the topological Hopf index

NA = 1

φ2
0

∫
S3

d3x A · (∇ × A) = 1

φ2
0

∫
S3

d3x A · J (9)

after showing that the flux of J need not be focused into
singular filaments. The above simple argument about inte-
ger quantization of the Hopf index holds against all smooth
transformations of n̂(x) which reshape the flux loops and turn
them into thick flux tubes without introducing overlaps. Going
beyond this restriction is less transparent. We will present
a rigorous direct argument about the topological invariance
of the Hopf index only in Sec. IV D using SU(2) spinor
representations. Until then, we will rely on a physical point
of view. Let us regard an arbitrary gauge field A(x) as the
coarse-grained representation of the quantum superposition
between many filament configurations (3). In this picture,
quantum fluctuations deform and move the quantized flux fila-
ments until the flux diffuses into a continuous and nonsingular
structure. We allow, in principle, all quantum processes. Some
processes, which we call instantons, can convert a filament
loop configuration into another one with a different Hopf
index. We will see in Sec. III A that instantons cannot occur
with smooth n̂(x, t ) fields, and argue that they are “confined”
at low temperatures, i.e., every instanton is accompanied by
an anti-instanton no further than a certain finite space-time
interval away. This dynamically protects the Hopf index at
macroscopic scales against quantum fluctuations, and gives
(9) the meaning of a topological invariant.

We will work with two physical contexts in which the Hopf
index is relevant. One context is the spin context we already
introduced. The emergent gauge field A is derived from the
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chirality

εi jk∂ jAk = 1
2εi jkε

abcn̂a(∂ j n̂
b)(∂kn̂c) (10)

of the spin field n̂a. This is the effective gauge field of the
“topological Hall effect”. It captures the effective Lorentz
force which spinful particles experience when moving
through a topologically nontrivial magnetization background,
assuming adiabatic limit (particle spin locked to the back-
ground magnetization). The topological quantization of the
skyrmion number determines φ0 = 4π , so the Hopf index
characterizes the interlinking of skyrmion loops. The second
context is tied to charge fluctuations of a spinor field ψ . We
extract the gauge field using

Aiψ
†ψ = −iψ†∂iψ. (11)

This gauge field captures a set of Dirac string loops in any
coherent ψ configuration, carrying φ0 = 2π flux quantum.
Fluctuations may continuously distribute this flux, but the
Hopf index remains well defined and quantized as long as
monopoles of A are not present.

The purpose of this paper is to explore unconventional cor-
related states of matter whose dynamics quantizes and topo-
logically protects the Hopf index. The above demonstration
of the Hopf quantization reveals the physical requirements on
such states. The degrees of freedom must be able to support
appropriate flux currents which carry a globally quantized
flux. Monopoles must be absent, i.e., the flux must be closed
into loops. We will show that stable nontrivial phases with a
quantized Hopf index exhibit subtle correlation phenomena in
d = 3 spatial dimensions or topological order in d = 4.

B. Gauss’ linking number, framing, and twist

If the gauge flux J forms singular quantized loops Cl with
a fixed quantum nl = 1 according to (3), then the Hopf index
(9) is simply the sum of loops’ linking numbers,

N =
∑
i, j

Ni j =
∑

i

Nii + 2
∑
i< j

Ni j . (12)

The linking number Ni j of two loops (introduced by Gauss) is
obtained by substituting Biot-Savart law

A(x) = 1

4π

∫
d3x′ J(x′) × (x − x′)

|x − x′|3 (13)

into (5) with interpretation B ≡ A,

Ni j = Nji = 1

4π

∮
Ci

∮
Cj

(ri − r j ) · (dri × dr j )

|ri − r j |3 . (14)

Here, ri represents the set of points on the loop Ci and dri is
the tangential infinitesimal displacement along Ci. Introducing
a unit vector

m̂ = ri − r j

|ri − r j | (15)

quickly demonstrates the quantization of the linking number

Ni j = − 1

4π

∮ ∮
dx1dx2 m̂ ·

(
∂m̂
∂x1

× ∂m̂
∂x2

)
∈ Z. (16)

There is a problem, however, when one uses (14) to com-
pute the self-linking number Nii of a knot. If Ci = Cj , then

!
(a) (b)

FIG. 1. Framing regularization: displace a loop by a framing
field (black arrows), and compute the linking integral of the original
(red) and the image (blue). The two configurations shown yield
different linking integrals.

a singularity at ri = r j is integrated along the knotted loop.
The regularization of this singularity is known as framing, see
Fig. 1. One constructs an auxiliary image C′

i of the knotted
loop Ci and displaces it everywhere from the original by a
framing vector field f (ri) �= 0. The self-linking number Nii is
then computed as the well-defined interlinking number of the
image and the original. The framing field can be infinitesimal
and it is chosen, for concreteness, to be locally perpendicular
to the original loop. As good as it gets, this procedure unavoid-
ably introduces an ambiguity in the definition of self-linking.
The framing field can complete n ∈ Z full rotations about the
string as we traverse the loop. This wraps the image n extra
times around the original loop, and hence affects the computed
interlinking number. Introduced purely by the regularization,
n has nothing to do with the shape of the original loop. Phys-
ically, the framing field must be rooted in some microscopic
degrees of freedom, which we might have not encountered
before.

Framing finds a very simple and natural representation in
field theory. The gauge field A featured in the Hopf index
is a dynamical degree of freedom with a certain Maxwell
Lagrangian density (∇ × A)2. If we couple it to a matter field
χ of charge q, we also introduce a gradient term (∇χ + qA)2

into the Lagrangian density. For simplicity, we regard χ as
an angle-valued field in an XY model context. Now, gauge
invariance suggests an adaptation of the expression (9) for the
Hopf index

Nχ = 1

qφ2
0

∫
S3

d3x (∇χ + qA) · (∇ × A). (17)

Suppose we want to calculate the Hopf index of a self-linked
flux loop C. The gauge field of a quantized flux filament has
the curl given by (3), so that

Nχ = 1

qφ0

∮
C

dr′ · (∇χ + qA). (18)

The χ angle is free to wind n times along the loop’s path C,
contributing n to the Hopf index when the charge is quantized
by qφ0 = 2π . This is different than the previously considered
contribution of the pure gauge field, and requires χ to carry
a singular vortex line somewhere in space, passing through
C. In the charge context, the field χ is simply the quantum
mechanical phase of the physical charged matter field. The
microscopic origin of χ is not obvious in the spin context, but
skyrmions are certainly complex objects which have enough
structure to support another degree of freedom. The construc-
tion (18) gives χ the role of a “twist” field which captures the
internal twisting of the flux filament about its own axis as it
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(a) (b)

(c) (d)

FIG. 2. Simplest Hopf topological defects. (a) Simple loop N =
0, (b) twisted loop N = 1, (c) linked simple loops N = 2, and
(d) simplest (trefoil) knot N = 3. Loops are oriented by the direc-
tion of the flux they carry. Even though time-reversal changes the
direction of flux, it does not affect the Hopf index. Mirror inversions
change the sign of the Hopf index.

forms a loop. The framing field f describes the same, so we
can relate it to χ with

f̂ ·
(

d f̂
dr

× dr

)
= dχ. (19)

In a coarse-grained field theory, χ captures the microscopic
flux filament twist which cannot be resolved at macroscopic
length scales.

It should be pointed out that (17) is invariant under smooth
gauge transformations A → A + ∇θ . However, it is not in-
variant under singular gauge transformations in which θ

contains vortex singularities. This is essential for capturing the
twist. It will become apparent shortly that quantum dynamics
protects (17) better that the pure gauge-field Hopf index (9).
Furthermore, the Hopf index is invariant under time-reversal
but changes sign under mirror inversion transformations.

From now on, we will call a “hopfion” any field config-
uration that carries a nonzero Hopf index (17). Hopfions are
topological defects classified by the π3(S2) homotopy group.
The simplest hopfion configurations are shown in Fig. 2.

C. Stimulating and conserving hopfions in the ground state

What kind of Lagrangian or Hamiltonian terms can stim-
ulate the appearance of hopfions in the ground state of a
system? Let us exploit the analogy with quantum Hall liq-
uids to propose a generic answer. The topological defect
behind quantum Hall liquids is a vortex, and the topological
charge of vortices can be obtained from the curl of a gauge
field,

∮
dxiAi = ∫

d2x εi j∂iA j . We used Stokes’ theorem and
the convention that the Levi-Civita tensor’s indices live on
the two-dimensional integration manifold whose boundary is
the loop in the first integral. The Lagrangian density which nu-
cleates a finite density of vortices is Lv ∝ (εμνλ∂νAλ − Bμ)2,
where Bμ = B0δμ,0 represents an external magnetic field.

In the case of hopfions, the expressions (9) and (17) are
analogous to

∮
dxiAi of the quantum Hall effect. Consider

NA =
∮

S3
d3x εi jkAi∂ jAk =

∫
B4

d4x εi jkl∂iA j∂kAl , (20)

written in Einstein’s notation, with a convention that the
Levi-Civita indices are locally tangential to the integration
manifold. We assumed that the three-sphere S3 is embedded
in a four-dimensional space, where it acts as a boundary of
a four-dimensional ball B4, so that we could apply Stokes-
Cartan’s theorem. It is now evident that a Lagrangian density
term

LH,4D ∝ (εμνλαβ∂νAλ∂αAβ − Bμ)2 (21)

with a “magnetic field” Bμ = B0δμ,0 should stimulate a fi-
nite density of hopfions in the ground state of a hypothetical
world with four spatial dimensions. The double curl in this
formula is equivalent to εμνλαβ (∂νAλ)(∂αAβ ) in the absence of
monopoles (εμνλ···∂μ∂νAλ = 0), and each curl factor is related
to magnetic flux lines or spin chirality (10). We will explore
the ensuing emergence of d = 4 topological order analogous
to fractional quantum Hall states in Sec. IV.

The above exercise is also useful for the real three-
dimensional world. However, since only four space-time
indices are available, we can construct only a “crippled” La-
grangian density

LH,3D ∝ (εμναβ∂μAν∂αAβ − B)2. (22)

A hypothetical nonzero scalar field background B �= 0 is not
natural here because it would need to change sign under time
reversal, while the Hopf index stays invariant. Instead, we
should set B = 0 and let LH,3D limit the confinement length
λ of Hopf instantons. If LH,3D achieves λ < ξ , where ξ is the
correlation length of the matter field, then a disordered ground
state can exist as a correlated quantum liquid of conserved
hopfions [6]. Note that LH,3D is not a priori required for λ < ξ .
Other more realistic mechanisms, including the kinetic energy
of the matter field, should also be able to limit λ below ξ . Any
one of them is sufficient for the discussion in this paper.

The means to generate a finite density of hopfions in d = 3
systems are currently unclear beyond Hopf insulators [54–65]
where delocalized hopfions are effectively imparted on elec-
tron wavefunctions.

III. HOPFIONS IN THREE DIMENSIONS:
INSTANTON CONFINEMENT AND QUANTUM ANOMALY

A. Hopf index conservation

Hopf index is topologically protected from all smooth
transformations of the classical field configuration. However,
quantum tunneling introduces local abrupt changes of the
classical states (in a regularized theory). A high action cost
of such tunneling does not necessarily make it statistically
impossible, so quantum events, which we will refer to as
instantons, are able to change the classical topological invari-
ant. The question of topological protection, then, becomes the
question of instanton confinement. If every instanton event
is immediately followed by a nearby anti-instanton, we say
that the instantons are confined into neutral dipoles and the
topological index is globally conserved. A thermodynamic
instanton confinement-deconfinement transition can occur at
finite temperatures [6].

Quantum dynamics routinely generates virtual low-energy
fluctuations of neutral topological defect clusters. These are
vortex-antivortex pairs in two-dimensional superconductors,
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FIG. 3. Quantum and thermal fluctuations of small flux rings
(green) can unlink and relink flux loops (A and B). Such a ring
has lower energy (∇χ + qA)2 when it is twisted, because it needs
a winding twist field χ to compensate the circular gauge field A of
the B string. Its net Hopf index is zero, so the unlinked loops A and
B have the same Hopf index as when they were linked; unlinking im-
parts a twist on the A string, as expected from the electromotive force
induced by Faraday effect. Alternatively, if the small ring excitation
is untwisted, then it costs more energy and carries a nontrivial Hopf
index by being interlinked with B; the resulting untwisted unlinked A
and B have a different Hopf index than before. The second unlinking
event, in which the Hopf index changes, is an instanton.

and small vortex loops in three-dimensional superconductors.
An isolated flux loop is also the simplest neutral topological
cluster of hopfions. Cheap fluctuations of small Hopf-neutral
rings can gradually reshape the segments of a larger loop
and move it through space. The interaction between loops
is a simple superposition of their quantized fluxes; two flux
filaments cancel out if they overlap exactly but have opposite
directions. Importantly, fluctuating rings can also unlink and
re-link two loops, as shown in Fig. 3. The events which do not
significantly modify the gradient energy

Eχ ∝
∫

d3x (∇χ + qA)2 (23)

preserve the Hopf index (17). The examples illustrated in
Fig. 4 include twist-compensated unlinking and twist ex-
change. Other events, which alter the Hopf index of the
system, are instantons. Interlinked and self-linked loops can
be mathematically characterized by various other topological
invariants [70–77], but these cannot be conserved in the pres-
ence of low-energy unlinking fluctuations.

Hopf index can be protected only if instantons and anti-
instantons attract each other with sufficiently strong “forces”
that grow with the distance. Let us first analyze the protection
of the pure gauge-field Hopf index NA given by (9). Instantons
must be local events in order to minimize action, so consider a
unit instanton at the origin of space-time; this corresponds to
a change of the Hopf index by 1 between the times t < 0 and
t > 0. Then, set up a three-sphere manifold S3 centered at the
origin in the D = 4 dimensional space-time. The Hopf index
NA calculated on this manifold is 1, the number of enclosed
instantons (easily seen by stretching the manifold into an infi-
nite slab with one flat boundary at t < 0 and another at t > 0).
If S3 has a finite space-time radius r, then the naively optimal
gauge field configuration which realizes NA = 1 qualitatively
behaves as Aμ ∝ 1/|r|, with a dimensionless proportionality
constant and a nonzero curl spread evenly across S3. The fixed
value of NA in the r → 0 limit cannot be obtained without a
singularity of A, so, by (10), an instanton corresponds to a sin-

(a) (b)

(c) (d)

FIG. 4. Local processes which preserve the Hopf index (17).
[(a),(b)] A symmetric unlinking and relinking of two loops compen-
sated by twist. [(c),(d)] An exchange of twist between two nearby
loops. If the χ field is not condensed (as we assume), then its gradient
is not strictly tied to the gauge field A. This makes it possible for
the loop-singularity of ∇χ , represented by the dashed ring, to tunnel
from one flux loop to another without a classical energy penalty. Note
that the untwisted loop can continuously shrink to a point. Therefore,
flux loops can be created and annihilated, then linked and unlinked,
without changing the Hopf index.

gular configuration of n̂(x, t ). This constitutes the topological
protection of the Hopf index under smooth transformations of
n̂. The imaginary-time action cost of the instanton’s A field up
to the distance R from the origin is at best

V (R) ∝
∫

|x|<R
d4x

[(
∂A
∂t

− ∇A0

)2

+ (∇ × A)2

]

=
∫

|x|<R
d4x

1

2
(εμναβ∂αAβ )2

∼ K
∫ R

0
dr r3

(
1

r2

)2

= K ln

(
R

R0

)
. (24)

We neglected the cost associated with the gradient Lagrangian
density (∇χ + qA)2 because χ can compensate the gauge
field of the instanton (at expense of becoming singular). When
we introduce an anti-instanton at a distance R from the origin,
the behavior Aμ ∼ 1/r becomes neutralized beyond r > R
as qualitatively anticipated in the integral. Therefore, V (R)
estimates the weakest possible interaction potential between
two instantons a space-time distance R apart.

Renormalization group analysis [6] shows that the loga-
rithmic interaction is marginally confining in D = 4. If such
an interaction applies to every pair of instantons, then the
partition function of the instanton gas suffers from an in-
frared divergence. As a consequence, instanton fluctuations
can proceed only if the interaction reconstructs into an exclu-
sive form at large distances, where every instanton interacts
with exactly one anti-instanton, and vice versa. The gauge
flux ∇ × A spreads evenly only near the instantons, and then
focuses into narrow tubes which connect the opposite-charge
instantons across larger distances. The reconstructed potential
is eventually linear, V (R) ∝ R, and instanton confinement is
guarantied at zero temperature. The gauge-field Hopf index
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(9) is globally conserved below a finite critical temperature
TcA for instanton deconfinement [6].

Now we turn our attention to the enhanced Hopf index
Nχ in (17), which takes the framing regularization into ac-
count. Instantons of Nχ require an uncompensated gauge field
and cost an extra gradient energy (∇χ + qA)2. The previous
“best-case” scenario ∂μχ + qAμ ∼ 1/r yields an extremely
large gradient energy at large distances,

V ′(R) =
∫

|x|<R
d4x (∇χ + qA)2 ∼

∫ R

0
dr r3 1

r2
∝ R2. (25)

Again, there is a better way. The disturbance of the gradient
focuses into tubes and reduces the instanton interaction to a
more manageable linear form, V ′(R) ∝ R. The Hopf index Nχ

is topologically protected below a finite critical temperature
Tcχ for instanton deconfinement.

The protection of NA implies the protection of Nχ , but not
the other way round. The more dramatic large-distance behav-
ior of (25) relative to (24) suggests that instantons of the twist
field have a shorter confinement length than the instantons
of the gauge field. Hence, we may expect two deconfine-
ment phase transitions with Tcχ > TcA. The lower-temperature
confined phase preserves the flux loop entanglement and pos-
sibly conserves some knot invariants [70–77] other than the
linking number NA. This is the only confined phase of Hopf
instantons in a pure gauge theory, realized in the continuum
noncompact limit. If matter is coupled to the gauge field, then
the conservation of NA requires at least a short-range Higgs
mechanism across a coherence length scale ζ which exceeds
the instanton confinement length λA. This insight comes from
the renormalization group [6]. The flow into the fixed point
ζ > λA, λχ → 0 indicates instanton confinement even in the
absence of long-range order (ζ < ∞), according to a general-
ized Wilson loop correlation. We suspect that the conservation
of NA is a necessary (probably not sufficient) condition for
the stability of topological orders defined by loop braiding
[78–86].

The higher-temperature confined phase in the temperature
range Tcχ > T > TcA is possible only when the gauge field is
coupled to an independent matter field. It preserves a single
knot invariant, the Hopf index Nχ . There is no surviving
loop coherence. Note that (17) is not the same as (9) with
a redefined gauge field A → q−1∇χ + A; the curl of ∇χ is
not included in the Hopf index definition because we assume
that an underlying lattice regularization renders the quantized
χ -vortex filaments physically unobservable. This enables Nχ

to acquire value 1 from the twist of a single loop, while NA

without framing is always even.
Incompressible quantum liquids with topological order are

a broad class of phases whose confined instantons cannot ruin
the conservation of delocalized topological charge. The real-
izations of topological order in all πn(Sn) homotopy groups
are based on singular topological defects (monopoles and
hedgehogs). The number conservation of mobile singularities
is captured by a topological Lagrangian term in the effective
Lagrangian density, i.e., a Chern-Simons or background-field
coupling that arises from some microscopic Berry phase
mechanism. This implements particle-singularity attachment,
a fractional quantization of charge and exchange statistics, as

well as ground-state degeneracy on topological manifolds at
the level of classical field equations. The dynamics of hopfions
is fundamentally different because the field configurations of
hopfions do not have singularities in d = 3 spatial dimen-
sions. A full topological Lagrangian term for hopfions can be
constructed only in d = 4 spatial dimensions, leading to topo-
logical order, which we discuss in Sec. IV. Its remnant in d =
3 dimensions is only a coupling that regulates the dynamics of
instantons. The instanton term can indirectly drive instanton
confinement transitions by controlling the coupling constants
in (24) and (25), but the absence of symmetry breaking hides
this transition in the classical field equations. Furthermore,
there is no mechanism for fractionalization because this de-
pends upon the ability of particles with a conserved number
to bind singular topological defects with a conserved number.

We can compare hopfions to skyrmions in d = 2, which
are also classical topological defects without singularities.
Skyrmions are the only topological defects of the three-
component unit-vector field n̂ in d = 2. While the skyrmion
number is a topological invariant given by (1) and (2), it
is not protected against instantons, which take form of n̂
hedgehogs in the D = 3 space-time. The interaction between
a hedgehog and antihedgehog is given by the Coulomb poten-
tial, V (R) ∼ 1/R in D = 3. This is not a confining potential,
and the renormalization group [87] reveals that instantons
are unavoidably deconfined. Therefore, the skyrmion number
necessarily fluctuates in quantum magnets. A physical conse-
quence is that the topological Hall effect shaped by skyrmions
cannot be topologically ordered and fractional, and there is
no “pseudogap” state with confined instantons below a finite
critical temperature.

B. Field equations for hopfion dynamics

Here we study the classical dynamics of coupled charge
and spin degrees of freedom. We will find that the dynamics
of hopfions is left out and entirely expressed in quantum pro-
cesses. Without having to worry about the particle exchange
statistics, we will derive the classical equations of motion
from a simple bosonic XY-like model. A basic Hamiltonian
density of charged particles with field operator ψ = ψ0eiθ and
local magnetic moments (spins) n̂ is

H = κc

2
(∂iθ+ai+qAi )

2 + κs

2
(∂in̂

a)2 − μban̂a

+κt

2
(∂iχ+qAi )

2 + 1

2e2
(εi jk∂ jak )2

+C

(
εi jk∂ jAk − 1

2
εi jkε

abcn̂a(∂ j n̂
b)(∂kn̂c)

)2

. (26)

The particles are coupled as usual to the electromagnetic
gauge field a, and the spins experience Zeeman coupling to
the magnetic field bi = εi jk∂ jak . We introduced an auxiliary
gauge field A and pinned it to the spin chirality with the C
term in order to track the Hopf index of the spin configuration.
A also couples to the charged particles in order to capture
topological Hall effect (THE) and the chiral spin interaction
induced by the magnetic field. THE arises because electrons
carry both charge and spin; we assume adiabatic limit in
which the electron spin is strictly aligned with the background
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magnetization n̂ by a strong Kondo-type coupling, so that a
nonzero spin chirality (1) generates an effective Lorentz force,
which acts exactly as an external magnetic field. The factor
q = 1/2 converts the 4π skyrmion quantum of the chirality
flux to the corresponding 2π magnetic flux quantum. Integrat-
ing out A reveals the chiral interaction (∇ × a)J between the
external magnetic field and spin chirality J. Together, these
physical effects are a topological interaction between mag-
netic moments and the electromagnetic field. By the virtue
of THE, the charged matter field θ could play the role of a
framing or twist field for skyrmion flux loops. Nevertheless,
we must couple A to a separate dedicated twist field χ in order
to provide independent framing in the charge and spin sectors;
χ physically implements a restoring torsion force against the
skyrmion twist. Hopfions in the charge sector are indirectly
governed by the Maxwell term for a.

The Lagrangian density in real time is obtained by promot-
ing the spatial indices i, j, k into upper and lower space-time
indices μ, ν, λ and relating them via a metric tensor g =
diag(1,−1,−1,−1), which implements a sign reversal of all
Hamiltonian terms

L = κc

2
(∂μθ+aμ + qAμ)2 + κs

2
(∂μn̂a)2 + μban̂a + LB

+κt

2
(∂μχ+qAμ)2 + 1

4e2
(εμναβ∂αaβ )2

+C

2

(
εμναβ∂αAβ − 1

2
εμναβεabcn̂a(∂α n̂b)(∂β n̂c)

)2

. (27)

Some coupling constants have been adjusted in order to re-
tain the original spatial-index content, and it is understood
that the unpaired indices are contracted by squaring, e.g.,
( fμνλgλ)2 ≡ fμναgα f μνβgβ . Ferromagnetic spin dynamics re-
quires special care as it involves a Berry phase term LB;
analogous theory can be written for antiferromagnetic spins
represented by a smooth “staggered magnetization” n̂, but
then the Berry phase, Zeeman interaction and the coupling
of A to charged currents would all be gone. We will derive
the field equations from the stationary action condition and
express them using the current densities of charge jμ, twist Jμ

and spin Ja
μ,

jμ = ∂μθ + aμ + qAμ,

Jμ = ∂μχ + qAμ, (28)

Ja
μ = εabcn̂b∂μn̂c,

as well as the topological currents

Jμν = 1

2
εμναβεabcn̂a(∂α n̂b)(∂β n̂c),

Iμ
s = 1

qφ2
0

εμναβ (∂νχ + qAν )∂αAβ,

Iμ
c = 1

(2π )2
εμναβ (∂ν θ + aν + qAν )∂αaβ. (29)

The spin chirality tensor Jμν characterizes topological tex-
tures of the spins in space-time, such as skyrmions, while
Iμ

s and Iμ
c are the current densities of the Hopf index in the

spin and charge sectors respectively. Generally, there is one
independent Hopf index for every U(1) gauge transformation

in the theory. We will also use the field tensors

fμν = ∂μaν − ∂νaμ, Fμν = ∂μAν − ∂νAμ. (30)

Without the Hopf currents, the Lagrangian density con-
structed so far makes no connection to the Hopf index.
Nevertheless, its classical dynamics is very rich and it is useful
to explore it before introducing additional couplings to Iμ

s and
Iμ

c . The field equations obtained from the stationary action
include current conservation laws (θ, χ variations)

∂μ jμ = 0, ∂μJμ = 0, (31)

Maxwell equations (a, A variations)

κc jμ − 1

e2
∂ν f μν = 0, (32)

κc q jμ − 2C

(
∂νFμν + 1

2
εμναβ∂νJαβ

)
= 0, (33)

and the spin wave equation (n̂ variations)

Sεabcn̂b∂0n̂c + (δab − n̂an̂b)

{
− κs ∂μ∂μn̂b + μbb

+3C

2

(
Fαβ + 1

2
εμναβJμν

)(
∂αJb

β − ∂βJb
α

)} = 0. (34)

The first term comes from the Berry phase LB, where S is
the quantum spin magnitude in the units of h̄. This captures
the ferromagnetic spin precession in the internal and external
magnetic field.

Perhaps the most interesting aspect of the dynamics in this
system is the transfer of gauge flux between the charge and
spin sectors. If we express the charge current curl εμναβ∂α jβ
with (32) and substitute in it the jμ definition (28), we reveal
a correlation between the electromagnetic and spin-chirality
gauge fields (assuming the absence of monopoles)

fμν + qFμν = − 1

κce2
∂λ∂

λ fμν ≈ 0. (35)

We will mainly consider slowly and smoothly varying elec-
tromagnetic fields, and neglect the right-hand side in this
formula. At the same time, Fμν shapes the spin chirality Jμν .
Defining

Wμν = Fμν + 1
2εμναβJαβ, (36)

the field equation (33)

∂νWμν = qκc

2C
jμ (37)

can be easily solved in the absence of charge currents with an
arbitrary vector field wμ,

jμ = 0 ⇒ Wμν = εμναβ∂αwβ. (38)

In these conditions (q = 1/2),

Jμν = − 1
2εμναβFαβ + ∂μwν − ∂νwμ,

1
2 n̂a

(
∂μJa

ν − ∂ν Ja
μ

) = −Fμν + εμναβ∂αwβ, (39)

relate the spin currents and chirality to the internal electro-
magnetic field Fμν , or equivalently to the external electromag-
netic field fμν by the virtue of (35). Evidently, wμ represents
the independent spin wave content. The dynamics of spin
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waves is governed in the field equation (34). After some
algebra, one finds that spin waves in the absence of charge
currents propagate according to

Sεabcn̂b∂0n̂c − (δab − n̂an̂b)(κs ∂μ∂μn̂b − μbb)

= −3CFμν

(
∂μJa

ν − 1

2
n̂aεμναβJαβ

)
. (40)

The term εμναβFμνJαβ on the right-hand side is the chiral
interaction in disguise,

1
4εμναβFμνJαβ = Bi 1

2εi jkε
abcn̂a(∂ j n̂b)(∂k n̂c)

−Eiεabcn̂a(∂0 n̂b)(∂i n̂c),

where Ei and Bi are the spin-chirality electric and magnetic
fields respectively, correlated with the external electromag-
netic field by (35). Consequently, the spin chirality can be
induced by an external magnetic field and moved around by
an electric field. This affects the dispersion of spin waves in
the complicated manner captured by (40). Qualitatively, the
propagation of spin waves can mimic the features of particle
propagation in magnetic fields. The presence of charge density
and currents further complicates the equations by introducing
sources to Wμν in (37).

In order to explore the effects of hopfion dynamics in
the field equations, we need additional real-time Lagrangian
density terms related to hopfions. When topological order is
possible, a Lagrangian term of the form jμJ μ implements
the conservation ∂μJ μ = 0 of the topological defect current
at the level of field equations. The topological conservation
law formally arises from the abundant phase θ fluctuations
in the particle current jμ ∼ ∂μθ + aμ, with a remnant aμJ μ

given by the Chern-Simons or generalized background-field
coupling in the context of πd−1(Sd−1) homotopy groups. A
consequence of such a coupling is the attachment of charge
to topological defects, characteristic for topologically ordered
phases. A singular topological defect of a spin vector field n̂
in d = 3 dimensions is a hedgehog, and indeed topologically
ordered quantum liquids of hedgehogs are possible. How-
ever, hopfions are d = 3 classical topological defects without
singularities, similar to skyrmions in d = 2. A topological
current of hopfion singularities can be constructed only in
d = 4 spatial dimensions, i.e., D = d + 1 = 5 dimensional
space-time,

J μ ∼ εμναβγ ∂ν (Aα∂βAγ ) ≡ ∂νIμν D=4−−→ ∂νIν . (41)

Its projection to the D = 4 real-world, with one index
stripped, is the divergence ∂νIν of the Hopf index current
density (29). We cannot construct a topological Lagrangian
term jμJ μ in D = 4, but

Li = Kc
i

(
∂μIμ

c

)2 + K s
i

(
∂μIμ

s

)2
(42)

is permissible and shapes the dynamics of instantons. Hopf
index conservation amounts to ∂μIμ = 0, so Li regulates the
amount of fluctuations in which the topological charge con-
servation is locally violated.

Unfortunately, the instanton Lagrangian has no impact on
the field equations. The Aμ variations of Li cannot introduce
any correction to (33) because ∂μIμ is a real scalar lacking

the structure that could support topological singularities. For
example, in the spin sector with aμ = 0,

δLi

δAσ

= 2Ki

φ4
0

(∂μIμ)
δ

δAσ

εαβγ δ (∂α (Aβ∂γ Aδ ))

→ 4Ki

φ4
0

εσαβγ Aα (∂β∂γ ∂μIμ) = 0 (43)

(note that integrations-by-parts were carried out assuming the
absence of monopoles, εμαβγ ∂α∂βAγ = 0). While instantons
apparently do not influence the classical dynamics, they do
leave a signature in the quantum noise.

Is there any other hopfion mechanism for the phenomenol-
ogy of topological order? A method for analyzing the
topological ground-state degeneracy, presented in Sec. IV C,
finds that no topological order of hopfions is possible in d = 3
spatial dimensions. Nevertheless, we can attempt to obtain
some form of charge-hopfion attachment in the d = 3 field
equations by considering another addition to the Lagrangian
density,

Lt = −K s
t ρ jμIμ

s − Kc
t ρ(∂μχ + qAμ)Iμ

c .

This introduces various complications in the field equations,
and a notable correction to (32) which takes a simple form in
the limit aμ → 0,

jμ = K s
t ρ

κc
Iμ

s . (44)

This is problematic for several reasons. The charge density
j0 is effectively bound to the Hopf index density I0 and
spread-out over an extended region in space where I0 �= 0.
There is no singular point to which the charge can attach.
Since fluctuations can smoothly vary the spatial distribution
of I0, no local quasiparticles can carry a quantized fractional
amount of charge despite the quantization of the total Hopf
index. Hence, we cannot expect topological order from Lt .
We also do not expect the appearance of Lt in the effective
theories of realistic systems. Topological terms are normally
generated by a microscopic Berry curvature, which inserts the
static topological current Jμ into the Hamiltonian instead of
Iμ. If, alternatively, a certain two-particle interaction were
able to generate Lt , then the amount ν of attached charge
per topological flux quantum would scale in proportion to the
particle density ρ; this is also incompatible with topological
order because the comobility of particles and their topological
defects requires an incompressible state with a constant and
quantized filling factor ν.

C. Thermodynamic signatures and the chiral anomaly

The confined phase of hopfion instantons can be physi-
cally identified despite lacking obvious signatures in classical
observables. The key to this is quantum noise. Instanton con-
finement is sharply characterized by a generalization of the
Wilson loop operator

C(S3) =
∮

S3
d3x η̂μIμ, (45)

which is defined on a three-sphere S3 embedded in D = 4
space-time; η̂μ is the unit vector locally perpendicular to the
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sphere. According to the definition of the Hopf index (17)
and its current density Iμ (29), this counts the Hopf-instanton
charge, i.e., the number of instantons minus the number of
anti-instantons inside the space-time volume B4 bounded by
the closed “surface” S3. The variance of the random outcomes
in the quantum measurements of C(S3) is a thermodynamic
characterization of the instanton phase [6],

Var C(S3)
S3→∞−−−→

{
aS3, confined phase
bB4, deconfined phase

. (46)

If the instantons are confined, then they contribute to (45) only
within a finite distance from the “surface” S3 given by their
confinement length λ; every instanton is compensated further
away, so that Var C(S3) grows in proportion to the “area” of
the boundary S3. Otherwise, topological instanton fluctuations
matter in the entire space-time and Var C(S3) scales in propor-
tion to the bounded volume B4.

The Hopf index is conserved in the confined instanton
phase. This means in practice that the noise spectrum of the
Hopf index fluctuations is depleted at low frequencies [6].
Quantum noise quickly fills up the low-frequency spectrum
upon entering the deconfined phase. The main challenge for
the detection of this spectrum change is whether one can indi-
rectly measure the Hopf index of the system. In the worst-case
scenario, we do not have any other probe but the heat capacity.
The onset of low-frequency noise is naively expected to boost
the heat capacity across the critical temperature for instanton
deconfinement [6]. In some cases, it might be possible to
indirectly probe the Hopf index fluctuations with quantum
noise measurements. Such experiments would be certainly
difficult for a variety of reasons, but they could, for example,
exploit the chiral quantum anomaly in materials with a Dirac
and Weyl electron spectrum. There is also a general possibility
that a confined instanton phase could be identified by uncon-
ventional transport properties or observable local fluctuations,
but it is not presently clear how and it could be system specific.

The chiral anomaly of quantum electrodynamics is, actu-
ally, closely related to the Hopf index physics. It relates the
chiral current nonconservation to the electromagnetic field
fluctuations,

∂μ j5μ = 1

16π2
εμναβ fμν fαβ (47)

when the Dirac quasiparticle mass m vanishes [14–20]. This
result was originally obtained in the perturbation theory by
introducing gauge-invariant regularizations of three-vertex
one-loop Feynman diagrams [14,15]. Different regularization
schemes, each complicated in its own way, point to the same
conclusion. The physics of this is peculiar because a massless
Dirac theory possesses the chiral symmetry and conserves
the chiral current j5μ at the level of field equations. It is
the quantum fluctuations which necessarily violate the chiral
symmetry, for reasons not made very transparent in the per-
turbation theory. For our purposes, we immediately recognize

the hopfion current

Iμ = 1

(2π )2
εμναβaν∂αaβ (48)

of the electromagnetic field in the charge sector (φ0 = 2π ) on
the right-hand side of (47),

∂μ j5μ = 1

16π2
εμναβ fμν fαβ = ∂μIμ. (49)

This provides new insight: The local events which violate
the chiral conservation law are bound to the Hopf instan-
tons. While particles are attached to topological defects in
topologically ordered phases, here we have attachment of par-
ticle creation/annihilation events to the analogous events for
topological defects. Many interesting questions arise from this
similarity between topological order and quantum anomaly.
Are both of them manifestations of correlations caused by
instanton confinement? If yes, then can a quantum anomaly
be fractionalized? Is the chiral anomaly a relativistic variant
of the nonrelativistic topological order?

We can gain valuable insight into these questions from the
following transparent physical picture of the chiral anomaly.
For simplicity, and in order to relate to the traditional context,
let us scrutinize quantum electrodynamics whose real-time
Lagrangian density is

L = ψ†(iD − γ 0m)ψ − 1
4 fμν f μν. (50)

γ μ are the standard Dirac matrices. We must regularize this
theory on a lattice in order to provide flux quantization for
the gauge field aμ, a prerequisite for the Hopf index quantiza-
tion. We first introduce a regulator which breaks the Lorentz
invariance at high energies,

D = D0 + iγ 0

2M
(DiD

i + AiAi ), Dμ = ∂μ + iaμ + iAμ,

(51)
featuring a large mass M and a static background SU(2) gauge
field

A0 = 0, Ai = −Mγi. (52)

The usual relativistic Dirac theory L = ψ̄ (i�D − m)ψ with
ψ̄ = ψ†γ 0 and �D = γ μ(∂μ + iaμ) is recovered in the M →
∞ limit. This regularization is physically transparent and
converts the QED into the continuum limit description of a
condensed matter system with a Berry curvature. It is now
easy to construct a lattice Hamiltonian

H = −t
∑

r

∑
μ

ψ†
r ei(ar,μ+Ar,μ )ψr+μ̂ + H.c. + �H, (53)

where r are lattice sites and μ are the directions to nearest-
neighbor sites. The continuum limit of H reproduces the
Hamiltonian of the theory (50). Some spurious twofold de-
generate Dirac nodes might arise at the corners of the first
Brillouin zone as a result of the time-reversal and lattice
symmetries; these are easily gapped-out to high energies by
appropriate chirality-altering hopping terms �H , without dis-
turbing the Dirac node at the � point.
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In the pristine QED with M → ∞, the structure,

β = γ 0 = γ 0† =
(

1 0
0 −1

)
= τ z ⊗ 1,

αk = αk† = γ 0γ k =
(

0 σ k

σ k 0

)
= τ x ⊗ σ k, (54)

γ 5 = γ 5† = iγ 0γ 1γ 2γ 3 =
(

0 1
1 0

)
= τ x ⊗ 1,

expressed in terms of Pauli matrices σ a and τ a produces the
Hamiltonian

H = −iαk (∂k + iak ) + γ 0m
m→0−−−→
aμ→0

αk pk . (55)

Massless m = 0 Dirac electrons have the spectrum

Eτσp = τσ |p|. (56)

Since the matrices σ a couple to spin, the eigenvalue σ = ±1
of σp̂ is helicity (alignment or antialignment between the elec-
tron’s spin and momentum). The τ = ±1 eigenvalue of τ x (as
well as γ 5) is chirality. The band index s = τσ is the product
of helicity and chirality. The continuum-limit regularization
(51) only adds

δH = γ 0 (pi + ai )2

2M
(57)

to the Dirac Hamiltonian (55). This preserves the particle-hole
symmetry, but explicitly breaks the chiral symmetry of QED
at high energies. Photon absorption and emission that violates
chiral current conservation is also made possible, with an am-
plitude proportional to M−1. Note that removing the factor of
γ 0 to restore the chiral symmetry is not permissible because,
without it, the spectrum would possess a large Fermi surface
that coexists with the Dirac node.

The regularization of QED plays an important role in
the emergence of the chiral anomaly, and simultaneously re-
veals the origin of the anomaly in condensed matter systems.
However, the physical picture which we will now construct
invokes the regularization only in very subtle ways. The chiral
anomaly is a correlation between the changes of chirality
and the topological Hopf index. The classical field equa-
tions are derived from small and smooth variations of the
fields, which by definition cannot capture the changes of a
topological invariant. This is why the field equations fail to
reveal the quantum anomaly. We will show next that as long
as there is some microscopic mechanism (provided by the
regularization) for the electromagnetic field fluctuations to
alter electrons’ chirality, the topological considerations alone
link the chirality fluctuations to the Hopf index.

The particle-hole excitations that carry a neutral chiral
current

jμ = ψ̄γ μψ = 0, j5μ = ψ̄γ 5γ μψ �= 0, (58)

necessarily have a zero net spin as a result of the spin-
momentum locking in the conduction and valence bands.
Therefore, the conservation of charge, momentum, and an-
gular momentum permits only the zero-spin photon pairs to
create such excitations, assuming that the chirality need not
be conserved, see Fig. 5. It turns out that the zero-spin photon
fluctuations also change the Hopf index of the electromagnetic

FIG. 5. Two-photon absorption behind the chiral quantum
anomaly, analogous (after time reversal) to the neutral pion decay
π 0 → γ + γ . A massless Dirac electron in the occupied valence
band has a well-defined chirality, say τ = −1. This fixes its helicity
to σ = 1. By absorbing a photon (γ ) with right-handed circular
polarization, the electron flips its spin and gains some energy, leaving
a hole in the valence band. This removal of τ = −1 chirality from the
valence band is equivalent to the injection of τ = 1. The absorption
of a second right-handed photon, moving in the opposite direction
from the first photon, flips the electron’s spin again. The final particle
excitation has chirality τ = 1 because it has the same helicity σ = 1
(same spin and momentum) as the original electron but lives in a
different band [στ is the band index, see Eq. (56)]. Therefore, the
particle-hole pair, created by absorbing a spinless photon pair, has
no net angular momentum and carries the net chirality τ = 2. The
pristine massless QED forbids the above second photon process in
which the electron’s chirality changes. However, the required physi-
cal regularization necessarily introduces a chirality-changing photon
absorption in order to protect the gauge invariance.

field. This is easy to show by expressing the gauge field
operator a in the Coulomb gauge using the creation a†

k,p and

annihilation ak,p operators of photons with momentum k and
linear polarization p = ±,

a(r, t ) =
∑

p

∫
d3k

(2π )3

ε̂
p
1,k√
2ωk

[ak,pei(kr−ωkt ) + H.c.]. (59)

The two orthogonal polarization vectors ε̂
p
1,k and ε̂

p
2,k satisfy

ε̂
p
1,k × ε̂

p
2,k = k̂ and ε̂+

i,kε̂
−
i,k = 0, and the photon dispersion is

ωk = |k|. Substituting into (47) gives us

1

16π2

∫
d3r εμναβ fμν fαβ = ∂NHopf

∂t

→ − 1

2π2

∑
p,p′

∫
d3k

(2π )3

ωk

2
ε̂

p
1,kε̂

p′
2,−kak,pa−k,p′e−2iωkt +H.c.

= 1

8π2

∂

∂t

∑
σ

∫
d3k

(2π )3
σ bk,σ b−k,σ e−2iωkt + H.c.

∝ ∂N5

∂t
. (60)

Behind the arrow, we retained only the terms which describe
the photon absorption and emission. At the end, we switched
to the circular polarization field operators bk,σ , where σ

is photon’s helicity: σ = +1 indicates that photon’s spin is
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aligned with its momentum k, and σ = −1 means antialign-
ment. The final proportionality follows from the fact that
whenever two photons of zero net momentum and spin are
annihilated with bk,σ b−k,σ , i.e., successfully absorbed, their
energy 2ωk is used to create an electron-hole pair with net
spin zero, which carries a nonzero chirality in the massless
Dirac spectrum. Therefore, the processes of quantum electro-
dynamics make it impossible to change the electron chirality
without changing the Hopf index of the gauge field.

In order to find the exact proportionality constant in (60),
consider a qualitative description of massless Dirac particles
coupled to a gauge field,

LQED0
= κ

2
(∂μθ+ + aμ)2 + κ

2
(∂μθ− − aμ)2

= κ

4
(∂μθ + 2aμ)2 + κ

4
(∂μφ)2. (61)

It is not crucial to capture the fermionic statistics of charged
matter fields θ±, we only must consider them uncondensed.
By construction, θ± carry opposite charge ±1 with respect
to the U(1) gauge field aμ, and will represent the massless
Dirac particles and holes which carry the same helicity τ . By
particle-hole symmetry, θ± simultaneously represent particle
(charge 1) currents of opposite helicity. Defining

θ = θ+ − θ−, φ = θ+ + θ−, (62)

allows us to separately track the charge jμ and chiral j5μ

currents

jμ ∼ ∂μθ + 2aμ, j5
μ ∼ ∂μφ. (63)

This theory has only one gauge transformation

θ± → θ± ± λ, aμ → aμ − ∂μλ, (64)

so we expect only one Hopf index,

NHopf(t ) = 1

(2π )2

∮
S3

d3x εi jk (∂iθ + 2ai )∂ jak . (65)

The normalization is fixed by the requirement that the 2π

winding of either θ+ or θ− along a flux loop give a unit
Hopf index. According to (12), the interlinking of flux loops
gives only even values of the Hopf index. Therefore, changing
NHopf by ±1 necessarily excites charge (twist) currents. A
neutral chiral current ( jμ = 0, j5

μ �= 0) carries at least N5 = 2
helicity, which has to be matched to some NHopf �= 0; it turns
out this is NHopf = 2. Figure 6 explains the basic process of
creating a particle-hole excitation characterized by �N5 =
�NHopf = 2, while all other processes can be derived from
it by adding low-energy Hopf-preserving fluctuations. This
reproduces the chiral anomaly

�N5 = �NHopf. (66)

From the current perspective, chiral anomaly requires the
conservation of the combined Hopf index (17) of the gauge
and twist (matter) fields. This is putatively realized below
the instanton deconfinement temperature Tc2. The correlation
(66) is lost at T > Tc2, but reflects via quantum noise the de-
confinement of pure gauge field instantons at a lower critical
temperature Tc1. Hence, the Hopf index (9) of the gauge field
alone is conserved at T < Tc1, and its fluctuations are mirrored
by chiral currents at Tc1 < T < Tc2. The latter can be further

(a)

(b)

FIG. 6. The Hopf index and chiral anomaly. (a) Create two
unlinked flux-quantum loops A and B (black lines, ∇ × a) and ac-
company each by a 2π phase twist. Let the twists of A and B carry
particle (blue) and hole (red) current respectively governed by the
Lagrangian (61); both currents have the same chirality. Dashed and
dotted segments are out of sight, e.g., at infinity. The dotted-colored
loops represent far-away vortex singularities of θ+ (blue) and θ−

(red); they are interlinked with one flux loop each. In this configura-
tion, each twisted flux loop contributes 1 to the Hopf index, totaling
the change �NHopf = 2 according to (65). When the straight flux
segments are smoothly deformed and pushed to overlap, their gauge
flux quanta and charge currents cancel out. What remains is two
units of the chiral current, ∇φ = ∇(θ+ + θ−) ∼ 2 × 2π . Therefore,
�N5 = �NHopf = 2. (b) An equivalent local process. Creating a pair
of interlinked flux loops gives �NHopf = 2. A chiral current �N5 = 2
is left behind at the end of the process.

modified if interactions produce additional effective gauge
fields [88] which carry a Hopf index. Note that fermionic
matter cannot screen out the magnetic flux loops, but it can af-
fect the action cost of instantons by suppressing their electric
field fluctuations at sufficiently low frequencies. The regime
T < Tc1 can be probably accessed with a sufficiently low
fermion density (i.e., chemical potential close to the Dirac
node) because fermions can maintain phase coherence across
the mean interparticle distance (as in quantum Hall states).

In principle, the correlation between currents and the Hopf
index can be exploited to detect instanton deconfinement. The
chiral anomaly is just a specific manifestation of this correla-
tion by Dirac electrons, least difficult to detect, but converting
chiral to charge currents requires finite momentum transfers
between photons and electrons. Since the total momentum of
the electron gas is not conserved, the measurements of charge
currents will exhibit quantum randomness which is correlated
with the gauge field dynamics. We are interested in the result-
ing quantum noise spectrum. The noise contributed by virtual
zero-spin particle-hole pairs is suppressed at low frequencies
in a confined instanton phase. Figure 7 illustrates that zero-
spin particle-hole fluctuations can be distinguished from the
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(a)

(b)

FIG. 7. Particle-hole excitations with and without net spin are
distinguished by different energy/momentum transfers from photons
when the spin degeneracy (left) is lifted (right) by a magnetic field or
spin-orbit coupling. (a) The case of Dirac or Weyl spectrum: A spin-
flip particle-hole excitation with the minimum threshold energy 2εf

on the Fermi sea (shaded) occurs with no momentum transfer, while
the chiral excitations created from the quantum anomaly fluctuations
require momentum transfer equal to the momentum separation �Q
between the intrinsic or generated Weyl nodes. The relativistic spin-
momentum-locked spectrum makes �Q independent of the Fermi
energy εf, but sensitive to a magnetic field. (b) The conventional
bands without spin-momentum locking: The same-spin threshold
transitions still require momentum transfers, but the transferred mo-
mentum also depends on the energy transfer.

nonzero-spin fluctuations by momentum and energy transfer
when the magnetic field or spin-orbit coupling lifts the spin
degeneracy of the electron spectrum. This is, of course, a very
difficult measurement for several reasons. It requires enough
sensitivity and a subtraction of other well-understood sources
of noise. And, the probability of photon-electron momentum
transfer is suppressed by a negative power of the speed of
light. Natural photons carry very small momenta, so it is really
an emergent gauge field (with a speed of light comparable to
a typical electron speed) that would give this method a better
chance. One could devise a dielectric constant superlattice
to impart umklapp scattering on the (emergent) photons that
matches the needed momentum transfers. A layered Weyl het-
erostructure [89] might just serve this purpose, and tuning the
magnetic field can perhaps bring the momentum transfer into
resonance. While measuring the noise spectrum would be the
least ambiguous detection method, there are other options. An
instanton deconfinement transition should theoretically boost
the specific heat [6], and it may also be accompanied by other
observable properties (transport, for example).

We end this discussion by envisioning a mechanism for the
fractional quantization of the chiral anomaly,

�N5 = ν �NHopf, ν = p

q
. (67)

This requires a fractionalization of chirality without spoil-
ing its classical conservation. Since massless Dirac electrons
carry both charge and chirality, charge fractionalization will
generally imply some form of chirality fractionalization.
Charge fractionalization in d = 3 spatial dimensions mani-
festly occurs in nuclear matter (irrespective of the microscopic
mechanism), and can occur by the topological order involv-
ing hedgehogs or monopoles [5]. An effective theory that
captures the dynamics of fractional quasiparticles (partons)
always requires an emergent gauge field ã. If ã experiences
extremely strong fluctuations, it necessarily recombines the
fractional quasiparticles into electrons and stabilizes a con-
ventional phase of matter. But, a Coulomb phase of ã allows
the partons to be deconfined because they carry unit charge
relative to ã [note that the physical U(1) gauge field may be
gapped in order to accommodate monopoles for the topo-
logical order]. Since the Coulomb phase hosts flux loops
characterized by a conserved Hopf index of ã, the fluctuations
of this Hopf index are correlated with the fluctuations of the
fractionalized quasiparticle’s chirality. A rational quantization
of the “filling factor” ν is inherited from the parent topological
order. Disregarding questions about the feasibility of d = 3
fractionalization in materials, the main theoretical issue is
whether the gap of the topologically ordered phase can be
disconnected from the usual chirality-mixing mechanism that
gives Dirac electrons a mass. Naively, the classical chirality
conservation should be able to survive because the energy
gap can be produced purely from the destructive quantum
interference caused by mobile topological defects.

IV. HOPFIONS IN FOUR DIMENSIONS:
TOPOLOGICAL ORDER

Interlinked loops of quantized flux can form topological
defects with point singularities only in d = 4 spatial dimen-
sions. The topological charge of such a singularity is given
by the Hopf index on a three-sphere which encloses the
singularity. Neither smooth transformations nor local quan-
tum tunneling can change the Hopf topological charge of
the field configuration. The latter protects Hopf singularities
from quantum fluctuations and enables topological order with
fractionalized charge and braiding statistics. Here we explore
the Hopf topological order for the purposes of adding the
π3(S2) homotopy group to the general topological order clas-
sification. Higher-order homotopy groups π2n−1(Sn), which
generalize the Hopf singularities to d = 2n spatial dimensions
(for even n), are also able to support topological order, but
instead of analyzing this in detail we only construct the corre-
sponding homotopy invariants in Appendices B and C for spin
and charge sectors respectively.

A. Charge and angular momentum fractionalization

A method for analyzing the topologically ordered states
of spinor fields was discussed in Ref. [5]. We first need to
construct a “singularity gauge field” whose flux is computed
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as the Hopf index on an S3 manifold surrounding a Hopf
singularity. Then, we can formulate a field theory which cap-
tures the dynamics of this gauge field even when its flux
diffuses as a result of quantum fluctuations. The topological
protection mechanism will be implemented with a topological
Lagrangian density term involving the singularity gauge field.

We already have the basic setup. The fundamental fields
carry charge (θ ) and magnetic moments (n̂) in d = 4 dimen-
sional space. Both degrees of freedom can be packed into an
SU(2) spinor ψ (x) whose magnitude |ψ |2 = ρ �= 0 is fixed,

ψ = ψ0eiθ , n̂ = 1

ρ
ψ†σψ. (68)

There are two relevant gauge fields, one aμ = ∂μθ extracted
from the U(1) phase winding of ψ and another Aμ represent-
ing the topological Hall effect from the skyrmion textures of
n̂. To be concrete, we will focus on the spin sector (φ0 = 4π )
and construct the Hopf index on a closed S3 spatial manifold
which encloses a volume B4,

N = 1

φ2
0

∮
S3

d3x εi jkAi∂ jAk = 1

φ2
0

∮
S3

d3x εi jkAi jk . (69)

The antisymmetric singularity gauge field can be expressed as

Ai jk = 1
6 (Ai∂ jAk + Aj∂kAi + Ak∂iA j

−Ak∂ jAi − Aj∂iAk − Ai∂kA j ). (70)

The density J0 of Hopf singularities is revealed by rep-
resenting the Hopf index as a B4 volume integral using
Stokes-Cartan theorem,

N = 1

φ2
0

∫
B4

d4x J0. (71)

From this, we can identify the current density of Hopf singu-
larities

J μ = εμναβγ ∂νAαβγ

= εμναβγ ∂ν (Aα∂βAγ )

= εμαβγ δ (∂αAβ )(∂γ Aδ ) − εμαβγ δAα∂β∂γ Aδ. (72)

The last term containing an antisymmetrized second deriva-
tive responds only to the monopole singularities of the gauge
field Aμ, which are line defects in d = 4. We can omit this
term if the monopoles have decidedly higher energy than other
excitations. For our purposes, the presence of both charge and
spin degrees of freedom introduces two gauge fields and two
gauge transformations. We will show in Sec. IV D that the
gauge invariant topological current density has an expanded
form

J μ = 1

q2
εμαβγ δ (∂α (aβ + qAβ ))(∂γ (aδ + qAδ )). (73)

The topological Lagrangian density term has the purpose
to implement the conservation of topological charge despite
the defect delocalization. We can construct it in real time by
coupling the charge current jμ to the Hopf singularity current

Lt = −Ktρ jμJ μ. (74)

Substituting jμ = ∂μθ + aμ + qAμ with qφ0 = 2π and inte-
grating out the phase fluctuations θ gives us the topological

conservation law ∂μJ μ = 0 (see Appendix A). What remains
is a generalization of the Chern-Simons coupling to the π3(S2)
homotopy group,

Lt = −Ktρ

q2
εμαβγ δ (aμ + qAμ)

×(∂α (aβ + qAβ ))(∂γ (aδ + qAδ )). (75)

We can alternatively implement the topological current con-
servation with the twist field χ minimally coupled to Aμ;
this allows the aμ and Aμ gauge fields to have independent
couplings in Lt .

The rest of the real-time Lagrangian density is a general-
ization of (27) to d = 4,

L = κc

2
(∂μθ+aμ + qAμ)2 + κs

2
(∂μn̂a)2 + μban̂a + LB

+κt

2
(∂μχ+qAμ)2 + 1

12e2
(εμνλαβ∂αaβ )2

+C

6
(εμνλαβ∂αAβ − Jμνλ)2 + Lt . (76)

The featured currents are (72) and

jμ = ∂μθ + aμ + qAμ

Ja
μ = εabcn̂b∂μn̂c. (77)

The spin chirality is a rank-3 tensor in D = d + 1 = 5 space-
time,

Jμνλ = 1
2εμνλαβεabcn̂a(∂α n̂b)(∂β n̂c) = 1

2εμνλαβ n̂a∂αJa
β .

The field equations reproduce the same kinds of phenomena
as in d = 3, but with a new important feature attributed to
the topological term. Quantized charge becomes attached to
quantized Hopf singularities,

κc jμ − 1

e2
∂ν f μν − 3KtρJ μ = 0. (78)

The system can respond to the presence of charge currents by
binding topological currents to them

jμ = ν

φ2
0

Jμ;
ν

φ2
0

= 3Ktρ

κc
(79)

instead of generating the electromagnetic field fμν . The pro-
portionality constant, or the “filling factor”, is rationally
quantized ν = p/q in any incompressible quantum liquid.
Otherwise, fluctuations can push some frustrated defects
through the space occupied by particles (or vice versa) and
hence localize the particles (or defects respectively) by de-
structive quantum interference.

The equation (79) with a rational ν describes charge
fractionalization because topological defects carry an integer-
quantized Hopf index. This is a hallmark of topological order,
seen in all πd−1(Sd−1) homotopy groups and now in π3(S2) as
well. The flux-loop structure of the Hopf topological defects
provides another mechanism for fractionalization, which is
not present in the πd−1(Sd−1) homotopies. Consider a hop-
fion made from U(1) flux loops in the charge sector. The
fractional charge ν attached to the topological defect expe-
riences a system of interlinked or self-linked flux loops on
the S3 manifolds that enclose the singularity. The relevant
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manifolds are those with a radius smaller than the particle-
defect binding length. Within such an S3 manifold, quantum
fluctuations of the topologically ordered state explore many
locations and orientations of the flux loops. This frustrates
the motion of the attached charge ν and localizes it to a flux
loop, but gives it freedom to move along the loop (parallel
to the magnetic field). Other interlinked loops are seen as the
source of Aharonov-Bohm flux by this charge. Consequently,
the charge is encouraged to move around its loop and produce
a circulating charge current with nonzero orbital angular mo-
mentum and magnetic moment. For a circular loop C of radius
r and perimeter l = 2πr, interlinked with n quantized flux
loops (including self), the resulting orbital magnetic moment
amplitude is (in the units c = 1)

μ = IS = νe
2πn

2πr
πr2 = νen

2
l. (80)

The magnetic moment is itself an antisymmetric rank-2 ten-
sor in d = 4 dimensions. In this derivation, we interpreted
the gauge field ai as the background charge current I/νe ≡
ji = ai on the loop, normalized to the unit particle number
and then divided

∮
dxiai = 2πn with the loop perimeter to

extract the average current along the loop. The orbital angular
momentum is

L = νm|2πr ji|r = νm · 2πr2 · 2πn

2πr
= νmnl (81)

(note that the quasiparticle mass νm is effectively fractional-
ized via momentum conservation), so that the Bohr magneton

μB = μ

L
= e

2m
(82)

still has the standard nonfractionalized value (in the h̄ = 1
units) associated with orbital motion in quantum mechanics.
Nevertheless, the magnetic moment and angular momentum
are both fractionalized according to the filling factor ν. We
ought to recover the proper angular momentum units by
comparing with a nonfractionalized particle (ν = 1) whose
angular momentum quantization L = nh̄ → n is clear. The
fractionalization by hopfion loops effectively reduces the mi-
croscopic angular momentum quantum h̄ to a fractional value
ν h̄, and the magnetic moment to

μ = νμB × integer. (83)

It should be noted that the total fractional angular mo-
mentum is conserved in the presence of rotational symmetry
and is restricted to small magnitudes because of the short
length-scale of particle-defect binding (the flux loops in this
analysis live on microscopic S3 manifolds). But, there are
further complications, which we will not attempt to analyze.
Even though the fractional charge ν is indivisible, it can
tunnel from one linked loop to another and form superpo-
sition states which are still deeply quantized because of the
microscopic binding to the topological defect. This drives the
twist-exchange processes shown in Fig. 4. Other Hopf index
preserving processes which link or unlink flux loops also tend
to preserve the Aharonov-Bohm flux seen by the fractional
charge.

FIG. 8. A three-dimensional counterpart of the four-dimensional
braiding. Set up a sphere around a fractional quasiparticle that con-
tains a topological defect (a monopole in this example). Create an
infinitesimal loop at the south pole of the sphere, then stretch and
sweep it across the sphere, and finally collapse it into a point to
annihilate at the north pole. All entities in this example acquire one
additional dimension for the braiding with a Hopf singularity.

B. Fractional braiding statistics

The topological order of Hopf singularities is equipped
with a topologically protected braiding operation. This can-
not be a particle exchange like in the fractional quantum
Hall state because no topological invariant can be defined on
contractible loop-paths. Instead, the braiding operation must
be carried out on a three-sphere path that can serve as a
manifold for the computation of the Hopf index. A fractional
quasiparticle is a point-like object which combines a frac-
tional charge ν with a unit Hopf singularity. The mentioned
three-sphere manifold has to enclose the quasiparticle and
reflect on its “surface” the Hopf charge N = 1 of the singu-
larity. The lower-dimensional object we braid should traverse
the path comprised of this three-sphere manifold. Therefore,
the braided object will be a two-sphere, and the braiding
operation will be a d = 4 analog of the process depicted in
Fig. 8. After a braiding operation, the many-body wavefunc-
tion of the system acquires an Abelian fractionally quantized
“Aharonov-Bohm phase”. No other braiding operations have
topologically protected outcomes. Specifically, the braiding of
flux loops does not enjoy topological protection because loops
are volatile under the Hopf index preserving dynamics (see
Fig. 4).

For simplicity, let us neglect any Hopf structure in the
charge sector. A hopfion singularity is surrounded by the
gauge field Aμνλ defined in (70). The topological charge of
the singularity determines the quantized flux (69) of Aμνλ on
any three-sphere S3 that encloses the singularity. We wish to
assign to this an Aharonov-Bohm “phase”

φ = q3

φ2
0

∮
d3x εi jkAi jk = q3N (84)

accumulated by a two-sphere that we create at the “south”
pole point of S3, continuously stretch and sweep across the S3

manifold, then finally shrink into a point and consume at the
“north” pole. Alternatively, we can consider an S2 × S1 mani-
fold to capture a braiding operation between a two-sphere and
a quasiparticle in which a quasiparticle is pushed through a
two-sphere on a closed loop. The current Jμνλ of the two-
sphere objects minimally couples to Aμνλ and generates these
braiding operations via the operator exp(i d3x εi jkJi jk ). The
bare current is the topologically trivial “pure gauge” content
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of Aμνλ, which integrates out to N = 0,

Jμνλ = ∂μθνλ − ∂νθμλ + ∂λθμν. (85)

The matter field θμν introduced here is an antisymmetric ten-
sor. The full gauge-invariant current we need is

Jμνλ = ∂μθνλ − ∂νθμλ + ∂λθμν + Aμνλ. (86)

We must construct the braiding operator B using the gauge-
invariant generator Jμνλ, but the matter fields in its definition
immediately drop out because they are integrated over a man-
ifold without a boundary. Hence,

B = exp

(
iq3

∮
S3

d3x εi jkAi jk

)
= eiq3φ

2
0 N (87)

should create a two-sphere excitation J0i j at the “south” pole
of S3, drive it around a stationary fractionalized quasiparticle
at the origin, and then annihilate it at the “north” pole of S3.
If the quasiparticle at the origin carried N hopfion quanta,
then iq3φ

2
0N would be the Aharonov-Bohm phase acquired

in the braiding operation. There is a problem, however. The
charge q3 associated with the current Jμνλ should be an in-
teger in any conventional state of matter, yet the acquired
phase proportional to φ2

0 would be nontrivial since it is not an
integer multiple of 2π . Analogous constructions of braiding
operations for vortices and monopoles are not plagued by this
problem. We must renormalize the generating current operator
to fix this problem.

Consider the analogy with particle braiding, where
exp(

∮
dxiAi ) creates a unit dipole, drives the particle of the

dipole around a loop and then annihilates it with the antiparti-
cle. The dipole creation step

edxiai = edxi∂iθ = eiθ (x+dx)e−iθ (x) (88)

manifestly involves the particle creation eiθ and annihilation
e−iθ operators. The phase operator θ is canonically conjugate
to the number operator n. Charge quantization implies integer
eigenvalues for n, making θ an angle from a 2π interval. This
determines the normalization of the current operator jμ =
∂μθ + aμ. Going back to our problem, the initial creation
exp(−iJμνλεμνλd3x) of a braided two-sphere ought to utilize
the properly quantized “phase” operators θμν within (85). We
can reveal this quantization by constructing everything from
the singular vortex-loop configurations of the twist field χ . We
begin by applying a singular gauge transformation to extract
vorticity from χ into the gauge field

Aμ = 1

q
∂μχ. (89)

Then, by comparing (85) and (70) through a similar singular
gauge transformation Jμνλ → Aμνλ, we identify

θμν = 1

3q2
χ∂μ∂νχ (90)

with an implicit index antisymmetrization. An underlying
assumption is that the χ configuration does not contain
monopoles, i.e., ε···μνλ∂μ∂ν∂λχ = 0. The rank-3 current cur-
rently has the form

Jμνλ = 1

3q2
[∂μ(χ∂ν∂λχ ) − ∂ν (χ∂μ∂λχ ) + ∂λ(χ∂μ∂νχ )]

where the antisymmetrization of indices is implicitly under-
stood. The χ field carries 2π -quantized vorticity, so that

1

q2
∂μ(χ∂ν∂λχ ) d3x → 2π

q2
(∂μχ )dxμ. (91)

The omitted index antisymmetrization keeps the μ direction
orthogonal to the directions ν, λ. Then, the ∂μ derivative acts
along the singular flux line and sees ε···μνλ∂ν∂λχ as a constant.
By definition, the twist field χ is a proper angle, so ∂μχ will
integrate to an integer multiple of 2π . Evidently, the extra
factor 2π/q2 must be divided out in order to get an adequately
normalized rank-3 current,

J̃μνλ = q2

2π
(∂μθνλ − ∂νθμλ + ∂λθμν + Aμνλ). (92)

Now,

B̃ = exp

(
iq3

∮
S3

d3x εi jk J̃i jk

)
= eiq3(q2φ2

0/2π )N (93)

correctly braids a quantized two-sphere around a point Hopf
singularity because qφ0 = 2π in both charge and spin sectors.

The last task is to determine the “charge” q3 associated
with the current Jμνλ. The U(1) flux quantum carried by
Fμν remains φ0 in the fractionalized phases, but the charge
unit carried by Jμ becomes a rational number ν. We do not
want to embed a factor of ν into the operator J̃μνλ, which
ought to create unit “charges”. Instead, we explicitly provide
a factor of q3 = ν in the braiding generator, to be associated
with the Jμ operators within (92). In this sense, the braiding
operator will braid the smallest possible bundle of charge and
flux comprising J̃μνλ that the incompressible quantum liquid
can support. The resulting topologically protected hopfion
braiding statistics (phase) between a two-sphere and a point
fractional quasiparticle made of N Hopf quanta is

B̃ = e2π iνN . (94)

Note that further induced field corrections to braiding have not
been considered here.

C. Topological ground-state degeneracy

The incompressible quantum liquid of Hopf singularities
exhibits topological order, i.e., a ground-state degeneracy
on topologically nontrivial manifolds. We will demonstrate
this on the four-dimensional spatial manifold M = S1 ⊗ M3

with M3 = S1 ⊗ R. Quantum fluctuations on such manifolds,
which one might call vacuum instantons, can convert a clas-
sical ground state from one topological sector with a given
Hopf index to another. Our goal here is to demonstrate that
vacuum instantons lift the classical ground-state degeneracy
down to a finite residual degeneracy. We will consider only
a simple subset of the full problem in order to exhibit topo-
logical order at zero temperature. Vacuum instantons should
not be confused with defect instantons, which were mentioned
in earlier sections. Defect instantons cost more action, and
create or annihilate local topological defect excitations. Their
confinement, measured with a separate long-range correlation
function, is a prerequisite for topological order.

For our purposes, a classical ground state is characterized
by two integer topological invariants, a Hopf index N on
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M3 and a vortex winding number N ′ on the complement S1

submanifold of M. The gauge field configurations in these
states are

ai(x) = 2π
N ′

L
δi,4,

Ai(x) = 1

q

(
x2δi,1 − x1δi,2

x2
1 + x2

2

n + 2πN

L
δi,3

)
, (95)

where x1, x2 ∈ R2, x3 ∈ S1 ⊂ M, x4 ∈ S1 ⊂ M, and both S1

submanifolds have the perimeter L. A vortex line

εi jk∂ jAk → 2πn

q
δ(x1)δ(x2)δi,3 (96)

is threaded along the x3 axis through the origin of R; this
singularity will need to be regularized later on. We mention
in passing that the quantization of N and N ′ is enforced by the
presence of matter fields that couple to ai and Ai; for example,
the integer winding of θ over S1 can be compensated with-
out a high gradient (∂μθ + aμ)2 price only by quantizing the
appropriate gauge field components. The configurations (95)
are classically degenerate in the L → ∞ limit. We implicitly
integrate out all other configurations which cost more energy,
and explore how the remaining macroscopic degeneracy can
be lifted by quantum fluctuations. The relevant effective La-
grangian density has the form

L = 1

12e2
(εμνλαβ∂αaβ )2 + C

6
(εμνλαβ∂αAβ )2

− q2ν

(2π )2
εμναβγ aμ∂ν (Aα∂βAγ ), (97)

where we have retained only a part of the full topological
term for the demonstration of topological order. Choosing
Coulomb gauge a0 = 0, A0 = 0 and allowing time variations
of the topological invariants, we substitute (95) into the La-
grangian density and get

L = (2π )2

2e2L2
(∂0N ′)2 + (2π )2C

q2
[δ(x1)δ(x2)]2n2

+ C

q2

[
(∂0n)2

x2
1 + x2

2

+ (2π )2(∂0N )2

L2

]
−4πν

n

L2
δ(x1)δ(x2)N ′∂0N. (98)

The Lagrangian Li of vacuum instantons obtains by integrat-
ing out x ∈ M. We are forced to regulate the infrared and
ultraviolet divergence by reducing the R2 submanifold to a
ring with inner radius r → 0 and outer radius R → ∞,

Li = (2π )2

2e2
πR2(∂0N ′)2 + (2π )2C

q2

L2

πr2
n2

+ C

q2

[
2πL2 ln

(
R

r

)
(∂0n)2 + (2π )2πR2(∂0N )2

]
−4πnν N ′∂0N. (99)

The ultraviolet cut-off distance r appears only in the terms
that contain the vorticity n, and these terms are relevant only
if the vorticity can fluctuate. We may neglect such fluctuations
here because their energy cost is logarithmically enhanced
in comparison to the cost of all other fluctuations. So, if we

assume that the fluctuations of n are frozen, i.e., ∂0n → 0, the
vacuum instanton Lagrangian becomes

Li = (2π )2

2e2
πR2(∂0N ′)2 + (2π )2C

q2
πR2(∂0N )2

−4πnν N ′∂0N, (100)

up to a constant. We can now treat N and N ′ as canoni-
cal coordinates for instanton fluctuations. The corresponding
canonical momenta are

P = δLi

δ∂0N
= 2(2π )2C

q2
πR2 ∂0N − 4πnν

m
N ′ (101)

P′ = δLi

δ∂0N ′ = (2π )2

e2
πR2∂0N ′. (102)

The instanton Hamiltonian is then

Hi = P∂0N + P′∂0N ′ − Li

= 1

2M
(P + 4πnνN ′)2 + 1

2M ′ P
′2, (103)

where the masses

M = (2π )3R2C

q2
, M ′ = (2π )3R2

2e2
, (104)

are macroscopically large because of R → ∞.
As in the treatment of fractional quantum Hall states, we

imagine that N, N ′ ∈ Z are integer-valued coordinates of sites
on a fictitious square lattice. Their canonical conjugates P, P′
must be angles, so it is necessary to regularize the instanton
Hamiltonian into a compact form

Hi → −t cos(P + 4πnνN ′) − t ′ cos(P′). (105)

This is Hofstadter model expressed in Landau gauge, with
2nν flux quanta per lattice plaquette. Its ground states cap-
ture the fate of the classical degeneracy after taking vacuum
instantons into account. If the filling factor ν is rational so
that 2nν = p/q with mutually prime integers p, q (n ∈ Z),
then the ground-state degeneracy is q for any finite t, t ′. Un-
der current assumptions, t, t ′ ∝ R−2 → 0 both vanish in the
thermodynamic R → ∞ limit, and hence preserve the infinite
degeneracy of the classical topological sectors. However, this
is a consequence of suppressing the local flux-changing events
in our formalism. The U(1) flux lines which determine N and
N ′ do not live in the physical space M, so no energy cost
is associated with their presence or absence. One can imagine
these flux lines protruding through M as a result of occasional
fluctuations, temporarily creating visible magnetic dipoles of
any size. This dynamics is governed only by the local energy
of the visible dipoles, but may result with changes of the
total flux N and N ′ threaded through the openings of M. As
a consequence, we should indeed assume that the hopping
integrals t, t ′ > 0 are finite.

This establishes topological order at zero temperature, with
ground-state degeneracy on M determined by the filling fac-
tor ν. The vacuum instanton Hamiltonian (105) is ultimately
analogous to that of a fractional quantum Hall liquid in two
dimensions, although the ground-state degeneracy is slightly
different for the same filling factor. This topological order
does not survive at finite temperatures. However, the defect
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instanton events, which create and annihilate the Hopf sin-
gularities in the D = d + 1 = 5 dimensional space-time, are
strongly confined by a linear potential in the action, so a
confined instanton phase survives at finite low temperatures.
When defect instantons are confined, the topological charge
of Hopf singularities is conserved regardless of whether
topological order is present. This opens a possibility of other
correlated phases at low temperatures.

It is interesting to point out that the presented method
can be also applied to the more physical d = 3 models of
hopfion dynamics. The result is, however, trivial. The ground
state of a putative incompressible quantum liquid of conserved
hopfions is nondegenerate in three spatial dimensions. The
vacuum instanton Hamiltonian equivalent to (105) would be
one-dimensional because a d = 3 spatial manifold leaves no
room for the N ′ variable.

D. Spinor representation of the topological term

Electrons are naturally represented by a spinor field ψ that
carries information about charge and spin. The charge content
is handled by the phase factor ψ ∝ eiϕ and the spin content
n̂(θ, φ) is given by the spinor structure in some representation
of the Spin(3)=SU(2) group,

ψ (n̂) = e−iJ3φe−iJ2θeiϕψ0, (106)

where Ja are the spin projection operators. The reference
spinor ψ0 is constant and all dynamics is expressed with
the space-time variations of ϕ, θ, φ. Here we construct the
topological Lagrangian density directly in terms of the spinor
field, and study its properties. This provides the most accurate
formulation of the topological field theory, which resolves
some issues with the previous more effective approach.

In the previous discussions, we normalized the charge cur-
rent jμ ∼ ∂μϕ + aμ + qAμ in a manner that emphasizes its
relationship to the phase gradient ∂μϕ of the matter field. We
now wish to use the standard normalization of the current
extracted from a spinor,

ρ = ψ†ψ, jμ = − i

2
(ψ†(∂μψ ) − (∂μψ†)ψ ). (107)

The corresponding imaginary-time topological Lagrangian
density with the same coupling constant Kt is

Lt = iKt jμJμ. (108)

Our goal is to reproduce this form and the Hopf singularity
current

Jμ = εμναβγ ∂ν (Aα∂βAγ ) (109)

by applying a certain singular derivative operator ψ†Dψ to
the spinor field ψ . This operator will contain antisymmetrized
derivatives, which automatically give zero at every point xμ

where ψ (xμ) is analytic; we want D to pick only the sin-
gularities of ψ , and for that purpose a mathematical rule
for taking derivatives of singular functions will be implicitly
provided. The structure of the Hopf index suggests that we
should explore the Lagrangian density

Lt ∝ εμναβγ ψ†∂μ∂ν∂α∂β∂γ ψ, (110)

with understanding that the correct type of topological defects
will be detected when present. The gradient of (106) is

∂μψ = i[∂μϕ − J3∂μφ − e−iJ3φJ2e+iJ3φ∂μθ ]ψ. (111)

We will at first concentrate on the charge sector and consider
θ, φ → const. After applying a singular gauge transformation
to transfer the gauge field aμ into ∂μϕ, we get

θ, φ → const ⇒ ∂μψ → iaμψ. (112)

Then, the formal application of the product rule for derivatives
gives us

εμναβγ ∂μ∂ν∂α∂β∂γ ψ

= iεμναβγ ∂μ∂ν∂α∂βaγ ψ

= iεμναβγ ∂μ∂ν∂α (∂βaγ )ψ − εμναβγ ∂μ∂ν∂αaγ aβψ

= iεμναβγ ∂μ∂ν (∂α∂βaγ )ψ − εμναβγ ∂μ∂νaα (∂βaγ )ψ

= iεμναβγ ∂μ(∂ν∂α∂βaγ )ψ − εμναβγ ∂μaν (∂α∂βaγ )ψ

−∂μJ c
μψ, (113)

where

J c
μ = εμναβγ ∂ν (aα∂βaγ ) (114)

is the Hopf index current density in the charge sector. The
first term in the final expression describes d = 4 monopoles;
we will drop this term because monopoles are homotopically
distinct topological defects from hopfions. The second term
similarly captures the line singularities of aμ in d = 4, which
would be point-like monopoles in d = 3; hopfions are not
equipped with such singularities. So, for the purposes of hop-
fions in the charge sector, the topological Lagrangian density
(108) should be

Lt = Kt ψ†∂μJμψ = −Kt ψ†εμναβγ ∂μ∂ν∂α∂β∂γ ψ. (115)

Antisymmetrized derivatives were retained in various steps of
this derivation. The implicit rule for calculating such deriva-
tives of singular functions is given by the Stokes-Cartan
theorem and similar topological relationships. For example, a
complex field ψ = ψ0eiϕ with nonzero magnitude ρ = |ψ0|2
in two dimensions may have a vortex singularity at the origin;
then, the “singularity gauge field” ai = ∂iϕ has a singu-
lar flux εi jk∂ jak ≡ −iρ−1ψ†εi jk∂ j∂kψ = 2πδi,0δ(x) because∮

dxμaμ = 2π , has a fixed well-defined value on any loop that
encloses the origin. This specifies the basic rule for taking
antisymmetric derivatives, and its extension to higher orders
can be constructed recursively [5].

We will show next that the same antisymmetric derivative
extracts the Hopf singularity in the spin sector as well. The
φ ∈ (0, 2π ) angle in (106) microscopically provides both the
twist field χ ∼ φ and the spin chirality gauge field qAμ ∼
∂μφ. Consider the following integral over a spatial volume B4

bounded by S3,

I4 =
∫

B4
d4x ψ†εi jkl∂i∂ j∂k∂lψ

= I3 −
∫

B4
d4x εi jkl (∂iψ

†)(∂ j∂k∂lψ )

= I3 + I ′
3 +

∫
B4

d4x εi jkl (∂ j∂iψ
†)(∂k∂lψ ). (116)
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Two integrations by parts and Stokes-Cartan theorem produce
the boundary integrals

I3 =
∮

S3
d3x ψ†εi jk∂i∂ j∂kψ,

I ′
3 =

∮
S3

d3x εi jk (∂iψ
†)(∂ j∂kψ ), (117)

which add up to zero because S3 itself has no boundary

I3 + I ′
3 =

∮
S3

d3x εi jk∂i(ψ
†∂ j∂kψ ) = 0. (118)

The remaining volume integral still responds only to the sin-
gularities of ψ (x), which arise in (106) as a consequence of
the spin texture n̂ or charge current vortices. The spin-rotation
generators Ji place the spin in the unique direction n̂(θ, φ), but
they also introduce a sign-changing branch-cut in the spinor
for fermionic particles because they have eigenvalues equal to
odd integer halves. This is formally corrected by providing a
U(1) rotation,

ψ (n̂) = e−iJ3φe−iJ2θei(ϕ+sφ/2)ψ0, (119)

and amounts to the shift J3 → J3 − s/2 of the spin projection
operator. The value of s must be an odd integer for fermions
and an even integer for bosons, unless φ winds by an integer
multiple of 4π . Looking at the two equivalent minimal repre-
sentations ψ± = e±iφ/2ψ of (106) with ψ0 = |↑〉,

ψ+ =
(

cos
(

θ
2

)
eiφ sin

(
θ
2

)), ψ− =
(

e−iφ cos
(

θ
2

)
sin

(
θ
2

) )
, (120)

we see that the choices s = 1 and s = −1 minimally regu-
larize the vortex singularity at θ = 0 and θ = π respectively.
This generalizes to s = 2S and s = −2S respectively in higher
spin representations. The values s = 2(S + n) at θ = 0 and
s = 2(−S + n) at θ = π leave a 2πn vortex singularity of φ

in the spinor ψ . We will pick s = 2(S + 1) in order to capture
the 2π vorticity of φ at “skyrmion centers”,

S′ = S − s

2
s→2(S+1)−−−−−→ −1. (121)

This amounts to the choice of an arbitrary spin quantization
axis ẑ such that n̂ = ẑ (θ = 0) at the skyrmion centers and
n̂ → −ẑ (θ = π ) in the far-away zero-vorticity ferromagnetic
regions. A skyrmion center defined hereby will coincide with
the symmetry center when the spin texture is rotationally
symmetric, but generally cannot be unambiguously identified
because skyrmions are not singular spin configurations. Since
we pinned the skyrmion centers to θ = 0, we always have
J3ψ = Sψ there given that (119) is an eigenvector of J3 at
θ = 0. So, starting from (119), we find

∂ jψ = i
[
∂ jϕ −

(
J3 − s

2

)
∂ jφ − e−iJ3φJ2eiJ3φ∂ jθ

]
ψ,

and after some algebra

ε···i j∂i∂ jψ = i(ε···i j∂i∂ jϕ)ψ − i(ε···i j∂i∂ jφ)
(

J3 − s

2

)
ψ.

(122)
The derivation discards ε···i j∂i∂ jθ because θ ∈ [0, π ] cannot
wind and support a vortex singularity. We point out in passing
that the statistics correction s has no impact on the dynamics

of spin-hedgehog topological defects [5] because hedgehogs
introduce φ vorticity at both north θ = 0 and south θ = π

poles, and the effects of s at both poles cancel out.
Let us simplify the further analysis by temporarily ne-

glecting charge currents, i.e., setting ϕ = const. When we
substitute (122) in (116) with ϕ = const., we get

I4 = −
∫

B4
d4x εi jkl (∂i∂ jφ)(∂k∂lφ) ψ†

(
J3 − s

2

)2
ψ

= −S′2|ψ |2
∫

B4
d4x εi jkl (∂i∂ jφ)(∂k∂lφ). (123)

If we introduce a parameter ξ ∈ R which specifies the points
r(n)(ξ ) on the nth skyrmion’s center, then we can express the
singular vorticity of φ in a d = 3 manifold as

εi jk∂ j ∂k φ =
∑

n

∫
dr (n)

i 2πδ(r − r(n)(ξ ))

=
∫

dξ
∂r (n)

i

∂ξ
2πδ(r − r(n)(ξ )), (124)

where the δ function is three-dimensional. The parametriza-
tion of a φ-vortex in d = 4 must take the form of a
rank-2 tensor because a skyrmion center is a sheet of points
r(n)(ξ1, ξ2). Summing over all skyrmions (n), we obtain

εi jkl∂k ∂l φ =
∑

n

∫
dξ1 dξ2

(
∂r (n)

i

∂ξ1

∂r (n)
j

∂ξ2
− ∂r (n)

i

∂ξ2

∂r (n)
j

∂ξ1

)
×2π δ(r − r(n)(ξ1 , ξ2 )). (125)

The δ function is four-dimensional here. Substituting the last
expression into (123) and using

εpqi jεpqkl = 2(δikδ jl − δilδ jk ) (126)

yields

I4 = −(2πS′)2|ψ |2
∑
n,m

∫
B4

d4r
∫

dξ
(m)
1 dξ

(m)
2 dξ

(n)
1 dξ

(n)
2

×εi jkl
∂r (m)

i

∂ξ
(m)
1

∂r (m)
j

∂ξ
(m)
2

∂r (n)
k

∂ξ
(n)
1

∂r (n)
l

∂ξ
(n)
2

×δ
(
r − r(n)

(
ξ

(n)
1 , ξ

(n)
2

))
δ
(
r − r(m)

(
ξ

(m)
1 , ξ

(m)
2

))
. (127)

Let us assume that a Hopf singularity of spins is at the
origin. We can enclose it by concentric S3 three-spheres that
each carry the same Hopf index. The interlinked skyrmions
which materialize the Hopf index are loops in each S3 mani-
fold, so every pair of coordinates ri and r j in the last integral
lives on a cone-shaped skyrmion sheet embedded in the d = 4
space; one coordinate (parametrized by ξ1) is bound to the
skyrmion loop on the three-sphere and the other (parametrized
by ξ2) to the “radial” direction, which emanates from the
Hopf singularity. All skyrmions need to meet at the singularity
in order for I4 to capture them; the skyrmion lines do not
intersect on any S3 away from the singularity, so only the
singularity itself can contribute to I4. We will extract the
skyrmion linking number from I4. The first step is to integrate
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out r,

I4 = −(2πS′)2|ψ |2
∑
n,m

∫
dξ

(m)
1 dξ

(m)
2 dξ

(n)
1 dξ

(n)
2

×εi jkl
∂r (m)

i

∂ξ
(m)
1

∂r (m)
j

∂ξ
(m)
2

∂r (n)
k

∂ξ
(n)
1

∂r (n)
l

∂ξ
(n)
2

×δ4(r(m)(ξ (m)
1 , ξ

(m)
2

) − r(n)(ξ (n)
1 , ξ

(n)
2

))
. (128)

We now distinguish the loop ξ1 and radial ξ2 parameters for
each pair n, m of skyrmion cones. The loop parameter is in-
tegrated over a one-dimensional manifold without a boundary
(the perimeter of the 2-cone base), and the radial parameter
is integrated out on a line such that r(ξ1, ξ2) is carried from
the singularity to the final S3 shell of some radius R (the
boundary of B4). Then, the four-dimensional Dirac function
can be broken up into the radial and S3 factors

δ4(�r) = δ(�rr )δ3(�rS3 ) (129)

where �rr and �rS3 are the projections of �r = r(m) − r(n)

onto the radial direction and the S3 manifold orthogonal to it
respectively. We immediately observe that, by construction,
�rS3 = �rS3 (ξ (m)

1 , ξ
(n)
1 ) ∝ R is parametrized only by the loop

coordinates ξ1 of the two skyrmions, provided that both live on
the same shell, ξ

(m)
2 = ξ

(n)
2 , of radius R. The latter condition is

enforced by the first δ-function factor. Now we can integrate
out one of the radial ξ2 coordinates and rename the other one
into η,

I4 = (2πS′)2|ψ |2
∑
n,m

∫
dξ

(m)
1 dξ

(n)
1 dη

×εri jk
∂r (m)

i

∂ξ
(m)
1

∂r (n)
j

∂ξ
(n)
1

(
∂r (n)

k

∂η
− ∂r (m)

k

∂η

)
δ3(�rS3 ). (130)

We tacitly assumed ∂r (m)
r /∂ξ

(m)
2 > 0, ∂r (n)

r /∂ξ
(n)
2 > 0, as well

as ∂r (m)
r /∂ξ

(m)
1 = ∂r (n)

r /∂ξ
(n)
1 = 0, which can be always ar-

ranged by the choice of parametrization (e.g., the S3 shells are
indeed the equal-radius three-spheres, etc.). Next, we rewrite
δ3(r − r′) as

δ3(r − r′) = − 1

4π
∇2 1

|r − r′| = 1

4π
∇ r − r′

|r − r′|3 . (131)

This allows us to apply Gauss’ theorem to the last inte-
gral over a three-dimensional domain. The boundary of this
three-dimensional manifold is precisely the two-dimensional
manifold of �rS3 ⊂ S3 probed by the linking number integral.
We have

I4 = − (2πS′)2

4π
|ψ |2

∑
n,m

∫
εi jk dr (m)

i dr (n)
j dη

∂
(
r (m)

k −r (n)
k

)
∂η

×∂p

r (m)
p − r (n)

p

|r(m) − r(n)|3 (132)

= − (2πS′)2

4π
|ψ |2

∑
n,m

∫
εi jk dr (m)

i dr (n)
j

r (m)
k − r (n)

k

|r(m) − r(n)|3 .

Note that only the upper bound of the η integral

Iη =
∫

dη
∂δrk

∂η
∂k

δrk

|δr|3

=
∫

dδrk
∂

∂δrk

δrk

|δr|3

= δrk

|δr|3
∣∣∣∣∣
η

− δrk

|δr|3
∣∣∣∣∣
0

(133)

contributes to (132), while the lower bound disappears for
physical reasons. At the singularity (η = 0), we have δr =
r(m) − r(n) → 0, so δrk/|δr|3 is not convergent or well de-
fined. However, this divergence must be regularized away
upon the coarse graining of microscopic degrees of freedom,
which goes into the construction of the field theory. Plac-
ing the lower bound of Iη at some small nonzero value of
η → ε > 0 would ensure an exact cancellation with the upper
bound, i.e., I4 = ∫

d2r Iη → 0; each η shell picks the same
topologically protected Hopf index N . However, the lower
bound is strictly at the η → 0 singularity since we formulated
the original integral over the four-dimensional volume B4,
which includes the singularity (the purpose of this was pre-
cisely to develop a prescription for integrating out a singular
Hopf index density in d = 4 dimensions). It is not possible
to extract the value of the Hopf index by integrating out the
skyrmion loop structure within a single point in space. The
lower bound of Iη should average out to zero because the Hopf
index transforms nontrivially under spatial inversions and no
information about such transformations can be packed into a
point using the existing degrees of freedom.

Since (132) reduces the integral (116) to the Gauss’ linking
number for skyrmions, we can read the Hopf index N → N s

of the spin texture directly from the spinor field ψ . Taking
(121) into account,

I4
ϕ→const.−−−−−→ −(2π )2|ψ |2N s. (134)

The same holds in the charge sector,

I4
θ,φ→const.−−−−−−→ −|ψ |2

∫
S3

d3x εi jkai∂ jak = −(2π )2|ψ |2Nc.

(135)
The Hopf invariants of charge (c) and spin (s) currents are
represented by different gauge fields

Nc = 1

(2π )2

∫
S3

d3x εi jkai∂ jak,

N s = 1

(4π )2

∫
S3

d3x εi jkAi∂ jAk, (136)

and define separate Hopf index current densities

J c
μ = εμναβγ ∂ν (aα∂βaγ ), J s

μ = εμναβγ ∂ν (Aα∂βAγ ), (137)

normalized to the corresponding flux quanta. But, it is easy
to see from (116) and (122) that combining the charge (ϕ)
and spin (φ) vorticity embeds into the I4 integral the gauge
invariant combination aμ + qAμ of the two gauge fields, with
q = 1/2. Hence,

I4 = −|ψ |2
∫

S3
d3x εi jk (ai + qAi )∂ j (ak + qAk ). (138)
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The topological Lagrangian density (115) can be related to
(116) with∫ τ0

−∞
dτ

∫
B4

d4x Lt ∝
∫ τ0

−∞
dτ

∫
B4

d4x ψ†ε0i jkl∂0∂i∂ j∂k∂lψ

=
∫

B4
d4x ψ†εi jkl∂i∂ j∂k∂lψ = I4,

so we can use the structure of (138) and (137) to deduce

Lt = iKt jμJμ (139)

in imaginary time, where the combined Hopf index current is

Jμ = 1

q2
εμναβγ ∂ν (aα + qAα )∂β (aγ + qAγ ). (140)

The full Lagrangian density of nonrelativistic particles may
be

L = ψ†D0ψ + 1

2m
|Diψ |2 − μ|ψ |2 + u|ψ |4

+ 1

12e2
(εμνλαβ∂αaβ )2 + Lint + Lt , (141)

where Dμ = ∂μ + iaμ. Some additional interactions Lint, such
as the spin-orbit coupling or a Kondo coupling to localized
magnetic moments, might be needed to stabilize the phases
with a nontrivial Hopf index dynamics. The topological La-
grangian density Lt is written in its purely spinor form (115),
so there is no need to include the auxiliary spin-chirality gauge
field Aμ in this Lagrangian; the spinor kinematics automati-
cally implements a topological Hall or magnetoelectric effect.
This theory is a continuum-limit effective theory where the
topological term arises from some microscopic Berry’s phase.
The earlier Lagrangian (76) is the next low-energy approxima-
tion obtained from (141) when the spinor retains a sufficient
phase stiffness, i.e., the particles are not localized. Apart from
driving topological order, Lt also implements a Hopf variant
of the topological magnetoelectric effect. Since Lt → 0 in
conventional phases, the resulting relationship aμ + qAμ → 0
neutralizes any spin Hopf singularity by binding a charge
Hopf singularity to it. Then, electrons moving through a spin-
texture background that features interlinked skyrmions would
exhibit charge current flow as if they were moving through the
equivalent set of interlinked magnetic field loops.

The accurate picture of charge fractionalization needs to be
derived from the spinor theory like (141). The charge current
of nonrelativist particles is given by (107) with j0 = ρ. When
we extract the U(1) gauge field from ψ ∼ eiϕ by a singular
gauge transformation aμ → ∂μϕ, the Lagrangian density vari-
ation with respect to aμ gives

jμ − 1

e2
∂ν f μν = 3Kt |ψ |2J μ. (142)

A finite density of Hopf singularities in the topologically
ordered ground state needs to be driven by a Berry curvature
field

B = 〈J 0〉 �= 0, (143)

which can be generated with a combination of the external
electromagnetic field and spin texture according to (140). This

field, and not the particle density, determines the coupling
constant of the topological Lagrangian density (115)

Kt = 1

3B (144)

according to (142) and j0 = ρ = |ψ |2. At the same time, the
Hopf index of the ground state is quantized

N = 1

(4π )2

∫
B4

d4x J 0 ∈ Z (145)

and captures the mutual interlinking of both magnetic and
skyrmion flux loops in three-dimensional manifolds. Since
B/(4π )2 is the density of topological defects, the number of
particles per topological defect is

ν = |ψ |2
B/(4π )2

, (146)

The imaginary-time topological Lagrangian density of the
effective theory can now be expressed as

Lt = i
ν

3(2π )2
εμαβγ δ (∂μθ + aμ + qAμ)

×∂α (aβ + qAβ )∂γ (aδ + qAδ ). (147)

This is tailored to the particle density ρ = |ψ |2 of a particular
incompressible quantum liquid, since the density determines
the filling factor ν. In contrast, the master theory (141) con-
tains the topological term (115) whose coupling constant
(144) does not depend on the density.

Apart from the Hopf singularities, spinor fields in d = 4
spatial dimensions can support monopoles and hedgehogs
as topological defects. Hedgehogs in d = 4 require a spinor
representation of the Spin(4) group instead of Spin(3)=SU(2),
but monopoles are derived from the same charge currents as
the hopfions. The topological Lagrangian density

Lt = −Kt ψ†εμναβγ ∂μ∂ν∂α∂β∂γ ψ (148)

is sensitive to all of these topological defects, and all can
be handled with a complex coupling Kt in imaginary time.
The real part Re(Kt ) is the coupling for hopfions as dis-
cussed here; apart from generating a current jμ factor,
two partial derivatives are converted into gauge fields as
∂μ ∼ iaμ. The imaginary part Im(Kt ) is the coupling for
monopoles or hedgehogs; beside the current factor, three
derivatives are converted into the antisymmetric rank-3 gauge
field ∂μ∂ν∂λ → iAμνλ whose flux over a three-sphere is the
enclosed monopole/hedgehog topological invariant in the
π3(S3) homotopy group. The mismatch between the collected
factors of i is compensated by the corresponding real and
imaginary parts of Kt to give the proper (real) field equa-
tions in real time. Note that the symmetry transformations and
even the Hermitian property of (148) depend on the character
of extracted singularities on top of the transformations of ψ . It
is unlikely that monopoles and hedgehogs could coexist with
Hopf singularities, but the ability to construct the same topo-
logical term for both implies the possibility of driving phase
transitions between different types of topological order by
adjusting the particle density |ψ |2. Phase transitions between
incompressible quantum liquids can also be independently
driven by the Hopf singularities of charge or spin currents.
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Physical models which could possibly host incompressible
quantum liquids of hopfions need to break the mirror inversion
symmetries and remain invariant under time reversal. This is
how the Hopf index, the topological Lagrangian density, and
the driving agent (143) of Hopf topological orders transform,

B x0→−x0−−−−→ B, B xi→−xi−−−−→ −B. (149)

This is immediately compatible with transformations of the
U(1) gauge field aμ. However, the equivalent transformations
of the spin-chirality gauge field Aμ,

A0
x0→−x0−−−−→ A0 , A0

xi→−xi−−−−→ A0

Aj
x0→−x0−−−−→ −Aj , Aj

xi→−xi−−−−→ (−1)δi j A j, (150)

impose a constraint on the transformations of the spin vector
n̂. The relationship

ε···i j∂iA j ∼ ε···i jε
abcn̂a(∂i n̂b)(∂ j n̂c) (151)

implies

∂iA j
x0→−x0−−−−→

i �= j
−∂iA j ⇒ n̂a x0→−x0−−−−→ −n̂a,

∂iA j
xk→−xk−−−−→

i �= j
(−1)δik+δ jk ∂iA j ⇒ n̂a xk→−xk−−−−→ +n̂a.

This is reminiscent of the pseudovector behavior in d = 3,
but the transformation under mirror inversion is trivial and
insensitive to the spin direction a. In fact, the nontrivial d = 3
pseudovector behavior under inversion cannot be naturally
generalized to d = 4 because the spin indices a ∈ {1, 2, 3}
cannot be correlated with the spatial directions i ∈ {1, 2, 3, 4}.

V. CONCLUSIONS

We developed a field theory description of generic systems
whose states can be characterized by a Hopf index. The basic
ingredient is a real or emergent vector gauge field, generally
coupled to matter in d = 3 or d = 4 spatial dimensions. Ex-
tensions to higher dimensions are possible but not of interest
in the present study. We observed that electrons can host
independent Hopf invariants in their charge and spin sectors,
and that the dynamics of the two is normally correlated via
a type of magnetoelectric effect. Furthermore, the coupling
of matter to an independent gauge field promotes by itself
two distinct Hopf invariants, one per degree of freedom. The
conservation of a Hopf index means that closed loops of vor-
ticity or gauge flux can maintain their topologically nontrivial
pattern of interlinks despite quantum and thermal fluctuations.

One of our main findings is that a “pseudogap” phase
of interlinked loops can be thermodynamically distinguished
from trivial disordered states in d = 3 dimensions with a gen-
eralization of the Wilson loop correlator. This phase can exist
at finite temperatures below a loop-unlinking transition or an
alternative monopole-driven transition in which the loops fall
apart. It need not spontaneously break a symmetry or have
topological order. Instead, it features a sharp suppression of
the topological index fluctuations at low frequencies, which
is expected to leave an imprint in the specific heat as well as
the quantum noise of the currents coupled to the Hopf index.
The latter is manifested through the chiral quantum anomaly
in systems with a Dirac or Weyl electron spectrum.

In d = 4 spatial dimensions, the Hopf index conservation
can produce topological order. Even though it is irrelevant to
materials, we characterized its basic properties as a part of
the effort to classify topological orders. This Hopf topolog-
ical order can exist only at zero temperature and has many
similarities to the fractional quantum Hall effect. However, it
differs from the Hall effect by the precise topological ground-
state degeneracy for the same filling factor. It also features
a direct mechanism for angular momentum fractionalization,
stemming from the ability of fractional charge to move along
a flux loop which is interlinked with another loop. Further-
more, a fractional braiding statistics is topologically protected
only between point-quasiparticles and two-sphere excitations.
Loop-loop braiding is not quantized. Interestingly, the clas-
sical Hopf index can be conserved on a topologically trivial
manifold at finite temperatures, so additional “pseudogap”
states can exist as in d = 3 dimensions.

This study is meant only to open the problem of topological
Hopf dynamics for further investigation. Many interesting
questions remain. The detailed nature of the correlated phases
with conserved Hopf index is not yet known. We observed
that the lowest-temperature phases of this kind could perhaps
protect some other knot invariants, but this requires a com-
prehensive further study because quantum fluctuations have
a general tendency to create and annihilate small loops by
tunneling. Field theory can be used to calculate the correlation
functions for charge and spin currents in these phases, and
also characterize the loop-unlinking phase transition. It would
be also important to analyze microscopic models where the
loop-unlinking transitions captured by the field theory can be
explicitly demonstrated.

In terms of relating to experiments, one should look
for materials which host emergent U(1) gauge fields and
admit correlated low-temperature phases without obvious
long-range order. Correlated superconductors such as cuprates
and chiral quantum magnets such as Pr2Ir2O7 are perhaps
currently the best candidates. The Nernst effect of cuprates
[21–23] hints that quantized dynamical vortex loops may exist
in the pseudogap state even without an external magnetic field;
such loops can interlink, and their dynamics may be slowed
down by correlation effects, which are often theoretically
modeled with emergent gauge fields [90]. The quantum mag-
nets of interest are U(1) spin liquid candidates, among which
Pr2Ir2O7 is an excellent example [26–28]; its properties are
not completely favorable, but spins on the pyrochlore lattice
can generate useful effective U(1) gauge fields [91]. If strong
interactions can be induced in a Dirac or Weyl semimetal,
then such a system might also be able to realize a Hopf
“pseudogap” state and provide a window into its dynamics
via the chiral anomaly.

It is known that various topological states, quantum Hall
liquids in particular [92,93], can be equivalently described in
real and momentum spaces. The momentum space descrip-
tion is built upon a Berry curvature, while the real-space
description is conveniently given by a topological Lagrangian
term. Both predict the same response functions. A similar
relationship exists for the Hopf invariant, but should be stud-
ied further. We analyzed the Hopf index dynamics in the
real space, where the relevant topological Lagrangian term
for d = 3 spatial dimensions is the θ term of the chiral
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quantum anomaly [65]. We also constructed a more impact-
ful topological term for d = 4, which leads to topological
order. The equivalent momentum-space description has been
useful for exploring Hopf insulators and identifying their
protected surface states [54–65]. Presumably, some phases
discussed here are strongly correlated generalizations of Hopf
band insulators. This suggests another approach to the possi-
ble realizations of the correlated Hopf quantum liquids—by
opening an interaction gap inside a Hopf insulator’s band,
and relating the Hopf quantum liquids to symmetry-protected
topological (SPT) phases.

There are also some bigger theoretical questions. An
emerging picture from this study is that topological orders are
members of a broader family of correlated phases which are
unified by instanton confinement, i.e., the conservation of a
classical topological index. We developed a basic renormal-
ization group assessment of instanton confinement in Ref. [6].
However, it is not clear yet if further universal characteriza-
tion is possible, apart from the basic notion that delocalized
topological defects play the leading role in the dynamics.
Recent studies of superconductors [94–96] and magnets [68]
with strong spin-orbit coupling have found various mean-
field phases with ordered arrays of topological defects and
antidefects (vortices and hedgehogs, respectively). Quantum
and thermal fluctuations can in principle melt such lattices
of topological defects, while the spin-orbit coupling protects
against a massive defect annihilation. The spin-orbit coupling
also provides an independent “magnetic length” scale, which
can define the extent of short-range coherence for a quantum
liquid with delocalized topological defects. Hence, this is a
possible route for obtaining unconventional “pseudogap” or
SPT phases. Instanton confinement here indicates that the
total zero topological charge is conserved. There is evidence
[97] that such phases could possess a topologically nontrivial
excitation spectrum, featuring nodes in the bulk and gapless
states on the system boundary.

The relationship between the Hopf index and chiral
anomaly is also fundamentally interesting. The QED ground
state on R4 is in the confined-instanton phase with a con-
served Hopf index, while no topological order exists on
nonsimply connected manifolds. This is a hallmark of Abelian
gauge fields; the action cost ∼ ln(R) of an uncompensated
instanton which alters the Hopf index scales at least as a
logarithm of the system size R. In contrast, non-Abelian
gauge fields allow instantons which evolve into a pure-gauge
configuration at infinite distances, and hence enable a finite
action cost [98–102]. This leads to quark confinement, but
removes the confined-instanton phase. If the spatial man-
ifold is topologically nontrivial, even the Abelian gauge
fields are not able to hold on to their Hopf index because
of vacuum instantons. This translates into a nondegenerate
ground state and the absence of hopfion topological orders
in d = 3. Nevertheless, the hopfion dynamics of Abelian
gauge fields is not trivial. The low-temperature confined-
instanton phase is a subtle replacement for topological order,
where the particle-flux attachment is replaced with the at-
tachment of certain particle creation/annihilation events to
the equivalent topological defect events, i.e., instantons. The
latter is a quantum anomaly. We have envisioned a scenario
in which the anomaly becomes fractionalized just like its

topological order counterpart, and this idea can be explored
further.
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APPENDIX A: TOPOLOGICAL CURRENT
CONSERVATION FROM THE TOPOLOGICAL

LAGRANGIAN TERM

The Lagrangian density with a topological term couples the
charge current jμ ∼ ∂μθ + aμ to the current Jμ of topological
defects. Here we show that abundant phase θ fluctuations
lead to the conservation ∂μJμ = 0 of the topological current.
We will work in the continuum limit. The alternative would
be to construct a compact lattice theory with θ ∈ (0, 2π )
and integer-valued topological current Jμ, but this would
be plagued by an inconsistency of the topological coupling
Lt ∼ i jμJμ on the lattice. Since the charge current jμ lives
on the physical lattice and Jμ lives on the dual lattice, a topo-
logical coupling would have to explicitly break some lattice
symmetry or have a fairly complicated form.

The insight from the continuum limit is still valuable even
though we lose access to Mott insulator phases. Integrating
out θ in the imaginary-time path integral yields∫

Dθ e− ∫
dd x( κc

2 jμ jμ+iKd jμJμ )

∝
∫

Dθ e− ∫
dd x[ κc

2 (∂μθ )2+κc (∂μθ )aμ+iKd (∂μθ )Jμ]

→
∫

Dθ e
∫

dd x [ κc
2 θ∂μ∂μθ−i θ Kd ∂μJμ]

=
∫

Dθ exp

{ ∫
dd x

[
1

2
(θ − i(Kd∂μJμ)(κc∂μ∂μ)−1)

×(κc∂μ∂μ)(θ − i(κc∂μ∂μ)−1(Kd∂μJμ))

+ (Kd∂μJμ)(κc∂μ∂μ)−1(Kd∂μJμ)

]}
∝ exp

[∫
dd x (Kd∂μJμ)(κc∂μ∂μ)−1(Kd∂μJμ)

]
. (A1)

We gauged away ∂μaμ → 0. The indices in different brackets
are independent even if the same symbol is used, and θ was
integrated out naively on the (−∞,∞) interval as appropriate
for large κc. We see that the current nonconserving ∂μJμ �=
0 fluctuations would be strongly suppressed in the resulting
action if κc were small (the operator ∂μ∂μ → −k2 has only
negative eigenvalues).

The last effective action has a more transparent form in
momentum space,

Seff =
∫

dd k

(2π )d

|�(k)|2
k2

, (A2)
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where �(k) is the Fourier transform of Kd∂μJμ. This trans-
lates into an interaction potential V (δr)

Seff =
∫

dd r dd r′ �(r)�(r′)V (|r − r′|), (A3)

which naively behaves as V (δr) ∼ 1/δrd−2 by dimensional
analysis. Its ultraviolet divergence in the δr → 0 limit is the
agent that suppresses the local fluctuations of � ∝ ∂μJμ. In
practice, the amount of suppression is limited by an ultraviolet
cut-off length δr → a. The continuum limit regime holds as
long as we are justified approximating a → 0. Incompressible
quantum liquids are still consistently captured in the con-
tinuum limit, requiring the topological current conservation
despite the loss of long-range phase coherence (the stability
of such phases is confirmed by the renormalization group of
instanton confinement). If the extremely abundant fluctuations
push the system into a Mott insulator phase, then we are
no longer justified in regarding the cut-off length a small;
constructing a compact lattice theory with a lattice constant
a is in order, and the topological currents gain a new freedom
to fluctuate without being conserved. This amounts to a dual
picture featuring the condensation of topological defects.

APPENDIX B: TOPOLOGICAL INVARIANT IN THE
π2n−1(Sn) HOMOTOPY GROUP

A generalization of the Hopf index to the π2n−1(Sn) ho-
motopy groups involves a Spin(n + 1) unit-magnitude vector
field n̂(x) = (n̂a1 , . . . , n̂an+1 ) which lives in a d = 2n − 1 di-
mensional sphere manifold x ∈ S2n−1. The flux of the vector
field chirality on any n-sphere Sn embedded in S2n−1 is a
quantized topological invariant of the πn(Sn) homotopy group,

1

n! Sn

∮
Sn

dnx ε j1··· jnε
a0···an n̂a0

(
∂ j1 n̂a1

) · · · (∂ jn n̂an
) ∈ Z. (B1)

Sn is the “area” of the unit n-sphere. In our notation, if the
Levi-Civita tensor has fewer indices than d as in the last for-
mula, it is understood that all directions spanned by the indices
live on the integration manifold. The standard mathematical
notation utilizes the wedge product

1

n! Sn

∮
Sn

εa0···an n̂a0 (dn̂a1 ) ∧ · · · ∧ (dn̂an ) ∈ Z, (B2)

where dn̂a = dxi∂in̂a, but we will emphasize all indices here
because they are helpful in the bookkeeping of the multiplicity
factors like n!. Let us define the chirality tensor

χi1···in−1 = 1

n!
εi1···in−1 j1··· jnε

a0···an

× n̂a0
(
∂ j1 n̂a1

) · · · (∂ jn n̂an
)
. (B3)

Since |n̂| = 1 and n̂ ∈ Sn, all linearly independent directions
that n̂ and its derivatives can span are exhausted in the chiral-
ity expression. Hence,

∂i1χi1···in−1 = · · · = ∂in−1χi1···in−1 = 0. (B4)

This can be generally solved by introducing a smooth an-
tisymmetric tensor gauge field Ai1···in−1 of rank n − 1 in our
d = 2n − 1 space,

χi1···in−1 = εi1···in−1 jk1···kn−1∂ jAk1···kn−1 . (B5)

Now, we set up a system of n-dimensional open manifolds Dp

whose boundaries are (n − 1)-dimensional interlinked “flux
loop” manifolds Cp. The cross sections of Cp “tubes” are
also n dimensional; this is intentional, and in fact fixes the
space dimensionality to d = 2n − 1. The flux carried by each
“loop” is a quantized “current” computed through the Sn cross
section of the “loop”,

Ip = npI0 = 1

(n − 1)!

∮
Sn

dnx η̂i1···in−1χi1···in−1 , (B6)

where

I0 = Sn, np ∈ Z. (B7)

The last integral employs another convenient custom notation:
η̂i1···in−1 (x) is defined on the integration manifold x ∈ Sn as
the unit antisymmetric tensor which is locally orthogonal to
Sn, pointing “outwards”. The integral (B6) is then the chi-
rality “flux” through the “surface” Sn, a multidimensional
generalization of the electric flux

∮
dA E = ∮

d2x η̂iEi from
the d = 3 Gauss’ law of electrodynamics. The total “current”
passing through the “loop” Cp is∑

q(Cp)

Iq =
∑
q(Cp)

I0nq

= 1

(n − 1)!

∫
Dp

dnx η̂i1···in−1χi1···in−1

=
∮

Cp

dn−1x εk1···kn−1 Ak1···kn−1 . (B8)

We used Stokes-Cartan theorem in the last step. Next, we
multiply this by I0np and sum over p (all “loops”), noting
that the cross section Sn(p) of a “loop” is orthogonal to its
boundary Cp,∑

p,q

I2
0 npnq = 1

(n − 1)!

∑
p

∫
Sn(p)

dnx
(
η̂i1···in−1χi1···in−1

)
×

∮
Cp

dn−1x εk1···kn−1 Ak1···kn−1

=
∫

d2n−1x εi1···in−1 jk1···kn−1 Ai1···in−1∂ jAk1···kn−1 .

Recalling np, nq ∈ Z and (B7), the last equation reveals the
integer quantization N ∈ Z of the Hopf index

N = 1

I2
0

∮
S2n−1

d2n−1x εi1···in−1 jk1···kn−1 Ai1···in−1∂ jAk1···kn−1 . (B9)

This derivation parallels the one from Sec. II A. It applies
to the spin sector of the Spin(n + 1) group in d = 2n − 1
spatial dimensions, where the chirality gauge field is generally
a higher-rank tensor derived from the vector field n̂ configu-
ration

εi1···in−1 jk1···kn−1∂ jAk1···kn−1

= 1

n!
εi1···in−1 j1··· jnε

a0···an n̂a0
(
∂ j1 n̂a1

) · · · (∂ jn n̂an
)
, (B10)

and I0 = Sn.
The expression (B9) reveals a constraint on n, which was

not apparent before: if n is odd, then an integration by parts
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TABLE I. Homotopy groups of the π2n−1(Sn) kind.

k n = 2k − 1 n = 2k

1 π1(S1) = Z π3(S2) = Z
2 π5(S3) = Z2 π7(S4) = Z × Z12

3 π9(S5) = Z2 π11(S6) = Z
4 π13(S7) = Z2 π15(S8) = Z × Z120

yields N = −N , i.e., N = 0. Nontrivial integer values of the
Hopf index are obtained only for even n. Indeed, the ho-
motopy groups π2n−1(Sn) have an integer-valued topological
invariant, the Hopf index, only for even n, with an exception
of π1(S1) whose integer invariant is not the Hopf index; see
Table I. Any additional structure of the homotopy invariants
is not contained in (B9).

Based on this, we anticipate the existence of topological
orders in d = 4k (k ∈ N) spatial dimensions, supported by
currents that transform according to a representation of the
Spin(2k + 1) group. We will argue in the next Appendix that
charge currents and other types of currents may also be
able to support these generalized Hopf topological orders.
Topological defects characterized by the π4k−1(S2k ) homotopy
invariant bind a fractional amount of charge to form elemen-
tary quasiparticles.

APPENDIX C: HOPF INDEX OF THE U(1) GAUGE FIELD
AND THE AXIAL VECTOR ANOMALY

IN HIGHER DIMENSIONS

The general Hopf index (B9) is applicable to the charge
sector as well. To begin with, the tensor gauge field Ai1···in−1

can directly describe the special monopoles of a U(1) gauge
field Ai whose quantized topological charge I0 = 2π obtains
as the “magnetic” (B5) flux through an n-sphere submanifold
of the S2n−1 space,

� = 1

(n − 1)!

∮
Sn

dnx η̂i1···in−1χi1···in−1 = I0 × integer. (C1)

These special monopoles are singular on (d − 1) − (n − 1) =
n − 1 submanifolds instead of being point singularities in
the d = 2n − 1 dimensional space. This is determined by the
rank of the gauge field. Nevertheless, the flux quantization is
derived from the lowest rank of Ai through a hierarchical con-
struction [5]. Other kinds of monopole structures, if featured
in the dynamics, may also be able to carry a Hopf index.

Of particular interest are the elementary monopole struc-
tures, i.e., “vortices”. These are d − 2 dimensional singular
domains in the d-dimensional space. Their topological charge
is quantized in the units of 2π , and obtains from the curl of the
U(1) gauge field Ai in the 2-plane manifold orthogonal to the
singularity. If no other monopole structures are present, then
we can construct the tensor Ai1···in−1 only from the curls of Aμ,

Ai1···in−1 = 1

n!
εi1···in−1 j1··· jnεk1···kn−1 j1··· jn

×Ak1

(
∂k2 Ak3

) · · · (∂kn−2 Akn−1

)
. (C2)

Note that we are specializing to the cases of even n, i.e., odd
n − 1, which provide a nontrivial Hopf index. Using (B5), we

find the specialized form of the flux (C1)

� = 1

2n/2

∫
dnx η̂i1···in−1εi1···in−1k1···kn

× Fk1k2 Fk3k4 · · · Fkn−1kn , (C3)

where

Fi j = ∂iA j − ∂ jAi. (C4)

The flux quantum I0 is different than before and we must
compute it from scratch. Consider a magnetic field with
singular structures of quantized flux. These must be (d − 2)-
dimensional “vortex” manifolds Vp of singular points in a
d-dimensional world: an intersection between such a manifold
and an orthogonal 2-plane is a singular point, so that the
line integral of Ai on the closed loop on the 2-plane around
the singularity yields 2π . If the 2-plane is spanned by the
coordinates xi, x j and the orthogonal singular d − 2 manifold
by xk1 , . . . , xkd−2 , then

Fi j (x) = 2π
∑

p

∫
Vp

dd−2y εi jk1···kd−2δ
d (x − y). (C5)

Substituting into (C3) tells us that only the d − n = n − 1
dimensional overlaps of n/2 “vortices” matter; each overlap
manifold is orthogonal to all k1, . . . , kn, which means it is
orthogonal to the integration manifold of x. Therefore, the
manifold of x intersects each Vp overlap manifold at a single
point. The product of all Dirac δ functions integrates out to 1,
and we have

� = (2π )k

2k

∑
p1···pk

∫
Vp1

dd−2y1 · · ·
∫

Vpk

dd−2yk

∫
dnx

×η̂i1···in−1εi1···in−1k1···knεk1k2l1
1 ···l1

d−2
· · · εkn−1knlk

1 ···lk
d−2

×δd (x − y1) · · · δd (x − yk )

= (2π )n/2(n − 1)! × integer. (C6)

Note n = 2k. The flux quantum is

I0 = (2π )n/2(n − 1)! (C7)

because the Levi-Civita tensors in the last integral make inte-
ger multiples of 2n/2(n − 1)!, as a result of the n/2 pairwise ki

permutations and the permutations of i1, . . . , in−1. The result-
ing Hopf index (B9) is integer valued,

N ′ =
[

(n − 1)!

I0

]2∮
S2n−1

d2n−1x εi1···i2n−1

×Ai1

(
∂i2 Ai3

) · · · (∂i2n−2 Ai2n−1

)
= 2

(4π )n

∮
S2n−1

d2n−1x εi1···i2n−1 Ai1 Fi2i3 · · · Fi2n−2i2n−1 . (C8)

Unconstrained tensor gauge fields Ai1···in−1 (x) split into
equivalence classes, which are enumerated by N ∈ Z in (B9).
However, the decomposition (C2) is a constraint on the tensor
gauge field. One may expect that the integers N ′ of (C8)
enumerate the constrained equivalence classes by having a
quantum q larger than 1, i.e., N ′/q ∈ Z. Let us examine this
by scrutinizing the symmetries of N and N ′. Since Ai1···in−1 is
an antisymmetric tensor, we can always reorder its indices
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as i1 < i2 < · · · < in−2 < in−1. Any resulting sign change is
absorbed by the equivalent reordering of the indices in the
Levi-Civita tensor. If we denote the ordered set of indices with
angle brackets, 〈i1 · · · in−1〉, and generate only nonequivalent
sets of indices under ordering, then (B9) becomes

N =
[

(n − 1)!

I0

]2∮
S2n−1

d2n−1x ε〈i1···in−1〉 j〈k1···kn−1〉

×A〈i1···in−1〉∂ jA〈k1···kn−1〉. (C9)

Furthermore, we can exchange the i and k index sets; an
integration by parts assures that the value of N does not
change. For a canonical ordering, we can always associate the
smallest of the i1, k1 indices to the gauge field factor without
the derivative,

N = 2 ×
[

(n − 1)!

I0

]2∮
S2n−1

d2n−1x ε〈〈k1···kn−1〉 j〈i1···in−1〉〉

×A〈i1···in−1〉∂ jA〈k1···kn−1〉 ≡ 2Q. (C10)

There are no further symmetries to exploit, so the quantity
Q represents the irreducible (essential) information carried by
the gauge field, which determines its topological equivalence
class. The decomposition (C2) has more symmetry. Look-
ing at the left-hand side of (C8), we see that we can freely
permute n − 1 index pairs of the ∂iA j factors. Furthermore,
we can carry out n different integrations by parts to apply a
derivative on the leading Ai1 factor. Together, these symmetry
transformations are equivalent to all n! permutations among
the indices of the gauge field factors. Hence, we have

N ′ = n! ×
[

(n − 1)!

I0

]2∮
S2n−1

d2n−1x ε〈 j(i2i3 )···(i2n−2i2n−1 )〉

×Aj
(
∂i2 Ai3

) · · · (∂i2n−2 Ai2n−1

) ≡ n! Q′. (C11)

This exhausts the symmetry of N ′. The quantity Q′ contains ir-
reducible information about the constrained field (C2), which
determines its equivalence class. Now, both Q and Q′ are

quantized in some units; the most general Hopf index N ∈ Z
requires Q to be quantized in the units of 1/2. However,
Q′ cannot be equivalently quantized in the units of 1/n!. If
that quantization were possible, then every configuration of
Ai1···in−1 could be smoothly deformed into a form given by (C2)
because the two forms would have the same topological index.
If we generate all possible Ai1···in−1 configurations, we will also
cover all possible Ai configurations by generating them from
the decompositions (C2) whenever possible. The period of
finding these decompositions relative to all possible Ai1···in−1

configurations matches the relative quantizations of N ′ and N .
This period is also reflected in the relationships N = 2Q and
N ′ = n!Q′. Generating the “essential” information Q, Q′ at a
fixed frequency gives us the frequency of symmetry-restricted
values N, N ′ in the respective symmetry classes. So, taking the
same quantization (frequency) for Q and Q′ yields

Q = 1

2
q, Q′ = 1

2
q ⇒ N = q, N ′ = n!

2
q

with q ∈ Z. Consequently, we can extract an integer factor
N ′′ ≡ q = (2/n!)N ′ ∈ Z from (C8), which depends on the
field configuration,

N ′′ = 4

n! (4π )n

∮
S2n−1

d2n−1x εi1···i2n−1 Ai1 Fi2i3 · · · Fi2n−2i2n−1 .

(C12)
This is the irreducible part of the constrained Hopf index. In
the light of the quantum anomaly discussion from Sec. III C,
one anticipates the nonconservation of chiral currents in the
form of

∂μ jcμ = 2

n! (4π )n
εμ1···μ2n Fμ1μ2 Fμ3μ4 · · · Fμ2n−1μ2n , (C13)

since the �c = in−1�0�1 · · · �d matrix in jcμ = ψ̄�c�μψ is
constructed to have ±1 eigenvalues (i.e., we match integer
changes of the chiral charge to the integer changes of the
Hopf index). This is, in fact, obtained rigorously as the axial
vector anomaly of the quantum electrodynamics generalized
to d dimensions [19].
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insulators of Cooper pairs induced by proximity effect, Phys.
Rev. Lett. 110, 176804 (2013).
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