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Semigroup approach to the sign problem in quantum Monte Carlo simulations
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We propose a framework based on the concept of the semigroup to understand the fermion sign problem. By
using properties of contraction semigroups, we obtain sufficient conditions for quantum lattice fermion models
to be sign-problem-free. Many previous results can be considered as special cases of our new results. As a direct
application of our new results, we construct a class of sign-problem-free fermion lattice models, which cannot be
understood by previous frameworks. This framework also provides an interesting aspect in understanding related
quantum many-body systems. We establish a series of inequalities for all the sign-problem-free fermion lattice
models that satisfy our sufficient conditions.
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I. INTRODUCTION

Understanding interacting many-body systems remains
a great challenge in current physics research. The quan-
tum Monte Carlo (QMC) method is an important numerical
method for this purpose [1–4]. It contains a class of stochastic
algorithms based on sampling over different configurations
according to some sampling weights derived from the model.
However, for many quantum models it is often extremely dif-
ficult to express the quantum partition function or expectation
values of physical variables in terms of efficiently computable,
non-negative real sampling weights. This obstacle, which of-
ten hampers the efficiency of QMC simulations seriously, is
called the sign problem. It prevents us from effectively getting
numerical results for large systems at low temperature.

Specifically speaking, for auxiliary field quantum Monte
Carlo (AFQMC) type algorithms [5,6] that are frequently used
in condensed-matter physics, nuclear physics, and cold atoms,
for each configuration of auxiliary fields the contribution to
the partition function can be expressed by the determinant
resulting from the fermionic Gaussian integral, which can be
computed efficiently. Unfortunately, in general, a fermionic
Gaussian integral is not necessarily a real number, even less
a non-negative real number. For fermion lattice models, the
sign problem will lead to an exponential growth of total com-
putational cost as the volume of the system and the inversed
temperature get larger [7,8], if one wants to retain the same
numerical accuracy.

Despite the fact that a general unbiased solution to the sign
problem is either nonexistent or elusive by its very nature [9],
a lot of physically interesting models have been shown to be
sign-problem-free, which is of great significance to practical
numerical studies. For AFQMC and some related methods,
a few general frameworks have been proposed to under-
stand sign-problem-free interacting fermion systems. There
have been approaches based on the Kramers time-reversal

*Contact author: zcwei@thp.uni-koeln.de

invariance [10–12], the fermion bag [13,14], the Majorana
quantum Monte Carlo [15], the split orthogonal group [16],
the Majorana reflection positivity [17], and the Majorana
time-reversal symmetries [18]. Each approach has unified a
class of sign-problem-free fermion models and brought addi-
tional examples of sign-problem-free QMC simulations.

In this work, we propose an alternative approach to con-
struct fermion models without the sign problem. We observe
that semigroup structures arise naturally from imaginary-time
evolutions; this observation is made explicit after introducing
auxiliary fields. The semigroup is generated by multiplication
of exponentials of fermionic quadratic operators. It is not nec-
essarily a group, for the inverse elements of those exponentials
may not appear in the calculation. An important particular
case is when each element of the semigroup has non-negative
trace, then the QMC sampling weights are exactly the traces.
This fact serves as the stating point of our approach.

A semigroup is a set with element multiplication that sat-
isfies the associative law. Compared with the concept of a
group, an inverse does not necessarily exist for each element
in a semigroup. Semigroups appear frequently in different
areas of theoretical research. Every group is also a semigroup.
In quantum mechanics, the quantum dynamical semigroup
[19] is employed to study the time evolution of open quan-
tum systems, where the concept of the semigroup reflects
the irreversiblility of time for the concerned physical pro-
cesses. In quantum field theory and statistical physics, the
renormalization group (RG) [20] is actually more like a semi-
group than a group, due to the loss of information during RG
transformations.

In this work, we are mainly concerned with a special
kind of Lie semigroup called the contraction semigroup. We
construct two kinds of contraction semigroups. When the pa-
rameter region is contained in such semigroups, the fermionic
Gaussian integral is always real non-negative. As a result, the
related AFQMC calculations do not have any sign problem.

The currently existing approaches mentioned above ap-
pear different and unrelated at first glance, but now they
can be unified in this framework. The Kramers time-reversal
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invariance leads to Kramers pairs of eigenvalues of matrices,
which results in the non-negativity of fermion determiants
[12]. In Ref. [16], the relation between the split orthogonal
group and sign-problem-free models has been revealed using
some inequality for group elements. Those results have been
extended by recent studies [17,18]. We show that all those
approaches based on consideration of symmetries are related
to subgroups of the semigroups considered here. We also
explain that in the context of the AFQMC sign problem, the
condition of Majorana reflection positivity [17] is actually
equivalent to one of the two kinds of contraction semigroups
treated in this work. In short, to our best knowledge, all known
sign-problem-free fermion lattice models used in simulation
approaches based on semigroups can be understood in our
framework.

Our results open up new possibilities to sign-problem-free
Monte Carlo simulations. We construct a kind of interacting
fermion lattice model which involves the pairing term, the
Kramers time-reversal invariant hopping term, and the inter-
action term. This class of model is sign-problem-free, which
could not be explained in previous frameworks.

We believe that this framework will find more applications
in both numerical and analytical studies [21]. To illustrate the
latter case, we establish certain inequalities for the expectation
values of physical observables in many-body systems.

II. PROBLEM SETTING

In AFQMC algorithms for interacting fermion lattice mod-
els, interaction terms are decoupled by auxiliary fields into
fermionic quadratic forms [5,6,22]. After integrating out the
fermion degrees of freedom, one will obtain an action in terms
of auxiliary fields. One can treat this action with random
sampling numerically. The sampling weight for each configu-
ration of auxiliary fields usually has the form [10,23]

p = tr(eh1 eh2 · · · ehk ) = det(I + eA1 eA2 · · · eAk )1/2. (1)

The expression of sampling weight in Eq. (1) is the
main object of study in this work. Here hi = γ T Aiγ /4
(i = 1, . . . , k) denotes a set of fermionic quadratic forms.
They come from both single-body terms and auxiliary field
decoupling of interaction terms and depend on the configu-
ration of auxiliary fields. γn (n = 1, . . . , 2N) are Majorana
fermion operators, which satisfy the anticommutation rela-
tions {γl , γm} = 2δlm. The Majorana fermion basis is used
for convenience; it is equivalent to the complex fermion ba-
sis with N species. Unless we specify a particular example,
in principle, hi could contain an arbitrary particle number
conserving part and an arbitrary pairing part. That is the
equivalent of saying that the coefficients Ai = −AT

i could be
arbitrary skew-symmetric complex matrices.

If we do not put any restrictions on hi, the fermionic Gaus-
sian integral p could be nonpositive, due to both the complex
nature of the coefficients and the two-valuedness of the spin
representation. Under those circumstances, statistical sam-
pling methods may fail to obtain desired physical quantities
with useful accuracy at reasonable cost. This is the so-called
sign problem in AFQMC methods.

In practical calculations, the possible forms of ehi are
given by the quantum partition function. They could come

from both the single-body term in the Trotter-Suzuki
decomposition and the Hubbard-Stratonovich (HS) transfor-
mations for interaction terms. Their inverse elements e−hi ,
however, are not necessarily involved in any fermionic Gaus-
sian integrals [24]. By taking products along the imaginary-
time axis, they form a semigroup, with elements representing
different sorts of paths of the partition function. This ob-
servation allows us to study the sign problem in terms of
semigroups.

Furthermore, if a Lie semigroup S ⊂ Spin(2N,C) has the
property p � 0 for all its elements, then it corresponds to a
class of sign-problem-free fermion models. In the following
sections, we show that two specific kinds of Lie semigroups
indeed possess this good property.

III. DEFINITIONS AND USEFUL FACTS

We list some basic definitions and facts before going into
details. For general mathematical accounts of Lie semigroups,
the reader may refer to Refs. [25,26].

For any square complex matrix X , consider an antilinear
symmetry operation X �→ ηX †η given by a Hermitian matrix
η = η† with η2 = I , together with Hermitian conjugation.
We say that the matrix is η-Hermitian or η-anti-Hermitian,
respectively, if it is invariant or changes sign under this trans-
formation. All the square complex matrices X with property
ηX + X †η � 0 generate a Lie semigroup by taking exponen-
tials and element products. Semigroups of this kind are called
contraction semigroups. Equivalently, one can say that the
contraction semigroup consists of all the square matrices g
that satisfy g†ηg − η � 0. They contract the “length” of any
vector given by the metric η. Similarly, one can define the
expansion semigroup by inverting the direction of the inequal-
ity. We will work on the contraction semigroup and leave the
expansion case to the reader.

Obviously, the contraction semigroup defined above has
the η-unitary group as its maximal subgroup, which is gen-
erated by η-anti-Hermitian matrices. Each element g in the
contraction semigroup possesses a polar decomposition g =
gU exp(X0), where X0 is η-Hermitian and ηX0 � 0, and gU

belongs to the η-unitary group, i.e., g†
U ηgU = η. The set of X0

forms an invariant cone under adjoint action of the η-unitary
group.

Specially, let us consider strict contraction elements, which
remain strict contractions when multiplied by any semigroup
elements. In the strict contraction case g†ηg − η < 0, which
implies that ηX0 < 0 and g cannot have eigenvalues of mag-
nitude 1. This means det(I + g) �= 0, which we use in the
following section to construct sign-problem-free semigroups.

IV. SIGN-PROBLEM-FREE SEMIGROUPS

Let us give the outline of the discussions in this section.
First, we restrict the range of parameters by an antilinear sym-
metry to make the sampling weight p real. Then we observe
that p never vanishes for strict contraction elements inside
some contraction semigroups, while the nonstrict contraction
elements can be viewed as some limit of strict contraction
elements. These two conditions together ensure that p is non-
negative as a continuous function of the coefficients.
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Each condition requires a definition of antilinear involution
for complex skew-symmetric matrices. Consider any complex
skew-symmetric matrix A. Adopting the Majorana fermion
basis, it is natural to assume that those two operations are
expressed by real orthogonal transformations acting on A, J1,
and J2, respectively, along with the complex conjugation.

First, we assume the complex skew-symmetric matrices are
fixed under the operation A �→ JT

1 ĀJ1. Here J1 could be either
symmetric J2

1 = I2N or skew-symmetric J2
1 = −I2N . It is easy

to see that p is real under this assumption.
Second, to define a contraction semigroup, J2 should be

chosen to be either symmetric or skew-symmetric, so that
J2 or iJ2 can serve as the aforementioned indefinite metric
η. The coefficient matrices that are not changed under the
transformation A �→ JT

2 ĀJ2 generate the maximal subgroup of
the contraction semigroup. Meanwhile, elements in the invari-
ant cone change sign under this operation, iJ2A = −iĀJ2 � 0.

Since A is skew-symmetric, if J2 were symmetric, the invariant
cone would be trivial, i.e., it contains only zero element.
Therefore we have to assume J2 to be skew-symmetric. Ac-
cording to Eq. (1), p is nonzero for any such defined strict
contraction element, because the matrix inside the determi-
nant does not have zero eigenvalues.

Finally, we have to check the consistency of the two
conditions. The resulting invariant cone should satisfy both
constraints given by J1 and J2. However, in order to make our
argument stand, we have to ensure that the resulting invariant
cone always contains strict contraction elements. This cannot
be achieved by an arbitrary choice of J1 and J2 [27]. Under
the current assumption, the only possibility is that J1 and
J2 satisfy the anticommutation relation {J1, J2} = 0. See the
Supplemental Material [28] for more detailed arguments.

Now we have two sign-problem-free semigroups on which
p � 0, and they are defined by

JT
1 AJ1 = Ā, (2)

i(J2A − ĀJ2) � 0. (3)

J1 and J2 are two anticommuting, real orthogonal matrices.
While J1 could be symmetric or skew-symmetric, J2 should
be skew-symmetric. If all Ai matrices in Eq. (1) satisfy the
conditions above, the corresponding quantum Monte Carlo
simulations will be sign-problem-free.

Throughout the above discussions we do not require the
Hermitian condition of Majorana fermion operators γn = γ †

n .
Instead, the anticommutation relations for Majorana fermion
operators are preserved under complex orthogonal trans-
formations of Majorana fermion operators. Therefore, the
condition for positive trace given above also holds for this
complex orthogonal generalization of the Majorana fermion
basis.

V. APPLICATIONS

Equations (2) and (3) constitute the main result of this
work. They cover all the results on sign-problem-free QMC
simulations of fermion lattice models known to us. They are
classified and listed in Table I and are discussed type by type
in this section.

TABLE I. Classification of sign-problem-free quantum lattice
fermion models.

Cases J2
1,a = I , J2

1,b = −I J2
1 = I J2

1 = −I

JT
2 AJ2 = Ā (a) (b) (c)

i(J2A − ĀJ2) � 0 (d) (e) (f)

First, when the inequality in Eq. (3) becomes equality,
we will have two antilinear symmetries: JT

1 AJ1 = JT
2 AJ2 = Ā.

Under this circumstance our result goes back to the known
results based on symmetry considerations [17,18]. In this case
parameters actually live in the maximal subgroup of the semi-
group. Many models in practical studies fall into this case,
which can be simulated by quantum Monte Carlo without the
sign problem [6,10–12,14–16,18,22,29–36]. Below we list a
few important examples.

(a) The negative-U Hubbard models, the positive-U Hub-
bard models at half-filling on bipartite lattices [30], and the
Kane-Mele-Hubbard model [31–33] at half-filling can all be
regarded as good examples of this case. For those models, J1

could either be symmetric or skew-symmetric, due to the high
symmetry of the systems.

(b) A class of interacting spinless fermion models on
bipartite lattices at half-filling have been shown to be sign-
problem-free using the fermion bag approach [13] for the
continuous-time quantum Monte Carlo (CTQMC) method
[14]. They have also been treated without the sign problem
using the AFQMC method under the Majorana fermion basis
[15], and using the CTQMC method under the framework of
the split orthogonal group [16]. Actually our result applies to
several different kinds of QMC methods, such as CTQMC,
despite their differences in practice. That class of spinless
fermion models is made up of typical examples of the case
with symmetric J1. Another example is a model for helical
topological superconductors with interactions [18]. Actually
this case has been included in Theorem 2 of Ref. [17], where
the matrices A, J2, and J1J2 play the roles of V , S, and P there,
respectively.

(c) For the case with skew-symmetric J1, the related
fermion lattice models have Kramers time-reversal invariance
[17,18]. Applications can also be found in high-spin interact-
ing fermion systems, e.g., the nuclear shell model [10] and
the high-spin Hubbard model [11,12]. This sign-problem-free
property of Kramers time-reversal-invariant models also has
applications in the research of high-temperature supercon-
ductors [29,34,36,37]. This case has also been included in
Theorem 2 of Ref. [17], where the matrices A, J2, and iJ1J2

play the roles of V , S, and P there, respectively.
Second, when the inequality in Eq. (3) is not an equality,

parameters actually live in the whole semigroup. Models of
this case can also be simulated by quantum Monte Carlo
without the sign problem.

(d) We note that for some models, both symmetric and
skew-symmetric J1 are suitable. Those models correspond
to the intersection of the two semigroups. A generalized
Kane-Mele-Hubbard model with staggered magnetic field,
considered in Ref. [17], can be seen as an example.
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(e) When J1 is symmetric, the parameter region given
by Eqs. (2) and (3) coincides with the result obtained from
Majorana reflection positivity. To see this clearly, one may
choose a Majorana fermion basis such that J1 = σ1 ⊗ IN and
J2 = iσ2 ⊗ IN . The fermion degrees of freedom are grouped

into two parts under this new basis γ = (
γ (1)

γ (2) ), while the

condition of reflection symmetry is given by Eq. (2), and
the condition of positivity is ensured by Eq. (3). We have
γ T Aγ = γ (1)T Bγ (1) + γ (2)T B̄γ (2) + 2iγ (1)T Cγ (2), with block
matrices B and C. C is positive semidefinite Hermitian matrix.
This can be immediately compared to the related definitions in
Ref. [17]. All the models studied by the fermion bag approach
and the split orthogonal group approach can also be treated by
Majorana reflection positivity.

The set of operators with Majorana reflection positivity is
closed under operator multiplication [17,38], which accounts
for the semigroup property. Each strict contraction element
corresponds to a strictly positive operator in the sense of
Majorana reflection positivity. We mention that this strict re-
flection positivity can also be used to show the uniqueness of
the ground state for finite systems [39,40].

(f) When J1 is skew-symmetric, the result in the previous
section implies new sign-problem-free models. For conve-
nience in practical applications, we re-express our result for
this J1 skew-symmetric case in terms of the complex fermion
basis. Without losing generality, we can choose the Majorana
fermion basis

γ =

⎛
⎜⎜⎜⎜⎝

γ (1)

γ (2)

γ (3)

γ (4)

⎞
⎟⎟⎟⎟⎠

so that the two skew-symmetric orthogonal matrices have the
form J1 = σx ⊗ iσy ⊗ IN/2 and J2 = −iσy ⊗ I2 ⊗ IN/2. Then
we define the complex fermion basis as cl = (γ (1)

l + iγ (2)
l )/2

and dl = (γ (4)
l + iγ (3)

l )/2, where l = 1, . . . , N/2 labels dif-
ferent components. There is a one-to-one correspondence
between the coefficient matrices A which satisfy the con-
ditions in Eq. (2) and the fermionic quadratic forms with
Kramers time-reversal invariance,

h = 1

4
γ T Aγ = h(0) + h(p), (4)

h(0) = (c†, d†)M

(
c
d

)
− (c, d )MT

(
c†

d†

)
, (5)

h(p) = (c, d )RK

(
c
d

)
− (c†, d†)SK

(
c†

d†

)
. (6)

Here, M, R, and S are complex coefficient matrices, and K =
iσy ⊗ IN/2. RK and SK are skew-symmetric, in accordance
with the fermion anticommutation relations. The time-reversal
operation is given by the unitary transformation K followed by
a complex conjugation of the coefficients under the complex
fermion basis. It is not difficult to check that KT MK = M̄,
KT RK = R̄, and KT SK = S̄. Then the condition in Eq. (3) is
now converted to two inequalities for the Hermitian matrices
R and S, R � 0 and S � 0 under this complex fermion basis.
The particle number conserving part h(0) corresponds to the

generator of the maximal subgroup of the contraction semi-
group, while the pairing term h(p) corresponds to the invariant
cone.

Consider a Kramers time-reversal-invariant effective band
Hamiltonian defined on an arbitrary lattice, with time-reversal
symmetry that satisfies K2 = −I . We add an attractive on-
site Hubbard-U term to the Hamiltonian. With appropriate
HS transformations to decouple the interaction term [41],
sign-problem-free AFQMC simulations can be carried out for
this type of model [12]. Now we can extend this model by
adding a new pairing term that satisfies the sign-problem-free
conditions to study the proximity effect of superconductivity
to topological matters with correlation effects. Actually, by
particle-hole transformation one can also map an attractive
interaction term to a repulsive one, or a pairing term to a
hopping term, to study more physical problems in strongly
correlated electron systems. Those possibilities have not been
shown by any previous research.

As an example of this case, consider the model Hamilto-
nian H = H0 + H⊥ + Hp + HU defined on a square lattice,
where

H0 = −t
∑
〈i, j〉

(c+
i c j + H.c.) − t

∑
〈i, j〉

(d+
i d j + H.c.), (7)

H⊥ = −t⊥
∑

i

(−1)xi+yi (c+
i di + H.c.), (8)

Hp =
∑

i

[
�

(
c+

i d+
i+δx

− c+
i d+

i+δy

+ c+
i d+

i−δx
− c+

i d+
i−δy

) + H.c.
]
, (9)

HU = U
∑

i

(
c+

i ci − 1

2

)(
d+

i di − 1

2

)
. (10)

Here t , t⊥, and U are real parameters, U � 0, and � is a com-
plex parameter. Here H⊥ describes the effect of a staggered
magnetic field along the x axis, and Hp describes the d-wave
BCS pairing. The whole Hamiltonian depicts the proximity
effect between superconductivity and antiferromagnetism and
can be simulated by the AFQMC method without the sign
problem. This can be proved by introducing the particle-hole
transformation di → (−1)xi+yi d+

i and suitable HS transfor-
mations [22]. When t⊥ = 0, the single-body term of the
Hamiltonian is gapless and the whole Hamiltonian has been
used to study the quantum criticality of the chiral Heisenberg
universality class [42]. When t⊥ �= 0, the whole Hamiltonian
exhibits a single-particle gap [21].

For many models the system contains several different
kinds of degrees of freedom. Suppose each subsystem sat-
isfies sign-problem-free condition, e.g., with its own choice
of matrices J1 and J2. If the coupling terms between
the two sign-problem-free subsystems are carefully selected,
the whole system can still be sign-problem-free. In that case,
our sign-problem-free conditions are to be applied to each
building block of the whole system. This observation can be
useful in the study of multilayer systems.

For the sign-problem-free models studied in this work, the
partition function can be seen as a summation of contraction
semigroup elements. This structure can have interesting con-
sequences, including the sign structure of expectation values
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of observables. For example, for any positive integer m, we
have

tr(h′
1h′

2 . . . h′
mg0) � 0, (11)

where the coefficient matrices of fermionic quadratic opera-
tors h′

s belong to the invariant cone, s = 1, . . . , m, and g0 can
take any elements of the semigroup. The proof is straight-
forward for the case with symmetric J1 owing to Majorana
reflection positivity. A proof for the case with skew-symmetric
J1 using Wick’s theorem and the Kramers degeneracy the-
orem can be found in the Supplemental Material [28]. This
set of inequalities also provides an alternative route to the
sign-problem-free property. They are also very useful when
considering the sign problem in zero temperature AFQMC
simulations.

VI. CONCLUSION AND DISCUSSION

In this work we have presented sufficient conditions for
sign-problem-free QMC simulations of fermion lattice mod-
els. A framework based on the concept of the semigroup has
been proposed to understand this problem in a systematic
way. Sufficient conditions have been obtained, as stated in
Eqs. (2) and (3). All previous results based on symmetry

considerations and Majorana reflection positivity can be un-
derstood well and unified naturally within our approach.
Alternative sign-problem-free models have been constructed
to show the power of our method. Such sign-problem-free
interacting fermion models share some general physical prop-
erties, as we have demonstrated.

Although we have focused on applications in quantum
lattice models in condensed-matter physics, our framework
is not limited to those cases and can also help with the sign
problems in the other branches of physics [43].

We would like to mention that the techniques used in this
work can be extended to systems with bosonic degrees of
freedom.
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