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We investigate how the dynamical fluctuations of many-body quantum systems out of equilibrium can be
mitigated when they are opened to a dephasing environment. We consider the survival probability (spectral form
factor with a filter) evolving under different kinds of random matrices and under a spin-1/2 model with weak
and strong disorder. In isolated many-body quantum systems, the survival probability is non-self-averaging at
any timescale, that is, the relative variance of its fluctuations does not decrease with system size. By opening
the system, we find that the fluctuations are always reduced, but self-averaging can only be ensured away from
critical points. Self-averaging is achieved for the long-time dynamics of full random matrices, power-law banded
random matrices deep in the delocalized phase, and the Rosenzweig-Porter ensemble in all phases except at
the localization transition point. For the spin model, the survival probability becomes self-averaging only in the
chaotic regime provided the initial states are in the middle of the spectrum. Overall, a strongly non-self-averaging
survival probability in open systems is an indicator of criticality.
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I. INTRODUCTION

The effects of the environment on a quantum system are
often considered to be detrimental in the context of quan-
tum technologies. External interactions usually result in the
rapid loss of quantum coherence, which hinders the realiza-
tion of quantum information processing and has motivated
the development of methods to reduce decoherence. How-
ever, the influence of the environment can also be beneficial.
For example, signatures of quantum chaos can be enhanced
by certain kinds of non-Hermitian evolution facilitating their
study [1–3]. Dynamical fluctuations can also be decreased by
slightly opening a system to a dephasing environment [3–7],
a strategy that has been used to achieve self-averaging for
the spectral form factor of random matrices [8]. The present
paper explores the effects of a dephasing environment on the
dynamical fluctuations of experimental models.

An observable O is self-averaging when its relative vari-
ance, that is, the ratio between its variance and the square of
its mean [9–17],

RO(t ) = σ 2
O(t )

〈O(t )〉2 = 〈O2(t )〉 − 〈O(t )〉2

〈O(t )〉2 , (1)

goes to zero as the system size increases, where 〈·〉 indicates
average over an ensemble. When this happens, the observ-
able does not fluctuate in the thermodynamic limit [18]. The
presence of self-averaging is important because it implies that
the number of samples used in experiments and in numerical
analysis can be decreased as the system size L increases,

and theoretical models can be built to describe the physical
properties of O using finite samples.

Lack of self-averaging is usually associated with the criti-
cal point of disordered systems at equilibrium [9–16,19–27].
In studies of many-body localization, lack of self-averaging
hinders scaling analysis [28] because, in addition to having
to deal with a Hilbert space that grows exponentially with L,
the number of samples cannot be reduced as the system size
increases.

Self-averaging properties are also studied in systems out
of equilibrium [17,29–34], as indicated with the time depen-
dence of RO(t ) in Eq. (1). Lack of self-averaging has been
observed for large time intervals even in the chaotic regime, as
shown in the spectral form factor [35–38]. The spectral form
factor is the Fourier transform of the two-point correlation
function of the energy spectrum [39],

SFF(t ) = 1

N2

〈∑
n,m

e−i(En−Em )t

〉
, (2)

where h̄ = 1, N is the dimension of the Hilbert space, and
En’s are the eigenvalues of the system Hamiltonian with spec-
tral decomposition H = ∑

n En|En〉〈En|. In chaotic systems,
SFF(t ) presents a slope-dip-ramp-plateau structure [6,40–67],
known as a correlation hole [6,40–60], that detects short- and
long-range level correlations similar to those in full random
matrices. The absence of self-averaging for the spectral form
factor implies that ensemble averages are necessary for reveal-
ing the correlation hole.
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The spectral form factor can be interpreted as the average
survival probability,

〈SP(t )〉 = 〈|〈�(0)|�(t )〉|2〉

=
〈∑

n,m

∣∣c(0)
n

∣∣2∣∣c(0)
m

∣∣2
e−i(En−Em )t

〉
, (3)

of an initial state |�(0)〉, where the coefficients c(0)
n =

〈En|�(0)〉 play the role of a filter for SFF(t ). When the initial
state is a coherent Gibbs state, |c(0)

n |2 = e−βEn/Z (β ) are the
Boltzmann factors, Z (β ) = ∑N

n=1 e−βEn , and β is the inverse
temperature [55,68]. We recover Eq. (2) when β = 0. To
facilitate the connection with experiments, it is also common
to investigate the survival probability of initial states defined
via quench dynamics [48–51].

In Ref. [32], it was shown numerically and analytically that
the survival probability evolving under full random matrices
is non-self-averaging at any timescale. The same happens
for spin models quenched in the chaotic regime [32,33] and
away from chaos [34]. A way to solve the problem of lack
of self-averaging for the long-time dynamics of the survival
probability of coherent Gibbs states was achieved in Ref. [8]
by opening the system to a dephasing environment. Using ran-
dom matrices, it was shown that the fluctuations in the values
of the survival probability are reduced and self-averaging is
ensured after the saturation of the dynamics [8]. It was also
demonstrated that the use of averages is equivalent to making
the time evolution nonunitary, effectively opening the system.

In the present paper, we study the self-averaging proper-
ties of the survival probability at different timescales in open
quantum systems subject to energy dephasing. We consider
systems prepared in initial states given by coherent Gibbs
states and from quench dynamics, which are evolved under
full random matrices, power-law banded random matrices
(PBRMs), Rosenzweig-Porter ensembles (RPEs) of random
matrices, and disordered spin-1/2 models. The PBRM model,
RPE, and spin model are explored for different values of a
control parameter that moves these systems from a delocal-
ized to a localized phase. We provide analytical expressions
for the relative variance of the survival probability at short
and long times, which help in understanding our numerical
results.

We find that, even though the fluctuations of the survival
probability are reduced for all four models at all timescales,
self-averaging is not always guaranteed. Self-averaging is en-
forced in open systems characterized by full random matrices,
by the RPE away from the delocalization-localization critical
point, and by PBRMs deep in the delocalized phase. In the
case of the spin model, not only the strength of the disorder but
also the choice of the initial states can prevent self-averaging.
In this case, the relative variance of SP(t ) only decreases with
system size deep in the chaotic regime and for initial states in
the middle of the spectrum.

The paper is organized as follows. Section II provides
the expression of the survival probability in open systems
for Gibbs states and initial states in quench dynamics. In
Sec. III, we derive analytical expressions for the relative vari-
ance of the survival probability at short and long times. In
Sec. IV, we analyze the survival probability for full random

matrices, where analytical results can be obtained. Next, we
consider PBRMs and the RPE, which are closer to physical
models and allow for investigating delocalized and localized
regimes. In Sec. V, we show the relative variance of the sur-
vival probability evolving under a disordered spin-1/2 model
for different disorder strengths. Conclusions are given in
Sec. VI.

II. SURVIVAL PROBABILITY IN AN OPEN SYSTEM

The Lindblad master equation,

ρ̇(t ) = −i[H, ρ(t )] +
∑

k

γk

(
LkρL†

k − 1

2
{LkL†

k , ρ}
)

, (4)

describes the Markovian dynamics of an open system, where
ρ(t ) is the evolved density matrix, h̄ = 1, H is the Hamil-
tonian of the isolated quantum system, Lk is an arbitrary
operator, and γk � 0. We consider energy dephasing pro-
cesses with k = 1, γ1 = 2κ , and L1 = L†

1 = H , for which the
Lindblad master equation is written as [1,4–6]

ρ̇(t ) = − i

h̄
[H, ρ(t )] − κ[H, [H, ρ(t )]], (5)

and κ is the dephasing strength dependent on the amplitude of
the external couplings and the properties of the environment.
This evolution is unital (i.e., the maximally mixed state is
invariant at all times) and gives rise to a monotonic decay
of the purity, Tr[ρ(t )2], thus making the time-evolving state
increasingly mixed as time passes.

When the initial state is pure, ρ(0) = |�(0)〉〈�(0)|, as
considered here, the survival probability for an open system
takes the form [2,6]

SP(t ) = 〈�(0)|ρ(t )|�(0)〉 = Tr[ρ(0)ρ(t )], (6)

which is the probability that ρ(t ) agrees with the initial state
|�(0)〉〈�(0)|. The equation above is equivalent to the average
of the survival probability |〈�(0)|�(t )〉|2 over an ensemble
of pure states determined by the density matrix ρ(t ) [69].
This can be understood by constructing ρ(t ) as an incoherent
sum of pure states, each one having the same probability 1/N .
Such mixed states have recently been studied in the literature
to show the dynamical onset of random matrix theory uni-
versality of mixed states [70]. [Note that Eq. (6) needs to be
modified when both ρ(0) and ρ(t ) are mixed states.]

The solution of Eq. (5), taking Eq. (6) into account, is
[1,4,5]

ρ(t ) =
N∑

n,m=1

e−iωnmt−κω2
nmtρnm(0) |En〉 〈Em| , (7)

where ωnm = En − Em and ρnm(0) = c(0)
n c(0)∗

m . This means that
the survival probability is

SP(t ) =
N∑

n,m=1

∣∣c(0)
n

∣∣2∣∣c(0)
m

∣∣2
e−iωnmt−κω2

nmt . (8)

We analyze three possibilities for the initial states:
(i) A coherent Gibbs state at infinite temperature, β = 0, in

which case the average survival probability coincides with the
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FIG. 1. The dynamical fluctuations of the survival probability
are decreased by opening the system. The figure shows the entire
evolution of the survival probability for a Gibbs initial state with
β = 0.1 and a single realization of a chaotic spin-1/2 model. The
light curve represents the isolated model (κ = 0.0) and the dark red
curve is for the open system (κ = 0.05). The horizontal dashed line
gives the saturation value of the dynamics, which coincides with
IPR0 [Eq. (14)]. Time in units of the coupling parameter of the
model.

spectral form factor;

〈
Sβ=0

P (t )
〉 =

〈
1

N2

N∑
n,m=1

e−iωnmt−κω2
nmt

〉
. (9)

The average 〈·〉 is performed over 104 disorder realizations.
The energy of this initial state, E (0) = 〈�(0)|H |�(0)〉 =∑ |c(0)

n |2En, is at the middle of the spectrum.
(ii) A coherent Gibbs state at finite temperature:

〈
Sβ �=0

P (t )
〉 =

〈
1

Z2

N∑
n,m=1

e−β(En+Em )e−iωnmt−κω2
nmt

〉
. (10)

The average is also performed over 104 disorder realizations.
Our analysis is done for β = 0.1. This initial state involves
a coherent superposition that is predominantly composed of
low-energy eigenstates associated with the largest values of
|c(0)

n |2 = e−βEn/Z (β ). This means that this initial state has
energy E (0) very close to the lower edge of the spectrum.

(iii) An initial state obtained by quenching a given initial
Hamiltonian H0 onto a final Hamiltonian H = H0 + V , in
which case the postquench initial state is an eigenstate of H0

and the average survival probability is

〈
Sqch

P (t )
〉 =

〈
N∑

n,m=1

∣∣c(0)
n

∣∣2∣∣c(0)
m

∣∣2
e−iωnmt−κω2

nmt

〉
. (11)

The average is performed over nd × ni = 104 data distributed
between nd disorder realizations and ni initial states. For L =
8, 10, 12, nd = 1000, for L = 14, nd = 500, and for L = 16,
nd = 200. We explore the quench dynamics for initial states
with energy in the middle and at the edge of the spectrum.

The temporal fluctuations of the values of the survival
probability are reduced by opening the system [4,6,8]. This
is illustrated in Fig. 1, where we consider a single coherent
Gibbs state with β = 0.1 as the initial state and a single
disorder realization of a chaotic spin model and compare the

evolution of Sβ=0.1
P (t ) for the isolated system (light curve)

with the evolution of Sβ=0.1
P (t ) for the open system under-

going energy dephasing (dark red curve). Since the model
is chaotic, the survival probability presents the typical slope-
dip-ramp-plateau structure, that is, the correlation hole below
the horizontal dashed line that indicates the saturation of the
dynamics (plateau). The fluctuations are significantly reduced
by opening the system, especially during the ramp toward
the plateau and after saturation, which should facilitate the
experimental detection of the correlation hole [52].

In the open system, the effects of averages are achieved
through the environment. In both cases, that of SP(t ) evolving
under an open system and that of the survival probability
evolved in an isolated system and averaged over an ensemble,
〈SP(t )〉, the evolution is in effect nonunitary and described by
a mix-unitary quantum channel [8].

The question addressed in this paper goes beyond the re-
duction of fluctuations achieved with Eq. (8). We want to
know whether, by opening the system, the relative fluctua-
tions, determined by RSP (t ) in Eq. (1), decrease with system
size, thus ensuring self-averaging.

III. RELATIVE VARIANCE OF THE SURVIVAL
PROBABILITY

Analytical expressions for the relative variance of the sur-
vival probability at short and long times for the open system
can be obtained as follows.

A. Short times

Let us start by Taylor expanding SP(t ) for t → 0. The
odd powers μ of ωnm cancel because

∑N
n,m=1(En − Em)μ = 0.

Since κ, t � 1, we keep only the terms proportional to κatb

with a + b � 4 and obtain

〈SP(t → 0)〉 ≈ 1 − 〈d2〉
(

κt + t2

2

)

+ 〈d4〉
(

κ2t2

2
+ κt3

2
+ t4

24

)
,

where

d2 =
N∑

n,m=1

∣∣c(0)
n

∣∣2∣∣c(0)
m

∣∣2
ω2

nm,

= 2

⎡
⎣ N∑

n

∣∣c(0)
n

∣∣2
E2

n −
(

N∑
n

∣∣c(0)
n

∣∣2
En

)2
⎤
⎦ = 2	2. (12)

	 is the width of the energy distribution of the initial state and

d4 =
N∑

n,m=1

∣∣c(0)
n

∣∣2∣∣c(0)
m

∣∣2
ω4

nm.

For the average of the squared survival probability, we get

〈SP(t → 0)2〉 ≈ 1 − 2〈d2〉
(

κt + t2

2

)
+ 〈

d2
2

〉(
κt + t2

2

)2

+2〈d4〉
(

κ2t2

2
+ κt3

2
+ t4

24

)
.
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This implies that the relative variance at short times is
approximately

RSP (t → 0) ≈ σ 2
d2

(
κ2t2 + κt3 + t4

4

)
, (13)

where the variance σ 2
d2

= 4σ 2
	2 . The width 	 of the energy

distribution of the initial state |�(0)〉 depends on the number
of states directly coupled to it. As the system size grows, the
range of values of this number also increases, so we expect
σ	2 to grow, which justifies the lack of self-averaging for the
survival probability at very short times even after opening the
system.

B. Long times

In the limit t → ∞, the terms in the sum for the survival
probability in Eq. (8) are zero, unless n = m, so the infinite-
time average for κ �= 0 or for κ = 0 gives

SP =
N∑

n=1

∣∣c(0)
n

∣∣4 = IPR0. (14)

This saturation value corresponds to the plateau, as shown in
Fig. 1, and is also referred to as the inverse participation ratio
(IPR) of the initial state written in the energy eigenbasis.

Similarly, for κ �= 0, the mean of the square of the survival
probability,

S2
P =

N∑
n,m=1

∣∣c(0)
n

∣∣2∣∣c(0)
m

∣∣2
e−iωnmt−κω2

nmt

×
N∑

p,q=1

∣∣c(0)
p

∣∣2∣∣c(0)
q

∣∣2
e−iωpqt−κω2

pqt , (15)

is nonzero for n = m and p = q. According to Eq. (14), the
infinite-time average of the relative variance of SP(t ) is then
given by the relative variance of the IPR of the initial state:

Rκ �=0
SP

= σ 2
IPR0

〈IPR0〉2 . (16)

Therefore, the scaling of Rκ �=0
SP

with the system size of open
systems depends on the model and the initial states.

Equation (16) is a crucial result of this paper. It indicates
that the long-time analysis of the self-averaging properties of
the survival probability in open systems boils down to the
analysis of the self-averaging behavior of the initial state, that
is, of IPR0. This means that the structures of the eigenstates
participating in the evolution of the initial state determine
whether self-averaging is enforced or not.

In the particular case of initial coherent Gibbs states,

Rκ �=0

Sβ
P

=

〈
Z (2β )2

Z (β )4

〉
−

〈
Z (2β )

Z (β )2

〉2

〈
Z (2β )

Z (β )2

〉2 , (17)

which means that for infinite temperature,

Rκ �=0

Sβ=0
P

→ 0, (18)

and self-averaging is guaranteed for any system. This is not
necessarily the case for coherent Gibbs states with finite tem-
perature and for initial states in quench dynamics, as shown in
the next sections.

Notice that for the isolated system, κ = 0, the result for RSP

changes significantly because in Eq. (15) the term for n = q
and m = p with n �= m and p �= q is also nonzero, which gives

Rκ=0
SP

=
〈∑

n �=m

∣∣c(0)
n

∣∣4∣∣c(0)
m

∣∣4
〉

〈∑
n

∣∣c(0)
n

∣∣4
〉2 . (19)

This equation leads to results that are entirely different from
those of κ �= 0 in Eq. (16). Take, for example, the case of β =
0 and |c(0)

n |2 = 1/N . We have that

Rκ=0
Sβ=0

P

= 1/N2 − 1/N3

1/N2
≈ 1, (20)

which is in stark contrast with the zero relative variance ob-
tained in Eq. (18).

IV. RANDOM MATRICES

In this section, we analyze the evolution of the survival
probability under full random matrices of the Gaussian or-
thogonal ensemble (GOE), which is a generic example of a
fully chaotic system. We also consider PBRMs and the RPE
of random matrices, both of which allow us to explore what
happens in the delocalized and localized regimes.

A. Gaussian orthogonal ensemble

Full random matrices are N-dimensional matrices filled
with random numbers conditioned by general symmetry
constraints. These matrices have been extensively used to
reproduce the statistical properties of the spectra of complex
quantum systems. The model is not physical because it im-
plies the simultaneous interaction of all particles, but it allows
for the identification of universal properties and the derivation
of analytical results.

In GOE, the random matrices are real and symmetric
[39] and can be generated by adding a matrix M filled with
random numbers from a Gaussian distribution with mean
0 and variance 1 to its transpose, H = (M + MT )/2. This
means that the elements of H have mean 〈Hi j〉 = 0 and
variance 〈

H2
i j

〉 =
{

1, i = j
1/2, i �= j.

(21)

To portray the case of quench dynamics, we assume that the
initial Hamiltonian H0 that defines the initial state is given
by the diagonal part of the full random matrix. The initial
states are chosen close to the middle of the spectrum having
energy E (0) = 〈�(0)|H |�(0)〉 ∼ 0. Since the eigenstates of
GOE matrices are random vectors, the components of the
initial states are Gaussian random numbers with the constraint
of normalization, so 〈|c(0)

n |2〉 ∼ 1/N .
In Fig. 2, we show the entire evolution under GOE matrices

of 〈Sβ=0
P (t )〉 [Fig. 2(a)] and its relative variance [Fig. 2(d)],

of 〈Sβ �=0
P (t )〉 [Fig. 2(b)] and its relative variance [Fig. 2(e)],
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FIG. 2. Entire evolution of the average survival probabilities: (a) 〈Sβ=0.0
P (t )〉, (b) 〈Sβ=0.1

P (t )〉, and (c) 〈Sqch
P (t )〉, and their corresponding

relative variances: (d) RSβ=0.0
P

(t ), (e) RSβ=0.1
P

(t ), and (f) R
Sqch

P
(t ) for GOE random matrices. Light colors correspond to the isolated model (κ = 0)

and dark colors correspond to the open case (κ = 0.05). The inset of Fig. 2(e) [Fig. 2(f)] shows the scaling analysis for Rκ �=0

Sβ=0.1
P

[Rκ �=0

Sqch
P

] and the

red line indicates the fitting Rκ �=0

Sβ=0.1
P

≈ N−0.5 [Rκ �=0

Sqch
P

≈ 1.83 N−0.96, in agreement with the analytical expression in Eq. (23)].

and of 〈Sqch
P (t )〉 [Fig. 2(c)] and its relative variance [Fig. 2(f)].

Light colors are used for the isolated case (κ = 0), and dark
colors give the results for the open system (κ = 0.05). In addi-
tion to reducing the fluctuations throughout the dynamics, one
sees that energy dephasing slows down the initial decay of the
average survival probability in Figs. 2(a) and 2(c), suppressing
the oscillations that are associated with the bounds of the
energy distribution of the initial state [71,72]. We also observe
that the saturation of the relative variance takes much longer
to happen in Figs. 2(e) and 2(f) than the saturation of 〈SP(t )〉
in Figs. 2(a)–2(c).

For very short times, RSβ=0
P

(t → 0), RSβ �=0
P

(t → 0), and
RSqch

P
(t → 0) are very small, and according to Eq. (13), there

is no self-averaging for isolated or open dynamics in GOE
matrices, since σ 2

d2
grows as N increases. We verified this nu-

merically, but it is not seen in the timescales of Figs. 2(d)–2(f).
For long times, beyond the correlation hole of 〈SP(t )〉, the

relative variances for the isolated GOE model in Figs. 2(d)–
2(f) go to 1 for any large N . This is in agreement with Eq. (20)
and indicates the lack of self-averaging. This picture is re-

versed for the open system in all three cases: Rκ �=0

Sβ=0
P

in Fig. 2(d)

goes to zero, as justified with the derivation of Eq. (18),

and both Rκ �=0

Sβ �=0
P

and Rκ �=0

Sqch
P

are ∝ 1/N , indicating “super” self-

averaging [32], as shown in the insets of Figs. 2(e) and 2(f).

The behavior Rκ �=0

Sqch
P

∝ 1/N can be explained using Eq. (16)

and the fact that c(0)
n are Gaussian random numbers satisfying∑

n |c(0)
n |2 = 1. Taking into account that different eigenstates

of GOE matrices are statistically independent, we have that

〈|c(0)
n |4|c(0)

m |4〉 = 〈|c(0)
n |4〉 〈|c(0)

m |4〉 for n �= m, which leads to

σ 2
IPR0

=
〈

N∑
n,m=1

∣∣c(0)
n

∣∣4∣∣c(0)
m

∣∣4

〉
−

〈
N∑

n=1

∣∣c(0)
n

∣∣4

〉 〈
N∑

m=1

∣∣c(0)
m

∣∣4

〉

=
N∑

n,m=1

[〈∣∣c(0)
n

∣∣4∣∣c(0)
m

∣∣4〉 − 〈∣∣c(0)
n

∣∣4〉 〈∣∣c(0)
m

∣∣4〉]

=
N∑

n=1

[ 〈∣∣c(0)
n

∣∣8〉 − 〈∣∣c(0)
n

∣∣4〉2 ] ∼ O(N−3). (22)

At the same time, 〈IPR0〉 ∼ 3/N , so

Rκ �=0

Sqch
P

∝ 1/N, (23)

as confirmed with the inset of Fig. 2(f).
The contrasting results for RSP for closed and open systems

can also be understood from the analysis of the distribution of
the values of SP(t ) at times after the saturation of the dynam-
ics. For the isolated system, the distribution is exponential,
so the width coincides with the mean [33] and Rκ=0

SP
= 1.

By opening the system, the distribution approaches a delta
function for Sβ=0

P (t → ∞), Gaussian for Sβ=0.1
P (t → ∞), and

Fréchet-like for Sqch
P (t → ∞), so the width can decrease with

respect to the mean, which allows for the decay of the relative
variance as N increases.

The behavior of the relative variance in the region of the
correlation hole is also worth noting. At the timescale where
the ramp starts, RSP (t ) rises to its largest values for the isolated
and open models because 〈SP(t )〉 reaches its minimum value.
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FIG. 3. Entire evolution of R
Sqch

P
(t ) under quench dynamics for (a), (b) the PBRM model and (d), (e) the RPE. (a), (d) are for the delocalized

regime (α = 0.3, γ = 0.7) and (b), (e) are for the localized regime (α = 3.0, γ = 2.6). Light colors are for the isolated model and dark colors

are for the open model. The scaling analysis in the inset of (a) gives the fitting Rκ �=0

Sqch
P

= 1.52 N−0.90, in (d) Rκ �=0

Sqch
P

= 3.83 N−1.0, and in (e)

Rκ �=0

Sqch
P

= 0.15 N−0.29. (c) for the PBRM model [(f) for the RPE] gives the exponent ν obtained from the scaling analysis of Rκ �=0

Sqch
P

∝ Nν as a

function of the control parameter α [γ ]. The thin blue line in (c) and (f) guides the eye, the thick maroon line in (f) corresponds to Eq. (27).

Beyond this point, Rκ �=0
SP

(t ) decreases monotonically (up to
saturation), while Rκ=0

SP
(t ) saturates to 1.

In a nutshell, apart from very short times, self-averaging
holds throughout the evolution of the open systems in
Figs. 2(d) and 2(f). In Fig. 2(e), where the initial state is too
close to the edge of the spectrum, the decay of Rκ �=0

Sβ=0.1
P

(t ) with

N is evident only after saturation. We deepen the discussion
on how Rκ �=0

SP
(t ) can depend on the choice of the initial state in

the next two sections.

B. Power-law banded random matrices

In the PBRM ensemble [73,74], the elements of the ma-
trices are Gaussian random numbers with 〈Hi j〉 = 0 and
variance 〈

H2
i j

〉 =
{

1, i = j
(1 + |i − j|2α )−1, i �= j,

(24)

where α ∈ (0,∞) is a control parameter. The model shows a
phase transition determined by the value of α. For α < 1, the
system is in the chaotic (delocalized) regime, while for α > 1
the system is in the localized regime. The ensemble has two
limiting cases: if α → 0, we obtain the GOE model, and if
α → ∞, we have a tridiagonal matrix.

In Figs. 3(a) and 3(b), we show results for the relative
variance of the survival probability of the PBRM model in the
delocalized phase [α = 0.3 in Fig. 3(a)] and in the localized
phase [α = 3 in Fig. 3(b)]. We consider the case of quench
dynamics, where the initial Hamiltonian H0 is the diagonal
part of the PBRM. The initial states have energy E (0) in the

middle of the spectrum. Light colors are for the isolated model
and dark colors are for the open system.

In the delocalized phase of the open PBRM model, there
is lack of self-averaging only at very short times, in agree-
ment with Eq. (13), but soon the curves cross, ensuring
self-averaging throughout the dynamics. The scaling analysis

in the inset of Fig. 3(a) indicates that Rκ �=0

Sqch
P

∝ N−0.9, similar to

what was found for the GOE model in the inset of Fig. 2(f).
The results for the localized phase in Fig. 3(b) are very

different from the delocalized phase. Even though the relative
fluctuations are reduced by opening the system, Rκ �=0

Sqch
P

(t ) <

Rκ=0
Sqch

P

(t ), the relative variance for κ �= 0 does not decrease as

N increases. The inset in Fig. 3(b) makes it clear that Rκ �=0

Sqch
P

as a function of N is approximately constant. This contrasts
with the case of a coherent Gibbs state with β = 0.1, for

which Rκ �=0

Sβ=0.1
P

in the localized phase does decrease with N (not

shown). These different behaviors indicate the important role
of the initial state and the varying degrees of fluctuations at
different parts of the spectrum.

In Fig. 3(c), we analyze the dependence of the self-
averaging properties of Sqch

P (t ) on the control parameter α.
We focus on initial states in the middle of the spectrum
and the relative variance after saturation. We perform scaling
analysis of

Rκ �=0

Sqch
P

∝ Nν (25)
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and show ν as a function of α. If ν � 0, then Sqch
P (t → ∞)

is non-self-averaging, and it is self-averaging otherwise. Fig-
ure 3(c) confirms that self-averaging holds for initial states
with E (0) ∼ 0 only in the delocalized regime. We observe the
following behavior:

(i) The exponent ν < 0 for α � 1/2, where the PBRM
ensemble is similar to the GOE [73].

(ii) As α approaches the critical point αc = 1, we see that ν

grows significantly, indicating a strong lack of self-averaging.
This is consistent with expectations that, at a critical point,
the structures of the states vary considerably. The exponent
ν attains its maximum close to the delocalization-localization
transition point.

(iii) The value of ν then decreases in the localized phase.
For 1 < α � 3/2, where super-diffusive dynamics is observed
at short time, ν is still positive. The scaling exponent ν → 0
for α > 3/2, where the lack of self-averaging may be at-
tributed to the power-law tails of the localized eigenstates.

C. Rosenzweig-Porter ensemble

The RPE was first introduced to explain the level statistics
of heavy atoms [75]. An N × N matrix from the real symmet-
ric RPE has random elements from a Gaussian distribution
with mean 0 and variance

〈
H2

i j

〉 =
{

1, i = j
1

2Nγ , i �= j,
(26)

where the system parameter γ ∈ R. The RPE is essentially
a Poisson ensemble perturbed by the GOE, hence, a de-
formed ensemble [57,58,76] that mimics how the symmetries
of an integrable system represented by the Poisson ensem-
ble are gradually broken as γ decreases from infinity. The
RPE hosts three distinct phases: an ergodic (chaotic) phase
(γ < 1), a nonergodic extended phase having fractal eigen-
states (1 < γ < 2), and a localized phase (γ > 2) [77–80].
These phase transitions have been explored experimentally
in microwave resonators [81]. Nontrivial fractal phases sim-
ilar to that in the RPE have been observed in other random
matrix models [82–89], hierarchical graphs [90], and many-
body disordered systems [91–93]. The fractal states at the
delocalization-localization transition point of the RPE have
the same statistical properties as those in hierarchical lattices,
such as the Bethe lattice or random regular graphs [77]. Since
the Fock space of generic isolated many-body quantum sys-
tems has a hierarchical structure [94], the RPE has gained a
lot of attention in recent times [59,95–101].

In Figs. 3(d) and 3(e), we show results for the relative
variance of the survival probability of the RPE in the ergodic
phase [γ = 0.7 in Fig. 3(d)] and in the localized phase [γ =
2.6 in Fig. 3(e)]. We consider quench dynamics, where the
initial state comes from the diagonal part of the RPE and has
energy E (0) in the middle of the spectrum. Light colors are for
the isolated model and dark colors are for the open system.

The results for the ergodic regime of RPE in Fig. 3(d) are
analogous to those for the PBRM model in Fig. 3(a); namely,
by opening the chaotic system, we induce self-averaging and

at long times Rκ �=0

Sqch
P

∝ 1/N , as in the GOE case. Less expected

are the results in the localized phase in Fig. 3(e), where

self-averaging holds for all timescales shown in the figure,
even for the isolated model. Furthermore, the effects of the
energy dephasing in Rκ �=0

Sqch
P

(t ) develop only at very long times

that increase as N increases. This suggests that the structures
of the eigenstates at different energies are very similar in the
localized phase of the RPE.

The results for the scaling analysis in Eq. (25) for various
values of γ are given in Fig. 3(f) and indicate that

ν ≈
⎧⎨
⎩

−1, γ � 1
γ − 2, 1 < γ < 2
1 − γ /2, γ � 2.

(27)

We thus have the following picture:
(i) In the ergodic regime (γ < 1), the bulk eigenstates

are like random vectors and the asymptotic relative variance
scales as 1/N , similar to GOE, so ν ≈ −1.

(ii) In the nonergodic regime of RPE (1 < γ < 2), the
leading portion of the spectrum consists of eigenstates with
〈IPR〉 ∝ N−D, where D is the fractal exponent given by D ≈
2 − γ [77]. Similarly, the asymptotic survival probability of
initial states in the middle of the spectrum scales as N−D [97].
We find numerically that the asymptotic relative variance also
scales approximately as N−D, therefore ν ≈ γ − 2.

(iii) At γ = 2, where RPE exhibits a second-order phase
transition from the delocalized to the localized phase, the
correlation length diverges in a power-law manner and the
density of bulk localization lengths becomes scale invariant.
Hence, the variance of IPR is O(1) while the IPR itself is also
O(1), leading to ν ≈ 0. Similar to what is seen for the PBRM
in Fig. 3(c), at the delocalization-localization transition point,
energy dephasing is unable to enforce self-averaging.

(iv) In the localized regime (γ > 2), the fractal dimension
D = 0 [77], so the mean asymptotic survival probability is
O(1), while the fluctuation in the IPR0 is dictated by the
small components at the tail of the states, leading to ν ≈
1 − γ /2. Consequently, ν < 0, indicating the presence of self-
averaging.

In short, by opening the system, the survival probability
for initial states in the middle of the spectrum becomes self-
averaging for the PBRM model and the RPE in the chaotic
regime. The method fails at the localization transition crit-
ical point for both systems and in the localized phase for
the PBRM model. Our results suggest a strong connection
between lack of self-averaging and regions of multifractality
[28] even when the system is open.

V. PHYSICAL SYSTEM: SPIN-1/2 HEISENBERG MODEL

The analysis of self-averaging done above for different
kinds of random matrices sets the scene for the study of
self-averaging in physical models. In particular, the previous
discussions anticipate differences in ergodic and nonergodic
phases and a possible dependence on the energy of the initial
states.

We consider the one-dimensional isotropic spin-1/2
Heisenberg with on-site disorder (also known as disordered
XXX model), which has been extensively investigated in
the context of many-body localization both theoretically and
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FIG. 4. Entire evolution of R
Sqch

P
(t ) under the disordered XXX model in (a) the chaotic regime (h = 0.5) and (b) the localized regime

(h = 5.0). Light colors are for the isolated model and dark colors are for the open model. From top to bottom at long times in (a), the
dark lines correspond to the following system sizes: L = 8 → N = 70, L = 10 → N = 252, L = 12 → N = 924, L = 14 → N = 3432, and

L = 16 → N = 12870. The scaling analysis in the inset of (a) gives the fitting Rκ �=0

Sqch
P

= 0.92 N−0.47, and in (b) Rκ �=0

Sqch
P

= 0.12 N0.13. (c) gives the

power ν, obtained from the scaling analysis of Rκ �=0

Sqch
P

∝ Nν , as a function of the disorder strength h.

experimentally [102–107]. The Hamiltonian is

H = J
L∑

k=1

hkSz
k + J

L−1∑
k=1

(
Sx

k Sx
k+1 + Sy

kSy
k+1 + Sz

kSz
k+1

)
, (28)

where h̄ = 1, J = 1 is the coupling strength, Sx,y,z
k are spin

operators on site k, L is the size of the chain, and open bound-
ary conditions are used. The Zeeman splittings hk are random
numbers uniformly distributed in [−h, h] and h is the disorder
strength. The total magnetization in the z direction, Sz =∑L

k=1 Sz
k , is conserved, so we take the largest subspace, where

Sz = 0 and the dimension is N = L!/(L/2)!2. The model is
integrable when h = 0 and becomes chaotic for 0 < h � 1.
Whether the system in the thermodynamic limit can reach
a many-body localized phase when h is above some critical
value larger than the coupling strength has been debated.
Despite the controversy, our numerical studies are performed
with finite systems, so we refer to a “localized phase” for
large h.

We start the analysis of self-averaging in Sec. V A
with initial states corresponding to eigenstates of H0 =
J

∑L
k=1 hkSz

k + J
∑L

k=1 Sz
kSz

k+1 that have energy E (0) in the
middle of the spectrum. Various values of h are considered. In
Sec. V B, we investigate how the choice of initial state affects
the results for the chaotic and localized phases.

A. Middle of the spectrum

In Figs. 4(a) and 4(b), we show the relative variance of
the survival probability for the disordered spin-1/2 model
in the chaotic regime [Fig. 4(a)] and in the localized phase
[Fig. 4(b)], where the initial state has energy E (0) in the middle
of the spectrum. Light colors are for the isolated model, and
dark colors are for the open system.

Deep in the chaotic regime (h � 1), the results are com-
parable to those for the random matrices in Figs. 2(f), 3(a),
and 3(d). The results follow the generic picture, that is, in
the chaotic phase and for initial states projected into chaotic
energy eigenstates, the survival probability in the timescales
of the correlation hole and beyond becomes self-averaging if

we open the system to a dephasing environment. Notice, how-
ever, that ν is negative in the inset of Fig. 4(a), but does not
reach −1 as in GOE. This is because even the highly excited
eigenstates in the middle of the spectrum are not ergodic in
the sense of Haar measure [106].

The onset of self-averaging could facilitate the experimen-
tal detection of the correlation hole [52], since in the presence
of a dephasing environment, one could reduce the number
of initial states and disorder realizations for the experimental
studies. But the dephasing strength should not be too large to
avoid suppressing the correlation hole [1].

In the localized phase, the fluctuations are large, and
self-averaging is not achieved through the environment. The
scenario is even worse than in the PBRM model in Fig. 3(b),
since for the spin model in Fig. 4(b), Rκ �=0

Sqch
P

(t ) increases with

N . This behavior is also shown for the asymptotic value of
the relative variance in the inset of Fig. 4(b). Based on the

available system sizes, we cannot say whether Rκ �=0

Sqch
P

will even-

tually converge to Rκ=0
Sqch

P

, but the results point to the difficulties

associated with the numerical analysis of many-body localiza-
tion. The problem is not only the exponentially large Hilbert
space in L but also the large fluctuations that one has to deal
with [28].

In Fig. 4(c), we plot ν obtained with Eq. (25) as a function
of the disorder strength h. There is a parallel with the analysis
for the PBRM model in Fig. 3(c), in the sense that both models
do not show self-averaging away from the chaotic regime, but
the results are worse for the spin model. In this case, ν > 0
for any h > 1, while for the PBRM model, ν > 0 only in the
vicinity of the critical point.

The comparison between Figs. 3(c), 3(f), and 4(c) fuels
speculation of the role of ν in the study of many-body lo-
calization. For example, similar to the PBRM and RPE, the
exponent ν for the disordered spin model also reaches a
maximum value at a point that could be associated with a
transition. However, given the limited system sizes available
for numerical studies, it is difficult to further elaborate on this
topic.
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FIG. 5. Infinite-time average of the relative variance (a),

(b) Rκ �=0

Sβ=0.1
P

and (c), (d) Rκ �=0

Sqch−min
P

as a function of the Hilbert space

size. The evolution is performed under the disordered XXX model
in (a), (c) the chaotic regime and (b), (d) the localized phase. Con-
trary to Fig. 4, the initial state in the quench dynamics has the

lowest energy. Fittings: (a) Rκ �=0

Sβ=0.1
P

= 2.5 × 10−7N0.10, (b) Rκ �=0

Sβ=0.1
P

=
2.3 × 10−3N0.10, (c) Rκ �=0

Sqch−min
P

= 4.7 × 10−2N0.22, and (d) Rκ �=0

Sqch−min
P

=
5.7 × 10−2N0.09.

B. Edge of the spectrum

Motivated by the discussion in Sec. IV B about the different

behaviors with N of Rκ �=0

Sqch
P

(initial state energy in the middle of

the spectrum) and Rκ �=0

Sβ=0.1
P

(initial state energy at the low edge

of the spectrum) for the PBRM model in the localized phase,
we now investigate how the results presented in Fig. 4 for the
spin model are affected by the choice of initial states. For this
paper, we consider only initial states with very low energies,
so we refer to the asymptotic relative variance obtained for

quench dynamics as Rκ �=0

Sqch−min
P

.

In Fig. 5, we present a scaling analysis of the infinite-
time average of the relative variance for the initial coherent
Gibbs state with β = 0.1 for the spin model in the chaotic
[Fig. 5(a)] and localized phase [Fig. 5(b)] and for the initial
state quenched in the lowest-energy part of the spectrum for
the spin model in the chaotic [Fig. 5(c)] and localized phase
[Fig. 5(d)]. All panels manifest a lack of self-averaging. The
exponent ν is small but positive in all cases. The worst sce-
nario happens in the chaotic regime for the quench dynamics
at the edge of the spectrum [Fig. 5(c)]. Spectral correlations
as in random matrix theory and chaotic eigenstates are only
present in the bulk of the spectrum of chaotic many-body
quantum systems, while the edges exhibit states with highly
fluctuating structures [108,109]. This is related with the den-
sity of states of many-body systems with two-body couplings,
which is Gaussian [110], thus implying that the states closer
to the edges are more localized.

VI. CONCLUSIONS

Opening many-body quantum systems to a dephasing envi-
ronment reduces dynamical fluctuations. We explored this fact
to analyze the conditions under which the survival probability
(equivalently, the spectral form factor) in physical systems
becomes self-averaging.

We started the study with different kinds of random ma-
trices to identify general patterns. We showed that in full
random matrices from the Gaussian orthogonal ensemble,
the environment ensures self-averaging for any initial state,
while in power-law banded random matrices and Rosenzweig-
Porter random matrices, where a transition to a localized
phase exists, self-averaging cannot be achieved at the critical
point. Furthermore, the survival probability remains non-
self-averaging for power-law banded random matrices in the
localized phase due to the power-law tails of the localized
eigenstates.

In agreement with the results above, the survival probabil-
ity becomes self-averaging for an open disordered spin-1/2
model in the chaotic regime and for initial states in the middle
of the spectrum. Any change in the regime or in the initial
state can affect the outcome. Self-averaging does not hold for
any initial state when the spin model ceases to be chaotic, and
the same happens even in the chaotic regime if the initial state
is away from the middle of the spectrum.

Being able to ensure self-averaging at long times is di-
rectly determined by the structures of the eigenstates in the
spectrum region of the initial state energy. This is because
the asymptotic relative variance of the survival probability in

open systems, Rκ �=0
SP

, coincides with the relative variance of
the inverse participation ratio of the initial state [cf. Eq. (16)].
Lack of self-averaging indicates that the structures of the
states vary significantly, as it happens at critical points. Thus,

the behavior of Rκ �=0
SP

works as a probe of the structure of the
eigenstates in different parts of the spectrum and strong lack
of self-averaging suggests the presence of critical points.

The analysis in this paper indicates that slightly opening
the system to a dephasing environment should help with the
experimental detection of many-body quantum chaos in com-
plex systems out of equilibrium [52]. This is because the
environment ensures self-averaging in the timescales where
the correlation hole emerges.
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