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Electron-phonon interaction and band structure renormalization using Gaussian orbital basis sets
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The interaction between electrons and phonons leads to a renormalization of the electronic band structure
and the associated band gap. In solids this renormalization can be calculated from first principles using the
supercell-based frozen phonon method or the perturbation-based Allen-Heine-Cardona theory. Each approach
relies on certain assumptions and can become computationally expensive. In this work we present an ab initio
implementation that aims to increase the accuracy and the efficiency of such calculations by combining the
nonadiabatic Allen-Heine-Cardona theory and supercell calculations. Additionally, the benefits of a localized
basis set of Gaussian orbitals are exploited. Due to its computational complexity the Debye-Waller component
of Allen-Heine-Cardona theory is usually treated on a rigid-ion approximation level using a version of the
acoustic sum rule. In our implementation the evaluation of the Debye-Waller component is straightforward and
contributions beyond the rigid-ion approximation from several shells of nearest neighbors can easily be included.
We use bulk silicon and diamond as test systems and find a good agreement with the literature on the level of the
rigid-ion approximation. Beyond that we calculate the contributions up to third-nearest neighbors and find that
these contributions are small with up to about 5% of the rigid-ion contribution but not necessarily negligible. For
silicon the calculated zero-point renormalization of the direct (indirect) band gap is −43.5 meV (−54.9 meV).
At high temperature, the band gaps shrink at a rate of −0.17 and −0.27 meV/K, respectively. For diamond we
find a zero-point renormalization of −405.2 meV (−313.7 meV) for the direct (indirect) band gap. The reduction
at high temperature is −0.46 and −0.37 meV/K, respectively.
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I. INTRODUCTION

Electron-phonon interaction (EPI) provides the mecha-
nisms that are crucial for a multitude of phenomena in solid
state physics, chemistry, and material science. Some exam-
ples are conventional superconductivity, resistivity in metals,
charge carrier mobility in semiconductors and insulators, the
thermalization of hot carriers and the temperature dependence
of optical properties [1]. However, in electronic structure cal-
culations electron-phonon interactions are usually neglected.
Most ab initio calculations of electronic and structural prop-
erties today employ density functional theory (DFT) [2,3],
which notoriously underestimates the electronic band gap
compared to experimental findings. After corrections from
many-body perturbation theory (MBPT), typically in the GW
approximation [4], the remaining mismatch between theory
and experiment is in the order of 0.1 eV or below for many
materials [5,6]. The renormalization of the band gap intro-
duced by electron-phonon interaction often turns out to be of a
similar size [7–9] and might therefore be able to further bridge
the remaining gap between theory and experiment. Even at
zero temperature the electron-phonon interaction introduces
a renormalization of the electronic band structure, which
is referred to as zero-point renormalization (ZPR). For ris-
ing temperature the electron-phonon renormalization (EPR)
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increases in magnitude, because the occupation numbers of
the phonons enter, which increase with the temperature.

Currently, two ab initio methods can be found in the litera-
ture that can capture such effects and are applicable to solids.
Each method has its own advantages and disadvantages. The
first method is the frozen phonon approach [10,11]. It is based
on supercell calculations where the atoms are displaced col-
lectively according to the patterns corresponding to specific
phonon modes. The resulting changes of the band structure
energies are averaged over a sufficient number of phonon
modes with Bose-Einstein distributions as weights. On the one
hand, it is conceptually versatile, as any electronic structure
solver could be used, and several orders of electron-phonon
interactions are automatically included [12]. On the other
hand it is an approach that inherently relies on the adiabatic
approximation [9,13] and the required supercell calculations
are computationally expensive [12,13]. The second method
is a perturbative approach that employs Allen-Heine-Cardona
(AHC) theory [14–16] and linear response techniques in
the form of density-functional perturbation theory (DFPT)
[17–19]. Its treatment of electron-phonon interaction involves
two contributions that are second order in electron-phonon
coupling. These contributions are called the Fan-Migdal (FM)
term and the Debye-Waller (DW) term. They arise from an
expansion of the electron potential. This approach avoids
supercells entirely and can easily incorporate nonadiabatic
effects, which have shown to be important for some classes
of materials [7,9]. However, it involves evaluating an integral
that converges only slowly with respect to the used sampling
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density and is usually treated using interpolation schemes
[20]. Furthermore, the evaluation of the Debye-Waller term is
not straightforward but uses a variant of the acoustic sum rule
[14]. Usually the rigid-ion approximation (RIA) is invoked
due to the computational effort [7]. Tests of the validity of
the RIA on molecules indicated that contributions beyond the
RIA might not be negligible [21].

The field of ab initio calculations for electron-phonon
interactions is comparatively young and the refinement of
its methods is still continuing. Considerable efforts have
been made to improve the perturbation-based [20,22–26] and
supercell-based methods [12,13,23,27–31]. A major break-
through requires implementations with high precision and
low computational costs. With progress in this direction
electron-phonon calculations could be adapted more widely
and therefore aid in the discovery of new interesting material
properties.

This work presents an attempt to advance the field in this
direction. We combine the theoretical framework of nonadia-
batic AHC theory with supercell calculations and exploit the
benefits of a localized Gaussian basis. Previous works have
already made use of localized basis sets of Wannier functions
or atomic orbitals [24]. Due to their strong localization, they
are well suited for Fourier interpolations, which can be used
to speed up the evaluation of the occurring integral. However,
we use them for a different reason as our approach does
not employ interpolation schemes. Instead, replacing DFPT
by supercell calculations and evaluating the required matrix
elements with a basis of localized Gaussian orbitals allows us
to decouple a sizable part of the computational effort from the
evaluation of the slowly converging integral over the Brillouin
zone. This way we obtain an implementation with a moderate
computational effort such that the Debye-Waller term can
be evaluated without resorting to a special treatment via the
acoustic sum rule. Contributions beyond the RIA can easily
be included in our calculations. Therefore, we can rigorously
investigate the validity of the RIA, which was not feasible up
to now, using silicon and diamond as test systems.

This paper is organized as follows. Section II reviews
the common theoretical treatment of electrons and nuclei in
solids. In the following Sec. III the Hamiltonians describing
the first and second order of EPI are derived and the EPR from
nonadiabatic AHC theory is presented. Section IV explains
the practical details in the implementation of the EPR of the
band structure energies. The occurring convergence behavior
is presented in Sec. V. Eventually, in Sec. VI the results for
the two test systems of bulk silicon and diamond are presented
and our implementation is compared to previous implementa-
tions. A summary in Sec. VII will conclude the paper.

II. ELECTRONS AND PHONONS

Before turning the attention to electron-phonon interac-
tions, it is useful to describe electrons and phonons separately.
To this end, the Born-Oppenheimer approximation [32] is
employed. It allows us to decouple the dynamics of electrons
and nuclei. In the first step the electronic problem is solved
for a fixed configuration of the nuclei, which yields the total
electronic energy corresponding to this configuration. In the

second step the total electronic energy is used as a potential in
the treatment of the dynamics of the nuclei.

The equilibrium position of a nucleus indicated by κ and
p is given by τ (0)

κ p = τκ + Rp, where τκ is the position of the
nucleus κ in the primitive unit cell and Rp is the lattice vector
corresponding to the unit cell with index p, and the equilib-
rium configuration of all atomic positions is denoted as {τ (0)

κ p }.
The total electronic energy of the ground state E el

0 ({τ (0)
κ p })

for this equilibrium configuration can be obtained from den-
sity functional theory (DFT) calculations [2,3]. Beyond that,
DFT is also commonly used as a one-body picture for the
electrons. The behavior of an electron is then described by
the Hamiltonian ĤKS = − h̄2

2me
∇2 + V KS(r, {τ (0)

κ p }), where the
self-consistent Kohn-Sham potential V KS is evaluated for the
equilibrium configuration of the nuclei. In second quantiza-
tion the Hamiltonian for an electron reads

Ĥe =
∑

mk′,nk

〈ψmk′ |ĤKS|ψnk〉ĉ†
mk′ ĉnk

=
∑
nk

εnkĉ†
nkĉnk, (1)

where ψnk are the eigenfunctions and εnk are the eigenvalues
of ĤKS [1].

For a description of the dynamics of the nuclei their po-
sitions are considered as dynamical variables. The position
of each nucleus can be written in terms of a displace-
ment from the previously fixed equilibrium position, i.e.,
τκ p = τ (0)

κ p + �τκ p. Then the expansion of the potential up to
second order around the equilibrium configuration takes the
form

E el
0 ({τκ p}) = E el

0

({
τ (0)

κ p

})+1

2

∑
καp

∑
κ ′α′ p′

φκαp,κ ′α′ p′�τκαp�τκ ′α′ p′

+ O({�τκαp}3), (2)

with force constants φκαp,κ ′α′ p′ defined as the second-order
derivatives of E el

0 with respect to τκαp and τκ ′α′ p′ evalu-
ated for the nuclear positions in equilibrium [33]. The index
α = x, y, z denotes the Cartesian components. Within the har-
monic approximation only terms up to second order in the
atomic displacements are considered leading to a system of
coupled harmonic oscillators. Decoupling them requires to
solve the eigenvalue problem∑

κ ′α′
Dκα,κ ′α′ (q) eκ ′α′,ν (q) = ω2

qν eκα,ν (q) (3)

with the dynamical matrix Dκα,κ ′α′ (q) given by

Dκα,κ ′α′ (q) =
∑

p

eiq·Rp
φκα0,κ ′α′ p√

MκMκ ′
, (4)

where Mκ is the mass of the corresponding nucleus κ [33].
Solving the eigenvalue problem yields decoupled normal
modes eκα,ν (q) with vibrational frequencies ωqν . Each mode
is characterized by a wave vector q and a branch index ν.
Expressed in the language of second quantization, the Hamil-
tonian of the phonons within the harmonic approximation
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reads [1]

Ĥp =
∑
qν

h̄ωqν

(
â†

qν âqν + 1

2

)
. (5)

III. ELECTRON-PHONON INTERACTION IN DENSITY
FUNCTIONAL THEORY

Equation (1) describes the electrons for a rigid atomic
configuration. However, all effects on the electronic properties
that result from electron-phonon interaction are lost when
fixed atomic positions are assumed. The strategy presented
in this section is to recover the effects of electron-phonon
interaction in DFT calculations by treating the term that is
neglected by this assumption as a perturbation. Starting from
this approach the Hamiltonians describing the first and second
order of electron-phonon interactions are derived. These can
then be treated within perturbation theory in order to obtain
the renormalization of the electronic band structure energies.
The final renormalization is obtained after making minor
modifications arising from many-body theory.

In DFT the aforementioned perturbation reads
V KS(r, {τκ p}) − V KS(r, {τ (0)

κ p }). Since its explicit form is
not known, it is expanded up to second order around the fixed
configuration of the nuclei to capture its main contributions.
The expansion takes the form

V KS(r, {τκ p}) − V KS
(
r,

{
τ (0)

κ p

}) =
∑
καp

∂V KS

∂τκαp
�τκαp

+ 1

2

∑
καp

∑
κ ′α′ p′

∂2V KS

∂τκαp∂τκ ′α′ p′
�τκαp�τκ ′α′ p′

+ O({�τκαp}3), (6)

where the derivatives are evaluated at the equilibrium config-
uration of the nuclei [1]. Using the normal modes, the atomic
displacements in this expansion can be rewritten as

�τκαp =
∑
qν

√
h̄

2MκωqνNuc
eκα,ν (q)eiq·Rp (â†

−qν + âqν ), (7)

where Nuc is the number of unit cells in the considered Born-
von-Kármán cell [1]. The first- and second-order terms of
the expansion are added to the Hamiltonian ĤKS in Eq. (1).
In order to write the additional parts more conveniently, the
matrix elements

gFM
mnν (k, q) = 〈umk+q|�qνv

KS|unk〉uc, (8)

gDW
mnνν ′ (k, q, q′) = 1

2 〈umk+q+q′ |�qν�q′ν ′vKS|unk〉uc, (9)

are defined, where unk is the lattice periodic part in ψnk(r) =
N−1/2

uc unk(r) eik·r. The operators in the brackets are given by
[1]

�qνv
KS =

∑
κα

√
h̄

2Mκωqν

eκα,ν (q)∂κα,qv
KS, (10)

�qν�q′ν ′vKS = h̄

2

∑
κα

∑
κ ′α′

eκα,ν (q)eκ ′α′,ν ′ (q′)√
MκMκ ′ωqνωq′ν ′

× ∂κα,q∂κ ′α′,q′vKS (11)

with

∂κα,qv
KS =

∑
p

e−iq·(r−Rp) ∂V KS

∂τκαp
and (12)

∂κα,q∂κ ′α′,q′vKS =
∑
p,p′

e−iq·(r−Rp)e−iq′ ·(r−Rp′ )

× ∂2V KS

∂τκαp∂τκ ′α′ p′
. (13)

After defining these quantities, the parts of the Hamiltonian
that describe electron-phonon interactions read [1]

Ĥ (1)
ep = N−1/2

uc

∑
k,q

∑
mnν

gFM
mnν (k, q)ĉ†

mk+qĉnk(â†
−qν + âqν ),

(14)

Ĥ (2)
ep = N−1

uc

∑
k,q,q′

∑
mnνν ′

gDW
mnνν ′ (k, q, q′)ĉ†

mk+q+q′ ĉnk

× (â†
−qν + âqν )(â†

−q′ν ′ + âq′ν ′ ). (15)

The Hamiltonian Ĥ (1)
ep describes interactions between an elec-

tron and one phonon, whereas Ĥ (2)
ep describes interactions

between an electron and two phonons.
The perturbations Ĥ (1)

ep and Ĥ (2)
ep to the DFT Hamiltonian

of an electron are assumed to be small. Applying perturbation
theory for static displacements of the nuclei yields the for-
mula for the renormalization of the electronic band structure
found by Allen and Heine [14]. However, such a treatment
relies on the adiabatic approximation and does not capture
the dynamical nature of the atomic displacements [34]. Alter-
natively, the problem can be treated within a more advanced
many-body formalism as summarized in Ref. [1]. For practical
calculations this formalism can be merged with DFT calcu-
lations [35]. After several approximations the field-theoretic
approach yields the Fan-Migdal component,

�EFM
nk =

∑
ν

∫ ∑
m

∣∣gFM
mnν (k, q)

∣∣2
[

1 − fmk+q + nqν

εnk − εmk+q − h̄ωqν

+ fmk+q + nqν

εnk − εmk+q + h̄ωqν

]
dq
�BZ

, (16)

and the Debye-Waller component,

�EDW
nk =

∑
ν

∫
gDW

nnνν (k, q,−q)(2nqν + 1)
dq
�BZ

, (17)

to the renormalization of the electronic band structure, where
fmk+q is the Fermi-Dirac distribution for an electron with the
energy εmk+q and nqν is the Bose-Einstein distribution for
a phonon with the energy h̄ωqν [1]. The renormalized band
structure energy is then given by

Enk = εnk + �EFM
nk + �EDW

nk . (18)

This result agrees with the adiabatic Allen-Heine formula
when the phonon energies in the denominators are neglected
[34].
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IV. IMPLEMENTATION

In general applying the previously described theory di-
rectly to the systems of interest is not feasible. For a practical
implementation further techniques are required. This sec-
tion outlines the details of the calculations based on the theory
from Secs. II and III.

The DFT calculations for the electronic structure employ
an exchange-correlation functional. In this work we use the
parametrization of Perdew and Zunger [36] of the local den-
sity approximation (LDA). This functional is chosen as it has
proven to be well suited for describing vibrational properties
[37]. Furthermore, we use norm-conserving ab initio pseu-
dopotentials [38–42]. Our implementation employs a basis set
of localized orbitals, i.e., we use Bloch basis functions of the
form

f k
βκ (r) =

∑
p

eik·τκ pϕβκ (r − τκ p), (19)

where ϕβκ (r − τκ p) are localized Gaussian orbitals centered
at τκ p, in order to represent the DFT wave function as

ψnk(r) = 1√
Nuc

∑
βκ

cnk
βκ f k

βκ (r) (20)

with coefficients cnk
βκ . For the calculation of the force constants

that are required to determine the phonon dispersion a finite-
differences approach similar to the approaches described in
Refs. [43,44] is used.

The central quantities for the calculation of the EPR
are the matrix elements gFM

mnν (k, q) and gDW
nnνν (k, q,−q) of

the electron-phonon coupling. They contain the first- and
second-order derivatives of the Kohn-Sham potential. In our
implementation, these are calculated in a finite-differences
approach that will be described in the following. Engel et al.
[44] utilized finite differences calculations in a similar way
to calculate the EPR of electronic band structures. Gunst
et al. [45] used an approach that is similar to our approach
to evaluate the matrix element gFM

mnν (k, q), which were then
used for other physical quantities. We emphasize here that the
techniques employed in our approach can also be reused for
a multitude of properties related to electron-phonon interac-
tions that involve the evaluation of the aforementioned matrix
elements. Exploiting the lattice periodicity of the Kohn-Sham
potential V KS, we can write

〈umk+q|∂κα,qv
KS|unk〉uc = 〈umk+q|e−iq·r ∂V KS

∂τκα0
|unk〉, (21)

〈unk|∂κα,q∂κ ′α′,−qv
KS|unk〉uc

=
∑

p

e−iq·Rp〈unk| ∂2V KS

∂τκα0∂τκ ′α′ p
|unk〉, (22)

where the unit cell index 0 refers to the reference unit cell.
Combining the lattice periodicity of the Kohn-Sham potential
with the symmetry of second-order derivatives yields the rela-
tion

〈unk| ∂2V KS

∂τκα0∂τκ ′α′ p
|unk〉 = 〈unk| ∂2V KS

∂τκ ′α′0∂τκα(0−p)
|unk〉, (23)

reducing the number of required derivatives even further,
where the index (0 − p) corresponds to the lattice vector
−Rp. The specific crystal symmetry of the considered system
does not enter. The derivatives of V KS are evaluated using a
finite-differences approach. That means a supercell is set up
where the relevant atoms are displaced by a small amount ε

in the order of 5 mÅ and the Kohn-Sham equations are again
solved self-consistently. A sufficiently large basis set ensures
that the slight shift of the basis functions is negligible [46,47].
Taking the finite-differences quotient of the Kohn-Sham po-
tentials resulting from different atomic configurations yields
an approximation for the corresponding derivatives. The same
strategy of using finite differences is applied to the nonlo-
cal part of the pseudopotential. For the finite differences,
we employ the central differences formulas both in the case
of first- and second-order derivatives. The displacements for
the first-order derivatives are reused for mixed second-order
derivatives. In each case the truncation error is of the order
O(ε2). Note that this procedure requires calculations with 6N
configurations for the first-order derivatives and additional
1 + 6N configurations for the second-order derivatives con-
sidered in the RIA. Here N denotes the number of atoms in the
unit cell. For the contributions from nearest neighbors further
configurations have to be considered, their number still scales
linearly with N for a fixed number of nearest neighbors. These
additional configurations also include displacements of single
atoms that are not contained in the reference unit cell. Finally,
we are interested in the limit of infinitely large supercells.
Since the numerical evaluation for an infinitely large supercell
is unfeasible, the size of the supercell becomes a convergence
parameter.

The matrix elements are evaluated using the wave func-
tions of the unperturbed atomic configuration. This requires
evaluating

∫
f k+q
β1κ1

∗
(r)

∂V KS

∂τκα0
f k
β2κ2

(r) dr

=
∑
p1,p2

eik·τκ2 p2 e−i(k+q)·τκ1 p1

∫
ϕ∗

β1κ1
(r − τκ1 p1 )

× ∂V KS

∂τκα0
ϕβ2κ2 (r − τκ2 p2 ) dr (24)

and ∫
f k
β1κ1

∗
(r)

∂2V KS

∂τκα0∂τκ ′α′ p
f k
β2κ2

(r) dr

=
∑
p1,p2

eik·(τκ2 p2 −τκ1 p1 )
∫

ϕ∗
β1κ1

(r − τκ1 p1 )

× ∂2V KS

∂τκα0∂τκ ′α′ p
ϕβ2κ2 (r − τκ2 p2 ) dr. (25)

Here the advantage of the basis set of localized orbitals be-
comes evident. The matrix elements of the Bloch basis have
to be evaluated for a large number of wave vectors q and k.
However, the matrix elements of the Gaussian basis do not
depend on them and thus, they only have to be calculated once
and can be stored in memory for later reuse.
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When the latter matrix elements are calculated, it is impor-
tant to note that the derivatives exhibit supercell periodicity
and that the integral has to be taken only over this supercell
and not the entire space. In our implementation the corre-
sponding integral is evaluated analytically using the Fourier
representation of the derivatives of the potential [48]. This
procedure assumes that the integral is taken over the entire
space. In order not to capture the supercell-periodic repetitions
of the derivatives, only Gaussians with specifically positioned
centers are included. For the first-order derivatives Gaussians
with centers inside a sphere around the displaced atom are
considered, where the radius of this sphere is half of the
distance to the nearest supercell-periodic repetition of the dis-
placed atom. The case of the second-order derivatives, taken
with respect to the positions of two atoms, is treated similarly.
Here a sphere of the same radius is used, which is centered at
the midpoint between the two atoms.

A crucial point in the evaluation of the Fan-Migdal com-
ponent is the integral

∫
dq due to the contributions where

the denominator εnk − εmk+q ± h̄ωqν is close to zero. These
lead to a slow convergence of the integral with respect to
the density of the q-point sampling [49]. In order to mitigate
this problem, an imaginary part iδ is commonly introduced
to the denominator, where δ is often chosen as a value of
about 100 meV [49–52] and may be extrapolated to zero [7].
The physical result is finally obtained by taking the real part.
This imaginary part can be justified theoretically as a finite
lifetime of the electronic states [50]. A corresponding term
also appears within a MBPT approach in the form of the
imaginary part of the electron self-energy [1].

V. NUMERICAL DETAILS

Before we discuss the results in Sec. VI, we need to ensure
their convergence in our approach. The critical numerical pa-
rameters include in particular the basis set, the supercell size,
the sampling of the q-point grid, the convergence parameter
δ, the finite-differences displacement ε, and the convergence
of the Kohn-Sham potential. Since the numerical convergence
of silicon and diamond is similar, we restrict ourselves to
diamond. A comparison to previous implementations and the
discussion of the computational effort conclude this section.

A. Basis set and supercell size

Equation (16) contains a sum over bands m, which runs
to infinity. The number of bands used for the evaluation of
this sum in numerical calculations is a convergence param-
eter. In plane-wave calculations a large number of bands
might be required to achieve convergence [51]. This prob-
lem can be solved by using methods based on solving a
Sternheimer equation for the unoccupied bands [21] or by
resorting to Wannier function perturbation theory [26]. In
our implementation using a basis of localized orbitals none
of these techniques is employed and we sum over all bands
of the corresponding basis set. Thus, the size of the basis
set is connected to this convergence parameter as well as
to the accuracy in the evaluation of the matrix elements in
Eqs. (24) and (25). Figure 1 shows the dependence of the FM
component of the ZPR on the size of our Gaussian-orbital

FIG. 1. The convergence behavior of the FM component of the
ZPR at the � point for the highest valence band (VB) and the
lowest conduction band (CB) in diamond using orbitals with angu-
lar momentum character l � 2 and l � 3. The relative deviation is
calculated with respect to the results for the largest basis set and the
lines are a guide to the eye.

basis. The highest state of the valence band and the lowest
state of the conduction band at the � point in diamond are
shown as examples. The basis sets with l � 2 comprise orbital
types s, p, d , and s∗. Basis sets with l � 3 also include f
and p∗ orbitals. We note in passing that these have been left
out for the orbitals with the smallest decay constant, i.e., the
most delocalized orbitals, to maintain the numerical stability
of the overlap matrix. The relative deviation is calculated
with respect to the results for the largest basis set. We find
a sufficient convergence with 60 basis functions in diamond.
The investigations for silicon, which are not shown here,
yield a sufficient convergence for 100 basis functions. Similar
convergence studies have also been carried out for the DW
component, which converges even faster.

In our approach the evaluation of the derivative of the
Kohn-Sham potential is based on supercell calculations where
the size of the supercell is a convergence parameter. The
convergence with respect to the supercell size for the FM and
DW components of the ZPR of the electronic band structure
in diamond is presented in Fig. 2. Supercells of the form
Nsc × Nsc × Nsc are assumed. In these calculations the DW
component includes terms up to first-nearest neighbors. The
states at the � point for the highest valence band and the low-
est conduction band are chosen as representative examples.
All data points are represented in terms of their relative devi-
ation from the corresponding results in a 7 × 7 × 7 supercell.
Among the calculated data points the FM component con-
verges monotonically, whereas the DW component shows an
oscillating behavior. Considering the small size of the relative
deviations a 5 × 5 × 5 supercell seems to be sufficient.

We note that in polar or infrared-active materials long-
range electron-phonon couplings may become important.
Poncé et al. [7] pointed out that the long-range electron-
phonon interactions in polar materials lead to an unphysical
divergence of the adiabatic renormalization. They solved this
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FIG. 2. The convergence behavior of the FM and the DW compo-
nent of the ZPR at the � point for the highest valence band (VB) and
the lowest conduction band (CB) in diamond including contributions
to the DW term up to first-nearest neighbors. The relative deviation
is calculated with respect to the results for a 7 × 7 × 7 supercell and
the lines are a guide to the eye.

problem by switching to the nonadiabatic renormalization,
where the phonon energies are included in the energy dif-
ferences of the denominators of the FM component as it is
done in our approach. Still, the long-range interactions might
lead to large supercell sizes in our approach. Similarly to
previous methods [7,12] this could increase the numerical
effort significantly. Fröhlich contributions are usually added
explicitly [53,54] and could be added analogously to our im-
plementation. However, since the materials discussed in this
work are nonpolar, we postpone this discussion to future work.

B. Sampling of the q-point grid

The convergence of the integral
∫

dq with respect to
the sampling of the q points is a critical detail that is
inherent to any approach that employs the presented un-
derlying theory. We start with the discussion of the DW
term and come to the more tricky FM term afterwards.
Figure 3 displays the convergence of the DW compo-
nent at the � point for the highest valence band and the
lowest conduction band of diamond with respect to the den-
sity of the q-point grid of the form Nq × Nq × Nq. The
DW component includes contributions up to first-nearest
neighbors and the relative deviation is calculated with respect
to the corresponding results for a grid of 50 × 50 × 50 q
points. From Fig. 3 it becomes apparent that a grid of 30 ×
30 × 30 q points is sufficiently dense for the DW component.

Similar convergence studies for the FM component have to
be carried out in dependence of the convergence parameter δ

as the expression for �EFM
nk [Eq. (18)] contains contributions

with energy denominators that approach zero. Figure 4 shows
the convergence behavior of the FM component, again at the �

point for the highest valence band and the lowest conduction
band of diamond, with respect to the density of the q-point
grid of the form Nq × Nq × Nq in dependence of the conver-

FIG. 3. The convergence behavior of the DW component of the
ZPR at the � point for the highest valence band (VB) and the lowest
conduction band (CB) in diamond including contributions to the DW
term up to first-nearest neighbors. The relative deviation is calculated
with respect to the results for a 50 × 50 × 50 grid of q points and the
lines are a guide to the eye.

gence parameter δ. The relative deviations are calculated with
respect to the corresponding results for a 50 × 50 × 50 grid
of q points with δ = 1 × 10−2 Ryd. For the highest valence
band in Fig. 4(a) the convergence behavior is smooth for
all shown choices of δ. It can also be seen that increasing
δ shifts the limit with respect to the q-point sampling. The
case of the lowest conduction band in Fig. 4(b) is similar
in regards to the latter. However, if δ is chosen too small
there, then the convergence with respect to the density of q
points becomes inconveniently slow and less controlled. As
the goal is to choose δ such that convergence is achieved
for a reasonable number of q points while the limit with
respect to the q-point sampling does not shift too much, we
choose δ = 1 × 10−2 Ryd. It fulfills both requirements and
the corresponding results are sufficiently converged for a grid
of 30 × 30 × 30 q points.

C. Accuracy of finite differences

Another critical point in our finite-differences approach
is the convergence of the Kohn-Sham potential. Decreasing
the finite displacement ε diminishes the truncation error that
occurs when the derivative is replaced by a finite difference.
However, the finite-differences formula for the second-order
derivatives is applied to the numerical approximations of the
Kohn-Sham potential for different atomic configurations and
therefore there is a numerical error in the numerator that is
divided by ε2 in the denominator. Thus, the numerical error
in the Kohn-Sham potentials is scaled up significantly for
small finite displacements ε. Thus, decreasing the finite dis-
placement ε in order to improve the accuracy of the derivative
should go hand in hand with improving the convergence of
the Kohn-Sham potential accordingly, which is controlled
by the convergence threshold �V 2

max that provides the
termination criterion |Vin − Vout|2 < �V 2

max for the electronic
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FIG. 4. The convergence behavior of the FM component of the ZPR at the � point for (a) the highest valence band (VB) and (b) the lowest
conduction band (CB) in diamond. The relative deviations are calculated with respect to the results for a 50 × 50 × 50 grid of q points with
δ = 1 × 10−2 Ryd and the values of δ in the key are given in atomic Rydberg units. The lines are a guide to the eye.

self-consistency iterations. The issue is analyzed in Fig. 5,
which shows the convergence of the DW component, again
at the � point for the highest valence band and the lowest
conduction band in diamond, respectively, with respect
to the convergence threshold �V 2

max of the Kohn-Sham
potential and for different finite displacements ε. The
DW component includes contributions up to first-nearest
neighbors and the relative deviation is calculated with
respect to the corresponding results with a convergence
threshold of �V 2

max = 10−22 Ryd2 combined with a finite
displacement of ε = 1 × 10−2aB. The figures make the
reduction of the truncation error visible as ε is decreased.
A finite displacement of ε = 1 × 10−2aB converges the
DW component sufficiently. A convergence threshold of
�V 2

max = 10−16 Ryd2 seems to be suitable. For the FM
component the same discussion can be held. However,
the fact that only first-order derivatives are required

there and that the denominator of the corresponding
finite-differences formula scales like ε instead of ε2 mitigates
the issue.

D. Computational requirements

For silicon and diamond we find a good agreement with the
numerical results from previous implementations as discussed
in the following section. At the same time we retain a moder-
ate computational effort by combining supercell calculations
and a basis set of localized Gaussian orbitals with the nonadi-
abatic AHC theory. The size of the supercells is a convergence
parameter in our approach, which appears to be rather limited
as a 5 × 5 × 5 supercell is sufficient for the considered test
systems. At the same time the number of supercell calcula-
tions is fixed by the desired number of derivatives to include
in the calculation. Both the number and the size of the super-
cells to consider do not depend on the sampling of phonon

×
××
×

×
×
×
×

FIG. 5. The convergence of the DW component of the ZPR at the � point for (a) the highest valence band (VB) and (b) the lowest
conduction band (CB) in diamond including contributions to the DW term up to first-nearest neighbors. The relative deviations are calculated
with respect to the results for a convergence threshold of �V 2

max = 10−22 Ryd2 with a displacement of ε = 1 × 10−2aB. The values of ε in the
key are given in atomic Rydberg units and the lines are a guide to the eye.
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modes. Therefore, we circumvent the original computational
bottleneck of the frozen-phonon method. Note that in the
current state-of-the-art implementations of the frozen-phonon
method the number of required supercell calculations has been
reduced drastically. By employing the special displacement
approach [13], it is sufficient to carry out one calculation in
a huge supercell. Beyond that, using supercell calculations
instead of DFPT makes the evaluation of the DW term in
AHC theory conceptually simple as applying the acoustic sum
rule is not required. The crucial point of our implementation
is combining the supercell calculations with a basis set of
localized Gaussian orbitals. The derivatives of the Kohn-Sham
potential and their matrix elements in the Gaussian basis are
independent of the wave vector q. Therefore, they are com-
pletely decoupled from the q-point integration contained in
AHC theory and only have to be evaluated once. The q-point
integration can then be carried out efficiently as a weighted
sum of these matrix elements where the weights depend on
q only via phase factors, the properties of the phonon modes
corresponding to this wave vector and the properties of the
electrons scattered by it. With this we circumvent the original
bottleneck of DFPT calculations of AHC theory. Note that
this bottleneck is less critical in current state-of-the-art DFPT
+ AHC theory implementations due to the use of Fourier
interpolations [55,56] or Wannier function perturbation the-
ory [26]. Therefore, our implementation is among the most
efficient implementations of EPR calculations. Additionally,
in our implementation contributions from several shells of
nearest neighbors beyond the RIA, which are usually ne-
glected due to the associated computational effort, can easily
be included.

We note in passing, that the off-diagonal DW terms as they
have been discussed within the RIA by Lihm et al. [25] can
easily be calculated in our approach as our method does not in-
voke translational invariance at any point. However, since the
off-diagonal DW terms are mostly relevant for temperature-
driven topological transitions [25], which are not considered
here, they are not evaluated for the materials considered in this
work.

Computations in our approach can be split into two parts.
In the first part the supercell calculations are performed and
the required derivatives of the Kohn-Sham potential are stored
to the disk. In the second part the EPR is evaluated. The com-
putation time depends on the number of computed derivatives
and therefore on the number of considered shells of nearest
neighbors. For silicon and diamond the number of performed
supercell calculations is 25, 115, 385, and 637 for contri-
butions up to the RIA and first-, second-, and third-nearest
neighbors, respectively. In the case of silicon the associated
computational effort for fully converged results is 660, 3.030,
10.150, and 16.800 core hours, respectively. The subsequent
evaluation of the fully converged EPR up to third-nearest
neighbors requires additional 6.400 core hours on a Skylake
(Gold 6140) CPU architecture with 2.30 GHz if no symme-
tries are exploited in the evaluation of the q-point integral.
However, even with a total computation time of less than
100 core hours it is possible to obtain physically reasonable
results. Thus, we suggest that our method might be very suit-
able for performing electron-phonon calculations in large and
intricate systems.

VI. RESULTS AND DISCUSSION

In this section we present the results obtained from ap-
plying our methods to the test systems of bulk silicon and
diamond. These are then compared to results from other
implementations in the literature in order to validate the ac-
curacy of our calculations. As previous calculations based on
the AHC theory relied on the RIA, we can use our results
to investigate the importance of contributions up to third-
nearest neighbors beyond the RIA for the electron-phonon
renormalization of the electronic band structure and its asso-
ciated band gap. After the discussion in the previous Sec. V,
we conclude that a 5 × 5 × 5 supercell, δ = 1 × 10−2 Ryd
with a grid of 30 × 30 × 30 q points, and a finite displace-
ment of ε = 1 × 10−2aB with a convergence threshold of
�V 2

max = 10−16 Ryd2 for the Kohn-Sham potential is suffi-
cient in order to yield converged results. These parameters
are used in all electron-phonon calculations presented in this
section.

A. Silicon

The results of the electron-phonon calculations for silicon
have been obtained using a basis set of Gaussians with three
different decay constants. For the smallest decay constant, i.e.,
the most delocalized Gaussians, we use orbital types s, p, d ,
and s∗ (l � 2). For the other decay constants we also add the
orbital types f and p∗ (l = 3). Thus our basis set corresponds
at least to a triple ζ -polarized basis set. This choice retains
the numerical stability of the overlap matrix while making the
basis set more flexible for a description of unoccupied states.
The basis set then consists of the discussed Gaussian orbitals
centered at each atom in the unit cell. We find a relaxed
lattice parameter of 5.391 Å. This is 0.7% smaller than the
experimental findings of 5.431 Å [57].

The electronic band structure of bulk silicon is depicted
in Fig. 6(a). It exhibits a direct band gap of 2.557 eV and
an indirect band gap of 0.448 eV. These underestimate the
band gap compared to many-body calculations [58] and ex-
periments [59], which is common for DFT calculations. The
phonon dispersion of silicon is shown in Fig. 6(b). We find an
agreement of up to about 5 meV with previous calculations
[60,61] and measurements [62–64].

In Fig. 7 the colors on top of the original DFT band
structure of silicon indicate the sign and the size of the EPR
calculated using Eq. (18). For this calculation temperatures
of T = 0 K and T = 1000 K have been considered. Contri-
butions to the DW term from up to third-nearest neighbors
are included. There is no clear general pattern for the renor-
malization among the valence bands or among the conduction
bands. However, in silicon the highest valence band tends to
shift up and the lowest conduction band tends to shift down
leading to a reduced band gap. Note that abrupt color changes
are a result of the visual representation of the data and are
not present in the EPR. They arise from changes in the order
of bands and the finite sampling of the k-point path. From
a comparison of Fig. 7(a) and Fig. 7(b) it becomes apparent
that for silicon an increased temperature effectively scales up
the EPR. For each point in the band structure the sign of the
renormalization is retained; however, the magnitude increases
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FIG. 6. (a) The band structure of bulk silicon calculated with DFT using the same basis set as the electron-phonon calculations for silicon
and (b) the phonon dispersion of bulk silicon calculated with a finite-differences approach excluding l = 3 functions. Both results are plotted
along the high-symmetry points and the zero level is set at the computed thermodynamic limit of the Fermi level.

FIG. 7. The color on top of the original DFT band structure of silicon indicates the EPR of the band structure along the high-symmetry
points at temperatures of (a) T = 0 K and (b) T = 1000 K including contributions to the DW component up to third-nearest neighbors.

FIG. 8. The color on top of the original DFT band structure of silicon indicates the contribution of (a) the FM term [Eq. (16)] and (b) the
DW term [Eq. (17)] to the EPR of the band structure along the high-symmetry points at T = 0 K.
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FIG. 9. The temperature dependence of the renormalization of (a) the direct band gap and (b) the indirect band gap for silicon including
contributions to the DW component up to third-nearest neighbors.

as can be seen from the scaled color bar. This effective scaling
factor is not uniform along the band structure and depends on
the particular state and k point.

The renormalization of the electronic band structure is
composed of the two components �EFM

nk and �EDW
nk accord-

ing to Eq. (18). Figure 8 shows each component separately at a
temperature of 0 K. For the DW component the contributions
up to third-nearest neighbors have been included. For the
shown bands in the band structure of silicon, the FM com-
ponent is strictly negative and the DW component is strictly
positive. Since their magnitude is similar, it is important to
include both components in order to obtain a physically mean-
ingful result for the renormalization of the band structure.
In this light we agree with Baumann [65] highlighting this
complementary nature of both components.

The FM and DW components in silicon are not only com-
plementary for the individual band of the electronic band
structure but also for the derived band gap. In Figs. 9(a) and
9(b) the temperature-dependent EPR of the direct and the in-
direct band gap for silicon is displayed, respectively. Here the
two components of the EPR of the band gap have an opposite
dependence on the temperature. Therefore, they partly cancel
each other. For silicon, the dependence of the DW component
on the temperature is dominant. Thus, the band gap reduces
with rising temperature.

The calculations presented above include contributions to
the DW term beyond the RIA. Within the RIA, only the con-
tributions with (κ, p) = (κ ′, p′) in the sums of Eqs. (11) and
(13) are taken into account and any further contributions are
neglected. The latter can be classified by the neighbor relation
of the two involved atoms indicated by (κ, p) and (κ ′, p′). In
Table I we consider the highest valence band (VB) and the
lowest conduction band (CB) in silicon at the high-symmetry
points to compare the different contributions to the ZPR. The
contributions from different shells of nearest neighbors to the
DW term decrease with an increasing number of the shell. The
contributions from first-nearest neighbors are small but not
necessarily negligible. They are comparable in size to the nu-
merical uncertainties arising in the practical implementation
of the underlying theory. Therefore, attempts to increase the

accuracy of electron-phonon calculations should also consider
incorporating contributions from first-nearest neighbors. In
the example of silicon their signs tend to be opposite to the
RIA contribution such that the DW component is reduced.
This reduction amounts to a noticeable fraction of the total
EPR. Judging from our calculations for silicon contributions
from higher shells of nearest neighbors seem to be negligible.
Including contributions to the DW term beyond the RIA does
not only change the EPR of the electronic band structure, but
also the temperature dependence of the EPR for its band gap.
In Fig. 10(a) and Fig. 10(b) the temperature dependence of
the EPR for the direct and the indirect band gap is plotted,
respectively. The different curves include contributions up to
different shells of nearest neighbors. Including contributions
up to first-nearest neighbors makes the slope of the curve
for the direct band gap less steep, i.e., the direct band gap
decreases more slowly when the temperature rises. Contri-
butions from further shells of nearest neighbors have only
a minor influence on the slope. For the indirect band gap

TABLE I. The ZPR in bulk silicon for the highest valence band
(VB) and the lowest conduction band (CB) at the high-symmetry
points broken down into its components. The DW term is further
split into its RIA contribution DW0 and further contributions DW1,
DW2, and DW3 from first-, second-, and third-nearest neighbors,
respectively. All values are given in meV.

k Band FM DW0 DW1 DW2 DW3 Sum

L VB −66.79 97.73 −2.56 0.31 0.19 28.88
CB −128.91 100.62 −1.75 0.28 0.17 −29.59

� VB −75.10 110.69 −2.77 0.33 0.20 33.35
CB −90.80 81.78 −1.56 0.23 0.15 −10.20

X VB −76.75 78.89 −2.45 0.28 0.18 0.15
CB −74.78 50.02 −2.01 0.19 0.13 −26.45

W VB −64.27 59.57 −2.40 0.25 0.16 −6.69
CB −71.27 73.97 −2.25 0.22 0.15 0.82

K VB −75.48 82.48 −2.47 0.29 0.18 5.00
CB −83.68 53.77 −2.00 0.20 0.14 −31.57
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FIG. 10. The temperature dependence of the renormalization of (a) the direct band gap and (b) the indirect band gap for silicon including
contributions up to different shells of nearest neighbors. The RIA curve contains only RIA contributions to the DW component, whereas 1.n.n.,
2.n.n., and 3.n.n. include contributions up to first-, second-, and third-nearest neighbors, respectively. The quantity �3.n.n. presented in the insets
describes the difference of each result to the result that includes contributions up to third-nearest neighbors.

contributions from nearest neighbors have the same effect on
the slope, but their influence is less significant. Poncé et al.
[66] have previously investigated contributions beyond the
RIA using a finite-differences approach. Overall, we find that
the orders of magnitude are similar, even if it is difficult to
directly compare these results to our calculations. Reference
[66] presents contributions from specific q points instead of
a converged average over the Brillouin zone and uses an ap-
proach that differs from our approach. Furthermore, the use of
a different pseudopotential might change the decomposition
of the total electron-phonon renormalization into FM and DW
contributions, even if the total renormalization agrees well
[49]. In Tables II and III we list our results for the ZPR
of the band gap and the asymptotic slope of its temperature
dependence at high temperature including contributions up
to different shells of nearest neighbors. We compare these
to reference values from Ref. [7], which are based on the
nonadiabatic AHC theory like our results and rely on the RIA.
Therefore, these values can directly be compared to our results
on the level of the RIA. For different approaches similar
values can be found in the literature. A calculation based on
the adiabatic AHC theory finds −47.1 and −64.3 meV for
the ZPR of the direct and the indirect band gap, respectively
[7]. With the frozen-phonon approach a ZPR of −60.0 meV
can be found for the indirect band gap [67]. An experimen-

TABLE II. The ZPR of the direct and indirect band gap in bulk
silicon including contributions to the DW component up to different
shells of nearest neighbors. The RIA result contains only RIA contri-
butions, whereas 1.n.n., 2.n.n., and 3.n.n. include contributions up to
first-, second-, and third-nearest neighbors, respectively. The results
from Ref. [7] rely on the RIA and should therefore be compared with
our results in the RIA. All values are given in meV.

Band gap RIA [7] RIA 1.n.n. 2.n.n. 3.n.n.

Direct −42.1 −44.61 −43.40 −43.49 −43.54
Indirect −56.2 −55.42 −54.72 −54.85 −54.91

tal investigation yields a ZPR of −62 or −64 meV for the
indirect band gap depending on the measurement technique
[68]. The experimentally determined asymptotic slope of the
indirect band gap is −0.32 meV/K [68]. Our results agree
well with the calculations from the literature. In terms of
relative deviations the asymptotic slope appears to be more
sensitive to numerical variations than the ZPR. The calculated
theoretical predictions underestimate the ZPR and the asymp-
totic slope compared to the experimental results. Including
contributions from nearest neighbors changes the considered
quantities only slightly and does not improve the agreement
with experiments. Therefore we attribute the remaining gap
between theoretical predictions and experimental findings to
many-body effects [23,52] and anharmonic effects [23,30]
missing from our DFT calculations.

B. Diamond

The results for diamond have been obtained using a basis
set of Gaussians with three different decay constants that is
similar to the basis set used for silicon. We obtain a relaxed
lattice constant of 3.525 Å. This is 1.2% smaller than the
experimental findings of 3.567 Å [57]. The electronic band
structure of diamond can be seen in Fig. 11(a). The direct
band gap has a size of 5.719 eV and the size of the indirect

TABLE III. The asymptotic slope of the temperature dependence
of the band gap for bulk silicon at high temperatures including
contributions to the DW component up to different shells of nearest
neighbors. The RIA result contains only RIA contributions, whereas
1.n.n., 2.n.n., and 3.n.n. include contributions up to first-, second-,
and third-nearest neighbors, respectively. The results from Ref. [7]
rely on the RIA and should therefore be compared with our results in
the RIA. All values are given in meV/K.

Asymp. slope RIA [7] RIA 1.n.n. 2.n.n. 3.n.n.

Direct −0.147 −0.185 −0.165 −0.167 −0.170
Indirect −0.255 −0.275 −0.262 −0.266 −0.269
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FIG. 11. (a) The band structure of diamond calculated with DFT and (b) the phonon dispersion of diamond calculated with a finite-
differences approach. Similar to Fig. 6.

band gap is 4.324 eV. These results agree well with other
DFT calculations [7], but like for silicon they underestimate
the band gaps found in many-body calculations [58] and ex-
periments [68], which is to be expected for a DFT calculation.
The phonon dispersion of diamond is depicted in Fig. 11(b)
and agrees up to about 7 meV with previous calculations [69]
and measurements [62,70,71]. Thus, we can turn our attention
to the EPI.

The colors on top of the original DFT band structure of
diamond in Fig. 12 indicate the sign and the size of the EPR
calculated using Eq. (18) for the temperatures T = 0 K and
T = 1000 K. The DW term includes contributions from up
to third-nearest neighbors. Again, there is no clear pattern for
the renormalization among the valence bands or among the
conduction bands, but the band gap is reduced by an upper
valence band that tends to shift up and a lower conduction
bands tends to shift down. Similarly to the case of silicon, the
EPR is scaled up when the temperature rises. For each point
in the band structure the sign of the renormalization remains;

however, the magnitude increases. This effective scaling fac-
tor is not uniform along the band structure and depends on the
particular point in the band structure. The two components
�EFM

nk and �EDW
nk in Eq. (18) are complementary and have a

similar magnitude like in the case for silicon. Table IV shows
an analysis of the contributions to the ZPR in diamond broken
down into the FM component and the contributions to the DW
component using the example of the highest VB and the low-
est CB at the high-symmetry points. For silicon and diamond
we find that the contributions beyond the RIA are roughly of
the same size. Again, they are small, especially compared to
the size of the DW component in the RIA, which is larger
in diamond than in silicon. Therefore, one might suspect that
these contributions are most important in materials where the
EPR is small. However, as the FM component and the DW
component are complementary and largely cancel each other
on the level of the RIA, contributions from first-nearest neigh-
bors can still make up a noticeable fraction of the total EPR.
For diamond the signs of these contributions are negative and

FIG. 12. The color on top of the original DFT band structure of diamond indicates the EPR of the band structure along the high-symmetry
points at temperatures of (a) T = 0 K and (b) T = 1000 K including contributions to the DW component up to third-nearest neighbors.
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TABLE IV. The ZPR in diamond for the highest valence band
(VB) and the lowest conduction band (CB) at the high-symmetry
points broken down into its components. The DW term is further
split into its RIA contribution DW0 and further contributions DW1,
DW2, and DW3 from first-, second-, and third-nearest neighbors,
respectively. All values are given in meV.

k Band FM DW0 DW1 DW2 DW3 Sum

L VB −1369.61 1494.65 −3.29 −0.37 −0.21 121.17
CB −1508.61 1430.19 −2.05 −0.30 −0.18 −80.95

� VB −1522.41 1674.68 −3.46 −0.42 −0.22 148.17
CB −1775.44 1520.43 −1.43 −0.43 −0.17 −257.04

X VB −1240.47 1225.63 −3.10 −0.30 −0.19 −18.43
CB −450.27 251.58 −2.26 −0.14 −0.16 −201.25

W VB −980.50 952.72 −2.85 −0.23 −0.18 −31.04
CB −1161.18 1231.94 −2.15 −0.23 −0.17 68.21

K VB −1278.08 1282.38 −3.14 −0.32 −0.19 0.65
CB −632.33 405.13 −2.19 −0.15 −0.16 −229.70

therefore they reduce the effect obtained within the RIA like in
silicon. Contributions from further shells of nearest neighbors
seem to be negligible.

Next, the effect of the contributions to the DW term be-
yond the RIA on the temperature dependence of the band
gap is discussed. In Figs. 13(a) and 13(b) the EPR for the
direct and the indirect band gap is plotted, respectively, in
dependence of the temperature. The different curves in each
figure include contributions up to different shells of nearest
neighbors. Again, contributions beyond the RIA modify the
slope of the EPR. Like for silicon, including contributions
up to first-nearest neighbors makes the slope of the curve for
the EPR of each band gap less steep, i.e., the band gaps de-
crease more slowly when the temperature rises. Contributions
from further shells of nearest neighbors have less influence
on the slope. The size of the corrections from first-nearest
neighbors in diamond is similar to their size in silicon. Due
to the significantly larger size of the band gap EPR in dia-

TABLE V. The ZPR of the direct and indirect band gap in dia-
mond including contributions to the DW component up to different
shells of nearest neighbors. The RIA result contains only RIA contri-
butions, whereas 1.n.n., 2.n.n., and 3.n.n. include contributions up to
first-, second-, and third-nearest neighbors, respectively. The results
from Ref. [7] rely on the RIA and should therefore be compared with
our results in the RIA. All values are given in meV.

Band gap RIA [7] RIA 1.n.n. 2.n.n. 3.n.n.

Direct −415.8 −407.30 −405.28 −405.28 −405.24
Indirect −329.79 −315.05 −313.94 −313.69 −313.65

mond their relative size is smaller and therefore they can be
considered as less significant. In Tables V and VI we list our
results for the ZPR of the band gap and the asymptotic slope
of its temperature dependence at high temperature including
contributions up to different shells of nearest neighbors. The
given reference values from Ref. [7] were calculated based
on the nonadiabatic AHC theory like our results and rely on
the RIA. Therefore, these values can directly be compared to
our results on the level of the RIA. For different approaches
similar values can be found in the literature. Calculations
based on the adiabatic AHC theory find −438.6 meV [7] or
−409 meV [49] for the direct band gap and −379.3 meV [7]
for the indirect band gap. With the frozen-phonon method a
ZPR of −334 meV can be found for the indirect band gap
[67]. Experimental studies yield a ZPR of −364 meV [68],
−370 meV [68], or −410 meV [72] for the indirect band
gap. Note that the experimental results depend heavily on the
extrapolation scheme. The same experimental data can result
in a ZPR of −290 meV or even −510 meV for the indirect
band gap of diamond [72]. The experimentally determined
asymptotic slope of the indirect band gap is −0.54 meV/K
[68]. Again, our results agree well with other calculations in
the literature. The deviations for the ZPR and the slope for
diamond are larger than for silicon. However, the size of the
effects in diamond are also significantly larger in size than the

FIG. 13. The temperature dependence of the renormalization of (a) the direct band gap and (b) the indirect band gap for diamond including
contributions up to different shells of nearest neighbors. The RIA curve contains only RIA contributions to the DW component, whereas 1.n.n.,
2.n.n., and 3.n.n. include contributions up to first-, second-, and third-nearest neighbors, respectively. The quantity �3.n.n. presented in the insets
describes the difference of each result to the result that includes contributions up to third-nearest neighbors.
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TABLE VI. The asymptotic slope of the temperature dependence
of the band gap for diamond at high temperatures including con-
tributions to the DW component up to different shells of nearest
neighbors. The RIA result contains only RIA contributions, whereas
1.n.n., 2.n.n., and 3.n.n. include contributions up to first-, second-,
and third-nearest neighbors, respectively. The results from Ref. [7]
rely on the RIA and should therefore be compared with our results in
the RIA. All values are given in meV/K.

Asymp. slope RIA [7] RIA 1.n.n. 2.n.n. 3.n.n.

Direct −0.504 −0.471 −0.462 −0.462 −0.461
Indirect −0.435 −0.381 −0.376 −0.374 −0.374

effects in silicon. The relative deviations are still comparable.
Also in diamond the asymptotic slope appears to be more
sensitive to numerical variations than the ZPR. Compared to
the experimental reference value of −410 meV [72] for the
indirect band gap our calculated theoretical predictions again
underestimate the ZPR. The same holds for the asymptotic
slope. Corrections due to contributions from nearest neighbors
change the calculated values for the considered quantities only
slightly and do not improve the agreement with experiments.
Even though the experimental findings seem to be subject to
noticeable uncertainties, we suspect that many-body effects
[23,52] and anharmonic effects [23,30] that have been ne-
glected in our DFT calculations play a noticeable role in the
electron-phonon interaction in diamond that might explain the
deviation between theory and experiment.

VII. SUMMARY

In this work we presented the calculated renormalization
of the electronic band structures and band gaps of silicon
and diamond due to electron-phonon interaction at different
temperatures. To this end, we employed the nonadiabatic
AHC theory. Our ab initio implementation is based on
finite-differences calculations in supercells and makes use
of a basis set of localized Gaussian orbitals. We report good

agreement with other implementations from the literature. We
can calculate contributions to the DW component beyond the
RIA, which are usually neglected in perturbative approaches
in the literature. We carried out calculations considering
contributions from up to third-nearest neighbors, which
indicate that contributions from first-nearest neighbors are
not generally negligible. The contributions tend to decrease
in magnitude with increasing shells of nearest neighbors. For
silicon the calculated zero-point renormalization of the direct
band gap is −43.54 meV and for the indirect band gap we
have −54.91 meV. At high temperature, the band gaps de-
crease at a rate of −0.170 and −0.269 meV/K, respectively.
For diamond the calculated zero-point renormalizations are
−405.24 meV for the direct band gap and −313.65 meV for
the indirect band gap. At high temperature, the band gaps
decrease by −0.461 and −0.374 meV/K, respectively. These
results underestimate the EPR compared to experimental
findings. We attribute the remaining deviations after going
beyond the RIA to many-body effects and anharmonic
effects. The computational effort of our implementation
is moderate as it circumvents the typical computational
bottlenecks discussed in the literature. Thus, it might be
suitable for performing electron-phonon calculations in large
and complicated systems.
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