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Chern numbers in two-dimensional systems with spiral boundary conditions
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We discuss methods for calculating Chern numbers of two-dimensional lattice systems using spiral boundary
conditions, which sweep all lattice sites in one-dimensional order. Specifically, we establish the one-dimensional
representation of Fukui-Hatsugai-Suzuki’s method, based on lattice gauge theory, and the Coh-Vanderbilt’s
method, which relates to electronic polarization. The essential point of this discussion is that the insertion of
flux into the extended one-dimensional chain generates an effective current in the perpendicular direction. These
methods are valuable not only for a unified understanding of topological physics in different dimensions but also
for numerical calculations.
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I. INTRODUCTION

For over a decade, there has been extensive research on
topological phases and transitions in the context of topological
insulators [1–7]. Topological insulators exhibit energy gaps in
the bulk and gapless edge (surface) states in two (three) di-
mensions. The concept of topology has been further extended
to include topological superconductors, Kitaev systems,
non-Hermitian skin effects, and other related phenomena
[8–10].

On the other hand, the study of topological phases and
transitions in one-dimensional (1D) quantum spin systems
has been ongoing since the 1970s. For instance, the dimer-
Néel transition in a spin-1/2 frustrated anisotropic Heisenberg
chain and the successive dimerization observed in Haldane
gap systems are interpreted as transitions between different
gapped phases that possess distinct topological properties
[11–14].

In this paper, we present a unified study of topological
phases and transitions in various systems and dimensions us-
ing the concept of electronic polarization and related concepts
[15–18]. In 1D lattice electron systems, we introduce polariza-
tion operator (or twist operator) U defined as the exponential
of the position operator, and consider its expectation value in
the ground state |�0〉,

z = 〈�0|U |�0〉, U = exp

⎛
⎝i

2π

L

L∑
j=1

jn j

⎞
⎠. (1)

Here, L represents the number of sites and n j is the elec-
tron number operator at the jth site. Resta established a
relationship between z and electronic polarization, given by
limL→∞(e/2π )Im ln z [16]. The signs of z provide informa-
tion about the system’s topology, such as the presence of
charge or spin-density waves and edge states [19,20]. Fur-
thermore, the condition z = 0 can be utilized to detect phase
transition points.

The same quantity as in Eq. (1) was also introduced in the
Lieb-Schultz-Mattis (LSM) theorem for 1D quantum systems
[21–25]. In the LSM theorem, Eq. (1) appears as an overlap

between the ground state and a variational excited state. Ac-
cording to the theorem, an energy gap above nondegenerate
ground state is possible for z �= 0 with L → ∞.

Thus the property of z has been well studied for 1D sys-
tems. However, its application to higher-dimensional systems
is not fully discussed. In our preceding paper [26], we have
extended the twist operator in Eq. (1) to two-dimensional (2D)
systems using spiral boundary conditions (SBCs) that encom-
pass all lattice sites in one-dimensional order as illustrated in
Fig. 1. These boundary conditions have been utilized to extend
the LSM theorem to higher dimensions [27–29], eliminating
unphysical limitations on the system size [30]. By calculating
z with SBCs, we have examined the 2D Wilson-Dirac model
[31,32] and identified topological transition points as z = 0.

However, the aforementioned extension does not account
for transverse response, so that it does not include the in-
formation of the Chern number. Therefore, z needs to be
modified to incorporate the flux effect, which is perpendicular
to the twist direction. For conventional periodic boundary
conditions (PBCs), this extension was carried out by Coh and
Vanderbilt for the Haldane model [33]. On the other hand,
Fukui, Hatsugai, and Suzuki proposed a method to calculate
the Chern number based on the lattice gauge theory [34].
Therefore, we aim to elucidate the relationship between the
Coh-Vanderbilt’s method and the Fukui-Hatsugai-Suzuki’s
method. Subsequently, we derive the formalism of electronic
polarization with SBCs to identify the system’s topology by
Chern numbers.

This paper is organized as follows. In Sec. II, we provide a
review of the two methods for calculating Chern numbers in
lattice systems. Next, in Sec. III, we discuss the justification
of twist operators with SBCs and establish the correspondence
between wave numbers in conventional PBCs and those in the
SBCs. In Sec. IV, we employ the two methods with SBCs
to calculate Chern numbers in several models. Finally, we
present a summary and discussion in Sec. V. In the Appendix,
we examine the Chern numbers obtained by the two meth-
ods in the continuum limits. Throughout this paper, we set
the lattice constant a and the reduced Planck constant h̄ to
unity.
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FIG. 1. Several boundary conditions for 2D square lattices with L1 × L2 sites. (a) Conventional periodic boundary conditions (PBCs),
(b) spiral boundary conditions (SBCs) for (π, 0) charge order, and (c) SBCs for (π, π ) order. For the systems with SBCs, the lattice sites are
labeled as extended 1D chains.

II. CHERN NUMBER

In this section, we will review two methods for calculating
the Chern number in 2D lattice systems: the Fukui-Hatsugai-
Suzuki (FHS)’s method and the Coh-Vanderbilt (CV)’s
method. The CV’s method is specifically related to the elec-
tronic polarization.

A. Fukui-Hatsugai-Suzuki’s method

A method for calculating the Chern number in lattice sys-
tems has been proposed by Fukui, Hatsugai, and Suzuki [34].
In this method, we define the following function as an overlap
between neighboring two-wave vectors:

V (n)
k,k+k̂μ

= 〈un(k)|un(k + k̂μ)〉, (2)

where |un(k)〉 is the Bloch state of the nth band, and k̂μ =
x̂μ2π/Lμ with x̂μ being a unit vector along μ direction. Here-
after, we omit the band indeces for simplicity, and assume the
contribution from the occupied bands. We further define the
following product on a plaquette as shown in Fig. 2:

Z (k) = Vk,k+k̂1
Vk+k̂1,k+k̂1+k̂2

Vk+k̂1+k̂2,k+k̂2
Vk+k̂2,k, (3a)

F12(k) = ln Z (k), (3b)

FIG. 2. Path along a plaquette for the Fukui-Hatsugai-Suzuki’s
method.

where we determine the principal branch by restricting the
region of F12(k) as

−π < −i F12(k) � π. (4)

Note that (2) and (3b) are related to the link variable and the
Wilson loop, respectively in the lattice gauge theory. Then the
Chern number is give as

ν = − 1

2π i

∑
k

F12(k). (5)

The continuum representation is given in Appendix.

B. Coh-Vanderbilt’s method

On the other hand, Coh and Vanderbilt related the Chern
number and the electronic polarization by flux insertion [33].
Later, this method has been discussed in details by Kang, Lee,
and Cho [35]. In this method, the Chern number is given by
the relations

z(φ2) = 〈�0(0, φ2)|U1|�0(0, φ2)〉 (6a)

= −
∏

k

Vk+ φ2
2π

k̂2,k+ φ2
2π

k̂2−k̂1
, (6b)

ν = − ∂

∂φ2
Im ln z(φ2), (6c)

and the polarization operator along μ direction is

Uμ = exp

(
i
2π

Lμ

∑
r

xμ nr

)
. (7)

This is the twist operator introduced in the LSM theorem for
d � 2 [27,28]. |�0(φ1, φ2)〉 is the many-body ground state as
a function of the flux φμ. The Chern number ν is quantized in
the thermodynamic limit.

As discussed in Appendix, the Chern number in the con-
tinuum limit is given by different “gauges” of the Berry
connection as that of FHS’s method. Whereas the gauge of
FHS’s method is like the “symmetric gauge”, that of CV’s
method corresponds to the “Landau gauge.” However, we can
modify the CV’s method so that the Chern number is given by
“symmetric gauge.” For example, we define the polarization
as follows:

z(φ) = 〈�0(φ, φ)|U1U
−1
2 |�0(φ, φ)〉 (8)

= −
∏

k

Vk+ φ

2π
(k̂1+k̂2 ),k+ φ

2π
(k̂1+k̂2 )−k̂1+k̂2

. (9)
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For L1 = L2 this gives the same representation as that of
FHS’s method in the continuum limit.

III. SPIRAL BOUNDARY CONDITIONS

For 2D systems, the exponential position operator with
SBCs is given by

USBC = exp

⎛
⎝i

L∑
j=1

2π jn j

L

⎞
⎠, L = L1L2, (10)

where j is the site number of the extended 1D chain, which
sweeps all lattice sites in 1D order as shown in Fig. 1(b). On
the other hand, for conventional PBCs as in Fig. 1(a), there
are two operators as Eq. (7). In this section, we discuss the
relationship between USBC and Uμ for 2D systems with PBCs,
and how the wave number k appearing in Sec. II should be
replaced for SBCs.

A. Definition of spiral boundary conditions

In order to consider the flux insertion to the system with
SBCs, we reinterpret the twist operators in the Oshikawa’s
argument (7). First, we consider the primitive vectors in the
real space and the reciprocal lattice space of 2D systems as

A1 = (L1, 0), B1 = 2π

(
1

L1
, 0

)
, (11a)

A2 = (0, L2), B2 = 2π

(
0,

1

L2

)
. (11b)

Then these vectors satisfy the relation

Aμ · Bν = 2πδμ,ν. (12)

The twist operator (7) is written using the above primitive
vectors in the reciprocal lattice space as

Uμ = exp

(
i
∑

r

Bμ · rnr

)
. (13)

Next, we choose the primitive vectors for SBCs as shown
in Fig. 1(b) so that they satisfy the relation (12). Then we have

A′
1 = (L1,−1), B′

1 = 2π

(
1

L1
, 0

)
, (14a)

A′
2 = (0, L2), B′

2 = 2π

(
1

L1L2
,

1

L2

)
. (14b)

The twist operators in 2D systems with SBCs are
introduced as

U ′
μ = exp

(
i
∑

r

B′
μ · rnr

)
. (15)

For μ = 1, because the relation B′
1 = B1 holds, U ′

1 is the same
operator as U1 with SBCs. In order to represent U1 in SBCs,
we use the following relation:

2π jn j

L1
= 2πx1nr

L1
(mod 2π ). (16)

For μ = 2, the exponent part of the twist operator is confirmed
as that of SBCs as

∑
r

B′
2 · rnr =

L1∑
i1=1

L2−1∑
i2=0

2π
i1 + i2L1

L1L2
n(i1,i2 ) (17)

=
L∑

j=1

2π

L
jn j, (18)

where L = L1L2 and j = i1 + i2L1. Thus the twist operators
for SBCs are identified as

U ′
1 = exp

⎛
⎝i

L∑
j=1

2π jn j

L1

⎞
⎠ = (USBC)L2 , (19a)

U ′
2 = USBC. (19b)

These correspondences mean that the flux insertion for the
extended 1D chain of SBCs gives rise an effective current
along y direction, while U ′

1 causes a current only to x direction
because of the relation (16).

In the same way, the primitive vectors of the system with
SBCs for (π, π ) order illustrated in Fig. 1(c), are identified as

A′′
1 = (L1 − 1,−1), B′′

1 = 2π

L1L2 + L1 − L2
(L2,−L1),

(20a)

A′′
2 = (L1, L2), B′′

2 = 2π

L1L2 + L1 − L2
(1, L1 − 1). (20b)

Then, the exponential position operators in these SBCs U ′′
j for

the isotropic case L1 = L2 are related as

U ′′
1 = U1U

−1
2 , U ′′

2 = USBC. (21)

Since we are not interested in charge orders in this paper, we
will not use these boundary conditions.

B. Redefinition of Coh-Vanderbilt’s method

In the Coh-Vanderbilt method, we need to apply flux to
the system to generate a current in the vertical direction of
the twist operator for calculating the Chern number. However,
since the flux is continuum number, we cannot distinguish
whether the direction of the flux is along B′

1 or B′
2. On the

other hand, roles of twist operators for each directions are
apparently distinguished as in Eq. (19). Therefore, we apply
the flux to B′

2 direction, which is along the extended 1D chain,
and turn our attention to the response to B′

1 direction.
It follows from Eq. (19) that the expectation value of the

twist operator with flux (6a) for the system with SBCs is
redefined as

z′(φ) = 〈� ′
0(φ)|U ′

1|� ′
0(φ)〉, (22)

where |� ′
0(φ)〉 is the many-body wave function of the ground

state with flux φ. The flux φ is imposed to the extended
1D chain with L = L1L2 sites. From Eq. (6), the following
relation is satisfied:

z′(φ) = e−iνφz′(0). (23)

075144-3



MASAAKI NAKAMURA AND SHOHEI MASUDA PHYSICAL REVIEW B 110, 075144 (2024)

If we consider the expectation value of U ′
2 as

z′
2(φ) = 〈� ′

0(φ)|U ′
2|� ′

0(φ)〉, (24)

we can not detect the Chern number, because the applied cur-
rent by the flux and its response are in the parallel directions
and there is no perpendicular component in the response.

C. Correspondence of wave numbers

Now we discuss the correspondence of the wave numbers
defined in 2D PBCs with those of SBCs. Let us consider a
tight-biding model defined on a 2D square lattice. When we
apply SBCs to this system, the hopping term is written as

H = − t
L∑

j=1

[(c†
j c j+1 + H.c.) + (c†

j c j+� + H.c.)]

= − 2t
∑

k

[cos k + cos �k]c†
kck, (25)

where c†
j (c j) is a creation (annihilation) operator at jth site of

the extended 1D chain with L ≡ L1L2 sites, and � is a param-
eter depending on the number of lattice sites in x direction. As
shown in Fig. 1, this parameter is related to ways to label the
sites of extended 1D chain and � ∈ Z. For SBCs for (π, 0)
order � = L1 while those for (π, π ) order, � = L1 − 1. In
the present case, we are not interested in charge orders, so that
we choose SBCs for (π, 0) order for simplicity. The Fourier
transformation of the extended 1D chain is given by

ck = 1√
L

L∑
j=1

e−ikx j c j . (26)

Then the 2D wave vectors are replaced as the 1D wave number
by

k = (kx, ky) → (k, L1k), (27a)

k = 2π

L
n, n = 0, 1, 2, . . . , L − 1. (27b)

When we apply the flux φ to the system, the Hamiltonian (25)
is modified by the following replacements:

c j → c je
−iφx j/L, k → k + φ/L. (28)

The dispersion relations of these systems with different
boundary conditions are completely different. In the case of
SBCs, there are many oscillations resulting from the long-
range hopping. However, physical properties of these systems
in the thermodynamic limit become the same. This is con-
firmed, for example, by analytical calculation of the density
of states [36].

Next we consider the unit wave numbers k̂μ (μ = 1, 2)
appearing in Sec. II. According to the results of B′

μ given in
Eq. (14), there are following relations:

k̂1 = (k̂1, 0) → (L2k̂, 0), (29a)

k̂2 = (0, k̂2) → (k̂, L1k̂), (29b)

where

k̂μ = 2π

Lμ

, k̂ = 2π

L
. (30)

Then Z (k) defined by Eq. (3a) and z by Eq. (6b) are replaced
as

Z (k) →V(k,L1k),(k+L2 k̂,L1k)V(k+L2 k̂,L1k),(k+L2 k̂+k̂,L1k+L1 k̂)

× V(k+L2 k̂+k̂,L1k+L1 k̂),(k+k̂,L1k+L1 k̂)V(k+k̂,L1k+L1 k̂),(k,L1k),

(31)

z′(φ) → −
∏

k

V(k+ φ

L ,L1k+ φ

L2
),(k+ φ

L −L2 k̂,L1k+ φ

L2
). (32)

IV. RESULTS

We demonstrate the above discussions in representative
models for Chern insulators: the Wilson-Dirac model and the
Haldane model.

A. Wilson-Dirac model

As a fundamental model to describe 2D Chern insulators,
we consider the Wilson-Dirac model [31,32],

H =−it

2

∑
j,μ=x,y

(c†
jτμc j+μ̂ − H.c.) + (M − B)

∑
j

c†
jτ3c j

+ B

2

∑
j,μ=x,y

(c†
jτ3c j+μ̂ + H.c.). (33)

The Fourier representation of this model becomes

H =
∑
k,α,β

c†
k,α

Hαβ (k) ck,β
, (34a)

H (k) = t
∑

μ=x,y

sin kμ τμ +
⎡
⎣M − B

∑
μ=x,y

(1 − cos kμ)

⎤
⎦τz,

(34b)

where t = 1 is the hopping amplitude, M is the mass, B is the
coefficient of the Wilson term, ck,α is the annihilation operator
of a fermion with a 2D wave number, α, β ∈ {1, 2} are orbital
indices, and τμ are the Pauli matrices. The energy eigenvalue
is given by

ε2
k = t2(sin2 kx + sin2 ky) + {M − B(2 − cos kx − cos ky)}2.

(35)

This system with positive M is a trivial insulator for B < M/4,
and a topological insulator with ν = 1 for M/4 � B � M/2
and that with ν = −1 for M/2 � B. Topological phase transi-
tion occurs at B = M/4 and M/2 [37]. These transition points
can be identified by vanishing of the bulk energy gap εk = 0.
The sign of ν is interchanged for negative M. In the contin-
uum version of the model, the Hall conductivity is calculated
as [38]

σxy = − e2

2h
[sgn(M ) + sgn(B)]. (36)

Therefore the system is a topological (trivial) insulator for
MB > 0 (MB < 0), so that the sign of σxy is interchanged
depending on the sign of M for fixed B. This is consistent
with the lattice model.

As shown in Fig. 3, the Chern number of the WD model
obtained by the FHS method and the CV method with
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FIG. 3. Chern numbers of the 2D WD model in L = 64×64 sites
at M = 1 with conventional (a) PBCs and (b) SBCs, calculated by
Fukui-Hatsugai-Suzuki’s (FHS) method and Coh-Vanderbilt’s (CV)
method. Topological regions are 1/4 � B � 1/2 with ν = 1 and
1/2 � B with ν = −1. Insets show the size dependence of the dis-
placement of the Chern number from the exact value.

conventional PBCs and SBCs. The finite-size effect of the
FHS method tends to be smaller than that of the CV method,
and that of the conventional PBCs tends to be smaller than the
SBCs. This tendency is observed by the following displace-
ment

d =
∫ Bmax

Bmin

dB[ν(L) − ν(∞)]2, (37)

where we have set Bmin = 0 and Bmax = 1, shown in the insets
of Fig. 3.

Figure 4(a) shows z′(φ), the ground-state expectation val-
ues of the twist operator U ′

1 in SBCs. According to the results,
z′(0) does not change the sign. On the other hand, z′(π )
changes the sign in the topological regions M/4 < B with the
Chern number ν = ±1, as a consequence of the relation (23).
We can also identify the topological regions by calculating
the ratio of the expectation values of U ′

1 with and without flux
z′(π )/z′(0) as shown in Fig. 4(b).

In case we consider the expectation value of USBC as (24),
it has the opposite sign in the second topological region

FIG. 4. (a) Expectation values of the twist operator U ′
1 with and

without flux, z′(0) and z′(π ). (b) The ratio of the expectation values
z′(π )/z′(0). There is no sign change for z′(0), while z′(π ) has the
opposite sign in the topological regions. These results are calculated
for the systems with M = 1 and L = 64×64 sites.

M/2 < B, and that with different SBCs, as shown in Fig. 1(c),
it has opposite sign in the both topological regions M/4 < B.
These results are already discussed in Ref. [26].

B. Haldane model

As another fundamental model for a Chern insulator, we
consider the Haldane model [1] describing the fermions on a
honeycomb lattice with a hopping amplitude t = 1, an alter-
nating potential M, and a next-nearest-neighbor hopping κ ,

H = t
∑
〈i j〉

c†
i c j + M

∑
i

ηic
†
i ci + i

κ

3
√

3

∑
〈〈i j〉〉

νi jc
†
i c j, (38)

where c†
i (ci) is a creation (annihilation) operator at site i (spin

indices are omitted). 〈i j〉 and 〈〈i j〉〉, denote a nearest and a
next-nearest pair, respectively. ηi = 1 (ηi = −1) for A (B)
sublattice, and νi j = (2/

√
3)(c1 × c2)z = ±1, where c1 and

c2 are primitive vectors along the two bonds on which the
electron hops from a site j to i, as shown in Fig. 5.
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FIG. 5. Primitive vectors ai and reciprocal lattice vectors bi of the
honeycomb lattice. ci is the primitive vectors along the two bonds on
which the electron hops from a site j to i.

For the honeycomb lattice, the primitive vectors are

a1 = a

2
(3,−

√
3), a2 = a

2
(3,

√
3). (39)

Then the reciprocal lattice vectors are chosen as

b1 = 2π

3a
(1,−

√
3), b2 = 2π

3a
(1,

√
3), (40)

by the relation

ai · b j = 2πδi j . (41)

The wave numbers are given in these bases as

k = k1b1 + k2b2, (42)

where ki ∈ [0, 2π ].
The Hamiltonian in the momentum space has the following

form:

H (k) =
∑

i

di(k)τi, (43)

with the energy

ε(k) = ±
√∑

i

d2
i (k). (44)

The parameters in Hamiltonian are given as follows:

d1 = t[cos(k · a1) + cos(k · a2) + 1], (45a)

d2 = t[sin(k · a1) + sin(k · a2)], (45b)

d3 = M − 2κ

3
√

3
[sin(k · a1)

− sin(k · a2) − sin (k · (a1 − a2))]. (45c)

Thus we can calculate the Chern number as in the same
way of the square lattice systems, by using the wave vector as
k = (k1, k2).

In order to consider honeycomb lattices with SBCs as
shown in Fig. 6, it is convenient to consider chirality of carbon
nanotubes [39] defined as

C = na1 + ma2 ≡ (n, m). (46)

FIG. 6. Spiral boundary conditions (SBCs) for a honeycomb
lattice with L1 × L2 hexagons and 2L1L2 sites. The vectors Ai are
defined as A1 = L1a1 − a2 and A2 = L2a2 with Li being integers.

The discussion for the square lattices in Sec. III corresponds
to the honeycomb lattices with L1 × L2 hexagons with 2L1L2

sites and chirality (L1,−1).
Then the Hall conductivity of the system at the charge

neutrality point becomes

σxy = −e2

h
sgn(κ )θ (|κ| − |M|). (47)

This means that the system is a Chern insulator for |κ| > |M|
with ν = ±1 and a trivial insulator for |κ| < |M| with ν = 0.

Figure 7 shows the Chern number of the Haldane model
obtained by the FHS method and the CV method with conven-
tional PBCs and SBCs. Finite-size effect of the FHS method
tends to be smaller than that of the CV method. These ten-
dencies are same for those of the WD model, and are shown
in the insets of Fig. 7, where the displacement of Eq. (37) are
calculated for κmin = 0 and κmax = 1.

Figure 8(a) shows the ground-state expectation values of
the twist operators in SBCs without flux. The result of z′(0)
has large finite-size effects with oscillations, so that it is dif-
ficult to characterize the insulating states and the electronic
polarization. This behavior is considered to be an effect of the
next-nearest-neighbor-hopping process. However, the ratio of
z′(φ) with and without flux z′(π )/z′(0) well characterizes
the topologies of the system as shown in Fig. 8(b). For this
quantity, the calculation should be done so that the anomaly is
canceled as

z(π )

z(0)
=
∏

k

Vk+ 1
2 k̂2,k+ 1

2 k̂2−k̂1

Vk,k−k̂1

. (48)

V. SUMMARY AND DISCUSSION

In summary, we have explored the relationship between
electronic polarization and the Chern number in 2D sys-
tems with SBCs. Initially, we examined two methods for
calculating Chern numbers in 2D lattice systems: Fukui-
Hatsugai-Suzuki’s method and Coh-Vanderbilt’s method.
Subsequently, we introduced twist operators in 2D systems
with SBCs and redefined the aforementioned methods using
the wave numbers of the extended 1D chain. The crucial
aspect of this discussion is that flux insertion into the extended
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FIG. 7. Chern numbers of the Haldane model in L = 64×64 sites
at M = 1 with conventional (a) PBCs and (b) SBCs, calculated by
Fukui-Hatsugai-Suzuki’s (FHS) method and Coh-Vanderbilt’s (CV)
method. Topological regions are κ � −1 with ν = 1 and 1 � κ with
ν = −1. Insets show the size dependence of the displacement of the
Chern number from the exact value.

1D chain generates an effective current along the y direction,
and the twist operator detects the response to the x direction.
Finally, we illustrated the above discussions in representative
models for Chern insulators, such as the Wilson-Dirac model
and the Haldane model, demonstrating that the calculation of
Chern numbers and the detection of topological phases are
achievable using methods with SBCs.

The relationship between topological states in 1D and
those in 2D with a Chern number is considered as follows: As
mentioned in Sec. I, the signs of z classify 1D gapped states. In
some cases, such as the Su-Schrieffer-Heeger model [40,41],
an insulating state with localized edge electrons emerges. If
we then consider creating a 2D system by connecting these
1D edge states with spiral boundary conditions (SBCs), an
insulating state with edge current may appear in response to
applied flux. This state represents a 2D topological state with
a Chern number.

As an extension of the argument presented in this paper,
we may consider SBCs in general dimensions. According to

FIG. 8. (a) Expectation values of twist operators U ′
1 without flux

z′(0). (b) The ratio of the expectation values of U ′
1 with and with-

out flux z′(π )/z′(0) calculated in the systems with L = 64×64 and
L = 128×128.

the discussion in Sec. III, the twist operators in d-dimensional
systems are generalized as follows:

U ′
μ = exp

⎛
⎝i

L∑
j=1

2π jn j∏μ

k=1 Lk

⎞
⎠, L =

d∏
k=1

Lk . (49)

By utilizing these operators and incorporating flux inser-
tions, we may identify d-dimensional topological phases and
higher-order topological states.

The present method with SBCs is expected to be appli-
cable to numerical calculations, such as the density matrix
renormalization group method. For systems in more than 2D,
finite-size scaling is not as straightforward as in 1D systems
because increasing the number of lattice sites cannot be done
linearly while maintaining the symmetry of the unit systems.
However, in systems with SBCs, we can increase the lattice
size linearly, enabling finite-size scaling similar to 1D systems
[36,42,43]. We anticipate that the present method will prove
useful for the numerical analysis of topological systems with
electron-electron interactions.
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APPENDIX: CONTINUUM LIMIT

In this section, we discuss the continuum limits of the
formulas for the Chern number given by the Fukui-Hatsugai-
Suzuki’s method and by the Coh-Vanderbilt’s method for lat-
tice systems, to compare the Thouless-Kohmoto-Nightingale-
den Nijs (TKNN) formula.

1. TKNN formula

Let us consider a 2D system. When the system is trans-
lationally invariant, the Hamiltonian satisfies the following
eigenvalue equation in term of the Bloch state,

H (k)|un(k)〉 = En(k)|un(k)〉, (A1)

where |un(k)〉 is the Bloch eigenstate of the nth band, and
normalized as 〈un(k)|um(k)〉 = δn,m. The Berry connection of
the nth band is defined as

A(n)(k) = i〈un(k)|∇kun(k)〉. (A2)

Then the Berry curvature is given as

B(n)(k) = ∇k × A(n)(k). (A3)

The Berry connection and the Berry curvature correspond to
the vector potential and the magnetic field in the electrody-
namics, respectively.

The Chern number for the nth band νn is given by the Berry
curvature as follows:

νn = 1

2π

∫∫
BZ

d2k [B(n)(k)]z

= 1

2π

∮
∂BZ

dk · A(n)(k), (A4)

where BZ means the first Brillouin zone. Then the Chern num-
ber ν is given by the summation of νn over the occupied bands,
and the Hall conductivity is related to the Chern number as
follows:

σxy = −ν
e2

h
, ν =

∑
n∈occupied

νn. (A5)

This is so-called TKNN formula [44–47]. Hereafter, we omit
the band indices for simplicity, and assume the contribution
form the occupied bands.

2. Fukui-Hatsugai-Suzuki’s method

Now we show that the Chern numbers in lattice systems
are related to those defined in the continuous Brillouin zone
(A4) in the continuum limit. By the Taylor expansion Vk,k+k̂μ

defined by Eq. (2) in the continuum limit becomes

Vk,k+k̂μ
� 1 − i

2π

Lμ

Aμ(k), (A6)

where Aμ(k) is the Berry connection defined in (A2). Simi-
larly, we get

Vk+k̂μ,k+k̂μ+k̂ν
� 1 − i

2π

Lν

Aν (k + k̂μ)

� 1 − i
2π

Lν

Aν (k) − i
(2π )2

LμLν

∂μAν (k), (A7)

where μ �= ν, and we have abbreviated as ∂ν = ∂kν
. Next,

F12(k) defined by Eq. (3) becomes

F12(k) � ln

[(
1 − i

2π

L1
A1

)(
1 − i

2π

L2
A2 − i

(2π )2

L1L2
∂1A2

)

×
(

1 + i
2π

L1
A1 + i

(2π )2

L1L2
∂2A1

)(
1 + i

2π

L2
A2

)]

� ln

[
1 − i

(2π )2

L1L2
(∂1A2 − ∂2A1)

]

� −i
(2π )2

L1L2
(∂1A2 − ∂2A1), (A8)

so that the Chern number in lattice systems (5) becomes

ν � 1

2π

∫∫
d2k[∂1A2(k) − ∂2A1(k)]. (A9)

This coincides with the TKNN formula (A4).

3. Coh-Vanderbilt’s method

The relations of the Coh-Vanderbilt’s (CV’s) method (6)
are confirmed by the following calculations,∏

k

〈
u

(
k1, k2 + φ2

L2

)∣∣∣∣u
(

k1 − 2π

L1
, k2 + φ2

L2

)〉

�
∏

k

(
1 − 2π

L1

〈
u

(
k1, k2 + φ2

L2

)∣∣∣∣∂1u

(
k1, k2 + φ2

L2

)〉)

� exp

[
i

L2

2π

∫∫
d2k A1

(
k1, k2 + φ2

L2

)]

� exp

[
i

L2

2π

∫∫
d2k A1(k1, k2)

]

× exp

[
iφ2

1

2π

∫∫
d2k ∂2A1(k1, k2)︸ ︷︷ ︸

−ν

]
. (A10)

In this case, the Chern number in the continuum limit is given
by the Berry connection, which has the same structure of
the “Landau gauge”, whereas the Chern number given by the
FHS’s method corresponds to the “symmetric gauge.” Thus
we get the relation

z(0, φ2) = z(0, 0)e−iφ2 ν . (A11)

Similarly, we get

〈�0(φ1, 0)|U2|�0(φ1, 0)〉 ∼ z(0, 0)eiφ1 ν . (A12)

Thus we have shown that the relationship between z(φ2) and
the Chern number ν are given by Eq. (6c).
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Furthermore, we can modify the CV’s method so that the Chern number is given by the “symmetric gauge.” For this purpose,
we define the polarization as

z(φ1, φ2) = 〈�0(φ1, φ2)|U1U
−1
2 |�0(φ1, φ2)〉

= −
∏

k

〈
u

(
k1 + φ1

L1
, k2 + φ2

L2

)∣∣∣∣u
(

k1 + φ1 − 2π

L1
, k2 + φ2 + 2π

L2

)〉
. (A13)

In the thermodynamic limit Lμ � 1, the Taylor expansion gives

z(0, 0) = −
∏

k

〈
u(k1, k2)

∣∣∣∣u
(

k1 − 2π

L1
, k2 + 2π

L2

)〉

� − exp

[
i
∫∫

d2k
{

L2

2π
A1(k1, k2) − L1

2π
A2(k1, k2)

}]
, (A14)

where Aμ(k1, k2) is a component of the Berry connection defined in Eq. (A2). Therefore Eq. (A13) becomes

z(φ1, φ2) = − exp

[
i
∫∫

d2k
{

L2

2π
A1

(
k1 + φ1

L1
, k2 + φ2

L2

)
− L1

2π
A2

(
k1 + φ1

L1
, k2 + φ2

L2

)}]

= z(0, 0) exp

[
i
∫∫

d2k
{

L2

L1

φ1

2π
∂1A1(k) + φ2

2π
∂2A1(k) − φ1

2π
∂1A2(k) − L1

L2

φ2

2π
∂2A2(k)

}]

� z(0, 0) exp

[
−i

φ

2π

∫∫
d2k(∂1A2(k) − ∂2A1(k))

]
, (φ = φ1 = φ2, L1 = L2)

= z(0, 0) exp(−iφ ν). (A15)

Thus we have obtained the Chern number given by the “symmetric gauge.”
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