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Constructing Berry-Maxwell equations with Lorentz invariance and Gauss’s law of Weyl monopoles
in four-dimensional energy-momentum space
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We present the construction of a reciprocal electromagnetic field by extending the Berry curvatures into four-
dimensional energy-momentum space. The resulting governing equations, termed Berry-Maxwell equations, are
derived by incorporating Lorentz invariance to constrain the parameter space of energy-momentum. Notably,
these Berry-Maxwell equations exhibit dual and self-dual structures compared to the Maxwell equations. The
very existence of Berry-Maxwell equations is independent of the geometrical phase of matter waves, implying
that they cannot be directly derived from the time-dependent Schrödinger equation. Indeed, we find that the
physical reality of this reciprocal electromagnetic field is rooted in the fundamental principles of special
relativity and Gauss’s law of Weyl monopoles. To validate our theory experimentally, we outline three effects
for verification: (i) Lorentz boost of a Weyl monopole, (ii) reciprocal Thouless pumping, and (iii) plane-wave
solutions of Berry-Maxwell’s equations.
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I. INTRODUCTION

Dualities play a prominent role in modern physics, mani-
festing in various theories and phenomena. Notable examples
include the wave-particle duality and Born reciprocity in
quantum mechanics [1,2], the duality between electric and
magnetic fields in Maxwell equations and its generalizations
[3–7], the Sine-Gordon/Thirring duality [8–11], the Kramers-
Wannier duality in Ising models [12,13], and the gauge and
gravity duality in string theories [14–16]. Typically, dual-
ity arises when seemingly disparate aspects of nature are
connected through the reconstruction or rearrangement of
quantities in a theory or between two different theories. These
dualities often offer alternative approaches for studying non-
perturbative behaviors at the strong coupling regime [16]. In
the context of the debate on reductionism and emergence,
understanding dual physical quantities or theories provides
a perspective of “democracy among particles” [10]. It is im-
portant to note that while duality is a compelling concept, it
lacks a well-defined physical interpretation comparable to the
symmetries that govern the dynamics of a system. Instead, it
appears to be more of a metaphysical or philosophical simi-
larity describing exact (or up to a certain limit) mathematical
structures shared by two or more apparently different theories
[17,18].

In condensed matter physics, the quantum Hall effects
[19–21] and topological insulators [22,23] have emerged as
compelling demonstrations of Berry curvatures in the gen-
eralized parameter space of physical systems. Initially met
with skepticism in quantum mechanics, the closely asso-
ciated geometric phases have since undergone significant
development in understanding topological matters. Notably,
striking analogies arise between the Berry connection, Berry
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curvature, Berry phase, and Chern number in momen-
tum space, and the vector potential, static magnetic field,
Aharonov-Bohm phase, and quantized magnetic flux in real
space, respectively [24,25]. This apparent analogy between
Berry curvature (�) and magnetic field (B) raises intriguing
questions: (i) Is it possible to construct an electriclike Berry
curvature (ϒ) analogous to the real-space electric field (E )?
(ii) If such an analogy can be established, can we then connect
the electriclike and magneticlike Berry curvatures to formu-
late a set of coupled equations, akin to the celebrated Maxwell
equations? Moreover, if these equations do exist, would they
give rise to the following dualities:

ϒ → �, � → −ϒ : Electric/magnetic duality

of Berry curvatures,

ϒ ↔ E , � ↔ B : Berry/Maxwell duality? (1)

The first expression illustrates the self-duality between
Berry curvatures that is similar to the conventional duality be-
tween electric and magnetic fields (E → B, B → −E ), while
the second expression highlights the duality between our con-
structed Berry-Maxwell equations and the known Maxwell
equations. This implies that the structure of Berry-Maxwell
equations remains invariant under self-dual and dual transfor-
mations (1). Exploiting these dual structures in conjunction
with Maxwell equations, we can conjecture the formulation
of Berry-Maxwell equations of Berry curvatures in four-
dimensional (4D) energy-momentum space.

Indeed, a set of Berry-Maxwell equations exists, as
demonstrated in (2). The explicit construction is as follows:
First, we extend the Berry connection and Berry curvature
into 4D energy-momentum space, resulting in the formu-
lation of the Berry four-connection. This extension gives
rise to an additional electriclike Berry curvature, termed
the “reciprocal electric field.” Second, utilizing the Born
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reciprocity [2] between the Berry four-connection and electro-
magnetic four-potential, we can construct the Berry-Maxwell
equations governing the possible dynamics of the reciprocal
electromagnetic field. To achieve this, we introduce Lorentz
invariance for the 4D energy-momentum space and Gauss’s
law for a Weyl point acting as a magnetic monopole [26,27].
Starting with the Weyl monopole, we can explicitly derive the
Berry-Maxwell equations:

∇k · ϒ = 0,

∇k · � = ρW ,

∇k × ϒ = −∂�

∂ω
− jW ,

∇k × � = ∂ϒ

∂ω
, (2)

with the definitions � = ∇k × A(k, ω), ϒ = − ∂
∂ω
A(k, ω) −

∇kχ (k, ω), representing the magneticlike and electriclike
Berry curvatures, respectively. The Berry four-connection
(χ,A) is a direct extension of the Berry connection (A) in
three-dimensional (3D) momentum space. The magneticlike
density ρW corresponds to the density of the Weyl monopoles,
while the term jW represents the magneticlike current flow
of Weyl monopoles. This current flow follows an analogy of
a continuity equation [Eq. (12)], i.e., ∂

∂ω
ρW + ∇k · jW = 0.

The explicit expressions will be constructed in the following
sections. In contrast, the conventional Maxwell’s equations in
the energy-momentum space take the form

ik · E = ρ

ε0

ik · B = 0

ik × E = iωB

ik × B = − iω

c2
E − iω

ε0c2
j (3)

in terms of plane-wave solutions with ρ denoting the elec-
tric charge and j representing the electric current. The dual
and self-dual structures between the Berry-Maxwell equa-
tions (2) and the Maxwell equations (3) in the absence of
sources or currents can be readily verified. However, it is
crucial to emphasize that these two fields exist independently.
In Fig. 1, a quantum matter wave can be described either
as a point-particle in space-time in the classical limit or as
a plane wave in energy-momentum in the quantum limit.
When the quantum system interacts with the Maxwell and
Berry-Maxwell fields, the corresponding interaction forms
are determined through the generalized minimal couplings:
pμ → pμ − eAμ, xμ → xμ − Aμ. Notably, quantum fluctua-
tions between space-time and energy-momentum space are
subjected to Heisenberg’s uncertainty principle. Furthermore,
we present the construction of generalized Lorentz equations
in phase space in Appendix E. These equations can be re-
garded as a specific manifestation of an eight-dimensional
Berry curvature construction, grounded in the semiclassical
wave packet’s motion in phase space, as proposed by Niu and
co-workers [28,29].

Finally, we investigate three nontrivial effects and conse-
quences stemming from our construction of Berry-Maxwell

FIG. 1. Born reciprocity between classical trajectory of a particle
and energy dispersion of a wave. The quantum fluctuations of this
reciprocity in phase space are bounded by the Heisenberg’s uncer-
tainty principle. When a wave packet moves in phase space in the
presence of the electromagnetic field or the reciprocal electromag-
netic field, it can be effectively described through the substitutions
depicted as (left panel) xμ → xμ − Aμ or (right panel) pμ → pμ −
eAμ, respectively, in which Aμ is the Berry four-connection and Aμ is
the electromagnetic four-potential. Notice that the classical trajectory
x = x(t ) leads to a constraint in space-time for a particle’s dynamics,
and the energy-momentum dispersion ω = ω(k) leads to a constraint
in energy-momentum space for a wave equation. In our construction,
these constraints are violated by quantum fluctuation, so the fields
Aμ and Aμ are independently defined.

equations. (i) We note the absence of an electriclike source
in our formulation [Eq. (2)], precluding the direct derivation
of the nontrivial electriclike Berry curvature. Nonetheless,
we demonstrate that the electriclike Berry curvature can be
induced by the Lorentz boost of a Weyl monopole [30–32]
in a moving frame. (ii) We perform a comparative analysis
of various Chern numbers and their physical realizations, re-
vealing that the Chern number in energy-momentum space
exhibits behavior akin to a Thouless pumping [33,34]. We
term this intriguing phenomenon “reciprocal Thouless pump-
ing,” which remains unexplored in experimental observations.
(iii) We derive plane-wave solutions for the Berry-Maxwell
equations even in the absence of Weyl monopoles or cur-
rents. Remarkably, we ascertain that the plane-wave solution
in our construction represents an exotic pointlike event in
space-time. In light of these findings, we envision that
our construction will unveil further dualities within quan-
tum mechanics, and we anticipate that the electriclike Berry
curvature and Berry-Maxwell equations will lead to many
nontrivial physical consequences awaiting for experimental
verifications.

II. GENERALIZATION OF BERRY CURVATURE IN 4D
ENERGY-MOMENTUM SPACE

To be specific, we construct the Berry four-connection
associated with the Floquet-Bloch eigenstates of a space-time
crystal quantum system. Considering a space-time crystal
with a spatiotemporally periodic Hamiltonian, the time-
dependent Schrödinger equation (TDSE) is

ih̄
∂

∂t
ψ (x, t ) =

[
(−ih̄∇ )2

2m
+ V (x, t )

]
ψ (x, t ), (4)

where the periodic potential V (x, t ) = V (x + a, t + T ) varies
in space and time, with lattice constant a and period T .
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Applying the Floquet-Bloch theorem,
ψn(x, t ) = eik·x−iωt un(x, t ), (5)

where k is the Bloch quasi-momentum, ω is the Floquet quasi-
energy, and n is the Floquet-Bloch band index. For simplicity,
we suppress the band index notation in the Berry connec-
tion and curvature below. The Floquet-Bloch state un(x, t ) =
un(x + a, t + T ) satisfies HF |un(x, t )〉 = ω|un(x, t )〉 with
the Floquet Hamiltonian defined as HF = H−ih̄∂t . According
to our general formulation (A4), the Berry connections of
the nth Floquet-Bloch band in energy-momentum space are
given by

χn(k, ω) = +i〈un(k, ω, x, t )|∂ω|un(k, ω, x, t )〉,
An(k, ω) = −i〈un(k, ω, x, t )|∂k|un(k, ω, x, t )〉. (6)

The corresponding Berry curvatures are defined as follows:

ϒ = − ∂

∂ω
A(k, ω) − ∇kχ (k, ω),

� = ∇k × A(k, ω). (7)

Here, ϒ represents the electriclike Berry curvature and
� denotes a magneticlike Berry curvature. The electriclike
Berry curvature has been discussed as an artificial electric
field in an interacting Fermi liquid [35]. Analogous to the
electromagnetic field tensor, we express the Berry curvature
as a “reciprocal electromagnetic field tensor,” given by

�μν = ∂μAν − ∂νAμ =

⎛
⎜⎜⎝

0 +ϒx

−ϒx 0
+ϒy +ϒz

−�z +�y

−ϒy +�z

−ϒz −�y

0 −�x

+�x 0

⎞
⎟⎟⎠.

(8)

The electric Berry connection (6) is related to the magnetic
Berry connections through the energy-momentum dispersion
constraint ω = E (k). To relax this constraint, Li et al. [29]
introduced a “proper time” τ in the geodynamic equation:
L(−i∂x, i∂t ; x, t )�(x, t ) = ih̄ ∂

∂τ
�(x, t ), where L is the

Floquet Hamiltonian HF . By substituting �(x, t ) =
e− iλ0τ

h̄ ψ (x, t ), we obtain the eigenproblem:
L(−i∂x, i∂t ; x, t )ψ = λ0ψ . Applying the Floquet-Bloch
theorem again yields a dispersion function λ0 = λ0(k, ω), a
scale function of energy and momentum. The corresponding
off-shell Floquet-Bloch states uλ0 (x, t ) are given by
L(−i∂x + k, i∂t − ω; x, t )uλ0 (x, t ) = λ0uλ0 (x, t ). The original
wave equation corresponds to the zero “energy” solution:
λ0 = 0. Indeed, the off-shell state uλ0 (x, t ) is analytically
similar to the on-shell state un(x, t ) but with the frequency ω

shifted by λ0. Further details can be found in Appendix E and
[29].

On the other hand, for the time-independent system, we can
further express the magnetic Berry curvature �μν in terms of
�μν = i〈∂Rμ

ψn|∂Rν
ψn〉−i〈∂Rν

ψn|∂Rμ
ψn〉, as an insert that the

completeness
∑

n′ |ψn′ 〉〈ψn′ | = I; we then obtain the spectral
representation:

�μν = i
∑

n′

〈
∂Rμ

ψn

∣∣ψn′
〉〈
ψn′

∣∣∂Rν
ψn

〉 − (μ ↔ ν)

= i
∑
n′ �=n

〈n|∂Rμ
H |n′〉〈n′|∂Rν

H |n〉
(En − En′ )2 − (μ ↔ ν). (9)

Notice that the term n′ = n is canceled out due to the
substitution (μ ↔ ν), where n, n′ represent an abbreviated no-
tation for Bloch eigenstates ψn, ψn′ . It is important to note that
the Berry curvature can be properly defined for nonadiabatic
Floquet steady states when the parameter space of the Bloch
basis is extended to the Floquet-Bloch basis. Constructing
the generalized Berry phase (aka, Aharonov-Anandan phase
[36]) does not necessarily require adiabatic condition; instead
a cyclic evolution is sufficient to define the geometric phase.
The Berry curvature diverges at the degenerate point where
En = En′ . To explore the power law of this divergence, we lin-
earize the denominator at the degenerate point when R = Rc:
En − En′ = ( ∂En

∂R − ∂En′
∂R )(R − Rc). Given that ( ∂En

∂R − ∂En′
∂R ) �= 0

and the numerator is nonzero, we can expect the relationship
� ∼ 1

(R−Rc )2 . Consequently, we derive a nontrivial Gauss’s law

for this divergence of Berry curvature: ∇R · � ∼ δ3(k − kc).
It is noteworthy that at the degenerate point where En =

En′ , the adiabatic approximation fails, resulting in a singu-
larly ill-defined magneticlike Berry connection. However, the
Berry curvature still remains comprehensible by treating the
divergence as a magnetic monopole in momentum space. For
instance, consider the example of a 3D Weyl point, charac-
terized by a Hamiltonian Heff = vF k · σ , representing a level
crossing of two nondegenerate energy bands (see Ref. [37]).
Explicitly, the magneticlike Berry curvature is given by

� = ∇k × A = − êk

2k2
. (10)

Considering a monopole located at the origin, we de-
fine the scalar potential Ṽ (k) = − 1

2k , and subsequently take
the gradient of Ṽ (k) in the momentum space, namely, � =
−∇kṼ (k) = − ∂

∂k (− 1
2k ) = − êk

2k2 . Notably, � can be expressed
as the negative gradient of a scalar potential, leading to ∇k ×
� = 0, since the curl of a gradient always equals zero. At
the moment, we can derive the monopole density, given by
ρW = ∇k · � = 2π δ3(k).

Note that incorporating higher-order terms in the ex-
pansion of En = αn p + βn p2 + γn p3 + . . . can unveil the
contribution of high-order energy-momentum dispersion to
the Berry curvature. This expansion reveals that around the
critical point Rc, the higher-order terms are negligible. As
one moves away from Rc, the divergence of Berry curvature
manifests an inhomogeneous magnetic polarization effect.
Such a polarized monopole density would be inserted into
the Berry-Maxwell equations as an inhomogeneous reciprocal
source, which offers us various types of magnetic inductions
to explore the reciprocal electromagnetic field.

III. PROOF OF BERRY-MAXWELL EQUATIONS

Inspired from the derivation of Maxwell equations through
the marriage of special relativity and Gauss’s law of electric
charge (see Appendix D), we introduce the Lorentz invariance
into the Berry curvature. We consider a moving frame S′
with speed v in the x direction relative to the frame S at
rest, where the coordinate systems are related by the Lorentz
boost: x′ = γ (x−βct ), ct ′ = γ (ct−βx), while y′ = y, z′ = z
remain unchanged. Similarly, the energy-momentum space
undergoes the same Lorentz boost. That is to say, we can
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TABLE I. Lorentz transformation of physical quantities in spacetime (left panel) and dual energy-momentum (right panel) space. In the
left panel, three quantities (position, current, and electromagnetic potential) are displayed that transform according to the variant form of
A2 − Z · Z under Lorentz transformations. The right panel illustrates three dual quantities (momentum, reciprocal current, Berry connection)
that remain Lorentz invariant.

Quantities in (r, t) A (r, t) Z (r, t) Quantities in (k,ω) A (k,ω) Z (k,ω)

Position four-vector Time, ct Position, r Four-momentum Energy (or frequency), E /c momentum (or wave vector), p

Four-current Electric charge, ρ Electric current, j Reciprocal magnetic Monopole density, ρW Magneticlike current, jW
four-current

Electromagnetic Scalar potential, ϕ Vector potential, A Berry four-connection Reciprocal scalar potential, χ Reciprocal vector potential, A
four-potential

imprint the constraint of Lorentz invariance from space-time
observables into the quantities in energy-momentum space.
The corresponding Lorentz transformation is given by⎛

⎜⎜⎜⎝
ω′/c

k′
x

k′
y

k′
z

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

ω/c

kx

ky

kz

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

γ (ω/c − βkx )

γ (kx − βω/c)

ky

kz

⎞
⎟⎟⎟⎟⎠, (11)

where β = v/c and γ = 1/
√

1 − β2; see the derivations in
Appendix C. Correspondingly, the Lorentz transformation is
given explicitly by

� =

⎛
⎜⎜⎜⎝

γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎠. (12)

From Gauss’s law of the Weyl monopole, we apply the
Lorentz transformation and eventually we can obtain the fol-
lowing four equations (see Ref. [38]):

∇k′ × �′ = 0 ⇒
{∇k · ϒ = 0
∇k × � = ∂ϒ

∂ω

,

∇k′ · �′ = ρ
′
W ⇒

{∇k · � = ρW

∇k × ϒ = − ∂�
∂ω

− jW
, (13)

which is the main achievement (1) of our construction of
Berry-Maxwell equations in this paper. It is essential to
acknowledge that, based on the argument from Feynman’s
lectures [39], there are additional phenomena beyond the
scope of our construction that we cannot explain, even in the
classical electrodynamics, such as the radiation reaction effect
[40,41]. In addition, we obtain the continuity equation of the
reciprocal magneticlike source and current:

∂

∂ω
ρW + ∇k · jW = 0. (14)

We emphasize that the Berry-Maxwell equations do not
emerge solely from the geometric phase associated with the
Schrödinger equation of matter waves. Instead, we find that
the full Berry-Maxwell equations can only be derived from
the principles of special relativity and Gauss’s law of the Weyl

monopoles in parameter space of 4D energy-momentum. The
very existence of the monopoles stems from the level crossing
between two Floquet-Bloch bands, and is protected due to its
topological origin. Consequently, the monopoles cannot be
created or destroyed by Lorentz transformations. It is worth
noting that while we introduce the Lorentz invariance to the
reciprocal Berry-Maxwell field, we do not require the Lorentz
invariance for the matter waves. Moreover, it is essential to
comprehend that the conventional Maxwell equations can also
be derived from Gauss’s law of electric charges and the prin-
ciples of special relativity [38] (see Appendix D for further
details).

As an extension of our dual construction, we recognize
that Weyl monopoles arise from the level crossing of two
nondegenerate Floquet-Bloch bands. Nonetheless, the origin
of electric charges in the Maxwell equations is a natural as-
sumption in real space-time. The fundamental physical origin
of electric charge remains elusive even in modern physics.
While theorists have explained the electromagnetic forces
through gauge invariance when developing the elegant theory
of charge quantization by Dirac in 1931 [4], which is related
to the coexistence of real-space magnetic monopoles yet to be
experimentally observed, it is safe to say that this “quantum
origin” does not account for the full Maxwell equations. The
reason for this discrepancy lies in our limited understanding
of how Gauss’s law of electron charge emerges from matter
waves. Instead, our construction offers a clear understanding
of the origins of Weyl monopoles in a reciprocal electromag-
netic field.

In general, we can readily verify that the reciprocal electro-
magnetic field strength (6) must transform as a second-rank
tensor: �′μν = �μ

ρ �ν
σ�ρσ . Alternatively, in a more concise

form, this Berry curvature can be represented as �′ = ���T ,
wherein the indices are hidden. Consequently, by applying
the Lorentz transformation, we can effortlessly compute and
analyze the generalized Berry connections and curvatures for
further implementations. Furthermore, given four quantities A
and Z = (Zx, Zy, Zz ) and their Lorentz-boosted counterparts
A′ and Z ′ = (Z ′

x, Z ′
y, Z ′

z ), there exists a relation of the form

A2 − Z · Z = A′2 − Z′ · Z′. All these quantities have Lorentz
invariance transform similar to the space-time. As a compari-
son, we list the Lorentz transformation of physical quantities
in both energy-momentum space and space-time; see Table I.

A notable aspect of the construction [Eq. (2)] lies in its
duality and self-duality when compared to the conventional
Maxwell equations, which can be attributed to the concept
of Born reciprocity [2]. The self-duality reveals an electric-
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FIG. 2. Lorentz boost of a Weyl monopole in 4D energy-
momentum space. The Lorentz transformation is applied in the
space-time, and thus applied to the corresponding energy-momentum
space. An electriclike Berry curvature (ϒ ′) can be generated from the
Lorentz boost; see the inset of (b).

magnetic duality as follows: E → B, B → −E , and ϒ →
�, � → −ϒ . The duality between Maxwell and Born-
Maxwell equations is represented as (E , B) ↔ (ϒ,�) and
the corresponding Born reciprocity xμ → pμ, pμ → −xμ.
Moreover, we also observe the dual structures of the elec-
tromagnetic field and the reciprocal electromagnetic field in
their coupling with matter waves (pμ → pμ − eAμ, xμ →
xμ − Aμ); see Appendix E. Despite these dualities, in the fol-
lowing sections we will present three nontrivial observations
arising from the Berry-Maxwell equations.

IV. LORENTZ BOOST OF A WEYL MONOPOLE

As depicted in Fig. 2, assuming that the Berry curva-
ture of a Weyl monopole at rest in the S frame is given

by �(k) = − êk
2k2 , the monopole density is given by ρW =

∇k · � = 2πδ3(k − k0), and the electriclike Berry curvature is
zero; under the Lorentz transformation, the magneticlike and
electriclike Berry curvatures in the S′ frame become

�k′⊥ (kx = 0) = − γ

2k′2
⊥

,

ϒϕ (k
′
x = 0) = −β

c

γ

2k′2
⊥

,

�kx (k
′
⊥ = 0) = − 1

2γ 2k′2
x

, (15)

with the relative velocity β = v/c, the Lorentz factor γ =
1/

√
1 − β2, and we set k0 = 0 and k′2

⊥ = k′2
y + k′2

z . The boost
feature of a Weyl monopole is presented in the inset of
Fig. 2(b).

V. RECIPROCAL THOULESS PUMPING

It is intriguing to reexamine our reciprocal electromagnetic
field in the context of the Chern number and its physical real-
izations. Figure 3 summarizes a dual correspondence between
various physical phenomena and their corresponding Chern
numbers across different two-dimensional spaces. Figure 3(a)
illustrates the Chern number in the x-y plane, exemplified
by the superconducting flux quantization [42]. Figure 3(b)
shows the Chern number in the x-t plane, related to the chiral
anomaly [43,44]; Fig. 3(c) presents the Chern number in the
kx-ky plane, pertaining to the physics of the quantum Hall
effect [19]; and Fig. 3(e) demonstrates the Chern number
in the k-t plane (or k-y plane) for Thouless pumping [34].
These mappings underscore the duality between space-time

FIG. 3. A gallery of the two-dimensional Chern numbers and their physical realizations. The superconducting magnetic flux (a), chiral
anomaly (b), quantum Hall effect (c), Thouless pumping and synthetic Thouless pumping (e) are topological physical effects, which are
associated with the Chern numbers in different two-dimensional spaces, respectively. In a dual perspective, our proposed reciprocal Thouless
pumping (d) is viewed as a realization of the Chern number in the energy-momentum space.
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and energy-momentum space, offering a bird’s-eye view of
topological effects across various systems.

Specifically, the Chern number in Fig. 3(c) associated
with the magneticlike Berry curvature is given by C =

1
2π

‚
� · ds = 1

2π

‚
�kx,ky dkxdky. Here, the Berry curva-

ture is solely derived from a time-independent system. The
aforementioned equation involves an integral over the two-
dimensional (2D) Brillouin zone of momentum space. This
Chern number corresponds to the quantized magnetic flux of
superconductors in real space (C = 1

2π

‚
Bdxdy), and car-

ries significant physical consequences, such as the quantized
conductance in quantum Hall effect [19,20]. They hold dual
structure. Building upon our extension, we can also find a
Chern number based on the electriclike Berry curvature [see
Fig. 3(d)]:

C = 1

2π

‹
ϒ (ω, k)dωdk. (16)

In this case, the integral is performed over the two-
dimensional Floquet-Brillouin zone of energy-momentum
space. Although there are several platforms capable of direct
measurement of the Berry phase and Berry curvature [45–51],
a critical question we raise here is whether this electriclike
Chern number (or the curvature ϒ) corresponds to any known
or yet unknown physical observation. Regrettably, there is
little experimental evidence that relates to this phenomenon
so far, except for a relevant case of the Zak phase only
in energy space that has been analyzed in a photonic time
crystal related to electriclike Berry connection [52]. How-
ever, by replacing the frequency (ω) with time (t), this Chern
number corresponds to Thouless charge pumping [33,34], de-
scribed by C = 1

2π

‚
ϒ(t, k)dtdk [Fig. 3(e)], indicating that

one can construct a tight-binding model, such as the Rice-
Mele model [33], to illustrate the pumping process of the
discrete charge per cycle in an adiabatic manner. In addition,
from a dual perspective, this electriclike Chern number is a
kind of dual quantum anomaly similar to the chiral anomaly
[43,44] or the Atiyah-Singer index [53], which has the form
C = 1

2π

˜
Edtdx.

VI. “TRIVIAL” PLANE-WAVE SOLUTIONS

The last implementation of our construction is that in the
absence of a source or current ρW = 0, jW = 0, from (2) we
can easily derive ∇k × (∇k × �) = −∇2

k � = ∇k × ( ∂ϒ
∂ω

) =
− ∂2�

∂ω2 , resulting in the wave equation for the magneticlike
Berry curvature:

∂2�

∂ω2
− ∇2

k � = 0. (17)

Similarly, for the electriclike Berry curvature we have

∂2ϒ

∂ω2
− ∇2

k ϒ = 0. (18)

From these equations, we can obtain the plane-wave so-
lutions � = �(k, ω) = e−ir̃k+it̃ω, ϒ = ϒ(k, ω) = e−ir̃k+it̃ω.
Both the electriclike and magneticlike Berry curvatures are
“plane waves” in terms of energy and momentum coordinates.
A Fourier transformation converts the Berry-Maxwell waves
into real space-time: �(r, t ) = ´

dωdk3�(k, ω) e−ikr−iωt =

δ3(r−r̃)δ(t−t̃ ), ϒ(r, t ) = δ3(r−r̃)δ(t−t̃ ), where both �(r, t )
and ϒ(r, t ) represent well-defined events in the space-time
at (r̃, t̃ ).

VII. CONCLUSIONS

In this paper, we present a construction of Berry-Maxwell
equations with Lorentz invariance, derived from special
relativity and Gauss’s law of Weyl monopoles in 4D energy-
momentum space. The dual structures of Berry-Maxwell
equations are highlighted. The profound implications of
the electriclike Berry curvature and the potential for gen-
erating reciprocal electromagnetic fields are explored. We
propose three significant effects: the Lorentz boost of a Weyl
monopole, reciprocal Thouless pumping, and plane-wave
solutions. The proposed experimental investigations arising
from these frameworks hold the promise of providing invalu-
able insights into the fundamental properties and physical
behaviors of the Berry-Maxwell equations.
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APPENDIX A: GENERALIZATION OF BERRY
CONNECTIONS AND BERRY CURVATURES IN THE

TIME-DEPENDENT SCHRÖDINGER EQUATION

Supposing that the Hamiltonian varies slowly and paramet-
rically in time, one of the Hamiltonian’s eigenstates, ψn, will
evolve into

ψ (t ) = eiγn (t )eiθn (t )ψn(t ), (A1)

where the dynamical phase θn(t ) = − 1
h̄

´ t
0 En(t ′)dt ′ and the

geometric phase γn(t ) = i
´ t

0 〈ψn(t ′)|∂t ′ |ψn(t ′)〉dt ′.
Let us say the eigenstate depends on time paramet-

rically (for the relativistic regime, this time is proper
time), because there are some system parameters R(t ) =
[R̄1(t ), R2(t ), R3(t ), · · ·] in the Hamiltonian which are chang-
ing slowly with time:

∂

∂t
ψn[R(t )] =

(
∂ψn

∂R̄1

)
∂R̄1

∂t
+

(
∂ψn

∂R2

)
∂R2

∂t

+
(

∂ψn

∂R3

)
∂R3

∂t
+ · · · = (∂μψn)

∂Rμ

∂t
. (A2)

It is noteworthy that we define the parameter space R(t ),
which possesses a symplectic structure, in order to engage
with the constraints from the special relativity. Specifically,
we have the flexibility to choose the parameter space R(t )
as either the energy-momentum space (ω, kx, ky, kz ) or the
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space-time (t, x, y, z) (note that the original time in the
temporal evolution of the system corresponds to the proper
time, sometimes denoted as τ , and thus H (τ ) = H[R(τ )]).
Consequently, we can identify special parameter spaces that
exhibit Lorentz invariance under the Lorentz transformation,
so that the geometric phase

γn(T ) = i
˛ 〈

ψn

∣∣∂Rμ
ψn

〉
dRμ. (A3)

Note that this Berry phase is different from the con-
ventional geometric phase [24] which does not require the
Lorentz invariance on the parameter space.

Now we can define the Berry connection and Berry cur-
vature in analogy with the four-potential and electromagnetic
field tensor:

Aμ = i
〈
ψn

∣∣∂Rμ
ψn

〉
,

�μν = ∂νAμ − ∂μAν, (A4)

so that the Berry phase (A3)

γn(T ) =
˛
C
AμdRμ =

ˆˆ
S

�μνdRμdRν, (A5)

where the surface S is the surface circulated by the loop C.
Later, we will see that the measure dRμdRν is an invariance
under Lorentz transformation.

APPENDIX B: CONSTRUCTION OF GAUSS’S LAW
OF WEYL POINTS AS THE SOURCE OF THE

MAGNETICLIKE BERRY CURVATURE

In order to construct a magnetic monopole in momentum
space as a source for generating Berry-Maxwell equations, for
a time-independent quantum system we can express the Berry
curvature �μν in terms of

�μν = i
〈
∂Rμ

ψn

∣∣∂Rν
ψn

〉 − i
〈
∂Rν

ψn

∣∣∂Rμ
ψn

〉
(B1)

as we insert that the completeness
∑

n′ |ψn′ 〉〈ψn′ | = I , and
then we obtain

�μν = i
∑

n′

〈
∂Rμ

ψn

∣∣ψn′
〉〈
ψn′

∣∣∂Rν
ψn

〉 − (μ ↔ ν)

= i
∑
n′ �=n

〈n|∂Rμ
H |n′〉〈n′∣∣∂Rν

H |n〉
(En − En′ )2 − (μ ↔ ν). (B2)

Now we notice that the term n′ = n is canceled out by the
symmetry under (μ ↔ ν), where n, n′ represent the abbrevi-
ated notation for eigenstates ψn, ψn′ , respectively.

We notice that the Berry curvature will diverge at the de-
generate point of two bands where En = En′ . In order to see
the power law of the divergence, we linearize the dominator
at the degenerate point when R = Rc:

En − En′ =
[

En(Rc) + ∂En

∂R
(R − Rc)

]

−
[

En′ (Rc) + ∂En′

∂R
(R − Rc)

]

=
(

∂En

∂R
− ∂En′

∂R

)
(R − Rc). (B3)

Under the conditions that ( ∂En
∂R − ∂En′

∂R ) �= 0 and the numer-
ator is nonzero, we can expect

� ∼ 1

(R − Rc)2 . (B4)

Subsequently, a nontrivial Gauss’s law with a power law
behavior emerges: ∇R · � ∼ δ3(k − kc). It is important to
highlight that at the degenerate point where En = En′ , the
adiabatic approximation fails, leading to the Berry connection
being singularity ill defined. However, the Berry curvature re-
mains comprehensible by taking the divergence as a magnetic
monopole in the parameter space.

To be specific, let us take an example (see Ref. [37]). A 3D
Weyl point has a Hamiltonian Heff = vF k · σ in momentum
space. One of the eigenstates is given by

|u+(k, θ, φ)〉 =
(

sin θ
2

− cos θ
2 eiφ

)
, (B5)

with cos θ = kz

k , k =
√

k2
x + k2

y + k2
z . The Berry connection is

A = −i〈un(k, ω, x, t )|∇k|un(k, ω, x, t )〉 and the derivative is
∇k = (∂k,

1
k ∂θ ,

1
k sin θ

∂φ ), so that

(Ak,Aθ ,Aφ ) =
(

0, 0,
cos2 θ

2

k sin θ

)
, (B6)

and, correspondingly, the Berry curvature is � = ∇k ×
A = − êk

2k2 .

APPENDIX C: LORENTZ INVARIANCE OF THE
INTERVAL BETWEEN SPACE-TIME AND THE PHASE

OF A PLANE WAVE

In general, we address that the choice of parameter space is
arbitrary, but if the parameter space is space-time or energy-
momentum space, we would be glad to introduce the Lorentz
constraints on the parameter spaces. The two postulates of the
special relativity naturally give rise to the Lorentz transfor-
mation, which can be interpreted as a boost transformation of
space-time from the S frame to the S′ frame (see Fig. 1),⎛

⎜⎜⎝
ct ′
x′
y′
z′

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

ct
x
y
z

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

γ ct − βγ x
γ x − βγ ct

y
z

⎞
⎟⎟⎠, (C1)

with β = v/c and γ = 1/
√

1 − β2. Correspondingly, the in-
verse Lorentz transformation is

t = γ

(
t ′ + vx′

c2

)

x = γ (x′ + vt ′). (C2)

y = y′

z = z′
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We know that the interval ds2 = c2dt2 − dx2 − dy2 −
dz2 = c2dt ′2 − dx′2 − dy′2 − dz′2 is invariant under the
Lorentz transformation, so this interval is a Lorentz invari-
ance. We can also construct a gap invariance dm2 = dω2 −
c2dk2, which implies the energy-momentum transform under
Lorentz transformation is similar to the transformation of
space-time coordinates:⎛

⎜⎜⎜⎜⎝
ω′/c

k′
x

k′
y

k′
z

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

γ −βγ

−βγ γ

0 0

0 0

0 0

0 0

1 0

0 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

ω/c

kx

ky

kz

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

γ (ω/c − βkx )

γ (kx − βω/c)

ky

kz

⎞
⎟⎟⎟⎟⎠. (C3)

Now, let us check a phase term:

k′ · r′ − ω′t ′ = γ

(
kx − βω

c

)
(γ x − βγ ct ) − · · ·

= k · r − ωt = invariants. (C4)

Therefore the phase of a plane wave is also a Lorentz
invariant, which indicates the consistence between Fourier
transformation and Lorentz transformation, even for the
Maxwell equations in coupling with the nonrelativistic
Schrödinger equation. The Lorentz transformation (C3) be-
tween frequency (energy) and wave vector (momentum) can
be experimentally confirmed by the Doppler effect and the
aberration effect.

APPENDIX D: CONSTRUCTING MAXWELL EQUATIONS
BY INTRODUCING LORENTZ INVARIANCE AND

GAUSS’S LAW OF ELECTRIC CHARGE

Even though we have embraced the validity of the Maxwell
equations, it remains pertinent to explore the derivation, as
well as the limitations, of these equations through the
gauge invariance of the Schrödinger equation. To this end,
we proceed by constructing the 4-form vector potential in
3+1D space-time. We know that the dynamics of a quantum
particle moving in the presence of electromagnetic field is
governed by

ih̄
∂

∂t
ψ = Hψ, (D1)

with the minimal coupling H = 1
2m ( h̄

i ∇−eA)
2 + eφ, and

there is a gauge degree of freedom:

A′ = A + ∇�

φ′ = φ − ∂

∂t
�. (D2)

Meanwhile the wave function satisfies

ψ ′ = e
ie�

h̄ ψ, (D3)

We find that the new equation has the same structure:

ih̄
∂

∂t
ψ =

[
1

2m

(
h̄

i
∇ − eA

)2

+ eφ

]
ψ,

ih̄
∂

∂t
ψ ′ =

[
1

2m

(
h̄

i
∇ − eA′

)2

+ eφ′
]
ψ ′. (D4)

This gauge invariance is important in quantum mechanics,
and it offers an alternative way to define the vector potential.
Let us assume A′ = A + ∇� = 0, φ′ = φ− ∂

∂t � = 0, so that
we have

A = −∇�, φ = ∂

∂t
�. (D5)

Hence we obtain � = �(r, t ). From the second equation
in (D4) with A′ = 0, φ′ = 0, the new wave function ψ ′ has
a plane-wave solution: ψ ′ = ψ0e

i(pr−Ept )
h̄ with the energy dis-

persion Ep = p2

2m . By employing this plane-wave solution, we
subsequently solve the original wave function:

ψ = e− ie�(r,t)
h̄ ψ ′ = e− ie�(r,t)

h̄ e
i(pr−Ept )

h̄ ψ0 = e
i(pr−Ept )

h̄ u(r, t ).

(D6)

In this sense, we can rewrite (D5) as

φ = ∂

∂t
� =

(
ih̄

q

)
〈u(r, t )|∂t|u(r, t )〉,

A = −∇� = −
(

ih̄

q

)
〈u(r, t )|∇|u(r, t )〉. (D7)

Furthermore, we redefine the electric and magnetic fields:

E = − ∂

∂t
A − ∇φ = ∂

∂t
(∇�) − ∇

(
∂

∂t
�

)
= 0

B = ∇ × A = −∇ × (∇�) = 0. (D8)

The occurrence of the first zero arises due to the inter-
change of the spatial and time derivatives, while the second
zero emerges from the property that the curl of a gradient
is zero. This is reasonable, as it highlights the fact that the
mere application of a local gauge transformation from the
time-dependent Schrödinger equation (TDSE) is insufficient
to derive the complete set of conventional Maxwell equations.

Indeed, we can derive the Maxwell equations by directly
employing the principles of special relativity and Gauss’s law
of electric charge. Specifically, when considering an electric
charge in the moving frame S′, it satisfies the electrostatic
equation,

E ′ = 1

4πε0

êr′

r′2 , (D9)

so that we can easily obtain

∇ × E ′ = 0

∇ · E ′ = ρ ′

ε0
. (D10)

By applying the Lorentz transformation to (D10) into the
rest frame S, Haskell [38] showed that these two equations
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transform into the following four equations:

∇ × E ′ = 0 ⇒
{∇ · B = 0
∇ × E = − ∂

∂t B
,

∇ · E ′ = ρ ′

ε0
⇒

{∇ · E = ρ

ε0∇ × B = μ0J + ε0μ0
∂
∂t E

. (D11)

The Maxwell equations can be expressed as

∂Fμν

∂xλ

+ ∂Fνλ

∂xμ

+ ∂Fλμ

∂xν

= 0

∂Fμν

∂xν

= μ0Jμ, (D12)

where Fμν is the electromagnetic field tensor, and Jμ = (ρ, J)
is the four-current following the continuity equation ∂μJμ =
0. In general, the conventional electromagnetic field tensor is
explicitly given by

Fμν = ∂νAμ − ∂μAν =

⎛
⎜⎜⎝

0 +Ex

−Ex 0
+Ey +Ez

−Bz +By

−Ey +Bz

−Ez −By

0 −Bx

+Bx 0

⎞
⎟⎟⎠.

(D13)

Here we demonstrate why the Maxwell equations can-
not be derived from the gauge transformation for TDSE.
We then derive the conventional Maxwell equations in four-
dimensional space-time from Lorentz invariance and Gauss’s
law of electric charge. This construction reveals a dual struc-
ture with our formulation of the Berry-Maxwell equations.

APPENDIX E: PHASE-SPACE WAVE PACKET
IN THE PRESENCE OF BOTH MAXWELL

AND BERRY-MAXWELL EQUATIONS

In this section, we compare the on-shell and off-shell
Floquet-Bloch states. For our setup, the on-shell and off-shell
states are analytically similar. We introduce a “proper time” to
relax the energy-momentum dispersion constraint [29,54]. We
start from the time-dependent Schrödinger equation (TDSE)
in standard form as

L(−i∂x, i∂t ; x, t )ψ = 0, (E1)

where the operator L(∂t , ∂x; t, x) = H−ih̄∂t = HF is the
Floquet Hamiltonian. By applying the Floquet-Bloch
theorem, ψ (x, t ) = e−iωt+ikxu(x, t ), we obtain the
dispersion relation by solving the following equation:
L(−i∂x + k, i∂t − ω; x, t )u(x, t ) = 0. Thus we have the
dispersion ω = E (k). To relax the constraint, we extend the
TDSE (E1) to the geodynamic equation:

L(−i∂x, i∂t ; x, t )�(x, t ) = ih̄
∂

∂τ
�(x, t ), (E2)

where τ is an introduced “proper time” representing quantum
state evolution. Substituting �(x, t ) = e− iλ0τ

h̄ ψ (x, t ) yields the
eigenproblem:

L(−i∂x, i∂t ; x, t )ψ = λ0ψ. (E3)

The original equation corresponds to the zero
“energy” solution: λ0 = 0. Applying the Floquet-Bloch

theorem again gives a dispersion function λ0 = λ0(k, ω)
[29]. The off-shell Floquet-Bloch states uλ0 (x, t ) satisfy
L(−i∂x + k, i∂t − ω; x, t )uλ0 (x, t ) = λ0uλ0 (x, t ), with the
on-shell constraint ω = ω(k) arising when λ0 = 0. It indicates
the physical world lies in the shell λ0 = 0. We rewrite the
geodynamic equation (E2) as

[L(−i∂x, i∂t ; x, t ) − ih̄∂τ ]�(x, t )

= [H (∂x, x, t ) − ih̄∂t − ih̄∂τ ]�(x, t ) = 0. (E4)

Here the geodynamic equation has two timescales: physi-
cal time for periodic modulation and the introduced “proper
time.” The proper time τ corresponds to the spatiotemporal
deformation of space-time crystals, which is analogous to
these additional “slow” time variables in solving ODE and
PDE systems using multiple scales [55]. For our purposes, the
Floquet Hamiltonian is independent of proper time, leading to

L(−i∂x + k, i∂t − ω − λ0; x, t )uλ0 (x, t ) = 0. (E5)

The off-shell Floquet-Bloch state uλ0 (x, t ) is analytically
similar to the on-shell Floquet-Bloch state u(x, t ) with a fre-
quency shift of λ0. Following Niu et al. [28,37], we define a
quantum event wave packet in eigendimension phase space:

|w(k0, ω0, x, t )〉 =
ˆ

dk3dω a(k, ω)|u(k, ω, x, t )〉, (E6)

where a(k, ω) is a localized function in energy-momentum
space centered at (ω0, k0). Analogous to classical mechanics,
a(k, ω) represents a delta function representing an event in
special relativity. We couple both the Maxwell electromag-
netic field and the reciprocal Maxwell electromagnetic field
through the generalized minimal couplings:

h̄k → h̄k − eA(x, t )

h̄ω → h̄ω − eφ(x, t )

x → x − A(k, ω)

t → t − χ (k, ω). (E7)

The semiclassical motion of equation of the wave packet in
phase space along the world line with a proper time τ is

ṫ = −∂λ0

∂ω
− ϒ · k̇,

ẋ = ∂λ0

∂k
− � × k̇ − ϒω̇,

ω̇ = ∂λ0

∂τ
− eE · ẋ,

k̇ = −∂λ0

∂x
− B × ẋ − eEṫ . (E8)

It is worth noting that Eq. (E6) is not merely an extension of
the semiclassical phase space wave packet from Ref. [35]. As
we explicitly pointed out, the Berry-Maxwell equations can
only be obtained by introducing Einstein’s Lorentz covariance
into the momentum-energy space, rather than solely in-
duced from the governing wave equation. Therefore, Eq. (E6)
represents the dynamics of a quantum event wave packet
in the presence of both the electromagnetic field (E , B)
and the reciprocal electromagnetic field (ϒ,�), which sat-
isfy the Maxwell equations and the Berry-Maxwell equations,
respectively.
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