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In this study, we investigate the manipulation of Weyl orbits in topological Dirac semimetals (DSMs) with sur-
face doping using circularly polarized light (CPL). Our investigation reveals that surface impurities in topological
DSMs can couple the Fermi arcs from different Weyl sectors, leading to the breakdown of intrinsic Weyl orbits.
The application of CPL can effectively reduce the overlapping between the Fermi arcs, thereby restoring partial
Fermi arcs of the topological DSMs. Subsequently, extrinsic Weyl orbits emerge between opposite Weyl sectors.
These extrinsic Weyl orbits present an intriguing pathway to regulate the three-dimensional (3D) quantum Hall
effect(QHE). The 3D QHE induced by the extrinsic Weyl orbits can be modulated through surface magnetic
perturbations and light irradiation, resulting in observable quantized Hall plateaus in the parameter space of
CPL. Our findings propose a promising approach for stabilizing Weyl orbits and manipulating the 3D QHE in
topological semimetals.
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I. INTRODUCTION

Weyl semimetals (WSMs) belong to the family of topo-
logical semimetals, renowned for hosting low-energy Weyl
fermion excitations characterized by well-defined chirality
near the Weyl nodes [1–9] . The Weyl nodes exist in pairs
of opposite chiralities [10,11], serving as sources and sinks of
the Berry curvature, and are connected by nonclosed Fermi
arcs in momentum space. Recently, a three-dimensional (3D)
quantum Hall effect (QHE) because of Fermi arcs was pro-
posed in WSMs [12], which has sparked significant theoretical
[13–26] and experimental [27–31] activities in condensed
matter physics.

The QHE, traditionally observed in 2D systems like the 2D
electron gas [32,33], faces challenges in 3D due to the extra
dimension along the magnetic field direction, hindering the
quantization of Hall conductivity. However, several inherent
properties enable a 3D WSM to support the QHE. First, the
Weyl orbits, comprising Fermi arcs from opposite surfaces,
can form cyclotron orbits crucial for the QHE. This arrange-
ment facilitates Weyl fermion tunneling between Fermi arcs at
opposing surfaces via the Weyl nodes. Second, a notable de-
pletion of bulk carriers occurs as the Fermi energy approaches
the Weyl nodes, where the bulk density of states reduces
significantly for the unique electronic structure of WSMs.
Finally, the bending of the surface energy contour can lead to
the formation of a 2D electron gas by the Fermi arcs. Due to
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a peculiar absence of conventional bulk-boundary correspon-
dence, WSM Hall bars can exhibit an unconventional fully
3D anisotropy in the QHE [24]. Interestingly, the cyclotron
orbits in WSMs can take nontrivial knotting structures such
as a trefoil knot, which offers an arena of the nontrivial knot
theory in three spatial dimensions and its subsequent physical
consequences [34].

The 3D QHE via the Weyl-orbit mechanism has been
experimentally observed in topological Dirac semimetals
(DSMs) [27–31], where the quantized Hall conductivity ex-
hibits sensitivity to sample thickness [29]. A topological
DSM hosts paired gap-closing points known as Dirac points,
stabilized by time-reversal, spatial-inversion, and crystalline
symmetries. If the time-reversal or spatial-inversion symmetry
is broken, a single Dirac point can be split into a pair of
Weyl nodes with opposite chiralities, causing a topological
transition from a Dirac to a Weyl semimetal [35–40]. Topo-
logical DSMs, such as Cd3As2 [41] and A3Bi (A = Na, K,
Rb) [42], can be viewed as two overlapping copies of a WSM,
which possess two sets of surface Fermi arcs in the surface
Brillouin zone. Consequently, for a topological DSM slab,
a single surface possesses two Fermi arcs, forming a closed
Weyl loop.

In topological DSMs, the presence of Fermi loops on the
same surface can lead to the deformation of Weyl orbits by
perturbations, rendering them unstable [43–45]. For instance,
the inclusion of a bulk higher-order momentum term can
induce Lifshitz transitions in the Fermi arc surface states,
potentially disrupting the Weyl orbits without breaking the
system’s symmetry [45]. Moreover, the overlap of Fermi arcs
from distinct Weyl sectors on the same surface exacerbates
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the susceptibility of Weyl orbits to surface perturbations, am-
plifying their inherent instability. However, the Weyl nodes,
serving as endpoints of the Fermi arcs, are expected to remain
immune to surface perturbations due to their protection by
bulk topology. Given that the Fermi arcs and bulk Weyl nodes
collaboratively contribute to the construction of Weyl orbits,
both bulk and surface perturbations can influence the Weyl-
orbit-induced 3D QHE. Notably, surface perturbations are
more accessible to manipulation in experiments compared to
bulk perturbations. Given these considerations, it is natural to
inquire whether stable Weyl orbits and 3D QHE can persist in
the presence of surface perturbations. If not, urgent additional
investigation is needed to develop strategies for stabilizing
these phenomena within topological DSMs.

In this work, we apply a beam of circularly polarized light
(CPL), a widely adopted technique for inducing topological
phase transitions in materials [46–53], to manipulate Weyl
orbits in surface-doped topological DSMs. We find that the
Fermi arcs can be coupled by surface perturbations, which
breaks down the intrinsic Weyl orbits. The application of CPL
enables the restoration of partial Fermi arcs by significantly
reducing the overlapping region within the surface spectrum.
While the intrinsic Weyl orbits are broken by surface magnetic
impurities, extrinsic Weyl orbits can be established between
the opposite Weyl sectors, which suggests an interesting rou-
tine to realize and modulate the 3D QHE. The 3D QHE arising
from the extrinsic Weyl orbits can manifest in variation of
the quantized Hall conductivity with the CPL’s parameters.
The rest of this paper is organized as follows. In Sec. II,
we derive the effective Hamiltonian from the Floquet theory,
and discuss the off-resonant-light-dressed bulk spectrum. In
Sec. III, we numerically investigate the phonon-modulated
Fermi arc surface states by mapping the effective Hamiltonian
into a tight-binding form. The phonon-assisted extrinsic Weyl
orbits, and the 3D QHE induced by extrinsic Weyl orbits
are discussed respectively in Sec. IV and Sec. V. The last
section contains a concise summary.

II. EFFECTIVE HAMILTONIAN AND BULK SPECTRUM

We consider a 3D topological DSM subjected to both light
and magnetic fields, as sketched by Fig. 1(a), which can be
described by the effective Hamiltonian (see Appendix A):

Heff (k) = (h̄υF + λ2σz )(kxσzτx − kyτy)

− λ1kz(cos φτx − sin φσzτy)

+ (mk − mA + λF σz )τz. (1)

Specifically, mA = [(1 + ς2)m2 + (m1 − m2) sin2 θ ]k2
A/2,

λF = ς h̄υ2
Fk2

A cos θ/ω, λ1 = 2ςm1υFk2
A sin θ/ω, λ2 =

2ςm2υFk2
A cos θ/ω, and kA = eA/h̄ characterizes the

irradiation intensity. The symbols ω, A, and ς (= 0,
±1) are employed to represent the frequency, amplitude
and (linear, right/left circular) polarization of the
light, respectively. Since [σz,Heff (k)] = 0, the effective
Hamiltonian can be written in the block-diagonalized form as
Heff (k) = diag[H+

eff (k),H−
eff (k)], where

Hs
eff (k) = λs(skx,sτx − ky,sτy) + mk,sτz, (2)

FIG. 1. (a) Schematic for a topological DSM subjected to both
light and magnetic fields, where the color-filled cones represent the
bulk dispersion, with wine red (sky blue) for the spin up (down)
sector, and the lines on the surfaces that connect the projection of
the bulk Weyl nodes denote the Fermi arcs. The blue arrow accounts
for the applied magnetic field. (b) Static spectrum of the topological
DSM and (c)–(e) photon-modulated spectrum for ky = 0, h̄ω = 2,
kA = 1, φ = 0, and (c) θ = π/2, (d) θ = π/5, and (e) θ = 0. The
parameters of the topological DSM are set as m0 = 1, m1 = 0.6,
m2 = 0.5, and h̄υF = 1.

and s = ±1 is the eigenvalue of σz. Here, λs = h̄υF + sλ2,
kx,s = kx − s λ1

λs
kz cos φ, ky,s = ky − s λ1

λs
kz sin φ, and mk,s =

ms − m1k2
z − m2(k2

x + k2
y ) with ms = m0 − mA + sλF .

In the absence of the magnetic field, k is a good quntum
number, such that we can diagonalize Eq. (2) in the plane-
wave basis and obtain the bulk dispersion

εs
k,η = η

√
λ2

s

(
k2

x,s + k2
y,s

) + m2
k,s, (3)

where η = ± corresponds to the conduction/valence band.
Without the light, the bulk spectrum is spin degenerate, as
shown by Fig. 1(b). The evolution of the bulk spectrum with
the light’s propagation direction is depicted in Figs. 1(c)–1(e).
For ms > 0, the bulk dispersion will form a Weyl cone around
the Weyl node

Ks
χ = χks

w

(
s
λ1

λs
cos φ, s

λ1

λs
sin φ, 1

)
, (4)

where χ = ±1 and ks
w =

√
ms/(m1 + m2λ

2
1/λ

2
s ). Since the

parameters λF , λ1,2 ∝ ςk2
A/ω are coupled with the spin, the

degeneracy of the bulk Weyl nodes can be eliminated by CPL,
but can not by linearly polarized light. If |λF | < mA, namely,

m1 − m2

2
cos2 θ + h̄υ2

F

ω
cos θ <

m1 + ς2m2

2
, (5)

ms decreases with increasing the irradiation intensity, such
that a pair of Weyl nodes can merge at k = 0 when ms = 0,
and be gapped out when ms < 0. In the opposite regime where
|λF | > mA, ms can decrease for one spin sector and increase
for the other as the irradiation intensity changes, and as a
result, the Weyl nodes for the two spin sectors will be shifted
by the CPL to opposite directions. The relative magnitudes
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of |λF | and mA are controllable by adjusting the frequency
or/and incident direction of the light, demonstrated by Eq. (5),
making the bulk spectrum tunable by the direction of the light,
as observed in Figs. 1(c)–1(e). Because the projection of the
bulk Weyl nodes on the surfaces are connected by Fermi arcs,
the Fermi arcs can be modulated by the light. Notably, when
the CPL is incident away from the direction of z, the bulk
Weyl nodes are not aligned on the same line, as depicted in
Fig. 1(c), which can prevent the overlap of Fermi arcs. Hence,
it is expected that Weyl orbits will exhibit sensitivity to the
CPL, thereby enabling the tunability of the 3D QHE through
irradiation.

III. PHOTON-MODULATED FERMI
ARC SURFACE STATES

When the sample is confined between y = ±Ly/2, we can
analytically derive the low-energy surface spectrum in the x-z
plane [45]

Hsβ
surf (kx, kz ) = −sβλskx − βλ1kz cos φ, (6)

where kz ∈ [−ks
w, ks

w] and β = ± corresponds to the
top/bottom surface. Accordingly, at the Fermi level EF =
0, we can determine the Fermi arcs kx = −sλ1kz cos φ/λs.
Without the light, the Fermi arcs from different spin sectors
overlap at kx = 0 and kz ∈ [−ks

w, ks
w]. Due to the overlapping,

the Fermi arcs can be easily coupled by surface magnetic
perturbations. The overlapping region can be reduced when
the CPL is applied. For example, as the CPL is incident away
from the y-z plane, i.e., θ �= 0 and φ �= π/2, the Fermi arcs,
instead of overlapping, will intersect only at kx = kz = 0. In
this sense, the CPL can be utilized to stabilize and engineer
the Fermi arcs of topological DSMs.

To further demonstrate how the Fermi arc surface states are
modified by the off-resonant light and surface perturbations,
we perform numerical calculations by mapping Eq. (1) to a
1D lattice Hamiltonian (see Appendix B)

H0 =
∑

m

c†
m(h0cm + hycm+1 + h†

ycm−1), (7)

in which h0 = f0 + f1 cos kz − fz sin kz + f2 cos kx +
fx sin kx, and hy = ( f2 + i fy)/2. Here, we noted f0 =
(m0 − mA + λF σz )τz − f1 − 2 f2, f1(2) = 2m1(2)τz, fx(y) =
(h̄υFσz + λ2)σ0(z)τx(y), and fz = λ1(τx cos φ − σzτy sin φ).
The disordered effect can be modeled by a set of
randomly distributed impurity potentials, namely,
Vkk′ = ∑

m Vme−i(k−k′ )·Rm with Vm = V0σ0 + VMsm · σ and
sm as the direction vector of the impurity’s local magnetic
moment. For diluted doping, the disordered effect can be
dealt with using the T-matrix approach, where the impurity
potentials are incorporated into the self-energy

�k(ε) =
⎡
⎣1 − V̄k

1

N

∑
q

gq(ε)

⎤
⎦

−1

V̄k, (8)

and subsequently enter the retarded Green’s function

Gr
k(ε) = [1 − gk(ε)�k(ε)]−1gk(ε). (9)

Here, V̄k = 1
N

∑
k′ 〈Vkk′ 〉dis means disordered average of the

impurity potentials and gk(ε) = (ε + i0+ − H0)−1 represents
the impurity-free retarded Green’s function.

From the retarded Green’s function, we can determine the
k-resolved density of states (DOSs),

ρ(ε, kx, kz ) = − 1

π
Tr

{
Im

[
Gr

k(ε)
]}

, (10)

which allows us to show the impurity-perturbed bulk states
and surface Fermi arcs, simultaneously. In Fig. 2, we
display the k-resolved DOSs, where asymmetric surface mag-
netic perturbation Vm = VMσx(δm,1 + δm,Ny/2) is adopted to
eliminate the degeneracy of the spectra, completely. From
Figs. 2(a) and 2(e), we observe that in the absence of light
and magnetic perturbation, the Fermi arcs at EF = 0 overlap
at kx = 0 and kz ∈ [−ks

w, ks
w]. The overlapping Fermi lines are

quite sensitive to surface magnetic impurities, as shown by
Fig. 2(b), where the surface spectrum repel each other and
open a gap for finite VM . As a result, the Fermi arcs reduce
to two Fermi points at EF = 0, as demonstrated by Fig. 2(f).
When the CPL is applied in direction z, the overlapping region
between the Fermi arcs of different spin sectors decreases,
leading to the restoration of partial Fermi arcs, as depicted
in Figs. 2(c) and 2(g). If the CPL is incident in the x direction,
the surface spectra become kz dependent and coupled by the
surface magnetic doping, see Fig. 2(d). Consequently, two sur-
face Fermi pockets emerge around the Fermi surface, causing
the Fermi arcs of different spin sectors to form a closed Fermi
loop, as observed in Fig. 2(h). The behaviors of the Fermi arcs
are consistent with the analytical results.

IV. PHOTON-ASSISTED EXTRINSIC WEYL ORBITS

As discussed above, the Fermi arcs in topological DSMs
can be destroyed by surface magnetic doping, rendering their
Weyl orbits unstable. Conversely, the Fermi arcs are ad-
justable through CPL, providing a viable means to manipulate
and stabilize the Weyl orbits. To demonstrate this point, we
establish the Weyl orbits by applying a magnetic field along
the y direction, denoted by A(r) = −Bxêz. After the Peierls
substitution kz → kz − eB

h̄ x, the Hamiltonian becomes x de-
pendent, so that we need to further discretize Eq. (7) using the
Fourier transform cm = ∑

n e−ikxxn cm,n. Subsequently, we can
arrive at the square lattice model

H0 =
∑
mn

c†
m,n(hncm,n + hxcm,n+1 + hycm+1,n) + H.c. (11)

with hn = ( f0 + f1 cos ξn + fz sin ξn)/2 and hx = ( f2 −
i fx )/2. Here, we noted ξn = (xn − �2

Bkz )/�2
B and �B =√

h̄/|eB| is the magnetic length.
By diagonalizing Eq. (11), we can obtain the Landau levels

(LLs) and wavefunctions, referred to as ε j,kz and ψ j,kz (x, y),
respectively. Accordingly, we can define the local electron
probability density Pj (x, y, kz ) = |ψ j,kz (x, y)|2. The LLs and
spatial distribution of the electron probability density are pre-
sented in Fig. 3. In the Weyl-orbit mechanism, the surface
fermions driven by the magnetic field will move along the
Fermi arcs from one Weyl valley to the other and tunnel to
opposite surfaces at the Weyl nodes via bulk states. Therefore,
the Weyl orbits manifest in the probability density as a bright
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FIG. 2. Evolution of the k-resolved DOSs (a)–(d) ρ(ε, kx = 0, kz ) and (e)–(h) ρ(ε = 0, kx, kz ), denoted by the filled colors, for
(VM , kA, θ ) = (0, 0, 0), (0.2,0,0), (0.2,0.8,0), and (0.2, 0.8, π/2). Here, ς = 1, φ = 0, Ny = 20, and other parameters are the same as Fig. 1.

closed loop, as seen from Fig. 3(e), where two bright stripes
cross the bulk and connect the surface states at opposite sur-
faces. The width of the stripes ∼2�B relates to the cyclotron
radius of the bulk Weyl fermions, and the distance between
the stripes encodes the momentum distance between the two
Weyl nodes. When the Weyl fermions travel along the Fermi
arcs from one Weyl node to the other, their cyclotron center

will change by �xc = 2�2
Bks

w, which is exactly the distance
between the two bright stripes.

From Figs. 3(a) and 3(e), it can be observed that the
LLs resulting from the Weyl-orbit mechanism are uni-
formly spaced. When the Fermi arcs are impeded by surface
impurities, the intrinsic Weyl orbits will break down, as evi-
denced in Fig. 3(f), where the electron probability density is

FIG. 3. (a)–(d) The LLs and (e)–(h) spatial distribution of the electron probability density Pj (x, y, π ) for j = 2NxNy + 1 and j = 2NxNy,
respectively, in the upper and lower panels, with (VM , kA, θ ) = (0, 0, 0), (0.2,0,0), (0.2,0.8,0), and (0.2, 0.8, π/2). Here, we set Nx = 80,
�B = √

Nx/2π , and other parameters the same as Fig. 2.
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FIG. 4. (a) Schematic of the extrinsic Weyl orbits. (b) LLs
calculated with the vector potential A(r) = Bzêx . (c), (d) Spatial dis-
tribution of the electron probability density Pj (y, z, π ) for j = 2NyNz

and j = 2NyNz + 1, respectively. The parameters are the same as
Fig. 3.

discontinuous in the surface and enhanced in the bulk. As a
consequence, the LLs undergo significant alterations, making
them irregularly spaced, as depicted in Fig. 3(b). Interest-
ingly, while the intrinsic Weyl orbits are broken, extrinsic
Weyl orbits can form between different spin sectors when
the Fermi arcs are partially reinstated by CPL, as indicated
by the two lateral bright loops in Fig. 3(g). The extrinsic
Weyl orbits can be observed more clearly when the CPL is
incident in direction x, in which case the Fermi arcs from
different spin sectors form a closed Fermi loop, as exemplified
in Fig. 2(h). Therefore, the LLs regain regular spacing, but
the probability density distribution is notably different from
those of the intrinsic Weyl orbits, as shown by Fig. 3(h).
The extrinsic Weyl orbits can be observed in the y-z plane,
when the magnetic field is gauged by the vector potential
A(r) = Bzêx, as shown by Fig. 4. The splitting of the LLs in
Figs. 2(b)–2(d) is attributed to the asymmetric surface mag-
netic doping. For symmetric surface magnetic doping, e.g.,
Vm = VMσx(δm,1 − δm,Ny ), the spectrum of the upper and lower
surfaces are identical, and the LLs will return to be doublet
degenerate.

V. 3D QHE INDUCED BY THE EXTRINSIC WEYL ORBITS

To better understand the 3D QHE related to the Weyl
orbits, we derive the Hall conductivity analytically before
conducting numerical calculations. For simplicity, it is as-
sumed that the light is incident in direction z, such that the
light-introduced parameters can be reduced as λ1 = 0, λ2 =
2ςm2υFk2

A/ω, λF = ς h̄υ2
Fk2

A/ω, and mA = (1 + ς2)m2k2
A/2.

Upon application of the magnetic field, we can expand Eq. (2)
around Ks

χ as

Hsχ
eff (k) = h̄ωs(χξτz − is∂ξ τx ) − λskyτy, (12)

where ξ = √
λzλ−1

s (x − �2
Bkz )/�B is a dimensionless quan-

tity with λz = 2m1ks
w, and ωs = √

λzλs/(h̄�B) represents the
cyclotron frequency. Subsequently, we can determine the
eigenvalues

ε
sχ
n,ky

=
⎧⎨
⎩

−sχλsky n = 0

sn

√
2n(h̄ωs)2 + λ2

s k2
y n �= 0

, (13)

and the wavefunctions in the τy representation read

�
sχ
0,ky

= (1 + sχ, 1 − sχ )T /2, (14)

�
sχ
n �=0,ky

= 1√
2

⎛
⎜⎜⎝

χ

√
1 − λsky

ε
sχ
ky ,n

φ|n|− 1−sχ
2

sn

√
1 + λsky

ε
sχ
ky ,n

φ|n|− 1+sχ
2

⎞
⎟⎟⎠, (15)

where sn = sgn(n) and φ|n| is the harmonic oscillator
wavefunction.

For the low-energy continuum Hamiltonian (12), ky re-
mains a good quantum number and we can calculate the
ky-resolved Hall conductivity via the Kubo formula [12–16]

σ sχ
xz (ky) = ie2h̄

2π�2
B

∑
mn

(
f sχ
n − f sχ

m

)
υ̂sχ

x,mnυ̂
sχ
z,nm(

ε
sχ
m,ky

− ε
sχ
n,ky

)2 , (16)

where υ̂sχ
α,mn = 〈�sχ

m,ky
|h̄−1∂kα

Hsχ
eff (k)|�sχ

n,ky
〉 denotes the veloc-

ity matrix element and f sχ
n = f (εsχ

n,ky
) with f (ε) = 1/[1 +

exp( ε−EF
kBT )] being the Fermi-Dirac distribution function. By

substituting Eqs. (13)–(15) into Eq. (16), and after some te-
dious algebra, we can arrive at

σ sχ
xz (ky) = e2

h

∞∑
n=0

(
n + 1

2

)(
f sχ
n − f sχ

n+1 + f sχ
−n − f sχ

−n−1

)
.

(17)

As evident from Eq. (17), σ sχ
xz (ky) is quantized for a

given ky = k0. However, the dispersion with continuous ky

would prevent the quantization of the total Hall conductivity
σ s

xz = ∑
χ,ky

σ sχ
xz (ky).

In the following, we take s = 1 for the purpose of illustra-
tion. The LLs and σ sχ

xz (k0) are depicted in Figs. 5(a) and 5(b),
where the chirality of the Weyl fermions is encoded in the
n = 0 LLs. As observed, σ sχ

xz (k0) = (n + 1
2 )e2/h displays a

series of plateaus and jumps by one unit of e2/h whenever the
Fermi level crosses the intersection points between the LLs
and ky = k0. If n = 0 (|n| � 1), the solutions to ε

sχ
n,ky

= EF are

different (identical) for the two Weyl valleys, making σ s+
xz (k0)

equal (unequal) to σ s−
xz (k0) when |EF | is greater (smaller) than√

2h̄ωs, as observed in Figs. 5(a) and 5(b). For |EF | <
√

2h̄ωs,
after performing the summation in Eq. (17), the total Hall
conductivity can be reduced to

σ s
xz = e2

h

∑
ky

[ f (sλsky) + f (−sλsky) − 1]. (18)

If ky is consecutive, we can replace the summation with an
integral

∑
ky

→ Ly

2π

∫
dky. Together with the approximation

f (ε) � �(EF − ε) at low temperatures, where �(x) is the
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FIG. 5. (a), (b) Analytical results for the LLs (right axis) and
the ky-resolved Hall conductivity σ sχ

xz (k0 ) (left axis) with k0 = 0.2
(dotted lines), and (a) χ = +1 and (b) χ = −1, and the Hall con-
ductivity σ s

xz arises from the (c) periodic boundary condition and
(d) Weyl-orbit mechanism. The blue line in (c) indicates the value
of σ s

xz for continuous ky. Here, we set s = 1, Nx = 40, Ny = 40, and
other parameters the same as Fig. 3.

unit step function, we can further derive Eq. (18) as σ s
xz =

e2

h
EF Ly

πλs
. Consequently, σ s

xz changes continuously and is lin-
early scaled with EF , as indicated by the blue line in Fig. 5(c).
This insight suggests that if ky is discretized, quantized Hall
conductivity would become observable.

Theoretically, the simplest way to discretize ky is to sup-
pose the periodic boundary condition in direction y, i.e.,
kyLy = 2nyπ with ny ∈ Z. After that, the LLs in Eq. (13)
become εsχ

n,ny
= ε

sχ
n,ky→2nyπ/Ly

, and the Hall conductivity will
exhibit a plateau when the Fermi level is within the gap be-
tween εsχ

n,ny
and ε

sχ
n,ny+1. As a result, when h̄ωp = 2πλs/Ly 

h̄ωs and |EF | <
√

2h̄ωs, the Hall conductivity will be quan-
tized as

σ s
xz = sign(EF )(2Np + 1)

e2

h
(19)

with Np = �|EF |
h̄ωp

�, where �x� means x rounded downwards to
the nearest integer, shown by the green curve in Fig. 5(c).
For the mechanism of periodic boundary conditions, there is
always a LL at EF = 0, which corresponds to ny = 0, leading
to a jump in the Hall conductivity, as illustrated in Fig. 5(c).
Additionally, the LLs exhibit doublet degeneracy because the
two Weyl valleys are quantized independently. Since h̄ωp is
magnetic independent, the Hall conductivity in Fig. 5(c) does
not rely on the magnetic field.

The Weyl orbits provide another interesting mechanism
for the quantization. As mentioned above, in the Weyl-orbit
mechanism, the surface fermions, driven by the magnetic
field, will move along the Fermi arcs unidirectionally from
one Weyl valley to the other, and then tunnel to the opposite
surface at the Weyl nodes via the bulk states, and finally

return to its initial position. The dynamic phase for such a
Weyl orbit can be derived as �ϕs = ∑

χβ (χkyLy + βkx�xc).
Analogous to the periodic boundary condition, the dynamic
phase satisfies the quantization condition �ϕ = (2n + 1)π ,
where the additional π phase arises from the noncommutation
between kx and kz − x/�2

B. This is known as the Sommerfeld
quantization condition in quantum mechanics. For a given
energy |E | <

√
2h̄ωs, we can determine kx = −sβE/λs and

ky = −sχE/λs, respectively, from the surface spectrum in
Eq. (6) and the n = 0 bulk LLs in Eq. (13). Then, by sub-
stituting the expressions of kx and ky into the quantization
condition, we can immediately obtain the discrete spectrum
Es

n = s(n + 1
2 )h̄ωb with

h̄ωb = πλs

Ly + 2�2
Bks

w

. (20)

Distinct from the mechanism of periodic boundary conditions,
the spectrum quantization here is jointly realized by the two
Weyl valleys, so that the LLs in Fig. 5(d) are singlet degener-
ate. As a result, the Hall conductivity takes on a distinct form

σ s
xz = sgn(EF )Nb

e2

h
(21)

with Nb = �|EF |
h̄ωb

+ 1
2�. Besides, as a result of the additional π

phase, Nb can not reach zero, and there is no LL at EF = 0.
To proceed, we conduct numerical calculations directly

from the lattice Hamiltonian (11) to corroborate the described
physical picture. In terms of the LLs ε j,kz and wavefunctions
ψ j,kz mentioned below Eq. (11), the Kubo formula can be
reexpressed as [45]

σxz = 2e2h̄

LxLz

∑
kz,i �= j

Im(υ̂x,i j υ̂z, ji )

(ε j,kz − εi,kz )2
f (εi,kz ) (22)

with υ̂α,i j = 〈ψi,kz |υ̂α|ψ j,kz 〉, where the velocity operators
are defined by υ̂x = ih̄−1 ∑

mn[H, xmc†
m,ncm,n] and υ̂z =

∂H/(h̄∂kz ). Without magnetic perturbations, the spin sectors
are decoupled and the Hall conductivity can be calculated
separately for s = ±1. To compare with analytical results, we
present numerical results for the spin-resolved Hall conduc-
tivity in Figs. 5(c) and 5(d), as marked by the dark circles.
Observationally, the results obtained from the analytical and
numerical approaches exhibit significant agreement, which
confirms the proposed physical picture regarding the LLs and
3D QHE.

In Fig. 6, we present the Hall conductivity corresponding to
the LLs in Fig. 3. According to the physical picture above, we
can easily understand the behaviors of the LLs and the result-
ing Hall conductivity. As depicted in Fig. 3(a), in the absence
of surface magnetic perturbation, the LLs remain degenerate
for the two spin species. Consequently, the Hall conductivity
exhibits a steplike behavior, increasing by two units of e2/h
whenever the Fermi level traverses the LLs. When the intrinsic
Weyl orbits are disrupted by surface magnetic doping, LLs
can develop around zero energy, in analogy to the situation
with periodic boundaries. Therefore, the Hall conductivity
can display odd plateaus, as observed in Fig. 3(b), where
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FIG. 6. The Hall conductivity σxz (left axis) and DOS (right axis)
for the LLs in Figs. 3(a)–3(d).

the height of the Hall conductivity steps reduces to one unit
of e2/h, for the degeneracy of the LLs is eliminated by the
surface magnetic impurities. As the CPL is activated, extrin-
sic Weyl orbits would be established between the two spin
sectors, leading to the restoration of regular Hall plateaus,
illustrated by Figs. 3(c) and 3(d). However, the decreasing
dynamic phase from the Fermi arcs will result in an increase in
h̄ωb, and thus in the width of the Hall plateaus, in comparison
to Fig. 3(a). Interestingly, since the extrinsic Weyl orbits are
sensitive to the light irradiation, the 3D QHE can be observ-
able by varying the parameters of CPL, as demonstrated by
Fig. 7.

In practice, Dirac and Weyl semimetals exhibit opacity due
to the skin effect in conductors, and the penetration depth of
light is a critical factor to consider. Experimental data shows
that the penetration depth of light in WSMs can extend to
hundreds of nanometers, as demonstrated in Ref. [54], where
a depth of 750 nm was reported. This value significantly
exceeds the typical sample thickness (approximately 100 nm)
used to observe the 3D quantum Hall effect, as noted in
Ref. [29]. Therefore, the penetration depth of light can ad-
equately cover the length scale relevant to Weyl orbits. On
the other hand, boundary effects in the x or z directions may
influence the penetration depth of light, involving phenomena
such as reflection, refraction, absorption, scattering, surface
plasmons, etc. How their effects influence the photon-induced
external Weyl orbits needs further exploration.

VI. SUMMARY

We studied the Weyl-orbit-induced 3D QHE in surface-
doped topological DSMs. It is found that the intrinsic Weyl
orbits in topological DSMs can be destroyed by surface mag-
netic doping, and the related 3D QHE will break down. Upon
application of CPL, extrinsic Weyl orbits can be established,
which is constructed by the Fermi arcs from opposite Weyl
sectors, due to the coupling of the Fermi arcs by surface

FIG. 7. Evolution of the Hall conductivity σxz with the param-
eters of the CPL, for (a) θ = 0, VM = 0, (b) kA = 0.5, VM = 0,
(c) θ = 0, VM = 0.2, and (d) kA = 0.5, VM = 0.2. The rest of the
parameters are set the same as Fig. 6.

impurities. The extrinsic Weyl orbits can not only be modu-
lated by the irradiation intensity, but also by the irradiation
direction of the light, making the 3D QHE observable by
varying the parameters of the CPL. Our findings provide a
perspective for stabilizing Weyl orbits and exploring the 3D
QHE in topological semimetals.
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APPENDIX A: DERIVATION
FOR THE EFFECTIVE HAMILTONIAN

The static topological DSM accommodates two copies of
WSMs with opposite spin polarizations, which can be de-
scribed by the widely adopted Hamiltonian

H(k) = h̄υF(kxσzτx − kyτy) + mkτz. (A1)

Here, τα=x,y,z (σα) represents the Pauli matrix acting on the
orbital (spin) subspace, υF denotes the Fermi velocity, and
mk = m0 − m1k2

z − m2(k2
x + k2

y ) with m0,1,2 > 0 as the model
parameter. The light and magnetic fields can be included
by a vector potential, i.e., E(t ) = −∂t A and B = ∇ × A,
which enters the Hamiltonian via the Peierls substitution k →
k + eA/h̄. For the combined light and magnetic fields, the
vector potential can take the form A = A(r) + A(t ), where
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A(r) captures the magnetic field, and A(t ) = A[cos(ωt )êx +
ς sin(ωt )êy]R̂(θ, φ) accounts for a light beam incident in the
direction of n = êzR̂(θ, φ) = (sin θ cos φ, sin θ sin φ, cos θ ).
The symbols ω, A, and ς (= 0, ±1) are employed to represent
the frequency, amplitude, and (linear, right/left circular) po-
larization of the light, respectively. Here, the rotation operator
R̂(θ, φ) can be represented by a matrix

R̂(θ, φ) =
⎛
⎝ cos θ cos φ cos θ sin φ − sin θ

− sin φ cos φ 0
sin θ cos φ sin θ sin φ cos θ

⎞
⎠, (A2)

which aligns the x (z) axis of the coordinate system with the
light’s initial polarization (propagation) direction.

We would focus on the off-resonant regime where h̄ω

is much greater than the width of the static energy band.
In this situation, the absorption and emission of real pho-
tons are suppressed. However, the energy band can still be
modified through virtual photon absorption and emission pro-
cesses. The off-resonant-light-dressed Hamiltonian can be
determined by the Floquet theorem [46–53]

Heff (k) = H(k) +
∑
n>0

1

nh̄ω
[Hn,H−n], (A3)

where k = −i∇ + eA(r)/h̄ and Hn = ω
2π

∫ 2π/ω

0 H(k +
eA/h̄)e−inωt dt . Accordingly, we can obtain the effective
Hamiltonian presented in Eq. (1) of the main text.

APPENDIX B: DERIVATION FOR THE
TIGHT-BINDING HAMILTONIAN

In the language of second quantization, the total
Hamiltonian can be written as

H =
∑

k

c†
kh(k)ck +

∑
kk′

c†
kVkk′ck′ , (B1)

where c†
k (ck) represents the electron creation (annihilation)

operator, and the last term describes the disordered effect aris-
ing from impurity scattering. Concretely, The single-particle
Hamiltonian h(k) can be obtained from Eq. (1) directly by the
transforms kα → sin kα and k2

α → 2 − 2 cos kα , yielding

h(k) = f0 + f1 cos kz − fz sin kz + f2 cos kx

+ fx sin kx + f2 cos ky − fy sin ky. (B2)

Here, f0 = (m0 − mA + λF σz )τz − f1 − 2 f2, f1(2) = 2m1(2)τz,
fx(y) = (h̄υFσz + λ2)σ0(z)τx(y), and fz = λ1(τx cos φ −
σzτy sin φ). For the sample with finite size in the y direction,
we can discretize the Hamiltonian by the Fourier transform
ck = ∑

m e−ikyym cm, and obtain the impurity-free 1D lattice
Hamiltonian, as presented in Eq. (7) of the main texts.
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