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Topological conditions for impurity effects in carbon nanosystems
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We consider electronic spectra of carbon nanotubes and their perturbation by impurity atoms absorbed at
different positions on nanotube surfaces, within the framework of the Anderson hybrid model. Special attention
is given to the cases in which Dirac-like 1D modes appear in the nanotube spectrum and their hybridization
with localized impurity states produces, at growing impurity concentration c, onset of a mobility gap near the
impurity level and even opening, at yet higher c, of some narrow delocalized range within this mobility gap. Such
behaviors are compared with similar effects in the previously studied 2D graphene and armchair-type graphene
nanoribbons. Some possible practical applications are discussed.
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I. INTRODUCTION

Since the discovery 20 years ago of single-layer
graphene [1], there has been much interest not only in its
two-dimensionality (2D) [2] but mainly in its massless, that is,
Dirac-like, spectrum of electronic excitations [3]. Studies of
its various physical properties have a very broad nomenclature
[4,5] (see also [6]), but we focus here on certain aspects of
nonideal graphene structures, yet restricted to a single dimen-
sion (1D), namely, of graphene nanoribbons (NRs) [7] and
carbon nanotubes (NTs) [8,9] in the presence of impurities
[10–14]. Mostly, we consider here the electron quasiparticle
spectra in principal topological types of graphene 1D nanosys-
tems and their restructuring under effects by impurity atoms
absorbed at different positions over carbon atoms [15,16]. In
this course, the main attention is given to the cases in which
Dirac-like 1D modes are present in the NT spectrum [17], and
we compare the impurity disorder effects on such modes with
those previously studied in 2D graphene [18] and in armchair-
type nanoribbons (ANRs) [19]. Also, the specifics of impurity
effects in more general twisted carbon NTs are briefly
discussed. The main purpose of this analysis is in finding
possible practical applications for such 1D-like semimetallic
systems under their properly adjusted doping as more compact
and sensible analogs for common doped semiconductors.

The presentation is organized as follows. We begin with a
description of quasiparticle spectra for two basic NT topolo-
gies: zigzag (ZNTs, Sec. II) and armchair (ANTs, Sec. III), in
the forms adjusted to describe the impurity-induced restruc-
turing of their spectra. This description, within the simplest
T-matrix approximation for the quasiparticle self-energy, be-
gins from the technically simpler ANT case (Sec. IV) and then
extends to a more involved ZNT case (Sec. V). The next com-
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parison with the previous results for 2D graphene and ANRs
(Sec. VI) reveals both qualitative similarities and some quan-
titative differences in their behaviors. The general topology of
twisted nanotubes (TNTs) is discussed in Sec. VII, suggesting
a qualitative difference between the twisted and nontwisted
NTs in their sensitivity to impurity disorder. The obtained
results are then verified with some T-matrix improvements
(Sec. VIII): the self-consistent T-matrix method and the group
expansion (GE) method, both of them confirming the validity
of the simple T-matrix picture. The final discussion of these
theoretical results and of some perspectives for their practical
applications is given in Sec. IX.

II. ZIGZAG NANOTUBES

Carbon NTs can be obtained from carbon NRs by closure
of their edges (for instance, of basic zigzag or armchair types),
and these nanotubes are usually classified by the normals to
their axes (that is, to the related NR edges). Thus, folding of an
armchair nanoribbon (ANR) produces a ZNT and, vice versa,
that of a zigzag nanoribbon (ZNR) produces an ANT.

Beginning from the ANR case, it can be seen as a com-
posite of n chains (labeled by j indices) of transversal
period a (the graphene lattice constant), each chain contain-
ing N�1 segments (labeled by p indices) of longitudinal
period a

√
3 and each segment including 4 atomic sites (la-

beled by s indices; see Fig. 1). Next, the closure between
the 1st and nth chains of an ANR transforms it into a ZNT
(see Fig. 2).

For the following consideration of electronic dynamics, it
is suitable to combine the local Fermi operators ap, j,s at 4 s
sites from the jth chain in the pth segment into the 4-spinor:

ap, j =

⎛
⎜⎜⎝

ap, j;1

ap, j;2

ap, j;3

ap, j;4

⎞
⎟⎟⎠. (1)
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FIG. 1. An armchair nanoribbon composed of n atomic chains
( j-labeled), each chain consisting of segments (p-labeled) with 4
atomic sites, s = 1 (red), 2 (green), 3 (white), 4 (blue), in each
segment.

Then the longitudinal translation invariance (with the a
√

3
period; see Fig. 1) and the discrete transversal rotation invari-
ance of the obtained ZNT suggest the Fourier expansion of
the local spinor components in quasicontinuous longitudinal
momentum −π/

√
3 < k < π/

√
3 and in discrete transversal

wave number q = 0, . . . , n − 1 (both in a−1 units):

ap, j,s = 1

2
√

nN

∑
k,q

exp

[
i

(√
3kps + 2πq

n
js

)]
αk,q,s. (2)

Its components αk,q,s form the wave spinor αk,q. Here the
longitudinal numbers for different s sites are p1,2 = p ±
1/6, p3,4 = p ± 1/3 and their transversal numbers are j1,2 =
j, j3,4 = j + 1/2. Then the ZNT Hamiltonian taking only
account of hopping between nearest-neighbor atoms (its pa-
rameter, t ≈ 2.8 eV [3], taken as the energy scale in what
follows) is presented in terms of wave spinors as1

HZNT =
∑
k,q

α
†
k,qĤk,qαk,q. (3)

Here the 4 × 4 matrix

Ĥk,q =

⎛
⎜⎜⎝

0 hk 0 h∗
k,q

h∗
k 0 hk,q 0

0 h∗
k,q 0 hk

hk,q 0 h∗
k 0

⎞
⎟⎟⎠ (4)

has its elements hk = eik/
√

3 and hk,q = 2eik/2
√

3 cos πq
n . The

ZNT spectrum results from four eigenvalues of this matrix at
given k and q as

εk,q;1 = −εk,q;2 = −εk,q,

εk,q;3 = −εk,q;4 = −εk,n−q, (5)

with the basic dispersion law

εk,q =
√

1 + 4 cos

√
3k

2
cos

πq

n
+ 4 cos2 πq

n
. (6)

1The common nearest-neighbor hopping approximation stays prac-
tically insensible to the NT curvature at n � 1 since the distance to
next-nearest neighbors there stays to within ∼1/n2, the same as in
2D graphene.

FIG. 2. A zigzag nanotube formed by closing links between the
1st and nth chains of the armchair nanoribbon in Fig. 1.

This can be seen either as the standard graphene dispersion
law [20] but with discrete transversal momentum numbers q
or, otherwise, as a set of 4n 1D k bands εk,q; f (for n possible
values of q and 4 values of f ). Notably, a double degeneracy
of these bands follows from Eqs. (5) and (6) as

εk,q;1 ≡ εk,n−q;3, εk,q;2 ≡ εk,n−q;4. (7)

Thus, if n is even, the ZNT spectrum has 4 nondegenerated
(for q = 0 and q = n/2) modes and 2n − 2 doubly degener-
ated ones. Otherwise, if n is odd, there are two nondegenerated
modes (only for q = 0) and 2n − 1 doubly degenerated ones.
The eigenoperators ψk,q; f of these modes enter the diagonal
ANT Hamiltonian:

H =
∑
k,q, f

εk,q; f ψ
†
k,q; f ψk,q; f . (8)

These operators at given k and q can also be combined into
the 4-spinor ψk,q, related to the α-spinor as

ψk,q = Ûk,qαk,q, (9)

through the unitary matrix

Ûk,q = 1

2

⎛
⎜⎜⎝

−zk,q −1 zk,q 1
zk,q −1 −zk,q 1

−zk,n−q 1 −zk,n−q 1
zk,n−q 1 zk,n−q 1

⎞
⎟⎟⎠,

with the complex phase factor

zk,q = exp

[
i

(
k√
3

+ arctan
sin k

2
√

3

2 cos πq
n − cos k

2
√

3

)]
.

Contrariwise, the α-spinor follows from the ψ-spinor by the
inversion of Eq. (9):

αk,q = Û †
k,qψk,q. (10)

Other important features of the ZNT spectrum by Eq. (5)
are

(i) the presence of 2 flat (dispersionless) modes for even n
(then at q = n/2) and

(ii) the presence of 4 gapless Dirac-like modes (DLMs) for
n being a multiple of 3 (then at q = n/3 and q = 2n/3).

075142-2



TOPOLOGICAL CONDITIONS FOR IMPURITY EFFECTS … PHYSICAL REVIEW B 110, 075142 (2024)

FIG. 3. Dispersion laws for ZNT of n = 6 chains, with doubly
degenerated (black) and nondegenerated (red) modes; the Dirac win-
dow of width �DW = 2(

√
3 − 1) is in between the shaded ranges of

the resting modes.

The latter are just the 1D analogs to the 2D graphene
Dirac modes with their nodal points K (here at k = 2π/

√
3,

q = n/3) and K ′ (here at k = 0, q = 2n/3); also they are fully
analogous to DLMs in ANRs [19].

Due to the DLMs’ special sensitivity to local impurity
perturbations, our following treatment is mainly focused on
these modes. In this course, the most relevant energy range
is the Dirac window (DW), exclusively occupied with DLMs
and delimited by the inner edges of their nearest-neighbor
modes (Fig. 3). From Eq. (6), this window results in width

�DW = 2
∣∣∣1 − cos

π

n
−

√
3 sin

π

n

∣∣∣, (11)

and with growing n � 1 it is narrowing as ∼2
√

3π/n.
Now, considering the low-energy spectrum range, the ex-

pansion of local operators by Eqs. (2) and (10) can be

FIG. 4. A zigzag nanoribbon of j = 1, . . . , n chains, with s = 1
(blue), 2 (green), 3 (red), and 4 (white) sites in each pth segment.

FIG. 5. An n-chain armchair nanotube formed by closure be-
tween the 1st and nth chains of zigzag nanoribbon from Fig. 4.

restricted to 8 K, K ′ DLMs which share 4 eigenenergies:

εk,K,1 = −εk,K,2 = −εk,K ′,1 = εk,K ′,2 = 2 sin

√
3k

4
,

εk,K,3 = −εk,K,4 = −εk,K ′,3 = εk,K ′,4 = 2 cos

√
3k

4
. (12)

Thus, the restricted expansion of a local spinor in eigen-
spinors is presented in the form

ap, j = 1

2
√

nN

∑
k

ei
√

3kp
(
ei

2π
3 jU †

k,Kψk,K + ei
4π
3 jU †

k,K ′ψk,K ′
)
,

(13)

including the unitary matrices

Ûk,K = 1

2

⎛
⎜⎜⎝

−izk −1 izk 1
izk −1 −izk 1
zk 1 zk 1

−zk 1 −zk 1

⎞
⎟⎟⎠,

Ûk,K ′ = 1

2

⎛
⎜⎜⎝

−zk −1 zk 1
zk −1 −zk 1

−izk 1 −izk 1
izk 1 izk 1

⎞
⎟⎟⎠

with zk = eik/2
√

3. This expansion is suitable for the following
construction of the impurity perturbation Hamiltonian.

III. ARMCHAIR NANOTUBES

For the case of the ANT we also consider its structure
obtained from an n-chain ZNR (Fig. 4) by closure between its
1st and nth chains (Fig. 5). Comparison of Fig. 4 with Fig. 1
readily shows that the ANT elementary cell results just from
90◦ rotation of the ZNT one, so the analysis of ANT spectra
simply follows that for ZNT but with the

√
3k ←→ 2πq/n

interchange. Thus the ANT Hamiltonian in terms of 4-spinor
wave operators results, in analogy with the ZNT form by
Eq. (2), as

HANT =
∑
k,q

α
†
k,qĤq,kαk,q, (14)
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FIG. 6. Dispersion laws for ANT of n = 6 chains, with doubly
degenerated (black) and nondegenerated (red) modes. The Dirac
window of width �DW = 1 is more narrow than for the ZNT in Fig. 3.

where the 4 × 4 matrix

Ĥq,k =

⎛
⎜⎜⎝

0 hq 0 h∗
q,k

h∗
q 0 hq,k 0

0 h∗
q,k 0 hq

hq,k 0 h∗
q 0

⎞
⎟⎟⎠ (15)

has its elements hq = ei2πq/3n and hq,k = 2eiπq/3n cos k/2. The
ANT spectrum at given k and q results from the indicated
interchange in Eqs. (5) and (6) as

εq,k;1 = −εq,k;2 = −εq,k, εq,k;3 = −εq,k;4 = −εn−q,k, (16)

where

εq,k =
√

1 + 4 cos
πq

n
cos

k

2
+ 4 cos2 k

2
. (17)

This spectrum includes the same numbers of nondegenerated
and doubly degenerated eigenmodes as in the above consid-
ered ZNT case. But it differs from that case by

(i) the absence of flat modes and
(ii) the presence of two Dirac nodal points: k = 2π/3 (K)

and k = −2π/3 (K ′) at the same q = 0 and for any ANT
width n value. Notably, the related two DLMs are nondegen-
erated [compare with Eq. (12)]:

ε0,k;3 = −ε0,k,4 ≡ εk = 1 − 2 cos
k

2
. (18)

For the ANT case (see Fig. 6), the DW width ends up being
�DW = 2 sin π/n, that is, narrowing with n � 1 as �DLM ∼
2π/n [to be compared with the ZNT case by Eq. (11)].

It should be also noted that, unlike a complete similarity
between the ZNT and ANR spectra, there is an important
difference between those for ANT and ZNR (the latter hav-
ing no DLMs at all but presenting instead a special edge
mode [19,21]).

FIG. 7. A fragment of ANT with σ th impurity adatom (orange)
linked by hybridization γ to its nearest-neighbor host atom (green)
at the (pσ , jσ , sσ ) site.

Then the expansion of local operators [an analog to
Eq. (13)], reduced to only DLM eigenoperators, results as

ap, j,s = 1

2
√

nN

∑
k

eikps u†
s ψk, (19)

with 2-spinors:

ψk =
(

ψ0,k;3

ψ0,k;4

)
, u1 =

(−1
1

)
= −u3, u2 =

(−1
−1

)
= −u4.

(20)

Due to the relative simplicity of expansions by Eq. (19) in
only 2 DLMs, compared to the ZNT case by Eq. (13) with
up to 8 DLMs, we begin the next consideration of impurity
effects just from the ANT case.

IV. IMPURITY EFFECTS ON ANT

Now we can consider impurity effects on the above
described NTs. The simplest Lifshitz isotopic perturbation
model [22] is known not to produce impurity resonance ef-
fects in NRs, neither in ANRs or ZNRs [19]; therefore we
begin from the more effective Anderson hybrid model [23],
presenting its perturbation Hamiltonian for the ANT case
[with use of 2-spinors by Eq. (19)] as

HAZ =
∑

σ

[
εresb

†
σ bσ + γ

2
√

nN

∑
k

(eikpσ b†
σ u†

sσ
ψk + H.c.)

]
.

(21)

It describes impurity adatoms with their resonance energy εres

(laying inside the host DLM range) and corresponding local
Fermi operators bσ at random positions σ , linked through the
hybridization parameter γ to its nearest-neighbor host atom at
the sσ site in the pσ segment of the jσ chain (see Fig. 7). The
random pσ , jσ , and sσ values are distributed uniformly with a
low overall concentration: c = (4nN )−1 ∑

σ 1 � 1.
The next consideration goes in terms of (advanced) Green’s

functions (GFs) whose Fourier transform in energy

〈〈A|B〉〉ε = i

π

∫ 0

−∞
ei(ε−i0)t 〈{A(t ), B(0)}〉dt (22)

includes the grand-canonical statistical average 〈O〉 =
Tr [e−(H−μ)/kBT OH (t )]/ Tr [e−(H−μ)/kBT ] of a Heisenberg op-
erator O(t ) = eiHt Oe−iHt under a Hamiltonian H with chemi-
cal potential μ and the anticommutator {., .}.
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As known [24,25], GFs satisfy the equation of motion:

ε〈〈A|B〉〉ε = 〈{A(0), B(0)}〉 + 〈〈[A, H]|B〉〉ε. (23)

In what follows the energy subindex at GFs is mostly omitted
(or enters directly as its argument).

Consider now the GF 2 × 2 matrix Ĝ(k, k′) = 〈〈ψk|ψ†
k′ 〉〉

made of ψ-spinors by Eq. (19). In the absence of impurities,
with the use of the Hamiltonian H by Eq. (3), the explicit
solution for this GF turns k-diagonal: Ĝ(k, k′) → δk,k′Ĝ(0)(k),
where

Ĝ0(k) = (ε − εk τ̂3)−1 (24)

with the Pauli matrix τ̂3.
When passing to the disordered system with its Hamilto-

nian extended to H + HAZ, we get the equation of motion for
the k-diagonal GF matrix, Ĝ(k, k) ≡ Ĝ(k),

Ĝ(k) = Ĝ0(k) + γ

2
√

nN

∑
σ

e−ikpσ Ĝ0(k)usσ
〈〈bσ |ψ†

k 〉〉, (25)

and then its solution is generally sought in the self-energy
form,

Ĝ(k) = (
Ĝ−1

0 (k) − �̂k
)−1

, (26)

including the self-energy matrix �̂k . To find it, we continue
the chain of equations of motion, now for the mixed (impurity-
DLM) row-vector GF:

〈〈bσ |ψ†
k 〉〉(ε − εres) = γ

2
√

nN

∑
k′

eik′ pσ u†
sσ

Ĝ(k′, k). (27)

This gives the first contribution to �̂k from its term with k′ = k
used in Eq. (25):

γ 2

4nN

∑
σ

usσ
u†

sσ

ε − εres
= cγ 2

ε − εres
. (28)

It is then extended by writing down the equation of motion
for the resting terms with k′ �= k on the right-hand side of
Eq. (27),

Ĝ(k′, k) = γ

2
√

nN

∑
σ ′

e−ik′ pσ ′ Ĝ0(k′)usσ ′ 〈〈bσ ′ |ψ†
k 〉〉, (29)

and choosing the term with σ ′ = σ on its right-hand side. This
generates the (scalar) impurity self-energy �0 = γ 2G0 with
the DLM locator GF:

G0 = 1

4nN

∑
k

u†
sσ

Ĝ0(k)usσ
= 1

4nN

∑
k

TrĜ0(k), (30)

which enters the modified factor (ε − εres − �0) in Eq. (27).
Then the solution for Ĝ(k) in the simplest T-matrix approxi-
mation for self-energy reads

Ĝ(k) = [ε − cT (ε)τ̂0 − εk τ̂3]−1, (31)

with the scalar T matrix

T (ε) = γ 2

ε − εres − �0
. (32)

FIG. 8. Real (blue) and imaginary (black) parts of the locator
function G(ε) compared to those by the unperturbed G0(ε) (dashed)
for ANT with n = 12 at Cu impurity concentration c = 0.08.

The next important GF, the DLM locator, is calculated by the
usual passing from k summation to integration:

G0(ε) = ε

4nπ

∫ 2π

0

dk

ε2 − ε2
k

. (33)

Its analytic expression (see Appendix) is

G0(ε) = i

4n

{
θ [(1 − ε)(3 + ε)]√

(3 + ε)(1 − ε)
+ θ [(1 + ε)(3 − ε)]√

(3 − ε)(1 + ε)

}
,

(34)

approximated in the low-energy range as

G0(ε) ≈ i

2n
√

3

(
1 + ε2

3

)
. (35)

More generally, the DLM locator is defined as

G(ε) = 1

4πN

∑
k

Tr Ĝ(k), (36)

with the diagonal GF matrix Ĝ(k) by Eq. (26). Within the T-
matrix approximation by Eq. (31), it results simply as

G(ε) = G0(ε̃), (37)

with ε̃ = ε − cT (ε) used instead of ε in Eqs. (34) or (35). The
resulting G(ε) real and imaginary parts as shown in Fig. 8 for
the choice of Cu impurities with εres = 0.03, γ = 0.3 [26],
and c = 0.08 only slightly differ from those for unperturbed
G0(ε) within the |ε − εres| � γ 2|G0| range.

Another set of elementary excitations in the disordered sys-
tem, that due to impurity atoms, defines the impurity locator
GF, Gimp = N−1 ∑

σ 〈〈bσ |b†
σ 〉〉, and its solution in the same

approximation reads

Gimp(ε) = cT (ε)/γ 2. (38)

Together, the DLM and impurity locators, Eqs. (37) and (38),
define the low-energy density of states (DOS) as ρ(ε) =
ρh(ε) + ρimp(ε) with its host and impurity parts:

ρh(ε) = 2

π
Im G(ε), ρimp(ε) = 2

π
Im Gimp(ε) (39)

(taking account of 2 spin values).
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FIG. 9. DOS parts near the impurity resonance level for the same
system as in Fig. 8.

In a disordered ANT, host DLMs contribute with 1/n
charge carriers per site and impurities do with c carriers per
site, so defining the Fermi level εF from the equation

1

n
+ c =

∫ εF

−3
ρ(ε)dε (40)

(integrated from the bottom of DLM range). Then, in the
simplest approximation of ImG(ε) ≈ ImG0(ε) ≈ 2/(

√
3πn)

(dashed line in Fig. 9), the Fermi level dependence on impu-
rity concentration c results:

εF(c) ≈ c

c + c∗
εres, (41)

where c∗ = [γ G0(εres)]2. Its fast initial growth, εF(c) ≈
(c/c∗)εres at c � c∗, changes to a slow approach of εres,
εF(c) ≈ εres − (c∗/c)εres at c � c∗ (see Fig. 10).

The next analysis of low-energy spectra in this disordered
system follows the lines of similar cases by Refs. [19,27,29].
Thus, the modified dispersion laws are obtained from the
standard equation [30],

Re det Ĝ−1(k) = 0, (42)

which splits into two scalar equations,

ε − c Re T (ε) = ±εk . (43)

They appear as cubic equations for energy as the function
of momentum, ε(k), and their analytic solutions, though
standard, are rather cumbersome. But they can be greatly

FIG. 10. Fermi level in function of impurity concentration for the
system by Figs. 8 and 9.

FIG. 11. Modified dispersion laws ε1,k and ε2,k by Eq. (45) for
the system as in Figs. 8–10 compared to the unperturbed εk and to the
impurity level εres (the momentum k being referred to the K point).
The mobility gaps (shadowed) define the mobility edges k1,min, k2,min,
and k2,max for quasiparticle momenta.

simplified within the relevant low-energy range by using the
linearized dispersion law,

εk ≈
√

3

2
k, (44)

with momentum k referred to the Dirac point and Fermi ve-
locity

√
3/2, and solving Eq. (43) for this momentum as a

function of energy [19],

±kε = ± 2
ε − c Re T (ε)√

3
. (45)

An example of such solutions for ANT with n = 12 and
c = 0.08 in Fig. 11 demonstrates how coupling of each ±εk

mode to the impurity εres mode forms resonance splitting of
hybridized ±ε1k and ±ε2k modes at k = 0 to the interval of
≈ √

ε2
res + 4cγ 2 around εres/2.

Next, this kε-form is used in the important test of dispersion
law validity for a disordered system, the Ioffe-Regel-Mott
(IRM) criterion [31,32],

kεvε � τ−1(ε), (46)

with the quasiparticle group velocity vε = (∂kε/∂ε)−1 and
its inverse lifetime τ−1

ε = c Im T (ε), that is, the quasiparticle
mean free path being longer than its wavelength.

Each ε value that converts � into ≈ in Eq. (46) gives an
estimate for a mobility edge εmob, separating the ranges of
bandlike and localized states in the spectrum. An important
rule for these states in a multimode system is that they cannot
coexist; that is, if, for a certain energy, the IRM criterion does
not hold for at least one mode, all other modes at this energy
should be also localized [32].
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With use of Eqs. (45) and (32), such equation for mobility
edges can be written explicitly in the form

cγ 2�

D2(ε)

∣∣∣∣1 + cγ 2 D2(ε) − 2�2

D4(ε)

∣∣∣∣ ≈
∣∣∣∣ε − cγ 2 ε − εres

D2(ε)

∣∣∣∣ (47)

with D2(ε) = (ε − εres)2 + �2 and � = γ 2G0(ε). Then, using
the G0(ε) value by Eq. (34), this equation can be solved
numerically to estimate all possible εmob values and so de-
limit the bandlike and localized energy ranges in ZNT with
impurities at given disorder parameters (εres, γ , c) and of NT
structure (n) as shown in Fig. 11.

Here one localized range is found at the lower limit of
resonance splitting, near the shifted Dirac energy −εs at all
c > 0, being of width ≈ cγ 2/εres. Another localized range
emerges above it, around εres, when c reaches a certain critical
value c0. And at yet higher critical concentration, c1 � c0,
the latter range gets split in two, due to a specific interplay
(when going away from the Dirac point) between the growing
momentum kε, decreasing group velocity vk , and increasing
inverse lifetime τ−1

ε of hybridized modes. A more detailed
description of these restructured spectra for different nanos-
tructures follows below.

V. IMPURITY EFFECTS ON ZNT

It is also of interest to extend the above approach to another
NT topology, namely, to the more involved ZNT case. To sim-
plify description of low-energy impurity resonances here, we
again restrict the expansions of local operators by Eqs. (2) and
(9) in 4-spinors ψ (k, q) with unitary matrices Û (k, q), to only
DLMs q = K, K ′. Then the ZNT perturbation Hamiltonian
results, instead of Eq. (21) for ZNT, in the form

HZ =
∑

σ

εresb
†
σ bσ + γ

2
√

nN

∑
k,σ

(eikpσ b†
σ

×{eiK jσ [u†(k, K ; σ )ψ (k, K )] jσ

+ eiK ′ jσ [u†(k, K ′; σ )ψ (k, K ′)] jσ } + H.c.), (48)

where the row spinor u†(k, q; σ ) is just the jσ th row of
Û †(k, q).

Next we consider the 4 × 4 GF matrices Ĝ(k, q; k′, q′) ≡
〈〈ψk,q|ψ†

k′,q′ 〉〉 and the related equation of motion with the
Hamiltonian H + HZ for the choice of K-mode GF:

Ĝ(k, K ; k′, K ) = δk,k′Ĝ(0)(k, K ) + γ

2
√

nN

×
∑

σ

e−i(kpσ +K jσ )Ĝ0(k, K )

× u(k, K ; σ )〈〈bσ |ψ†
k′,K 〉〉, (49)

where G(0)
f , f ′ (k, K ) = δ f , f ′ (ε − εk,K, f )−1 and the column

spinor u(k, q; σ ) is the jσ th column of Û (k, q).
Then the equation [similar to Eq. (27) for the ZNT case]

for the mixed GF, 〈〈bσ |ψ†
k′,K〉〉,

〈〈bσ |ψ†
k′,K〉〉(ε − εres) = γ

2
√

nN

∑
κ ′′

ei(k′′ pσ +K jσ )u†(k′′, K ; σ )

× Ĝ(k′′, k′), (50)

leads [in the same way as to Eq. (31)] to the T-matrix solution
for momentum-diagonal GF matrix Ĝ(k, K ) ≡ Ĝ(k, K ; k, K ),

Ĝ(k, K ) = {[Ĝ(0)(k, K )]−1 − cT (ε)}−1, (51)

where the T function for this case differs from that by Eq. (32)
only by the form of its locator G0(ε). Using Eq. (12), it results
here as

G0(ε) = 4i

n
√

1 − (ε/2)2
. (52)

Then comparison with Eq. (34) shows that the impurity level
damping for this case turns ≈8

√
3 times stronger than for

ANT at the same n number, mostly due to the above indicated
greater relative weight of DLMs in ZNT than in ANT spectra.
This produces strongly different behaviors of IRM mobility
edges and qualitatively different structures of localized and
bandlike spectra in these two nanosystems.

VI. COMPARISON WITH OTHER
CARBON NANOSYSTEMS

The low-energy spectrum restructuring under impurity dis-
order effect is suitably illustrated by a diagram of mobility
edges εmob between the localized and bandlike energy ranges
in function of impurity concentration c. Such diagrams in
Fig. 12 permit one to compare the effects of Cu impurities on
Dirac modes in the previously considered 2D graphene [29]
and ANRs [19] together with the above obtained results for
ZNT and ANT.

Some general features, noted for the ANT case, are ob-
served in all of them:

(i) the formation of a localized range (mobility gap) around
the resonance level εres, at reaching a certain critical concen-
tration c0;

(ii) the presence of another localized range around the
shifted down Dirac level εD, being mostly narrower but ex-
isting at all c > 0;

(iii) the opening, at a certain higher critical concentration
c1 � c0, of a narrow band range within the εres-related mobil-
ity gap.

But this comparison also reveals notably different sensi-
tivity of the corresponding DLMs to the impurity resonance
level, depending both on their topological properties (ab-
sence or presence of edges and the edge types) and on
discrete transversal numbers of chains in a system. Within
the IRM formalism, for given impurity parameters εres and
γ , it depends on the host system through its locator function
G0(ε), like those by Eqs. (34) and (52). This can be further
compared with the previously found G0(ε) values for 2D
graphene, ε/

√
3 [18], and for ANR with M carbon chains,

4/(M + 1) [19].
Thus, the impurity-induced localization first occurs at an

energy very close to εres and the related critical concentration
c0 can be estimated from Eq. (47) by setting ε = εres there. It
results generally in

c0 = [γ G0(εres)]2

2

[
1 +

√
1 + 4

εres

γ 2G0(εres)

]
, (53)

and for the instance of ANT with n = 12 it gives c0 ≈ 1.7 ×
10−4 in a reasonable agreement with the numerical calculation
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FIG. 12. Development of localized ranges (shadowed) in quasi-
particle spectra of 2D graphene, armchair nanotube (with a narrow
blue range of divergence for GF group expansion; see Sec. VIII),
armchair nanoribbon, and zigzag nanotube with growing Cu impurity
concentration.

result shown in Fig. 12. With further growth of c > c0, a
continuous range of localized states (mobility gap) appears
around εres, of width growing as �mob ∼ γ

√
c − c0.

FIG. 13. Upper critical concentration c1 for Cu impurities in
ZNT with n = 50 (brown), ANR with M = 47 (yellow), ANT with
n = 6 (green), 2D graphene (blue), and ANT with n = 12 (red),
together with the fitting curve by Eq. (54) in function of locator G0

value.

Then, at reaching another critical concentration c1 � c0, a
certain window of bandlike states opens inside the mobility
gap, due to the before discussed faster resonance splitting
between the initial εk and εres modes than these split modes
damping. This c1 value is also estimated from the numerical
solution of IRM Eq. (46). It can be presented as a function of
the single G0 parameter as shown in Fig. 13. Strictly speaking,
this is only possible for 1D nanosystems where the low-energy
locator G0(ε) is practically constant, defined by their topology
and discrete width numbers. This dependence can be reason-
ably fitted by the formula

c1 ≈
√

0.01G0 + 20G3
0. (54)

The IRM test also indicates a similar mobility window to
open under the same impurities in 2D graphene with linear
G0(ε) behavior. The resulting c1 value qualitatively agrees
with the approximation by Eq. (54) at the choice of G0 =
G0(εop), εop being just the energy where the mobility window
first opens (as included in Fig. 13).

Notably, the G0 parameter decreases with the nanotube
width as ∼1/n, producing respective decrease of c1 and
so making the system spectrum more sensible to impurity
resonances. Thus, the c1 value for ZNT with n > 8 should
turn already below of that for 2D graphene (despite that
the latter could be formally thought as the n → ∞ limit),
underlying the importance of topological factors in these
effects.

However, as was already noted above, such widening of
a nanotube would produce a similar narrowing of the Dirac
window �DW in its spectrum, delimiting the range of possible
impurity effects. Therefore, the optimal conditions for them
should be sought from a certain compromise between the
parameters of impurity (energy level εres, hybridization γ ,
and concentration c) and of host NT (topological type and
width n). Thus, for the considered Cu impurities, we estimate
admissible width limits for ANT: n � 40, ZNT: n � 60, and
ANR: M � 35. Their comparison with the c1 estimates in
Fig. 13 suggests the possibility for the narrow conductivity
window above εres in ANT, graphene, and maybe in ZNT, but
hardly in ANR (though the latter can provide a similar window
below εres).
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(a) (b)

FIG. 14. (a) The unit cell of n = 4, m = 1 TNT (unfolded) with
its chiral C4,1 and longitudinal T4,1 base vectors, containing N4,1 =
28 atomic positions. (b) The sequence of 14 1D Brillouin zones
by this TNT (red line) along the base vector T̃4,1 = 2πT4,1/T 2

4,1;
it matches certain Dirac points from multiples of 2D graphene BZ
(shadowed) with its base vectors b1,2, exactly at 2/3 or 1/3 of the
T̃4,1 periods (dotted segments).

VII. TWISTED NANOTUBES

Yet more general structure of a TNT is intermediate be-
tween the above considered ANT and ZNT, with its unit cell
being defined by two natural numbers n and m, based on the
chiral vector Cn,m = na1 + ma2 and its orthogonal longitu-
dinal vector Tn,m = [(2m + n)a1 − (2n + m)a2]/Rn,m (where
Rn,m is the greatest common divisor of 2m + n and 2n + m).
There are altogether Nn,m = 4Cn,mTn,m/(

√
3a2) atomic posi-

tions in this cell, as shown for the example of n = 4, m = 1 in
Fig. 14(a).

TNT structure differs qualitatively from the limiting ANT
and ZNT ones in that it has a single period along Cn,m but
repeated periods along the longitudinal Tn,m, defining purely
1D translational symmetry. The resulting spectrum consists
of Nn,m purely 1D modes and it contains DLMs under the
condition of n − m = 3l with a natural l [35] (which passes to
ANT at l = 0 and ZNT at m = 0). Then multiple 1D Brillouin
zones (BZs) in such a NT with their longitudinal period T̃n,m =
2π/Tn,m result just commensurable with the Dirac points in
multiple 2D BZs of planar graphene. An example of TNT with
n = 4, m = 1 in Fig. 14(b) shows such matching of its 1D BZs
to some of graphene Dirac points.

A treatment of impurity effects on TNT can be done within
the above restriction to only DLMs with its results mostly
defined by the related value of locator G0. But here Eq. (33)
should be modified by changing the 4n factor to (possibly
much bigger) Nn,m and also the Fermi velocity

√
3/2 in

Eq. (44) to a much higher Tn,m

√
3/2, resulting in much lower

G0 values. Then, in accordance with the results of Sec. VI,
much lower critical impurity concentrations and much higher
sensitivity of (properly chosen) TNT to impurity effects can
be expected. A more detailed discussion of these issues will
be given elsewhere.

VIII. BEYOND T-MATRIX APPROXIMATION

Besides the most common approach to spectra of disor-
dered systems through the single-impurity scattering in terms
of the T matrix, there are its certain extensions. One of them
uses the self-consistent approximation to this T matrix [33];

FIG. 15. Imaginary parts of locator functions: self-consistent
Gs−c(ε) (solid), simple T matrix G(ε) (dashed), and unperturbed
G0(ε) (dash-dotted) for the ANT system as in Figs. 8–11, mostly
differing near the resonance level εres.

another is based on group expansions of self-energy [27,28] in
series of terms corresponding to wave scatterings by various
clusters of increasing number of impurities.

A. Self-consistent approximation

Let us begin from the self-consistent approximation where
the T matrix is written as

Ts−c(ε) = γ 2

ε − εres − γ 2Gs−c(ε)
, (55)

with the self-consistent locator Gs−c(ε) = G0[ε − cTs−c(ε)].
Then, using the above approximated expression by

Eq. (35), we obtain the self-consistency equation for Gs−c(ε):

i
√

3 n Gs−c(ε) + 1 + 1

3

[
ε − cγ 2

ε − εres − γ 2Gs−c(ε)

]2

= 0.

(56)

Its numerical solution for the characteristic case of ANT with
n = 6 and c = 0.015 provides the real and imaginary parts
by Gs−c(ε) as shown in Fig. 15 in comparison with the same
parts of the simple G0(ε), Eq. (32). It demonstrates that the
self-consistency correction only slightly changes G0(ε) in the
vicinity of εres, and also such parts of Ts−c and T0 are almost
coincident (Fig. 16). So this change has practically no effect
on the IRM results obtained above with use of the simple
G0(ε). So the corresponding mobility diagrams as in Fig. 12
remain also valid in the self-consistent approximation.

B. Group expansion

Next, we look for a group expansion (GE) of the self-
energy matrix �̂k (ε) in the form

�̂k (ε) = cT̂ (ε)[1̂ + cB̂k (ε) + · · · ], (57)

where the sum

B̂k (ε) =
∑

r

[
e−ikr Âr (ε) + Â2

r (ε)
][

1̂ − Â2
r (ε)

]−1
(58)

describes the effects of multiple scatterings between pairs of
impurities at longitudinal distance r between them through the
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FIG. 16. Practical coincidence of self-consistent (solid lines) and
simple (dashed lines) T-matrix functions for the same system as
shown in Fig. 15.

related scattering matrix Âr (ε) = T̂ (ε)Ĝr (ε) with the correla-
tor matrix

Ĝr (ε) = 1

4nN

∑
k′ �=k

eik′rĜ0(k).

The omitted terms on the right-hand side of Eq. (57) cor-
respond to contributions by clusters of three and more
impurities.

Notably, the important specifics of the disordered carbon
NTs (and NRs), unlike the commonly studied disordered 3D
or 2D crystals, consist of the following:

(i) here the longitudinal distance r between different im-
purities takes only discrete values; namely, 2r takes integer
values (so the sum �r can be done without the usual passing
to integral

∫
dr); and

(ii) this distance can also be zero.
Thus, it can be seen from Figs. 5 and 7 that for any impurity

position σ , there are 2n − 1 other positions σ ′ with the same
longitudinal coordinate pσ = pσ ′ . Such impurity pairs at zero
longitudinal distance contribute to B̂k with

B̂0 = c

(
1 − 1

n

)[
Â0(ε) + Â2

0(ε)
][

1̂ − Â2
0(ε)

]−1
, (59)

and this contribution results in being dominant over the resting
sum

∑
r �=0 in Eq. (58) (see in Appendix).

Consider this in more detail for the example of ANT
where all the matrices in the self-energy �̂k can be substi-
tuted by scalars: A0(ε) = T (ε)G0(ε), and T (ε) can be taken
in the form of Eq. (32). Then the B0(ε) contribution to GE
by Eq. (57) is estimated using the explicit form of A(ε) =
�/(e − εres − i�) with � = γ 2/(2n

√
3) to give

B0(ε) =
(

1 − 1

2n

)
�

ε − εres − i�

(e − εres)2
. (60)

For comparison, the lowest-degree resting term in Bk (ε)
is evaluated with use of the approximation for Ar (ε) by
Eq. (A11), as

∑
r �=0

e−ikrAr (ε) ≈ i�ε

4nπ2
Li2(−e−ik/2), (61)

where the polylogarithmic function [34] at k � 1 is close to
Li2(−1) = −π2/12. Thus the magnitude of the Eq. (61) term
turns more than 4 orders below of that of Eq. (60) within the
whole low-energy range, while the next terms in Bk (ε) end up
being yet much smaller.

Then, taking the GE convergence criterion as c|B0(ε)| < 1,
the T-matrix validity condition ends up being from Eq. (60)
well approximated by

|ε − εres| � �
√

c, (62)

and it can only fail in a very narrow vicinity of εres (the blue
range in Fig. 12 for ZNT) deeply within the localized range,
just confirming localization of states there. In a similar way,
this conclusion can be reached for other nanosystems consid-
ered here, justifying the above obtained pictures of spectrum
restructuring in them.

IX. DISCUSSION OF RESULTS

The above obtained results on restructured low-energy
quasiparticle spectra in carbon nanosystems can be discussed
in the context of disordered 1D crystalline systems gener-
ally known not to contain conducting states at any degree of
disorder [36–40]. But their presence in the disordered NTs
and NRs indicates again the principal qualitative difference
of these structures from the strictly 1D chains. Besides the
above noted possibility for zero longitudinal distance between
different impurity positions, it can be yet illustrated by the
behaviors of correlator functions with growing interimpurity
distance r: converging as ∼1/r2 by Eq. (A11) for NTs and
diverging as ∼1/r for really 1D chains [as that by single
gr (ε) by Eq. (A9)], making the related GE divergent at all
energies. So we can conclude that it is just the presence of
additional transversal degrees of freedom in quasi-1D systems
that enables their conductivity under disorder [41–43].

The found intermittence of conducting and localized en-
ergy ranges in the considered nanosystems can be then
used for their various practical applications. Thus, the most
straightforward effects are expected in frequency ω- and tem-
perature T -dependent electric conductivity, following from
the general Kubo-Greenwood formula [44,45] presented here
in the form

σ (ω, T ) = e2

π

∫
dε

f (ε, T ) − f (ε′, T )

ω

×
∫

cond
dk vk (ε)vk (ε′)ImGk (ε) ImGk (ε′).

(63)

It includes the Fermi function f (ε, T ) = [e(ε−εF )/T + 1]−1,
the group velocity vk (ε) = [∂kε/∂ε]−1, the ac shifted energy
ε′ = ε + h̄ω, and the integration

∫
cond avoids localized ranges

(as those shadowed in Fig. 11).
First of all, consider the simplest dc limit:

lim
ω→0

f (ε, T ) − f (ε′, T )

ω
→ 1

4T Cosh2[(ε − εF )/2T ]
,

which then goes to δ(ε − εF ) at T → 0, defining

σ (0, 0) = e2

π

∫
cond

dk v2
k (εF )[ImGk (εF )]2,
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and this becomes zero for εF laying within a localized range.
But such insulating state can be converted to conducting by
applying quite a small external gate voltage Vg. Thus, for the
ANT case of Fig. 11, the initial εF ≈ εres = 0.03 (in units
of t ≈ 2.8 eV) could reach the nearest mobility edges with
gating either ≈ 100 meV upward or ≈ 80 meV downward,
and the resulting reversible insulator-metal transitions should
stay well resolved up to room temperatures.

Otherwise, a quite sharp threshold in optical conductivity
can be reached by applying IR radiation of ∼10 THz (which
may be also combined with a slight gate tuning Vg ∼ 5 meV).
A more detailed description of the σ (ω, T ) behavior readily
follows from the above given T-matrix solutions for vk (ε) and
ImGk (ε). All these effects are most diversified with formation
of multiple mobility edges (above the second critical concen-
tration c1).

The above quantitative results were delimited to a single
choice of Cu impurity in its top position over a host carbon
atom, but they can be readily extended to other impurities in
different positions, providing a variety of possible values for
the relevant εres and γ parameters and so a much broader field
of resulting electronic dynamics. Nevertheless, their qualita-
tive features indicated in the present study should stay proper
for all of them.

Yet another practical condition for validity of the above
conclusions consists in that a NT (or a NR) should be long
enough compared to the localization length lloc of quasiparti-
cle states near the mobility edges. The latter can be estimated
as lloc ∼ vk j τ (ε j ) using Eqs. (31), (32), and (45) for jth mo-
bility edge which results in lloc ∼ 1/�. Thus for the same
instance of ANT with n = 12 we obtain numerically lloc ∼
400 nm; therefore such a NT should extend to more than
∼5 µm in length.

At least, it should be especially noted that, in accordance
with the reasoning in Sec. VII, the highest sensibility of NT
structures to impurity perturbations and the richest variety
of resulting intermittent conductive and localized spectrum
ranges in them are expected in the properly designed TNTs at
a proper choice of impurity centers and their concentrations.
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APPENDIX: LOCATOR AND CORRELATOR

We calculate the integral that contributes to the locator GF
in a 1D nanosystem, for an example of εk mode in ANT,

g(ε) = 1

4π

∫ 2π

−2π

dk

ε − 1 + 2 cos k
2

, (A1)

valid at −3 < ε < 1. By the common change of variable,
t = tan k

4 , this integral is rewritten as

g(ε) = 1

π

∫ ∞

−∞

dt

1 + ε − (3 − ε)t2
, (A2)

FIG. 17. Integration contour for Eq. (A8).

giving the explicit result

g(ε) = i
θ (1 + ε)θ (3 − ε)√

(3 − ε)(1 + ε)
, (A3)

with the standard θ functions delimiting the εk energy range.
Another contribution to G0(ε) from −εk mode, valid at

−1 < ε < 3, is

g(−ε) = i
θ (1 − ε)θ (3 + ε)√

(3 + ε)(1 − ε)
, (A4)

which then enters the full expression for locator GF:

G0(ε) = g(ε) − g(−ε)

4n
. (A5)

The next step is to calculate, for the same ANT, the corre-
lator between a pair of impurities at distance r,

Gr (ε) = gr (ε) − gr (−ε)

4n
, (A6)

through the integral

gr (ε) = 1

4π

∫ 2π

−2π

fr (k, ε)dk, (A7)

with its integrand

fr (k, ε) = eikr

ε − 1 + 2 cos k
2

,

especially considering long distances, r � 1. It can be done
passing to the contour integral,∫

C
fr (k, ε)dk = gr (ε) +

∫ ∞

0
[ fr (2π + iy, ε)

− fr (−2π + iy, ε)]dy = 0, (A8)

where the contour C in the complex momentum plane
(Fig. 17) includes the fr (k, ε) poles:

± kε = ± 2 arccos
1 − ε

2
.

For integration along the imaginary axis we use the
relations cos(±π + iy/2) = − cosh(y/2) and ei(±2π+iy)r =
(−1)2re−yr (noting that the longitudinal distance r between
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impurities takes here only integer or half-integer values) and
the explicit formula

I2r (b) =
∫ ∞

0

e−2ry dy

cosh y + b
= 1

2r + 1

[(
b√

b2 − 1
+ 1

)

× 2F1

(
1, 2r + 1; 2r + 2;

1√
b2 − 1 − b

)

+
(

b√
b2 − 1

− 1

)

× 2F1

(
1, 2r + 1; 2r + 2; − 1√

b2 − 1 + b

)]
, (A9)

where 2F1(n, m; p; q) is the hypergeometric function [46].
Then the sought correlator follows from Eqs. (A6), (A7), and
(A9) analytically as

Gr (ε) = (−1)2r

16πn
[I2r−1(bε ) − I2r+1(bε ) − I2r−1(b−ε )

+ I2r+1(b−ε )] (A10)

with the energy-dependent parameter

bε = 1 − ε

2
.

FIG. 18. Exact discrete values of the correlator Gr (ε) by
Eq. (A10) (solid points) and their approximation by Eq. (A11)
(dashed curves) for the choice of ε = εres and n = 12.

Notably, the full form by Eq. (A10) admits a very simple
approximation:

Gr (ε) ≈ i
(−1)2rε

4n(2πr)2
, (A11)

however quite precise at all nonzero interimpurity distances
(see Fig. 18) and suitable for detailed evaluations as in analy-
sis of particular GE terms (Sec. VIII B).
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