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We discuss a class of three-band non-Abelian topological insulators in three dimensions that carry a single bulk
Hopf index protected by spatiotemporal (PT ) inversion symmetry. These phases may also host subdimensional
topological invariants given by the Euler characteristic class, resulting in real Hopf-Euler insulators. Such
systems naturally realize helical nodal structures in the three-dimensional Brillouin zone, providing a physical
manifestation of the linking number described by the Hopf invariant. We show that, by opening a gap between
the valence bands of these systems, one finds a fully-gapped “flag” phase, which displays a three-band multigap
Pontryagin invariant. Unlike the previously reported PT -symmetric four-band real Hopf insulator, which hosts
a Z ⊕ Z invariant, these phases are not unitarily equivalent to two copies of a complex two-band Hopf insulator.
We show that such uncharted phases can be obtained through dimensional extension of two-dimensional Euler
insulators, and that they support (i) an optical bulk integrated circular shift effect quantized by the Hopf invariant,
(ii) quantum-geometric breathing in the real-space Wannier functions, and (iii) surface Euler topology on
boundaries. Consequently, our findings pave the way for novel experimental realizations of real-space quantum
geometry, as these systems may be directly simulated by utilizing synthetic dimensions in metamaterials or
ultracold atoms.
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I. INTRODUCTION

Non-Abelian phenomena and gauge structures are of
broad interest in contexts ranging from condensed matter
to high-energy physics. Such noncommuting objects can in-
duce a wide range of complex phenomena, many of which
have no Abelian counterpart. A salient example is provided
by non-Abelian anyons, which can exhibit exotic braiding
statistics; these are, moreover, an active area of research
due to their potential application in topological quantum
computation [1].

It is not only quantum-mechanical systems that can realize
non-Abelian gauge fields. For instance, classical soft mat-
ter systems can host non-Abelian topological defects in the
form of π -disclinations within biaxial nematic liquid crystals
[2–5]. This example is of particular importance due to the
recent discovery that band degeneracies in systems possess-
ing spatiotemporal inversion (PT ) or C2T (twofold rotation
with time-reversal) symmetry [6–10] can host non-Abelian
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charges in a fashion directly analogous to the emergence of
π -disclination vortices in biaxial nematics. In this scenario,
the charges are defined by the particular type of rotation
exhibited by the Bloch eigenstates |ua(k)〉 in the vicinity
of the nodes, differing relative to each other. Furthermore,
these band degeneracies may be braided around each other to
produce band subspaces (groups of bands) that host similarly
charged nodes that cannot be mutually annihilated. Such pro-
cesses hence produce a novel multigap phase [11] in which the
two-band subspace exhibits a multigap topological invariant,
the Euler class [7,8]. These multigap phases in principle go
beyond conventional single-gap topological phases [12–14],
which can be classified by comparing how irreducible band
representations glue together over the Brillouin zone (BZ)
[15–18] and comparing their real-space Wannier description
[19,20], as they are in general not symmetry-indicated [11].
Notably, multigap invariants, such as the Euler class χ , and
the corresponding braiding of band degeneracies in two-
dimensional systems, have been related to a variety of phys-
ical systems and phenomena, including out-of-equilibrium
quenches and Floquet systems [21–23], phonon modes
[24,25], magnetic systems [26,27], and implementations in
metamaterials [28–31].

In three spatial dimensions, an assortment of different
multigap phases are possible [11,32,33], all of which lie
outside the paradigm of K-theory and single-gap stable
equivalence [17,34]; these phases are instead described by
homotopy groups, which capture the fine topological detail
of few-band systems [11]. In this case, the type of topology
that can be realized depends sensitively upon how the bands
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are partitioned [11], since these subspaces determine the clas-
sifying space into which the Bloch Hamiltonian defines a
map. The particular topological class to which a given system
belongs may be determined by computing the corresponding
charges induced on this manifold by its Hamiltonian [11,35].
For example, in a four-band system at three-quarters filling
one may compute the Pontryagin index, which also charac-
terizes non-Abelian SU(2) instantons in Yang-Mills theory
[36]. If, in addition, all occupied and unoccupied bands in
this system are initially mutually well-separated in energy,
then, upon the introduction of band crossings, it is possi-
ble to assign the system a homotopy charge in the group
π3[S3] ∼= Z, and moreover to realize a braiding protocol with
split-biquaternionic charges [36].

In the same vein, Hopf insulators, which provide a solid-
state realization of the Hopf fibration S1 ↪−→ S3 π→ S2 [37–45],
also fall beyond the stable equivalence classification captured
by K-theory. The two-band Hopf insulator phase is character-
ized by a single integer-valued topological quantum number,
namely the Hopf invariant HC [46], which takes values in the
homotopy group π3[S2] ∼= Z. In this context, the two sphere
is the classifying space of a two-band complex system at
half-filling,

Gr1,2(C) ∼= U(2)

U(1) × U(1)
∼= S2. (1)

The Hopf invariant of this model may be computed from the
following integral over the three-dimensional Brillouin zone,
BZ ∼= T 3:

HC = − 1

4π2

∫
BZ

A ∧ F, (2)

where A = i〈u|du〉 is the Abelian Berry connection of the
occupied band |u(k)〉, and F = dA is the corresponding curva-
ture. While the original study on the Hopf insulator considered
only this bulk index, subsequent work has investigated the
consequences of the presence of additional “weak” invari-
ants on the two-dimensional coordinate planes within the 3D
BZ. It turns out that, when the Chern numbers on the kx-,
ky-, and kz-planes are C = (Cx,Cy,Cz ), respectively, the Hopf
invariant is instead an element of the set Z2 gcd(C), where
gcd(C) = gcd(Cx,Cy,Cz ) is the greatest common divisor of
the integers Cx, Cy, and Cz [40].

Similarly to other topological invariants, the presence of
a nontrivial Hopf invariant in the bulk of a system has con-
sequences for its response functions. In particular, in the
presence of a static electromagnetic field, the vacuum of a
three-dimensional Hopf insulator may support a topological
magnetoelectric effect [42,47]. In general, this phenomenon
is described by the effective action for axion electrodynamics
[47–51],

Saxion = θ

16π3

∫
F ∧ F , (3)

where F is the electromagnetic Maxwell tensor. Here the so-
called “θ -angle”, which is a property of the medium, can be
obtained from the integral of the Chern-Simons form over the
BZ,

θ = 1

4π2

∫
BZ

Tr

[
A ∧ dA + 2

3
A ∧ A ∧ A

]
(mod 2π ), (4)

where Aab = i〈ua|dub〉 is the non-Abelian Berry connection,
and the trace is evaluated over the band indices a, b. In the
context of the two-band Hopf insulator, Eq. (4) reduces to
(a multiple of) Eq. (2), and we see that θ = πHC (mod 2π ).
It should be stressed that only the ground states with
θ = π (mod 2π ) display a topological magnetoelectric ef-
fect [42]; this follows from the variation of the action
Saxion in Eq. (3) under large gauge transformations, which
change θ→θ+2π . Nonetheless, nontrivial quantized opti-
cal responses can emerge even in magnetoelectrically trivial
media, a concrete example being the PT -symmetric Hopf
insulator with θ = 0 (mod 2π ) [52].

The Hopf map also arises in a number of other topological
phases. For instance, it has strong connections to ultracold
atoms, where it has been shown to arise in quenched Chern
bands [53] and Euler systems [21,54]. One generalization is
the N-band complex Hopf insulator [55], in which a Hopf
invariant may be assigned to an isolated two-band subspace
that is separated from the rest of the space by gaps both
above and below it. Of particular relevance to the present
work is the four-band real Hopf insulator (RHI), introduced
in Ref. [45], which is realized in half-filled systems satisfying
a reality condition. In such systems, the (oriented cover of the)
classifying space is isomorphic to a pair of spheres [11,32,45],

Gr+
2,4(R) ∼= SO(4)

SO(2) × SO(2)
∼= S2

− × S2
+, (5)

which gives rise to two intertwined Hopf invariants, H±.
Furthermore, the integrated shift photoconductivities of these
systems, which characterize their coupling to circularly polar-
ized light, have recently been shown to be quantized [52].

In this work, we establish further results concerning
real multiband topological phases, in particular Hopf-Euler
phases, in more general settings. We proceed by introducing
three-band real Hopf insulators, and moreover we discuss the
three- and four-band real phases that carry a Hopf index in
the presence of a nontrivial Euler class on one or more of the
coordinate planes within the BZ. We also identify and dis-
cuss particular physical manifestations of such distinct phases,
namely (i) a bulk quantized nonlinear optical circular shift
response; (ii) real-space oscillations of maximally localized
bulk Wannier functions, (iii) boundary states hosting Euler
topology at the surface, and (iv) nodal helices naturally re-
alized in the presence of the nontrivial weak Euler invariants.

The manuscript is organized as follows. In Sec. II, we
introduce a set of distinct homotopy-classified non-Abelian
PT -symmetric real Hopf phases in three spatial dimensions,
with three rather than four bands [45]. In this context, we
additionally identify fully gapped “flag” phases that possess
a strong homotopy invariant associated with all three bands,
which may be identified with a Hopf index. Finally, as a
more central component of this work, we introduce Hopf-
Euler insulators, which host the aforementioned Euler class
invariants on two-dimensional sections of the BZ, in addition
to nontrivial Hopf topology. In Sec. III, we identify a mani-
festation of the interplay between the strong Hopf and weak
Euler invariants which is realized in these phases, namely
the presence of nodal helices. The existence of these nodal
structures is a natural consequence of a fundamental math-
ematical connection between the topological invariants and
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the preimages of the maps that characterize the Hamiltonians.
Furthermore, in Sec. III, we examine the physical phenomena
displayed by these non-Abelian phases. We show that the bulk
Hopf index is reflected in the nonlinear optical response of the
system (specifically the quantized integrated shift response),
and that the quantum geometry of these phases emerges in
the form of a quantum-geometric breathing (QGB) of maxi-
mally localized hybrid Wannier functions in real space, that
is, oscillations of their second moments. Lastly, we show
that the bulk real Hopf invariants induce the Euler class in
the boundary states by means of the teleportation of Euler
curvature, provided the boundary preserves the C2T symme-
try which is respected in the bulk. In Sec. IV, we provide
concrete realizations of the introduced three- and four-band
Hopf/Euler phases in minimal models. We elaborate on pos-
sible experimental realizations of the aforementioned phases
in Sec. V. Finally, we discuss our results in Sec. VI, where
we review the connections between the homotopy-classified
two-band, three-band, and four-band phases which arise from
dimensional extensions and complexification relations. We
then examine electromagnetic responses in multigap phases,
before concluding in Sec. VII.

II. HOPF-EULER PHASES

In this section, we utilize the Pontryagin-Thom construc-
tion to classify three- and four-band PT -symmetric gapped
phases of matter with Hopf indices in three dimensions. We
first examine three-band phases with a single gap, and we
demonstrate that such phases are classified by a Hopf invariant
and three Euler classes. Of particular note are the Hopf-Euler
phases, in which both of these topological invariants are si-
multaneously nontrivial. We then explore the modifications
that appear when imposing the additional condition that the
occupied bands be gapped from one another, before conclud-
ing with a discussion of the extension of the three-band phases
to four-band systems.

A. Three-band Hopf-Euler phases

Let us begin by describing the topological invariants that
may be assigned to a real three-band model in three di-
mensions. Let H3(k) be a 3 × 3 real Bloch Hamiltonian,
where k = (kx, ky, kz ) ∈ BZ ∼= T 3 is the quasimomentum,
which takes values in the Brillouin zone, a 3-torus. The re-
ality of the Hamiltonian may be ensured by the presence of
particular symmetries, for example PT symmetry. We will
choose a gauge in which the Bloch Hamiltonian is a periodic
function over the BZ, so that H3(k + G) = H3(k) for any
reciprocal-lattice vector G. We denote the eigenvectors of
H3(k) as |ua(k)〉, a = 1, 2, 3, while the corresponding ener-
gies are Ea(k). Since the eigenvectors |ua〉 may be chosen to
be real, we sometimes refer to both |ua〉 and its dual simply
as ua. For it to be possible to ascribe a topological class to the
system, it must be gapped, and correspondingly we assume
that E3(k) > E1,2(k) for all k. Moreover, we take the chemical
potential μ to lie in this gap, E3(k) > μ > E1,2(k), so that the
bands |u1〉 and |u2〉 are occupied.

The set of equivalence classes of topologically similar
Hamiltonians of this type may be established by examining

the classifying space, given by the real Grassmannian

Gr2,3(R) = O(3)

O(2) × O(1)
∼= RP2, (6)

where RP2 ∼= S2/Z2 is the real projective plane. For our
purposes, it is sufficient to replace this nonorientable space
with its oriented double cover Gr+

2,3(R) ∼= S2. The topological
phases of this system are then characterized by the distinct
homotopy classes of maps between the BZ and the classifying
space. The set of such maps does not form a group, and is in
fact given by the set

[T 3, S2] =
{

(v0; v) | v = (v1, v2, v3) ∈ Z3;

v0 ∈
{
Z v = 0
Z2 gcd(v) otherwise.

}}
, (7)

where gcd(v) is the greatest common divisor of the integers
v1, v2, and v3. We will now demonstrate that the index v0

corresponds to the “strong” Hopf invariant of H, while the
vector v labels its “weak” Euler invariants on each of the
coordinate planes.

To realize this correspondence, we note that by apply-
ing the band flattening procedure, whereby the occupied
and unoccupied energy bands are adiabatically changed to
E3(k) = +1 and E1,2(k) = −1, respectively, we may bring
any three-band Hamiltonian H3(k) into the form

H̄3(k) = R3(k) diag(1,−1,−1)R3(k)T

= 2d̂(k) ⊗ d̂(k)T − 13, (8)

which we refer to as the flattened Hamiltonian. Here
d̂(k)=u3(k) is the (normalized) third eigenvector with energy
+1, and R3(k) = (|u3〉 , |u2〉 , |u1〉) is an SO(3) matrix with
columns given by the eigenvectors of H3(k) (the vectors have
been ordered for later convenience). In particular, the vector
d̂ : T 3 → S2 explicitly gives the map to the sphere which
specifies the topological class of the Hamiltonian. Hence,
the problem of determining the topological phase realized
by a Hamiltonian H3(k) is reduced to finding which class in
[T 3, S2] the map d̂ belongs to. Away from the flat band limit,
it is not possible for the Hamiltonian to be expressed directly
in terms of the winding vector d̂ as in Eq. (8). Nonetheless, all
the following formulas involving d̂ may be applied directly in
this case by using the third eigenvector u3 instead.

As described in Ref. [40], the topological class realized by
d̂ is uniquely determined by its framed preimage, which may
be thought of as the “ribbon” defined by the preimages of two
infinitesimally separated points on the sphere. This correspon-
dence is realized via the Pontryagin-Thom construction (see
Appendix A), which shows that two maps d̂1 and d̂2 are in the
same topological class if and only if their framed preimages
are framed cobordant. As we will shortly clarify, this construc-
tion provides a means by which the topological phase of the
system can be deduced by inspecting the preimages of any
two points on the sphere. In brief, the preimage of a point on
the sphere under this map is a one-dimensional subset of the
BZ composed of (contractible and/or noncontractible) loops,
and the phase is determined by the types of structures (e.g.,
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FIG. 1. The topological Hopf and Euler invariants of an (ori-
ented) three-band Hamiltonian may be determined by examining the
preimage of its third eigenvector as a map u3 = d̂ : T 3 → S2. The
(strong) Hopf invariant characterizes the behavior of loops and links
within the 3D BZ, while the (weak) Euler classes are concerned with
the intersection of these lines with 2D planes embedded within this
space; see the main text and Fig. 2 for further discussion.

links) that are formed by two such preimages. Interestingly,
these structures are not merely a computational tool: as we
demonstrate in Sec. III, in Hopf-Euler phases they can be
realized physically as nodal lines. To proceed further, it is
helpful to express the rotation matrix R3 and the winding
vector d̂ in terms of quaternions (see Appendix B for a review)
[21]. This is made possible by the well-known isomorphisms
SO(3) ∼= SU(2)/Z2 and SU(2) ∼= S3, along with the embed-
ding of the unit three sphere S3 into the quaternion algebra H
as the set of unit quaternions (versors), that is,

S3 ∼= H0 = {
q = x0 + ix1 + jx2 + kx3 ∈ H |

|q|2 = q̄q = x2
0 + x2

1 + x2
2 + x2

3 = 1
}
. (9)

By viewing the set of purely imaginary quaternions H∗ =
{w ∈ H | w=w̄}={w1i + w2j + w3k | wi ∈ R} as H∗ ∼= R3, it
is possible to identify the action of rotation matrices on vec-
tors in three dimensions with that of unit quaternions on
imaginary quaternions via conjugation. In this way, the SO(3)
matrix R3(k) may be written in terms of the action of a unit
quaternion q on the imaginary units i, j, k ∈ H:

R3(k) = (|q̄iq〉 |q̄jq〉 |q̄kq〉)

= (|u3(k)〉 |u2(k)〉 |u1(k)〉), (10)

where q̄wq = R3w, with w = (w1,w2,w3)T. Since the wind-
ing vector is equal to the third eigenvector |u3(k)〉, it follows
that

q̄iq = [
x2

0 + x2
1 − x2

2 − x2
3

]
i + 2[x1x2 − x0x3] j

+ 2[x0x2 + x1x3] k

= d̂ · (i j k), (11)

from which we can read off the components of the winding
vector d̂. This may be conveniently summarized in terms
of the Pauli matrices σi as d̂i = z†σiz, where z = (x0 + ix1,

x2 + ix3)T. We give the explicit formula for R3 in terms of the
components xμ in Appendix B. Using this expression, along
with Eq. (11), one may verify directly that the decomposition
Eq. (8) holds for any quaternion q of unit magnitude.

(a)

(d)

(b) (c)

(e)

∼=

∼= ∼=

(H; χx, χy, χz) = (0;0) (1; 0, 0, 0) (0; 0, 0, 2)

(0; 0, 2, 2) (1; 0, 0, 2)

kx
ky

kz

FIG. 2. Distinct realizations of the Hopf-Euler insulator invari-
ants, with preimages of two points on the sphere S2 under the map
defined by the third eigenvector u3 of H3 in different topological
phases. The Hopf invariant H is equal to the linking number of
the red and blue loops, while the Euler class χi is equal to (twice)
the number of noncontractible loops in the ith direction. (a) Trivial
phase, (b) strong Hopf phase, (c), (d) layered Euler phases, and (e)
Hopf-Euler phase.

We will now utilize the formalism laid out above to enu-
merate the possible topological phases of these Hamiltonians,
which are summarized in Fig. 2.

1. Trivial bulk topology

First, before discussing the nontrivial topological phases
that may exist in the bulk of the system, we mention the de-
scription of the trivial phase, in which all invariants vanish, in
terms of the preimage construction as illustrated in Fig. 2(a).
The trivial phase may be defined as the set of Hamiltonians
for which the third eigenvector u3 is homotopic to the con-
stant map d̂0(k) = êz, the unit vector in the z-direction. It
is straightforward to see that the preimage of a point p on
the sphere in this phase may be empty. However, it is also
possible for u−1

3 (p) to consist of a finite number of unlinked,
disjoint, contractible loops within the BZ, since these may
be removed by a continuous transformation. Moreover, if the
preimages of two points on the sphere both contain loops,
then these loops also cannot link, for this would imply that
u3 were not null-homotopic. This applies similarly to each of
the nontrivial phases: It is always possible to add any number
of trivial loops to the preimage of a point.

2. Strong Hopf topology

In the absence of weak invariants, the bulk topology of the
system is classified by the homotopy group π3[S2] ∼= Z. The
Hopf invariant of a map d̂ can be nonzero only when it is
surjective, so that every point on the sphere S2 corresponds
to a circular preimage within the BZ (Fig. 1); the linking
number of two such circles selected from distinct points on
S2 is precisely equal to the Hopf invariant; see Fig. 2(b). This
statement is true modulo homotopy—for instance, a pair of
doubly linked loops may be deformed into two sets of singly
linked loops, which together have linking number 2. This
interpretation plays an integral role in this work, and we will
make repeated reference to it throughout the text.
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The Hopf invariant H of a three-band model may be
calculated by using the non-Abelian Berry connection of
the occupied subspace, Aab = i〈ua|dub〉 = Ai

ab dki. To do so,
one must compute the Euler connection a = Pf(−iA) =
〈u1|∂iu2〉 dki, which is equal to the off-diagonal element of the
matrix A. The Hopf invariant is then given by

H = − 1

16π2

∫
T 3

a ∧ Eu = − 1

16π2

∫
BZ

d3k a · (∇ × a),

(12)
where we have written a = ai dki = a · dk and identified the
Euler form

Eu = da = 〈∂iu1|∂ ju2〉 − 〈∂ ju1|∂iu2〉
2

dki ∧ dk j . (13)

To prove Eq. (12), we begin with the Whitehead formula for
H, which reads [56]

H = − 1

4π2

∫
ω ∧ dω, (14)

where ω = Re[−iqdq̄]. As we shown in Appendix B, the
Euler connection a may be expressed in terms of ω as a = 2ω,
which then gives the required result. Notably, the factor of
2 arises from the quadratic dependence of d(k) on z; this is
in contrast to the four-band case (discussed in Ref. [45] and
Sec. II C), where each of the vectors n̂± depends only linearly
on each of the quaternions q+ and q− (though the Hamiltonian
H4 is still quadratic in q±).

The Hopf invariant may also be calculated directly from the
normalized complex vector ẑ provided by the decomposition
d̂i = z†σiz of the winding vector d̂ as

H = − 1

4π2

∫
BZ

d3k εi jk ẑ†(∂iẑ)(∂ j ẑ†)(∂k ẑ). (15)

If the vector z is known, then Eq. (15) provides the quickest
route for computing H [41], as it does not require the calcu-
lation of any intermediate quantities (such as Eu). However,
if one knows only d̂, then determining z requires the solution
of a partial differential equation, and it is significantly more
straightforward to employ Eq. (12) instead [37,45].

3. Layered Euler topology

In addition to the bulk index H, the Hamiltonian H3(k)
may also possess codimension-1 topological quantum num-
bers on each of the three coordinate planes; see Figs. 2(c)
and 2(d). We consider first the scenario in which the Hopf
invariant vanishes but one or more of these weak invariants are
nonzero. For concreteness, in the following we consider the
plane Q(kz ) ∼= T 2 defined by fixing kz, but identical arguments
apply to the kx- and ky-planes also. The Euler form Eq. (13)
may then be used to compute the Euler class χz of Q(kz ),

χz = 1

2π

∫
T 2

z

Eu = 1

2π

∫
Q(kz )

d2κ ∇κ × a, (16)

where κ = (kx, ky). In particular, the Euler curvature form Eu,
as well as the Euler class itself, can be efficiently computed
numerically using a band complexification trick, as introduced
in Ref. [7]. This invariant has been extensively investigated
in two dimensions [7,8,10,11,21], where its relation to the
band degeneracies present in the relevant band subspaces was

explored in detail [8,11,28]. Additionally, when the invariant-
hosting two-band subspace is not isolated with band gaps,
as in semimetals, the Euler class invariant can be extended
to two-dimensional patches D within the BZ (D ∈ BZ) that
exclude band degeneracies residing between the other bands.
Specifically, the patch Euler class is defined by including a
boundary term as [7,28]

χD = 1

2π

∫
D

Eu − 1

2π

∫
∂D

a. (17)

Physically, the patch Euler class χD quantifies the stability
of nodes to annihilation [7,8,11,28]. Finally, we note that
the Euler invariant itself can be probed using signatures in
the quench dynamics [21], as was recently experimentally
demonstrated in trapped-ion quantum simulators [54].

The Euler class is equal to (twice) the topological degree
of the unit vector ŵz(κ) = d̂(k)|kz=const when considered as
a map ŵ : T 2 → S2 [21]. Indeed, ∇κ × a = ŵ · (∂xŵ × ∂yŵ)
is equal to the skyrmion density of ŵ. χz may alternatively
be computed by counting the signed number of points in the
preimage of any regular point p ∈ S2:

χz = 2
∑

κp∈ŵ−1(p)

sgn det Dŵ|κ=κp, (18)

where Dŵ is the Jacobian matrix. In particular, a nonzero
Euler class implies the existence of a nonempty preimage
w−1(p) ⊂ Q(kz ) for all p ∈ S2. The Euler class on the plane
Q(kz ) can change as a function of kz only if there is a gap
closing between the conduction and valence bands at some
value of kz. Since we are solely concerned with gapped phases
here, we exclude this possibility, hence the Euler class must
remain constant for all kz. It therefore follows that the preim-
age ŵ−1

z (p) exists and is continuous for all kz, so that d̂−1(p)
is a set of lines connecting the kz = ±π surfaces. This relation
is shown schematically in Fig. 2(c).

In general, the layered Euler phases are characterized by
a triple χ = (χx, χy, χz ) ∈ (2N )3. A representative preimage
for a phase with Euler class χ has χi/2 noncontractible loops
along the ith direction of the BZ for i = x, y, z [see Fig. 2(d)].

4. Hopf-Euler topology

As outlined above, the Hopf invariant H of the map d̂ :
T 3 → S2 is nontrivial only when the preimage of any two
points on S2 forms a link in the BZ. Similarly, the Euler class
χ of a coordinate plane Q ∼= T 2 within the BZ is nonzero
when the preimage of a point on S2 forms a loop around
the noncontractible direction of the torus perpendicular to
Q; see Fig. 2(e). It therefore follows that if a three-band
Hamiltonian H3(k) carries both an Euler class on Q(kz ) and a
Hopf invariant, the preimage under d̂ of two points in S2 must
both (i) form a link, and (ii) connect the kz = ±π planes. As
we show in Fig. 2, this may be realized either as a disjoint
connection of a link and two lines, or equivalently as a helix
within a single BZ.

The topological invariants of this phase may again be cal-
culated using Eqs. (12), (15), (16), and (18). However, it is
important to recall Eq. (7), which indicates that the presence
of nontrivial weak Euler invariants leads to a reduction in the
range of values which the Hopf invariant H can take. In this
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way, the Hopf invariant given by Eqs. (12) and (15) must be
interpreted mod(gcd χ), as can be shown with the Pontryagin-
Thom construction [40]; see Appendix A [note that the factor
of 2 premultiplying the gcd in Eq. (7) is absorbed into the
conventional factor of 2 in the Euler class]. This should also
be taken into account when inspecting the preimage of two
points on S2: a pair of loops with linking number gcd χ may
be trivialized without closing the gap.

B. Three-band flag phases

So far, we have only considered phases with a single gap
between the occupied and unoccupied states. It is instructive
to consider the modifications to the conclusions of the previ-
ous section which occur when the more stringent condition
that all phases are fully gapped is imposed. That is, we now
require that E3(k) > μ > E2(k) > E1(k) for all k ∈ BZ. The
classifying space of the system in this case is given by the flag
manifold,

Fl1,1,1(R) = O(3)

O(1) × O(1) × O(1)
, (19)

where O(1) ∼= Z2. This space has homotopy groups
π3[Fl1,1,1(R)] ∼= Z and π2[Fl1,1,1(R)] ∼= 0, which, respec-
tively, label the strong and weak topological invariants of
the Hamiltonian. Notably, the condition that the lower gap
remain open forces all Euler classes to be zero. Seen from
another perspective, a nonzero Euler class protects the nodes
in the occupied two-band subspace from gapping out. This
observation is of especial importance for Sec. III, where we
will demonstrate that a nontrivial Euler class is required to
stabilize the nodal helices that emerge in C2z-symmetric Hopf-
Euler phases.

A representative three-band Hamiltonian Hflag
3 of a

flag phase may be obtained by flattening the bands to
E3(k) → +1, E2(k) → 0, and E1(k) → −1. This has the ef-
fect of modifying the central diagonal matrix in Eq. (8) from
diag(1,−1,−1) to diag(1, 0,−1), so that

H̄flag
3 (k) = V3(k) diag(1, 0,−1)V3(k)T, (20)

where V3(k) ∈ SO(3). In contrast to Eq. (8), it is not possible
to write the flag Hamiltonian in Eq. (20) in terms of a single
three-dimensional winding vector. Thus, the topology of this
system may be described only with reference to the matrix V3.
In other words, the topological index of this system is not an
element of the group π3[S2], but rather of

π3[Fl1,1,1] ∼= π3[SO(3)] ∼= π3[SU(2)] ∼= π3[S3] ∼= Z, (21)

where we have noted that higher homotopy groups are insen-
sitive to the presence of discrete quotients, and made use of
the isomorphisms SO(3) ∼= SU(2)/Z2 and SU(2) ∼= S3. An
explicit expression for the topological index realized by the
map V3 : T 3 ∼ S3 → SO(3) may be found by making use
of the homomorphism f : SO(3) → SU(2) as follows. First,
we note that the SO(3) matrix V3 may be written in terms
of the generators of so(3) ∼= su(2) as V3(k) = exp (iθ(k) · L),
where θ(k) is a real three-component vector of parameters.
The SU(2) matrix corresponding to V3 under f is then given
by U (k) = exp (iθ(k) · σ/2), since the matrices σi/2 generate
su(2). The winding number of this matrix as a map U : S3 →

SU(2) is given by the Pontryagin index [56,57],

w = 1

24π2

∫
BZ

Tr [(U −1dU )3]

= 1

24π2

∫
BZ

d3k εi jkTr [(U −1∂iU )(U −1∂ jU )(U −1∂kU )]

= 1

16π2

∫
BZ

d3k sinc2

(
θ

2

)
∂xθ · (∂yθ × ∂zθ), (22)

where θ (k) = |θ(k)|; from Eq. (21) this is also equal to the
homotopy class of the flag Hamiltonian Hflag

3 .
While Eq. (22) in principle allows the computation of the

topological index of Hflag
3 , in practice it is difficult to deter-

mine the parameters θ(k) from the Hamiltonian. In fact, there
is a more simple expression for w which moreover relates it to
the topological invariants of the previous section. To arrive at
this formula, we note that by computing the matrix exponen-
tial V3 = exp(iθ · L) we can obtain explicit expressions for the
eigenvectors |ua(k)〉 of the Hamiltonian in terms of θ. Thus,
the Euler connection a = 〈u1|du2〉 and Euler form Eu = da
may be explicitly computed in terms of the parameters θ. In
terms of these objects, one finds that

w = − 1

16π2

∫
BZ

a ∧ Eu. (23)

This allows the Pontryagin index to be computed from the
eigenvectors of Hflag

3 directly, without it being necessary to
find θ(k) as an intermediate step. Equation (23) may be ver-
ified by evaluating the right-hand side of the equation as a
function of θ, and checking that it agrees with Eq. (22). We
stress that, while the right-hand side of Eq. (23) is identical
to that of Eq. (12), the Pontryagin index is not a Hopf index:
the particular type of topological number that the expression
− 1

16π2

∫
a ∧ Eu computes is different in the cases in which

the occupied bands touch, and when they are fully gapped.
Nevertheless, the fact that both of these expressions agree pre-
cisely is no coincidence, and this equality demonstrates that
opening a gap in the occupied subspace causes the Hopf index
(which characterizes the winding of S3 around S2) to become
a Pontryagin index [which characterizes the winding of S3

around SU(2) ∼= S3]. Another perspective on the similarity of
these expressions may be obtained by noting that a ∧ Eu is,
up to multiplication by a constant, the only gauge-invariant
3-form that exists in this system [45]. Hence, given that a Z-
valued three-dimensional topological index exists both when
the occupied bands touch and when they are gapped, it is
necessary that both must be proportional to the integral of
a ∧ Eu over the BZ.

Finally, we note that there is no way to determine the
topological class of a flag Hamiltonian using a preimage
construction like that described in the previous section. The
Pontryagin index is equal to the degree of the smooth map
S3 → S3 defined by the Hamiltonian, and, since the target
and base spaces of such maps have the same dimension, the
preimage of a point on S3 is not a loop in the BZ, but rather
a discrete collection of points. Hence, there is no way to
interpret the Pontryagin index as a linking number.
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C. Four-band Hopf-Euler phases

The classification of four-band Hopf-Euler phases in three
dimensions may be carried out in much the same way as
was done for three-band phases. This follows by virtue of
the fact that, while Gr+

2,3(R) ∼= S2, the (oriented cover of the)
classifying space of a half-filled four-band Hamiltonian H4(k)
is given by

Gr+
2,4(R) ∼= SO(4)

SO(2) × SO(2)
∼= S2

− × S2
+, (24)

so that the topology of H4 is classified by maps into a pair of
spheres [11]. This result was utilized in Ref. [45] to analyze
the strong topology of H4, which corresponds to the Hopf
invariants H± ∈ π3[S2

±] of each sphere. In fact, the full set of
topological indices classifying H4 consists not only of these
two Hopf H± invariants, but also an additional six Euler
invariants χi± ∈ 2N (i = x, y, z). As discussed in Sec. II A,
the range of allowed values of the Hopf invariants is re-
duced in the presence of weak Euler classes, taking values
H± ∈ Zgcd(χ± ) in general.

To compute the topological indices of a four-band system,
one can flatten the bands E1,2(k) → −1 and E3,4(k) → +1,
after which the Hamiltonian may be written as [cf. Eq. (8)]

H̄4(k) = R4(k) diag(1, 1,−1,−1)R4(k)T

= n̂−(k) · � · n̂+(k), (25)

where n̂± are normalized eigenvectors in R3, � is an ar-
ray of Dirac matrices (given in Appendix B), and R4(k) =
(|u4〉 , |u3〉 , |u2〉 , |u1〉) is an SO(4) matrix with columns given
by the eigenvectors of H4(k). Just as an arbitrary SO(3) ma-
trix can be parametrized by a single quaternion of unit norm,
it is always possible to write the SO(4) matrix R4(k) in terms
of two unit quaternions q± as

R4 = (|q−q+〉 , |q−iq+〉 , |q−jq+〉 , |q−kq+〉)

= (|u4(k)〉 , |u3(k)〉 , |u2(k)〉 , |u1(k)〉). (26)

The winding vectors may then be expressed in terms of these
quaternions as

n̂± = q±iq±. (27)

From here, the computation of the topological invariants is
simply a matter of applying Eqs. (14) and (16) to each of the
maps into the spheres S2

±. First, the Euler class on the kz = k0

(with k0 const) coordinate plane may be written as

χz± = 1

4π

∫
Q(kz )

d2κ n̂± · (∂xn̂± × ∂yn̂±)

= 1

4π

∫
Q(kz )

(Euc ∓ Euv), (28)

where κ = (kx, ky) and Euc,v = dac,v are the Euler forms of the
valence (v) and conduction (c) subspaces, respectively (anal-
ogous expressions hold for the kx- and ky-planes). It should be
noted that, in contrast to the three-band case, these quantities
do not correspond directly to the topological quantum num-
bers of the occupied and unoccupied subspaces. Instead, by

taking the sum and difference of the Euler classes in Eq. (28),
one finds [45]

χv
i = 1

2π

∫
Q(ki )

Euv = χi+ + χi−, (29a)

χ c
i = 1

2π

∫
Q(ki )

Euc = χi+ − χi−. (29b)

On the other hand, as a result of the delicate, or unstable,
bulk topology, it is not possible to separate the Hopf invariants
H± in this way [42,58]. The Hopf invariants can be computed
from the Whitehead formula for the maps on each sphere:

H± = − 1

4π2

∫
ω± ∧ dω±

= − 1

16π2

∫
BZ

(ac ∓ av) ∧ (Euc ∓ Euv), (30)

where ω± = Re[−iq±dq±], and in the second line we used
ω± = (ac ∓ av)/2 [45]. There is no way to use Eqs. (30) to
obtain an expression that depends exclusively on quantities
from either of the occupied or unoccupied subspaces [45].
This difference can ultimately be traced to the fact that the
weak invariants may be computed directly from the winding
vectors n̂±, while the strong invariants are naturally expressed
in terms of the quaternions q± [45].

The topological phases of a real four-band model also
admit a description in terms of the preimage construction.
Since the classification of these phases is in terms of two
winding vectors n̂±, there are now two preimages to consider.
The topological invariants (H±; χ±) corresponding to each
vector may be determined by looking at the preimage of n±, in
exactly the same way as the invariants (H; χ) of a three-band
phase are found from the preimage of the winding vector d̂
(see Sec. II A).

Finally, we remark that, like the three-band Hopf phases,
which have a fully gapped flag phase limit with a Z bulk
index, the four-band Hopf phases admit transitions to the
fully gapped four-band flag phases, which were introduced in
Ref. [36]. For completeness, we elaborate on these phases in
Appendix C.

III. PHYSICAL MANIFESTATIONS

In this section, we discuss the physical manifestations
of non-Abelian three-band Hopf topologies, which include
(i) a bulk quantized nonlinear optical effect, (ii) quantum-
geometric breathing in the hybrid Wannier functions, (iii)
boundary states with a surface Euler invariant protected under
C2T symmetry, and (iv) helical nodal structures naturally re-
alized in the presence of the nontrivial weak Euler invariants.

A. Quantized shift effect

In the following, we demonstrate the existence of a quan-
tized shift response [52] in the three-band real Hopf insulator.
Here, we consider two lower bands |u1(k)〉 , |u2(k)〉 of the
three-band Hopf-Euler, or flag phases, both fully occupied
with electrons that couple to light. The quantity of interest
is the shift current ji

shift(0) induced on the photoexcitation
of electrons, which is the second-order dc bulk photovoltaic
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response present due to the incidence of an ac electromagnetic
field with frequency ω [59,60]:

ji
shift(0) = 2σ

i jk
shift(ω)E j (ω)Ek (−ω), (31)

where Ei(ω) are the frequency components of the electric
field, and we have left the sum over the spatial indices j, k =
x, y, z implicit. We stress that here we consider the excitation
part of the shift photocurrent, assuming that the electrons have
no time for relaxation, as can be targeted in the transient shift
responses on the subpicosecond timescales [61,62]. The shift
photoconductivity can be written as [63,64],

σ
i jk
shift(ω)= πe3

2

∑
mn

∫
BZ

d3k
(2π )3

δ(ω−ωmn) fmni
(
Cmn

ki j −
(
Cmn

jik

)∗)
,

(32)

where ωmn = Emk − Enk and fmn = fmk − fnk are, respec-
tively, the difference in energies and Fermi occupation factors
between the bands m and n; note that we set h̄ = 1. In the zero-
temperature limit, the factors fmn are nonzero only when m is
unoccupied and n is occupied, or vice versa, and in this case
they are equal to ±1. The coefficients Cmn

ki j are the components
of a Hermitian connection [64], and they are given by

Cmn
ki j = Ak

mn∇iA
j
nm, (33)

where the diagonal elements Ai
nn vanish under PT symmetry,

and the covariant derivative of the off-diagonal elements of
the Berry connection is defined as

∇iA
j
nm = ∂iA

j
nm − i

(
Ai

nn − Ai
mm

)
Aj

nm. (34)

Notably, in the context of photovoltaic responses, the
non-Abelian Berry connection Ai

nm may be naturally
interpreted as a transition dipole matrix element
[64]. Following Ref. [52], and defining Fsym ≡
−i

∫
dω [σ xyz

shift(ω) + σ
yzx
shift(ω) + σ

zxy
shift(ω)], we find that

Fsym = 2e3

h̄2 H. (35)

It should be noted that this second-order quantized integrated
shift effect can be nonzero only when inversion symmetry P
is broken. Indeed, if the P symmetry is preserved, then H = 0
(see Appendix D for more details).

Importantly, we note that the photovoltaic response of
the Hopf-Euler insulators is fundamentally different from the
photovoltaic response in the complex Hopf insulators, as re-
lated to a returning Thouless pump (RTP) realized by these
phases [42,65] (see also Appendix E). The reason for such a
distinction is that due to the PT symmetry, the linear shift
photoconductivities [63,64] completely vanish in the Hopf-
Euler insulators, unlike in the Hopf insulators where the linear
shift response is reflected by the RTP [65]. On the contrary, as
we demonstrate here and elaborate on further in Appendix D,
the Hopf-Euler insulators support a shift response to circularly
polarized light, while their shift response to linearly polarized
light vanishes identically. Additionally, the associated three-
band flag phase limits realize a sum rule related to the torsion
tensor [52] (see also Appendix D), which remains vanishing in
the two-band models [63,64] that describe the complex Hopf
insulators supporting RTP.

B. Quantum-geometric breathing

Hopf-Euler invariants also have an effect on the behavior of
the system in real space, where they are apparent in quantum-
geometric bounds and breathing of the Wannier functions of
the topological bands.

The presence of nontrivial weak Euler invariants on any of
the coordinate planes within the BZ places bounds upon the
real-space localizability of Wannier functions. To see this, we
begin with a bound relating the quantum metric to the Euler
class:

gii + g j j � 2|Eui j |, (36)

where i, j = x, y, z are spatial indices (see Appendix E). By
combining the three inequalities of this form, we find that the
trace of the quantum metric is bounded from below by the
weak invariants,

Tr g = gxx + gyy + gzz � |Euxy| + |Euyz| + |Euzx|. (37)

It is well known that the trace of the quantum metric is directly
related to the localization of Wannier functions in real space
[66]. In particular, the variance of the position of a Wannier
function is given by

σ 2
r = 〈r2〉 − 〈r〉2 = V

(2π )3

∫
d3k Tr g. (38)

Combining Eqs. (37) and (38), we find that

σ 2
r � V

(2π )3

∫
d3k (|Euxy| + |Euyz| + |Euzx|)

� 1

4π2
(Ax|χx| + Ay|χy| + Az|χz|), (39)

where V is the volume of the unit cell, and Ai = V/ai, with ai

the lattice parameter along the ith coordinate direction. Here
we have noted that, for example,∫

d3k
(2π )3

|Euxy| �
∫

dkz

2π

∣∣∣∣
∫

d2κ

(2π )2
Euxy

∣∣∣∣ = 1

az

|χz|
2π

, (40)

since the Euler class χz is independent of kz.
In addition to the bound argument given above, in Ap-

pendix E we demonstrate analytically and numerically that the
maximally localized hybrid Wannier functions of real Hopf
insulators show periodic oscillations in their second moment,
that is, σ 2

r (kz ) oscillates as kz is changed. In metamaterial or
cold-atom realizations of Hopf-Euler insulators, this could be
experimentally deduced from wave-function tomography, as
discussed further in Sec. V.

C. Boundary states

We now address the effective theory for the boundary states
of the three-band RHIs that is induced by the presence of
strong Hopf invariants. We construct a continuum bulk Hamil-
tonian upon introducing a domain-wall configuration in the
mass parameter (m) profile (see also Appendix F): m(z) = Az
for a region around z = 0. Here A determines the steepness
of the domain walls, and we choose A = 1 for simplicity. The
continuum Hamiltonian H cont

3 then reads

H cont
3 = 2d(kx, ky, ∂z ) ⊗ d(kx, ky, ∂z )T − |d|213, (41)
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where the operator d(kx, ky, ∂z ) = z†
∂σz∂ is defined in terms

of z∂ ≡ (kx + iky,−i∂z + im)T for a three-band RHI vacuum.
Additionally, from the continuum bands obtained on diago-
nalizing H cont

3 , it follows that the Hopf index H = sgn(m)/2.
Having utilized these relations (see also Appendix F for more
details on the derivation), an effective surface Hamiltonian
can be obtained on projecting the bulk Hamiltonian onto the
surface states. Correspondingly, the obtained effective Hamil-
tonian reads [8,67]

Heff =
(

−[
k2

x + k2
y + m(a)

]2 −g(a)(kx + iky)2

−g(a)(kx − iky)2 −[
k2

x + k2
y + m(a)

]2

)
,

(42)
with m(a) = a2 − 1 and g(a) = 4a2e−2a2

. With a → 0+, in
proximity to the boundary, Heff corresponds to two occupied
surface states with the surface invariant χs = 1, residing at
the boundary of the topological insulator with H = 1, and
demonstrating that, here, we obtain χs = H. We note that such
a relation is similar to the correspondence of the surface Chern
numbers Cs = HC at the boundaries of the complex Hopf
insulator [42]. Moreover, analogously to the teleportation of
Berry curvature in the two-band complex Hopf insulator [42],
the bulk transition to a topological phase of the three-band
RHI can be viewed as a teleportation of the Euler curvature. It
should be noted that χs, and equivalently the surface Wilson
loop windings, are protected by a C2T symmetry on the sur-
face, enforcing a reality condition. To validate the analytical
argument, we include both bulk and surface Wilson loops in
Appendix F. Once the symmetry is broken, and the time-
reversal symmetry is absent, the surface Chern bands with
Cs = H can be obtained on the surfaces, as descendants of
the fragile invariant χs → Cs [33]. By extending a similar
argument to four-band Hamiltonians (see Appendix F), our
finding is consistent with the result for the four-band RHI
phases [45] when C2T symmetry is absent on the surface.
Moreover, we remark that the surface Euler class could be triv-
ialized by, e.g., attaching a two-dimensional Euler insulator to
the surface, and allowing the surface Euler states to hybridize
with the added Euler bands. Such a scenario is similar to
the case of the integer surface Chern numbers and associated
surface anomalous Hall conductivities that can be annihilated
by introducing additional two-dimensional Chern insulators
at the surface. Hence, we expect that the relation between the
bulk Hopf invariant and the surface Euler invariant can break
down, even if the C2T symmetry was preserved on the surface,
as soon as the additional bands hybridize with the surface
Euler states, which can either trivialize the surface invariant or
reduce the surface Euler class to the second Stiefel-Whitney
invariant [11]. We stress here that rather than demonstrating
a general bulk-boundary correspondence, we only obtain an
analytical relation between the bulk and surface theories in
particular models of the three-band real Hopf insulators. We
finally conclude by noting that while the exact bulk and sur-
face theories provided in our work reflect the parametrization
of specific models, we would expect the analogous relation to
hold in other models, similarly to the complex Hopf insulators
[42]. Correspondingly, we numerically retrieve that χs = H
in a set of other three-band RHI models with H > 1, as we

directly demonstrate with an interplay of bulk and surface
Wilson loops in Appendix G; see Figs. 9 and 10.

D. Nodal helices

As explicitly demonstrated in the previous section, the
preimage construction provides a natural picture for the in-
terplay of the strong Hopf and weak Euler invariants in
Hopf-Euler insulators. This is most clearly seen in the helical
lines in the three-dimensional BZ, shown in Fig. 2, which
are present only when both types of invariant are nontrivial.
In fact, it is not only the preimage that can form a helical
shape in this case. We now elaborate on the observation that
Hopf-Euler insulators may support nodal helices within the
occupied subspace. More precisely, the locus of points defined
by E1(k) = E2(k) naturally lies in the same homotopy class
as such a preimage. We explicitly demonstrate this direct
correspondence in Figs. 3 and 4.

We stress that, while the presence of the nodal lines is
certainly protected by the weak Euler invariants (this is a
result of the application of the Poincaré-Hopf index theorem
[11] to the Euler topology), the linking of the nodal loops in
the proposed model realizations of the Hopf-Euler topologies
(see Sec. IV) could be an artefact specific to these models.
This situation would be similar to the nodal structures in the
PT -symmetric three-dimensional phases with a Pontryagin
index [36]. Quantifying the specific protection, or designing a
protocol that may be used to trivialize the invariants without
also removing the linking structure of the nodes, therefore
poses an interesting future pursuit. In the case of the Pontrya-
gin index, the strong topological invariant does not provide
any topological protection of the nodal structure. However,
it remains a possibility that topological protection of nodal
helices in Hopf-Euler insulators could be guaranteed by the
presence of additional symmetry constraints.

An analogous correspondence between the preimage and
nodal structures is also observed in systems possessing a bulk
Hopf invariant only, but no Euler class in any direction. If
there are nodal lines in the occupied subspace, then these lines
naturally form circular links, as shown in Figs. 3(a) and 3(d).
However, the presence of the Euler class is essential for pre-
venting a gap from opening between the two occupied bands
[11]. In its absence, the nodal lines may therefore be removed
entirely, for example by contracting the linked loops of the
opposite charge to a point, thereby resulting in a transition to
the three-band flag phase described in Sec. II.

We finally note that in flag phases, which are classified
by a single Pontryagin index, no nodal lines are present, and
therefore the correspondence between the preimage of the
winding vector and the nodal lines does not hold. However, as
discussed at the end of Sec. II B, in a flag phase the preimage
of a point in S3 is in general a discrete collection of points
in the BZ. Thus it appears natural that the correspondence
between the preimage and the nodal lines should break down
in this phase.

IV. REPRESENTATIVE MODELS

Having introduced the physical consequences, such as the
quantized bulk shift effect and the nodal helices, which are
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FIG. 3. Correspondence between nodal lines and winding vector
preimages in three-band Hopf/Euler insulators. (a)–(c) Preimages
of the points (1, 0, 0) (blue) and (−1, 0, 0) (red) under the maps
d̂α : T 3 → S2 from Sec. IV A with m = 1. (d)–(f) Nodal lines within
the occupied subspace of the corresponding perturbed Hamiltonians
from Sec. IV B. (a),(d) [Eq. (43)] Strong Hopf phase with H = 1.
The linking number L = H of the preimages gives rise to nodal
links whenever the occupied bands touch, but these touchings are
not protected and may be removed without closing the gap between
E2 and E3. (b),(e) [Eq. (46)] Layered Euler phase with v1 =
(1, 0, −2) and v2 = (0, 1, 0), corresponding to χ = (4, 0, 2). The
nodal lines cannot be removed without trivializing the Euler class.
(c),(f) [Eq. (47)] Hopf-Euler phase with (H; χ) = (1; 0, 0, 2). The
nodal lines can only be removed when all weak topological indices
are trivial.

provided by the Euler and Hopf invariants, we now present
momentum space descriptions of tight-binding models in
which these topological phases are realized explicitly. As dis-
cussed in Sec. V, these simple models could be experimentally
simulated in cold atom systems or metamaterials.

A. Flattened three-band models

We first provide representative flat-band Hamiltonians
for each of the nontrivial topological phases discussed in
Sec. II A, namely the strong Hopf, layered Euler, and Hopf-

FIG. 4. Correspondence between nodal lines and winding vector
preimages in the balanced four-band Hopf-Euler insulator. (a) Preim-
ages of the points ±x̂ = (±1, 0, 0) under the maps n̂± : T 3 → S2

from Sec. IV C with m = 1 [n̂−1
+ (x̂) is shown in blue, n̂−1

+ (−x̂) in
red, n̂−1

− (x̂) in yellow, and n̂−1
− (−x̂) in cyan]. Note that the helices

are centered around the C2-invariant lines �y and Mz. (b) Nodal
lines within the occupied subspace of the corresponding perturbed
Hamiltonian from Eq. (50).

Euler phases. Since Hamiltonians of this kind are entirely
specified by the winding vector d̂(k) [see Eq. (8)], we give
only this vector in each case. It should be noted that the
dα, α = 1, 2, 3, given here need not be normalized when used
in Eq. (8) in order to produce a Hamiltonian in the correct
topological class. However, they should be normalized when
used to compute topological invariants. In each model, the
winding vector depends upon a single parameter m, in addi-
tion to its momentum dependence. The topological phases are
realized when m = 1, and the systems can all be tuned to the
trivial phase by setting m = 2.

1. Strong Hopf phase

A model with the strong non-Abelian real Hopf invariant
can be realized with the winding vector

d1(k; m) = z†σz, (43)

where

z =
(

sin kx + i sin ky

sin kz + i
(
m + 3

2

)∑
i=x,y,z cos ki

)
. (44)

The vector z first appeared in Ref. [37], where it was used to
construct a two-band complex Hopf insulator.

The Hamiltonian described by this winding vector pos-
sesses a C2z symmetry represented by the matrix C2z =
diag(−1,−1, 1). This is relevant for the structure of the nodal
lines within the occupied subspace, which we discuss in
Sec. IV B.

2. Layered Euler phase

To construct a representative phase hosting the weak Euler
invariants χ = (χx, χy, χz ), we mimic the procedure used in
Ref. [40] to construct layered Chern phases. We begin with
the winding vector

d̃2(kx, ky; m) = (sin kx, sin ky, m − cos kx − cos ky) (45)

that produces a phase with Euler class χ = (0, 0, 2). The
vector d̃2 has no kz dependence, so it represents a system
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composed of Euler insulators stacked in the ẑ-direction. To
change the direction of this stacking to point along a given
unit vector t̂, we choose two vectors v1 and v2 such that
v1 · t̂ = v2 · t̂ = 0, and we define

d2(k; m) = d̃2(v1 · k, v2 · k; m). (46)

The Euler classes realized by this vector may be calculated as
follows [40]. First, to compute χz we choose a plane Q(kz ) =
{(κ, kz ) ∈ BZ | kz = const}, and without loss of generality take
kz = 0. Then the winding vector wz(κ) = d2|kz=0 = w̃z(Bκ),
where Bi j ≡ (vi ) j with i, j = 2, and w̃z = d̃2|kz=0. Since
the map w̃z has degree 1, we can pick a regular value in
Gr2,3(R) with the preimage κ0. Then, Bκ = κ0, which yields
| det B| solutions within Q(kz = 0) ∼= T 2, each with orienta-
tion sgn det(Dwz ) = sgn B. Using Eq. (18), it then follows
that χz = 2 det B = 2(v1 × v2)z, where the factor of 2 is con-
ventional. By repeating this argument for χx and χy, we find
that χ = 2v1 × v2. Hence, like layered Chern insulators [40],
any layered Euler phase can be described in an infinite number
of ways through an appropriate choice of the vectors v1 and
v2.

3. Hopf-Euler phase

Finally, we detail the winding vector for a model exhibiting
a Hopf-Euler phase with (H; χ) = (1; 0, 0, 2):

d3(k; m) = eikzLz d̃2(kx, ky; m), (47)

where (Li ) jk = iεi jk are the generators of the so(3) Lie alge-
bra. In Fig. 3(c) we show the preimage of the points ±x̂ =
±(1, 0, 0) for the case m = 1, and we verify that these lines
together form a helix. The model described here may be
easily extended to represent a phase with indices (H; χ) =
(p; 0, 0, 2p′) for any integers p, p′, by modifying kz → pkz

and kx → p′kx.
Let us now briefly elaborate upon the procedure that we

have used to construct these three-dimensional Hopf-Euler
phases, namely dimensional extension [47] from a two-
dimensional Euler model. This is in direct analogy to the
correspondence between Chern and Hopf-Chern insulators
described in [40]. The matrix exponential eikzLz in Eq. (47)
is a kz-dependent rotation about the z-axis. Since the map d2,
which describes an Euler phase layered in the ẑ-direction, has
preimages that consist of a single line connecting the κz = ±π

faces of the BZ, this rotation has the effect of “twisting” these
lines about the C2z-invariant line �z = {k ∈ BZ|kx = ky = 0},
thereby forming a helical structure in momentum space. The
strands of this helix have linking number 1, with the Hopf
invariant being nontrivial. Moreover, for any fixed value of kz

the vector d̂3(kx, ky) describes a rotated Euler phase, so the
Euler class in the z-direction is the same as the 2D model
that was used to construct the 3D phase. For a summary
of the dimensional extension/reduction correspondences for
complex and real Hopf insulators, see Fig. 5.

Finally, we note that, like the strong Hopf model defined
above, the Hamiltonian possesses a C2z symmetry represented
by the matrix C2z = diag(−1,−1, 1), which is manifestly re-
flected by the shape of the nodal structures, as demonstrated
in Fig. 3.

FIG. 5. Dimensional extensions and complexification relations
between the Chern, Euler, Hopf-Chern, and Hopf-Euler insulators;
see also Appendix G for more details. We note that while the
strong Hopf-Chern insulator (HC ; C) = (1; 0, 0, 0) displays surface
states with surface Chern number Cs = HC , the Hopf-Euler insulator
(H; χ) = (2; 0, 0, 0) supports surface Euler states with a surface
Euler invariant χs = H; see Appendix F.

B. Dispersive three-band models

The models given in the previous section have completely
flat bands, so they do not display any of the nodal lines de-
scribed in Sec. III. To move away from this degenerate limit,
we add a C2z-preserving perturbation V3 = λdiag(−1, 0, 1) to
each Hamiltonian, giving

H3(k) = H̄3(k) + V3. (48)

We have verified numerically that all of the flat-band Hamil-
tonians given above remain gapped for all k ∈ BZ provided
λ is sufficiently small; we chose the value λ = 0.8 in our
computations. This perturbation lifts the degeneracy and re-
veals the nodal structure inherent to each of the models. In
Figs. 3(a)–3(c) we show the loci defined by E1(k) = E2(k)
for each of the perturbed models given in Sec. IV A. In line
with the discussion of Sec. III, the nodal lines in each of the
perturbed models, shown in Figs. 3(d)–3(f), each lie within
the same homotopy class as the corresponding preimages.
In particular, the nodal lines in the Hopf-Euler phase form
interlocking helices which, as we find numerically, are stable
to C2z-preserving perturbations. The strong Hopf phase, with
winding vector Eq. (43), has a C2z symmetry, and we there-
fore expect the system to exhibit nodal links respecting the
symmetry, whenever the occupied bands touch. While this is
indeed the case, as shown in Fig. 3(d), it should nonetheless
be noted that these band touchings are not protected, so the
nodal lines can be removed without closing the gap between
E2 and E3.

Finally, we comment that the number of nodes is always
four times the number of connected components of a single
preimage. This is because a two-dimensional system with
Euler class χ = 2 has four nodes, each carrying a winding
number of +1/2 of the (real) eigenvector frame [28].
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C. Four-band models

As shown in Sec. II, while the topological class of a real
three-band model may be identified with that of a single
winding vector d̂(k), four-band models are classified by two
winding vectors n̂±(k). It follows that models representing
each four-band Hopf/Euler phase may be obtained by setting
n̂± to be one of the winding vectors in Eqs. (43), (46), and
(47). Importantly, n̂− and n̂+ can be chosen independently of
one another.

We restrict our attention to a single example, namely a
“balanced” Hopf-Euler insulator with winding vectors [33]

n−(k; m) = d3(kx, ky, kz; −m), (49a)

n+(k; m) = d3(ky, kz, kx; +m). (49b)

The preimages of two points on S2 under these maps are
shown in Fig. 4(a). This system has topological invariants
H± = ±1, χz− = −2, and χy+ = 2, with all others vanishing.

To move away from the degenerate flat-band limit, we add
a perturbation V4 = λdiag(−1, 0, 1, 0) to the Hamiltonian,
giving

H4(k) = H̄4(k) + V4. (50)

Here, without loss of generality, we again take λ = 0.8 in all
numerical studies. As with the three-band phases, the nodal
lines within the occupied subspace of this four-band model lie
in the same homotopy class as the preimages; see Fig. 4(b).

V. EXPERIMENTAL REALIZATIONS

We now describe possible experimental realizations of the
three-dimensional real Hopf/Euler phases in metamaterials
[68] and ultracold atoms, e.g., by employing synthetic lattices
[54,69]. In particular, we suggest that an experiment of either
type could in principle be designed to simulate Hopf-Euler
insulators, and that in such an experiment it would be possible
to observe quantum-geometric breathing and the presence of
boundary modes with surface Euler invariants, and also to
measure the bulk spectrum of the system along with the nodal
helices that it displays.

In Sec. IV, we gave a set of models that explicitly realize
each of the phases discussed in this paper. As discussed at
the end of Sec. IV A, the particular models representing the
Hopf-Euler phase [see Eq. (47)] are constructed by “twist-
ing” a two-dimensional Euler phase about the kz axis. This
“dimensional extension” allows these models to be simulated
experimentally by replacing this quasimomentum kz with a
parameter λ, labeling a synthetic dimension. The parameter
λ could be, for instance, a label for a set of two-dimensional
metamaterials [28,30], or a tunable parameter in a synthetic
lattice [69]. By measuring the two-dimensional system for a
range of values of the parameter λ, the full three-dimensional
spectrum of the model could be systematically reconstructed.
This would then allow the physical properties of the system,
such as the the quantum-geometric breathing of the Wannier
functions, to be observed through wave-function tomography
experiments.

VI. DISCUSSION

We now discuss the presented theoretical results and phys-
ical manifestations of the Hopf-Euler insulators in the context
of the electrodynamics of multigap topological phases. First,
we note that the presence of quantum-geometric breathing
explicitly demonstrates that there is no spectral flow present
in these phases, that is, 〈x〉 = 0 unlike the situation in Chern
insulators (see Appendices E, G, and Fig. 11). In addition,
since the θ -angle θ = 2πH, which follows from the defi-
nition of the invariant H ∈ Z, there is no magnetoelectric
effect present. This contrasts other known three-dimensional
topological insulators such as the Z2 insulator with spinful
time-reversal symmetry (T 2 = −1, Altland-Zirnbauer class
AII), and axion insulators with θ = π [47]. While the bulk
of a Hopf-Euler insulator realizes a quantized optical ef-
fect, which by construction requires three spatial dimensions,
this characteristic also sheds light on the electrodynamics of
two-dimensional Euler insulators. In particular, the fact that
this phase may be viewed as a dimensional extension of an
Euler insulator suggests that no similar optical quantization
is expected from Euler insulators. This is similar to two-
dimensional phases not exhibiting quantized magnetoelectric
effects, contrary to the three-dimensional bulks of topological
insulators which realize θ -vacua. As such, in two-dimensional
Euler phases, any responses that can be captured with quan-
tum geometry [32,70,71] are only manifested in terms of the
lower bounds due to the topological invariants [32,72], rather
than in terms of the quantization conditions, consistently
with Ref. [73]. In other words, the topology of Euler phases
is purely quantum-geometric in its manifestations, contrary
to the RHIs that support topological quantization in optical
response through a bulk anomalous quantized circular shift
effect on coupling to circularly polarized light [52]. This
quantization might be deemed analogous to circular dichro-
ism quantized by the Chern invariant in the Chern insulators.
Indeed, while similarly to Hopf insulators the multigap Eu-
ler phases are classified purely by homotopy theory (e.g.,
π2[RP 2] ∼= Z, in two spatial dimensions), the known bulk
physical manifestations of Euler insulators consisted only
of optical bounds [73], rather than quantized effects. This
is contrary to the other two-dimensional insulators, such as
Chern insulators, which support a bulk quantized quantum
anomalous Hall effect, provided time-reversal symmetry is
broken [74].

We further comment on the procedure by which
the Hopf-Euler phases in three dimensions were con-
structed, namely via dimensional extension [47], from two-
dimensional Euler models. For a summary of the dimensional
extension/reduction correspondences for complex and real
Hopf insulators, see Fig. 5. To recapitulate, the vector used
for the construction of the Hopf-Euler Hamiltonian in Sec. IV
was constructed by extending the vector d(k), which encodes
an Euler invariant over a two-dimensional BZ [21], along
an additional dimension kz. This is achieved by multiplying
d(k) by a kz-dependent rotation matrix R(kz ) = eikzLz , which
has the effect of twisting d(k) about the axis parallel to the
z-direction, as shown in Sec. IV. In particular, we reiterate
that the rotation matrix R(kz ) naturally promotes the nodes
provided by the Poincaré-Hopf index theorem in two dimen-
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sions [58] to nodal helices, introduced in Sec. III. Finally, it
should be noted that Hopf-Chern insulators can, analogously,
be obtained by extending two-band Chern Hamiltonians H =
d(kx, ky) · σ with the same rotation, which must instead be
taken to act on the winding vector d as R(kz )d(kx, ky) [40].
This construction, therefore, provides a natural connection
between Hopf-Euler and Hopf-Chern insulators, which is
induced by the complexification relations of the parent two-
dimensional phases; see Fig. 5.

We finally remark that while four-band RHIs [45], as well
as the intrinsic bulk quantized shift currents that they display
[52], were studied in previous works, the strong three-band
RHI introduced here was not included in previous topolog-
ical classifications. We have thus extended the classification
of PT -symmetric phases not only to three-band RHIs, but
also to Hopf-Euler insulators with weak homotopy invariants.
These are naturally realizable by dimensional extensions of
two-dimensional parent Euler Hamiltonians.

VII. CONCLUSIONS

We discuss a class of non-Abelian topological phases,
namely three-band real Hopf insulators, with strong and weak
homotopy invariants. We demonstrate that such Hopf insu-
lators realize a topologically quantized electromagnetic shift
response, quantum-geometric breathing of real-space hybrid
Wannier functions, and boundary states with surface Euler
invariant protected by C2T symmetry. We show these prop-
erties through analytical arguments and then give numerical
demonstrations in minimal models. Our work offers a path
for experimental realizations of such novel states of matter, as
well as their physical signatures, such as nodal helices.
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APPENDIX A: THE PONTRYAGIN-THOM
CONSTRUCTION

In this Appendix, we will briefly describe the Pontryagin-
Thom construction, which may be used to enumerate all
the distinct topological classes of maps T 3 → S2, as given
in Eq. (7). For Hopf-Euler insulators, this map is given by
the third eigenvector of the Bloch Hamiltonian. Our review
closely follows Ref. [40], where the same construction was
used to classify Hopf-Chern insulators.

FIG. 6. The Pontryagin-Thom construction can be used to prove
that the range of values of the strong invariant H is reduced from
Z to Zgcd χ in the presence of weak Euler invariants χ. (a) The
Pontryagin manifold (∼ “ribbon”) of a Hopf-Euler phase may be
obtained by taking the preimage under |u3〉 : T 3 → S2 of two in-
finitesimally separated points on S2; here we show the case (H; χ) =
(1; 0, 0, 2). (b)–(d) Framed cobordisms of the preimage permit-
ted by the topology-preserving transformations of the Hamiltonian.
(b) Cobordism of an empty set and a contractible loop without
frame windings. (c) Saddle cobordism. (d) Undoing crossings via a
cobordism introducing a frame winding.

The Pontryagin-Thom construction is used to generate a bi-
jection between the set [M, Sn], where M is an m-dimensional
oriented smooth manifold, and the set of framed cobordism
classes of (m − n)-dimensional framed submanifolds of M,
known as Pontryagin manifolds. In the current context, the
Pontryagin manifold of a map T 3 → S2 may be interpreted
as the “ribbon” formed by the Seifert surface connecting two
infinitesimally separated preimages on the sphere. For exam-
ple, Fig. 6(a) shows the preimage of two points on S2 in a
Hopf-Euler phase with (H; χ) = (1; 0, 0, 2) on the left, and on
the right the corresponding Pontryagin manifold of the same
phase; the latter may be obtained by taking an appropriate
limit of the former. From here we see that the “twisting” of
the ribbon corresponds to the Hopf invariant, while the fact
that the ribbon connects the surfaces kz = ±π shows that the
phase has a nonzero Euler class.

Also shown in Fig. 6 are the maps that may be applied
to a Pontryagin manifold while leaving the topological class
of the corresponding map T 3 → S2 invariant (such maps are
known as framed cobordisms, since they connect two framed
submanifolds of M). By applying a particular combination of
these homotopy operations to the Pontryagin manifold, such
as shown in Fig. 6(a), it is possible to remove the winding of
the frame to obtain a ribbon with no twist. This shows that,
in the presence of an Euler class, χ = (0, 0, 2), e.g., the Hopf
invariant H = 2 is trivial, and may be removed with adiabatic
transformations without closing the gap [i.e., H is classified
modulo gcd(χ) = 2]. We refer to Fig. 2 of Ref. [40] for a
precise description of the sequence of operations required in
this case.

APPENDIX B: QUATERNIONS AND MINIMAL MODELS

In this Appendix, we describe the quaternion formulation
[21,45] of the real Hopf invariant, and relate it to three-
dimensional non-Abelian topological insulators.

075135-13



WOJCIECH J. JANKOWSKI et al. PHYSICAL REVIEW B 110, 075135 (2024)

1. Quaternions and rotations

We begin with a short review of quaternions before using
them to provide a concise formulation of the Hopf map. The
quaternion algebra H is defined to be the real vector space
with basis vectors {1, i, j, k}, where i2 = j2 = k2 = ijk = −1,
that is, H = {a + bi + cj + dk | a, b, c, d ∈ R}. In the follow-
ing, we will let p = p0 + p1i + p2j + p3k and q = q0 + q1i +
q2j + q3k be elements of H, which are known as quaternions.
The real and imaginary parts of q are, respectively, defined
as Re[q] = q0 and Im[q] = q1i + q2j + q3k. The conjugate q̄
of q is given by reversing the sign of the imaginary part of
q, that is, q̄ = q0 − q1i − q2j − q3k. It is useful to note that
q̄ = − 1

2 (q + iqi + jqj + kqk), and also that the conjugate of
a product of two quaternions p and q satisfies pq = q̄ p̄ (note
that the order of multiplication is reversed). A real quaternion
is one for which Re[q] = q or, equivalently, q̄ = q, and simi-
larly an imaginary quaternion has Im[q] = q and q̄ = −q. The

norm of q is |q| = √
qq̄ =

√
q2

0 + q2
1 + q2

2 + q2
3, and satisfies

|q̄| = |q| and |pq| = |p||q|. A quaternion of unit norm (i.e., for
which |q| = 1) is known as a versor. Finally, we note that the
Euclidean inner product 〈p|q〉 = ∑3

μ=0 pμqμ may be written

in terms of these quaternionic operations as 〈p|q〉 = Re[p̄q] =
Re[pq̄].

Within the algebra H, the set of quaternions with unit norm
(versors) is special, since it is isomorphic as a group to S3 ∼=
SU(2)

π→ SO(3). As is well known, this provides a means
by which rotations in three dimensions can be described in
terms of quaternions. To be specific, by identifying R3 with
the set of imaginary quaternions H∗ in H, the action of a
versor v = x0 + x1i + x2j + x3k on a vector u = (u1, u2, u3),
or imaginary quaternion u = u1i + u2j + u3k, given by

Rv : u → v̄uv, (B1)

implements a rotation by an angle θ = 2 arccos (x0) =
2 arcsin (1 − x0) around the vector v = (x1, x2, x3). The cor-
responding SO(3) matrix Rv may be written down by acting
with the versor v on each of the unit vectors i, j, and k, and
collecting the results as column vectors:

Rv = (|v̄iv〉 |v̄jv〉 |v̄kv〉), (B2)

which is used in Eq. (10). For completeness, we give the
explicit form of this matrix in terms of the parameters xμ in
v [21],

Rv =
⎛
⎝x2

0 + x2
1 − x2

2 − x2
3 2(x1x2 + x0x3) 2(x1x3 − x0x2)

2(x1x2 − x0x3) x2
0 − x2

1 + x2
2 − x2

3 2(x0x1 + x2x3)
2(x0x2 + x1x3) 2(−x0x1 + x2x3) x2

0 − x2
1 − x2

2 + x2
3

⎞
⎠. (B3)

2. Three-band models and the Hopf invariant

The form of Eq. (B3) may be understood by noting that, for
any versor v, each of the elements v̄iv, v̄jv, and v̄kv is a purely
imaginary quaternion of unit norm. This means that they are
elements of the set {q1i + q2j + q3k | q2

1 + q2
2 + q2

3 = 1}, in
other words, they lie on the sphere S2. This shows that the
parametrization of the rotation matrix given above directly in-
duces, for each versor, a map from S3 to S2 transversely. In this
way, the matrix in Eq. (B3) presents a general parametrization
of the Hopf map, in the sense that any row, column, or linear
combination (of unit norm) from the left or right implements
the first Hopf map. This provides a means by which the three-
band models of interest may be easily formulated.

Finally, using the quaternion formulation described above,
we derive the relation between the Euler connection and the
one-form present in the Whitehead formula. Using the defini-
tions provided in the main text, one may deduce that

a = Pf[−iA] = 〈u1|du2〉
= 〈q̄kq| d |q̄jq〉
= Re[q̄kqd(−q̄jq)]

= −Re[q̄kq(dq̄ · kz + q̄kdq)]

= −Re[jqdq̄ · k] − Re[q̄jkdq]

= −2Re[iqdq̄]

= 2ω, (B4)

where we have used |q|2 = 1. This concludes the proof of the
identity a = 2ω utilized in the main text.

3. Four-band models

As noted in Eq. (25) in the main text, a flattened four-band
real Hamiltonian may be written in either of the equivalent
forms

H̄4(k) = n̂+(k) · � · n̂−(k)

= R4(k) diag(1, 1,−1,−1)R4(k)T, (B5)

where � is an array of Dirac matrices and R4(k) is an
SO(4) matrix [33]. We first note that, due to the isomorphism
SO(4) ∼= SU(2) × SU(2)/Z2, the matrix R4 may be written
in terms of two quaternions q±,

R4 = (|q−q+〉 |q−iq+〉 |q−jq+〉 |q−kq+〉). (B6)

This is discussed extensively in Sec. II C, as well as in
Ref. [45], where it is used to classify four-band real Hopf
insulators.

For completeness, we also give the explicit form of � in
terms of a set of Dirac gamma matrices �μν = σμ ⊗ σν , where
μ, ν = 0, 1, 2, 3:

� =
⎛
⎝ �30 �22 �10

�11 �03 −�31

−�13 �01 �33

⎞
⎠. (B7)

All matrices within the array � are real, so that the resulting
Hamiltonian H̄4(k) manifestly respects PT symmetry. We
note that this array differs from that employed in [33], which
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is given by

�̃ =
⎛
⎝−�33 −�13 �01

�31 �11 �03

�10 −�30 −�22

⎞
⎠. (B8)

It may be verified that the conventions laid out in Eqs. (B7)
and (B8) are simply related by a change of basis,

�αβ =
3∑

γ ,δ=1

M+
γα�̃γ δM−

δβ, (B9)

where the two matrices M± are given by

M+ =
⎛
⎝ 0 0 1

0 1 0
−1 0 0

⎞
⎠, M− =

⎛
⎝0 0 −1

1 0 0
0 1 0

⎞
⎠. (B10)

APPENDIX C: FOUR-BAND FLAG PHASES

We now complete our discussion of four-band real phases
by considering the effect that opening a gap within the valence
or conduction bands has on the topology of the system. As
in Sec. II B, we approach this question by classifying the
possible flag manifolds that may arise in each case.

First, we consider the case in which the system is fully
gapped and no two bands touch at any point in the BZ.
The classifying space for these four-band real flag phases
is Fl1,1,1,1 = O(4)/O(1)4 [36], and the relevant homotopy
groups of the classifying space are

πk[Fl1,1,1,1] ∼= πk[SO(4)] ∼= πk[S3] × πk[S3] ∼= Z2, (C1)

where k = 2, 3, and we have made use of the isomorphisms
SO(4) ∼= [SU(2) × SU(2)]/Z2 and SU(2) ∼= S3. The group
π2[S3] is trivial while, as discussed in Sec. II B, π3[S3] ∼= Z
is labeled by a Pontryagin index. We therefore see that the
fully gapped flag phase can be labeled by two Pontryagin
indices w±. We now describe how an explicit expression for
each of these invariants may be obtained. The representative
Hamiltonians of the four-band flag phases can be constructed
analogously to the three-band phases as

H̄flag
4 = V4(k) diag(2, 1,−1,−2)V4(k)T, (C2)

where V (k) ∈ SO(4). This matrix may be written in
the form V (k) = exp (iθ+(k) · L+ + iθ−(k) · L−), where
L± = (J ± K)/2 with

(Ki )μν = i(δ0,μδiν − δ0,νδiμ), (C3a)

(Ji )μν = i

2
εi jk (δkμδ jν − δkμδ jμ), (C3b)

and the indices i = 1, 2, 3 and μ, ν = 0, 1, 2, 3. The L± gen-
erate the so(4) Lie algebra, and moreover we have chosen
a basis in which each set L+ and L− generates one of the
two su(2) algebras which together make up this space. In this
way, by using the parameters θ± we can produce two SU(2)
matrices

U±(k) = exp (iθ±(k) · σ/2), (C4)

which may be used to compute each of the Pontryagin indices
w± ∈ Z. We have [36,57]

w± = 1

24π2

∫
BZ

Tr [(U −1
± dU±)3]

= − 1

16π2

∫
BZ

(ac ∓ av) ∧ (Euc ∓ Euv). (C5)

Similarly to the three-band flag phases discussed in Sec. II B,
while the right-hand side of this expression is exactly the same
as that used to compute the Hopf invariants in Eq. (30) (see
also [36]), in this case it instead computes the Pontryagin
indices of the system.

In addition to requiring all bands to be open, we can in-
dividually close a gap between two lowest, or two highest,
energy bands. Since these are both described by Fl2,1,1

∼=
Fl1,1,2, respectively, we use

πk[Fl2,1,1] ∼= πk

[
O(4)

O(2) × O(1)2

]
∼= πk[S2] × πk[S3], (C6)

where we have noted that SO(4)/SO(2) ∼= S2 × S3. A nat-
ural interpretation of this correspondence is that opening a
gap causes the change S2 � S3 in one of the factors of the
Grassmannian classifying the four-band real Hopf insulator
[45]. Another way to view this is as follows. Starting from the
fully gapped flag limit Fl1,1,1,1 ∼ S3 × S3, bringing two bands
together introduces a gauge degree of freedom that introduces
a factor of SO(2). Since S3/SO(2) ∼ SO(3)/SO(2) ∼= S2,
this has the effect of reducing the dimension of one of the
spheres in the classifying space (here we have used ∼ to
denote congruence modulo discrete factors). Thus, while we
saw above that opening both gaps causes all Euler invariants to
become trivial and both Hopf invariants to become Pontryagin
invariants, it is clear that opening a single gap trivializes a
single set of Euler invariants (either χ+ or χ−), and causes
one Hopf invariant to become a Pontryagin invariant (the other
remains a Hopf invariant).

Finally, having closed the first gap, if a third band is
joined onto this group of two, then the classifying space be-
comes Gr1,4(R) = O(4)/[O(3) × O(1)] ∼ SO(4)/SO(3) ∼=
S3, so that the system is characterized by a single (strong)
Pontryagin index [36,57] and no Euler classes. This case was
discussed in detail in Ref. [36].

APPENDIX D: QUANTIZED CIRCULAR SHIFT EFFECT

We now derive the symmetrized quantized shift effect in
the three-band RHI models enjoying the reality condition due
to the PT symmetry, following Ref. [52]. First, we define the
torsion tensor T mn

i jk ≡ Cmn
i jk − Cmn

ik j with the Hermitian connec-
tion Cmn

i jk defined in the main text. With little algebra, it can be
directly shown that the torsion tensor may be written in terms
of the non-Abelian Berry connection as [52]

T 31
i jk + T 31

jki + T 31
ki j = A[i

13Ak
32Aj]

21, (D1a)

T 32
i jk + T 32

jki + T 32
ki j = A[i

23Ak
31Aj]

12, (D1b)

where [· · · ] denotes antisymmetrization of the enclosed in-
dices i, j, k. On summing all the terms and using Ai

nm =
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−Ai
mn, which is enforced by the PT symmetry, we obtain

occ∑
n

unocc∑
m

(
T mn

i jk + T mn
jki + T mn

ki j

)
= −2Ai

12A[ j
13Ak]

32 − 2Aj
12A[k

13Ai]
32 − 2Ak

12A[i
13Aj]

32. (D2)

where “occ” and “unocc” denote the occupied and unoccupied
bands, respectively. Furthermore, one can define a two-band
Euler curvature: Eui j

nm = 〈∂iu[n| ∂ jum]〉 = ∑
p�=n,m A[i

npA j]
pm, to

simplify the expression as∑
n,m

(
T mn

i jk + T mn
jki + T mn

ki j

) = −2A(i
12Eu jk)

12 , (D3)

where (· · · ) denotes a symmetric sum over permutations in the
indices i, j, k. Here, the Euler connection a = A21 = −A12,
and the elements of the Euler (pseudo)vector (see the main
text) can be identified as (Eu)i = 1

2εi jkEu jk
12. We then find∑

n,m

(
T mn

i jk + T mn
jki + T mn

ki j

) = −2a · Eu. (D4)

Upon substituting the Hermitian connection in terms of the
torsion tensor and Euler curvatures/connections into the shift
photoconductivity formula Eq. (32), we obtain the part of the
shift photoconductivity that couples to the circularly polarized
light, σ

i jk
shift,C = Im σ

i jk
shift [63],

Fsym =
∫

dω
[
σ

i jk
shift,C(ω) + σ

jki
shift,C(ω) + σ

ki j
shift,C(ω)

]

= − e3

8π2

∫
BZ

d3k
∑
m,n

fnm
(
T mn

i jk + T mn
jki + T mn

ki j

)

= e3

4π2

∫
BZ

d3k a · Eu = 2e3

h̄2 H, (D5)

where in the last equality we have identified the Hopf invariant
H via Eq. (12) and restored the reduced Planck constant h̄.

It should be noted that for the existence of the second-
order quantized shift response on the left-hand side, inversion
symmetry P must be broken. Indeed if the P symmetry is
preserved, then H = 0, which follows from the transformation
of the Euler (pseudo)vector and the Euler connection under
this symmetry. More precisely, inversion symmetry enforces
the constraint

Eu(k) = Eu(−k) (D6)

for the Euler (pseudo)vector, and

a(k) = −a(−k) (D7)

for the Euler connection. Therefore, the integrand of the real
Hopf invariant is odd under inversion, so the integral of this
quantity over the entire BZ ∼= T 3 vanishes. In the four-band
case, it was shown analogously that [52]

Fsym = 2e3

h̄2 (H+ + H−); (D8)

inversion symmetry forces H− + H+ = 0 [45], again sup-
pressing the second-order response.

APPENDIX E: QUANTUM METRIC BOUNDS
AND BREATHING

In this Appendix, we outline the relation between the quan-
tum metric and the Euler class in terms of quantum geometric
bounds. Moreover, as outlined in the main text, we retrieve
the quantum-geometric breathing in RHIs, both analytically
and numerically.

The quantum metric is most easily expressed in terms of
the projector P̂ into the occupied bands, which is given by
P̂ = ∑occ

a |ua(k)〉〈ua(k)|, with k = (kx, ky, kz) and “occ” the
occupied bands,

gi j ≡ 1
2 Tr [(∂iP̂)(∂ j P̂)]. (E1)

As mentioned in the main text, the quantum metric gives a
bound on the second-moment/variance of the Wannier func-
tions through the Resta-Sorella relation [66], which underlies
QGB, and which we define next.

Namely, to demonstrate QGB, we first obtain Wannier
functions [75], for a general case of a d-dimensional sys-
tem, by taking the inverse Fourier transform of Bloch states
|ψa(k)〉 = eik·r̂|ua(k)〉,

|wnR〉 =
∫

BZ

dd k
(2π )d

e−ik·R |ψa(k)〉 , (E2)

where |wnR〉 is a Wannier state in unit cell at a position vector
R. We rescale the d-dimensional volume of a unit cell to
unity, Vd = 1, here, and in the subsequent section. Moreover,
a Wannier center in a cell at the position R is defined as

w̄nR = 〈wnR| r̂ |wnR〉 . (E3)

Additionally, we define hybrid Wannier states by a Fourier
transform in a single direction, without loss of generality x,

∣∣wx
nR

〉 =
∫

BZ

dkx

(2π )
e−ikx ·(R)x |ψa(k)〉 , (E4)

and the hybrid Wannier centers read

w̄x
nR(ky, kz ) = 〈

wx
nR

∣∣ x̂
∣∣wx

nR

〉
. (E5)

It should be noted that the real-space basis used to express
the Wannier functions is a basis of states at localized po-
sitions (0, . . . , 0, 1, 0, . . . , 0), resembling a basis of Dirac
δ-functions in a lattice-regularized realization, cf. in a con-
tinuum limit, |r〉, constitutes a complete basis in the position
representation, with 〈r′| r〉 = δ(r − r′). In other words, the
Wannier functions in the three-dimensional systems central to
this work are defined as wnR(r) = 〈r|wnR〉, whereas the hy-
brid Wannier functions (HWFs) are given by wx

nR(r, ky, kz ) =
〈r | wx

nR〉. In both cases, we only consider R = 0, and the
moduli square of the Wannier functions; |w|2 ≡ |wn0(r)|2 and
|wx|2 ≡ |wx

n0(r, ky, kz )|2, correspondingly.
Now, with all the definitions related to the Wannier func-

tions and relevant quantum geometry at hand; we focus on the
Euler insulators defined in the main text. First, we note that
for any two-band Euler subspace {|u1〉 , |u2〉}, we can rewrite
the bands in a complexified, Chern basis,

|u±〉 = 1√
2

(|u1〉 ± i |u2〉), (E6)
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FIG. 7. Quantum-geometric breathing in the three-band RHIs. The variance of the RHI hybrid Wannier functions changes as the parameter
kz evolves. Multiple sections correspond to different breathing stages of the hybrid Wannier localized at a fixed lattice site. (a)–(h) The modulus
square of the maximally localized Wannier function at parameters kz = [0, 2.7, 3, 3.2, 3.3, 3.4, 3.7, 6.2]. Here, the three-band models with
the strong real Hopf index H = 2, and weak Euler indices, realize a dimensional extension of the three-band Euler insulator.

which, when Fourier-transformed, yields the corresponding
Wannier orbitals |w±

R 〉 with opposite quantized charge flows
akin to Thouless pumping [76]. Namely, the complexified
charge centers w̄±

R acquire equal and opposite Berry phases
φx [77], consistently with the non-Abelian Wilson loop wind-
ing of the Euler insulators. In other words, the complexified
centers,

w̄±
R = 〈w±

R | x̂ |w±
R 〉 , (E7)

wind by 2πχ on a full parameter kz cycle. This follows
from the fact that on direct evaluation of the invariants with
complexified bands, χ = C+−C−

2 , with C± representing the
Chern numbers of the complexified bands [7,10,30]. Indeed,
this needs to be definitionally true from the curvature-based
definitions of corresponding characteristic classes, given the
bundle complexification (E ⊕ iE ) relation between the Euler
and Chern characteristic classes, namely χ (E ) = C(E ⊕ iE ),
where E denotes a vector bundle [7,30,56]. As the winding of
the complexified Wannier orbital centers w±

R , can be rewrit-
ten in terms of the original Wannier orbitals as a winding
of 〈w1| x̂ |w2〉, this shows that such a complexified Thouless
pump of Euler insulators (see also Appendix G, and Fig. 11)
can be viewed as a flow of interband dipoles between bands,
apart from the complexified (Chern basis) picture of a super-
position of two counterpropagating charge pumps, as captured
by the Berry phases.

In a higher-dimensional context, with a completely anal-
ogous reasoning based on the complexification of the bands
|u±〉, or equivalently Wannier states |wnR〉, the returning
Thouless pump (RTP) of a Hopf insulator [42,43] can be
complexified, and hence transferred/realized in an occupied
band subspace of a three-band RHI. The RTP amounts to
pumping a Wannier center by HC unit cells halfway through
a pumping cycle, and subsequently restoring the original posi-
tion of the Wannier center on the return in a full pumping cycle
[42,43]. Intuitively, a complexified pair of such opposite RTPs
(see Fig. 11) results in the quantum-geometric breathing de-
rived below, which is furthermore demonstrated numerically.
Namely, the spread of the Wannier functions oscillates to the

extent of |H| unit cells (or |H+ + H−| in a four-band case),
as two complexified centers perform a full RTP cycle in the
RHIs. Accordingly, the maximal spread is obtained halfway
through the cycle kz = π , which corresponds to the saturation
of a quantum-geometric “breathe,” at the peak displacement
of the complexified centers. For the numerical demonstration
of the described quantum-geometric breathing (QGB) in the
three-band and four-band Hamiltonians, see Figs. 7 and 8.

Before continuing to analytically retrieve the QGB directly
from the introduced Wannier functions and quantum metric
itself, we utilize the described complexified band picture to
derive a bound on the quantum metric, due to the Euler curva-
ture. To achieve that, we note that a matrix

Q̃+
i j = 〈∂ki u

+| (1 − P̂) |∂k j u
+〉 , (E8)

with i, j taking only two out of three values x, y, z, is by con-
struction positive-semidefinite [32,73]. Therefore, Tr Q+

i j � 0.
Then, upon rewriting the complexified bands in terms of
the original bands |u1〉 , |u2〉, with Euler curvature defined in
Sec. II, one retrieves

Tr gi j − 2Eui j � 0. (E9)

Analogously, on repeating the steps with similarly defined
Q̃−

i j , in terms of |u−〉, one obtains

Tr gi j + 2Eui j � 0. (E10)

Combining two inequalities yields the final result, used in the
main text,

gii + g j j � 2|Eui j |, (E11)

where we stress that i, j take only two out of three possible
values, under the inequality.

We now move to the final steps of an explicit derivation
of QGB. As due to the PT symmetry 〈x〉 = 0, we address
the dependence of the variance σ 2

r (kz ) = 〈x2〉 − 〈x〉2 = 〈x2〉
on kz, definitional for QGB. Namely, we recognize that on
hybrid-Wannierizing occupied bands |u1,2〉, by Fourier trans-
forming in x, which obtains hybrid Wannier states |wx

1,2〉, we
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FIG. 8. Quantum-geometric breathing in four-band RHIs. As the parameter kz evolves, the variance of the RHI hybrid Wannier functions
changes. Multiple sections correspond to different breathing stages of the hybrid Wannier localized at a fixed lattice site. (a)–(h) The modulus
square of the Wannier function at parameters kz = [0, 2.7, 3, 3.2, 3.2, 3.3, 3.4, 3.7, 6.2]. Here, the four-band models with the strong real
Hopf indices (H+,H−) = (0, 1) and weak indices present realize a dimensional extension of the four-band Euler insulators.

have

〈x2〉 = 〈
wx

1,2| x2 |wx
1,2

〉
(kz )

= 〈wx
+| x2 |wx

+〉 (kz ) + 〈wx
−| x2 |wx

−〉 (kz )

� (| 〈wx
+| x |wx

+〉 |2 + | 〈wx
−| x |wx

−〉 |2)(kz ) (E12)

for any fixed ky (for the demonstration, we set ky = 0),
where in the last inequality we used the positivity condition
of the variance (of x) for the complexified HWFs. Hence,
the QGB emerges, provided the evolution of 〈wx

−| x |wx
−〉 =

− 〈wx
+| x |wx

+〉 = φx(kz )/(2π ), with |wx
+〉 , |wx

−〉 realizing a
PT -symmetric pair of RTPs, which we further numerically
observe in the bulk Wilson loops in Appendix F. Correspond-
ingly, the spread of the maximally localized HWFs needs to
oscillate, as two opposite RTPs flow due to the nontrivial bulk
real Hopf invariants.

Finally, we remark that the quantum geometric breathing
does not require the C2 symmetry that is admitted by the con-
sidered models, as mentioned in the main text. Namely, as we
retrieve numerically under the C2 symmetry-breaking pertur-
bations, the second-moment of the hybrid Wannier functions
still correspondingly oscillates in the absence of C2 symmetry,
while the first moment remains vanishing in the real gauge
under PT symmetry, as derived using the complexification
trick. However, on breaking the C2 symmetry, it is naturally
possible for the maximally localized hybrid Wannier functions
to no longer respect the C2 symmetry, despite the manifested
presence of QGB, on evaluating their second moment. This
shows that while the crystalline symmetries can effectively
constrain the form and the functional evolution of QGB, the
presence of QGB itself is not necessarily protected by these.

APPENDIX F: BOUNDARY STATES WITH SURFACE
EULER CLASS

In this Appendix, we analytically and numerically demon-
strate the effective surface theories for real Hopf insulators
(RHIs) with nontrivial strong invariants, as highlighted in the
main text.

We begin with an analytical derivation of the boundary
theory for a three-band RHI. First, we modify the three-band
Hamiltonian in Eq. (8) of the main text as follows:

H cont
3 (k) = 2d(k) ⊗ d(k)T − |d|213, (F1)

where we now use the unnormalized vector d = z†σz. This
model realizes the same phase as the flattened Hamiltonian,
as can be checked by explicitly computing the Hopf invariant
of this phase. We now obtain an effective projected surface
Hamiltonian in the proximity of z = 0. To do so, we first solve
for the boundary eigenstates of H cont

3 , which take the form

|ψ±〉 = N+

⎛
⎝ 0

1
±i

⎞
⎠e−(z±a)2/2, (F2)

where N± are normalization constants, and a is a variational
offset that parametrizes the offset of these wave functions
from the boundary at z = 0. By projecting these states onto
the bulk Hamiltonian H cont

3 and taking the limit a → 0±
(which corresponds to taking the states to be infinitesimally
separated from the boundary) one obtains an effective 2 × 2
Hamiltonian Hss′

eff = 〈ψs| H cont
3 |ψs′ 〉, where s, s′ = ±, which

manifestly respects the C2T symmetry at the boundary. The
elements of this matrix are given by

Heff =
(

−[
k2

x + k2
y + (a2 − 1)

]2 −4a2e−2a2
(ky − ikx )2

−4a2e−2a2
(ky + ikx )2 −[

k2
x + k2

y + (a2 − 1)
]2

)
,

(F3)

which shows that far from the boundary (a > 1), the Euler
class deduced from Heff vanishes, unlike in the Bloch-Wannier
states at the boundary (a → 0). In particular, the Euler class
in Heff can be directly recognized by comparing to the topo-
logically nontrivial Euler Hamiltonians of identical functional
forms, as considered in Refs. [8,67]. This concludes the an-
alytical argument for the effective boundary theory of the
three-band RHI, which deduces the presence of the surface
Euler invariant.
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For completeness, we also include an argument for the
topology of the boundary surface states in the four-band RHIs,
as obtained from a continuum effective surface theory. For
the four-band case, we start by constructing a continuum
bulk theory for the model complex Hopf insulator HMRW =
dHC

· σ = (z†σz) · σ [37], on expanding the vector z to first
order in momentum, z = (kx + iky, kz + im)T [42]. In a matrix
form, the continuum bulk Hamiltonian reads

HMRW =
(

k2
x + k2

y − m2 − k2
z (kx + iky)(kz + im)

(kx − iky)(kz − im) −k2
x − k2

y + m2 + k2
z

)
(F4)

with Hopf invariant HC = 1
2 sgn(m). In addition, we perform

a substitution kz → −i∂z, obtaining

H cont
MRW =

(
k2

x + k2
y − m2 + ∂2

z (kx + iky)(−i∂z + im)
(kx − iky)(i∂z − im) −k2

x − k2
y + m2 − ∂2

z

)
.

(F5)
We furthermore construct a parent 4 × 4 RHI Hamiltonian as
H cont

4 = H cont
MRW ⊕ H cont

MRW upon gluing two copies of complex
Hopf insulators under PT symmetry. Correspondingly, we
obtain an effective projected Hamiltonian with eigenvectors
of H cont

4 localized in the z-direction,

|ψ+±〉 = N+±

⎛
⎜⎜⎝

1
0
1
0

⎞
⎟⎟⎠e−(z±a)2/2, (F6a)

and for the other polarization in the initial orbital basis,

|ψ−±〉 = N−±

⎛
⎜⎜⎝

0
1
0
1

⎞
⎟⎟⎠e−(z±a)2/2, (F6b)

where N+±,N−± are normalization constants, and a is again
a variational offset constant from the boundary at z = 0.
Here, with the projection onto four states in the limit of in-
finitesimal proximity to the boundary a → 0, one obtains the
4×4 Hamiltonian Hb-ry = H ′

eff ⊕ H ′
eff, equivalent to two glued

copies of Chern insulators under C2T symmetry enforced at
the boundary. In terms of the aforementioned vectors, the
Hb-ry is more directly constructed as a matrix of elements
〈ψ±±| H cont

4 |ψ±±〉. Explicitly, the matrix is given by

H ′
eff =

(
k2

x + k2
y + (a2 − 1) a2e−2a2

(ky − ikx )
a2e−2a2

(ky + ikx ) −k2
x − k2

y − (a2 − 1)

)
, (F7)

manifestly showing that far from the boundary (a > 1), the
Euler class deduced from H ′

eff vanishes, unlike in the Bloch-
Wannier states at the boundary (a → 0), similarly to the
three-band case. In particular, the Euler class in H ′

eff can be
directly recognized, as in the three-band case. This concludes
the analytical argument for the effective boundary theory
of the four-band RHI, demonstrating the presence of the
surface Euler invariant, and the relation to the continuum bulk-
boundary physics of the three-band Hamiltonian. Finally, we
note that to obtain the boundary spectrum of a three-band
RHI from a four-band RHI, alternatively, the limit of E4 → ∞
could be taken, which trivializes one of the subblocks of the
H ′

eff, while keeping the surface Euler invariant in the other
block (corresponding to the occupied states) intact.

Furthermore, we numerically validate the argument about
the topologies of the bulk states and boundaries realized in the
proposed three-dimensional three-band Hamiltonians. First,
we show the bulk Wilson loops of the three-band RHI, which,
in particular, reflect the presence of both strong and weak in-
variants; see Fig. 9. Having diagnosed topologically nontrivial
bulk, as shown in Fig. 9, we next study the topological charac-
ter of the boundary. Namely, we first show the Wannier-Stark
ladders of the RHIs realizing the strong Hopf invariant, which,
similarly to Fig. 9, explicitly demonstrates the complexified
returning Thouless pump (RTP); see also Appendix E for
more general details. Moreover, from the surface Wilson loop
winding, we observe that manifestly, χs = H. Numerically,
to construct the Wannier ladders, the hybrid Wannier func-
tions (HWFs), maximally localized in the y-direction, were
evaluated as the eigenfunctions of the position operator y-
component projected on the occupied two-band subspace. The
projector on ground state P̂ = ∑occ

n |ψn〉 〈ψn| was constructed
from the occupied energy eigenstates as the Hamiltonian was
Fourier transformed in the y direction and a chain with 20
sites under open boundary conditions was considered. The
operator P̂ŷP̂ was diagonalized on a mesh in the 2D reduced
Brillouin zone of quasimomenta (kx, kz). The HWFs and their
centers (w̄y) in the y-direction were directly extracted as the
eigenvectors and the eigenvalues of the problem.

Additionally, to compute the surface Wilson loop winding,
the surface Bloch-Wannier bands were isolated from the bulk
by an inclusion of a C2T -preserving perturbation (VC2T ) to the
projected Hamiltonian,

VC2T =
⎛
⎝−0.4 0 0

0 −0.1 0
0 0 0.2

⎞
⎠, (F8)

achieving a separation of surface Wannier bands from the bulk
bands on both the opposite facets of the real Hopf insulators
under open boundary conditions in the y-direction.

Having isolated the surface Bloch-Wannier bands from the
bulk, a standard procedure of computing non-Abelian Wil-
son loops was employed. Here, the winding was explicitly
retrieved from the surface bands given by |us

n(kx, ky)〉 (see
also Fig. 10), and as predicted from an analytical argument,
the Wilson loop eigenvalues (φn) indicate the presence of the
surface Euler numbers (χs). The surface Euler numbers are
defined as

χs = 1

2π

∫
rBZ

d2k Euxy,s, (F9)

with the integration performed here over the reduced Brillouin
zone, rBZ = {(kx, ky)} ∼= T 2, and the integrand, the surface
Euler curvature Euxy,s ≡ 〈∂kx u

s
[1(kx, ky)| ∂ky u

s
2](kx, ky)〉, with

[· · · ] denoting the antisymmetrization with respect to the
band indices. Our result is also consistent with the finding
of the presence of opposite surface Chern numbers (Cs) on
the boundaries of the complex two-band Hopf insulators [42],
which is supported by the complexification correspondence,
on breaking the C2T symmetry [33]. For completeness, we
reiterate that in the Hopf insulators, the Cs invariant reads

Cs = 1

2π

∫
rBZ

d2k �n
xy,s, (F10)
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FIG. 9. The interplay of bulk and surface invariants in three-band real Hopf insulators; bulk. (a)–(c) Bulk Wilson loops for different
values of the Hopf-Euler invariants (H; χx, χy, χz ) = (0; 0, 0, 0), (2; 0, 0, 0), (2; 0, 0, 2) at kz = 0, In the last Hopf-Euler case, the Wilson loop
winding corresponds to the Wilson loop winding of the Euler phases before extending/pumping. (d)–(f) Bulk Wilson loops for different values
of the Hopf-Euler invariants (H; χx, χy, χz ) = (0; 0, 0, 0), (2; 0, 0, 0), (2; 0, 0, 2) at kz = π , i.e., midway through the cycle. We numerically
find that 2H = #(kz = 0) + #(kz = π ), where # denotes the number of crossings at φn = π , corresponding to the flow of the pairs of opposite
RTPs. The eigenvalues corresponding to the opposite RTPs touch at kz = 0, rather than cross, unlike in the case of the nontrivial weak Euler
invariants, where a crossing occurs (c),(f). We conclude that to realize an Euler invariant χz in a default configuration (kz = 0) within the
Hopf-Euler insulator, the Hamiltonian with H = χ may be chosen, but nonetheless the presence of the weak invariant is necessary.

FIG. 10. The interplay of bulk and surface invariants in three-band real Hopf insulators; surface. (a)–(c) Wannier-Stark ladders for
different values of the Hopf invariant H = 0, 2, 4, with the bottom two Bloch-Wannier bands at the boundary separated from the bulk with a
C2T -preserving perturbation. (d)–(f) Surface Wilson loop windings for bulk Hamiltonians with H = 0, 2, 4, demonstrating the surface Euler
numbers χs = H manifested by the three-band RHIs, and hence by the three-band strong Hopf-Euler phases.

075135-20



NON-ABELIAN HOPF-EULER INSULATORS PHYSICAL REVIEW B 110, 075135 (2024)

FIG. 11. The family of homotopy-classified topological phases and relations between them, demonstrated in terms of hybrid Wannier
functions (HWFs) and their distinct evolutions defining a class of Thouless pumps [76]. The complexification of the RTP of the Hopf insulator
is realized in the three-band RHI, yielding QGB (see also Appendix E). As the QGB occurs with kz changing, the HWFs oscillate in x and y, as
their second moment 〈x2〉 changes, rather than flowing (which would be equivalent to 〈x〉 changing), as in the Thouless pump, where quantized
charge is pumped. The second moment is reflected by the optical, rather than dc transport properties, which are governed by the first moment.
In the case of three-band Hopf phases, the topological invariant is optically manifested through the quantized shift response.

with �n
xy,s ≡ i[〈∂kx u

s
n(kx, ky)| ∂ky u

s
n(kx, ky)〉 − c.c.] the sur-

face Berry curvature, in terms of the Bloch-Wannier
states |us

n(kx, ky)〉. However, distinctively, the surface Euler
invariant—as derived from the real Hopf invariant (H) induc-
ing an effective surface Euler theory within our models—was
obtained in three bands, under 2 ⊕ 1 partitioning, which is
different from the other reported Hopf phases [42,44,45].

APPENDIX G: HOMOTOPY INVARIANTS AND
COMPLEXIFICATION CORRESPONDENCES

In this Appendix, we discuss the relations between the vari-
ous topological invariants that characterize two-band complex
phases and three-band real phases, in two and three dimen-
sions (see Fig. 11). In particular, we relate the complex Chern
and Hopf invariants to the real Euler and Hopf invariants that
exist in the multigap topological phases considered in this
work.

We begin with two-band complex phases. The Hamilto-
nians of such systems may always be written in the form
H (k) = d(k) · σ (ignoring contributions ∝ 12), where d(k) is
a three-component real vector that, when normalized, defines
a map d̂ : BZ → S2. The two-sphere arises here as it is the
classifying space of these systems, equal to the Grassmannian

Gr1,2(C) = U(2)

U(1) × U(1)
∼= S2. (G1)

In two dimensions, one can compute the Chern number
C of the occupied subspace of a complex Hamiltonian from
the integral of the Berry curvature F = dA over the Bril-
louin zone, where A = i〈u|du〉 is the Berry connection of the
occupied band |u〉. Note that, for the Chern number to be
nonvanishing, the system must violate time-reversal symme-
try T . In the particular case of a two-band system, C is an
element of the homotopy group π2[S2] ∼= Z, and is equal to

the “wrapping number” of the map d̂(k):

C = 1

2π

∫
BZ

F = 1

4π

∫
d2k d̂ · (∂xd̂ × ∂yd̂), (G2)

where ∂i ≡ ∂ki . The integrand in the second part of Eq. (G2)
may be interpreted as the skyrmion density of the vector field
defined by d̂.

In three dimensions, the vector d̂ defines a map
T 3 ∼ S3→S2, so in this case the system can be assigned a
topological index in the homotopy group π3[S2] ∼= Z. This
index is known as the Hopf invariant, and it may be com-
puted from the integral of the Abelian Chern-Simons form
A ∧ dA = A ∧ F over the BZ [37],

HC = − 1

4π2

∫
BZ

A ∧ F

= − 1

4π2

∫
BZ

d3k εi jk ẑ†(∂iẑ)(∂ j ẑ†)(∂k ẑ). (G3)

In the second line of Eq. (G3) we have given an alternative
expression for HC involving a (normalized) two-component
complex vector z = z(k), in terms of which the winding vec-
tor is written as d̂i = z†σiz. As discussed extensively in the
main text, the Hopf invariant has a geometric interpretation as
the linking number of the preimages of two arbitrarily chosen
points on S2 under d̂. Alternatively, one may interpret the
texture of d̂(k) as a “Hopfion” in momentum space, simi-
larly to the two-dimensional skyrmion, which realizes a Chern
number.

In addition to the Hopf index, one may compute a separate
Chern number on each of each of two-dimensional coordi-
nate planes inside the BZ. These are computed by applying
Eq. (G2) to the restricted maps v̂i = d̂(k)|ki=const., i = x, y, z.
Provided the valence and conduction bands are gapped at all
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points in the BZ, these Chern numbers are independent of the
particular value of ki chosen.

We now discuss the topological invariants for real, three-
band systems. Due to the reality condition, the classifying
space of these Hamiltonians is now a quotient of orthogonal
rather than unitary groups, and for a system with two occupied
bands it is given by

Gr2,3(R) = O(3)

O(2) × O(1)
∼= RP2. (G4)

In contrast to two-band Hamiltonians, the map T 3 → RP2 is
not given by a vector appearing in the parametrization of the
Hamiltonian, but instead by the third eigenvector |u3(k)〉. By
flattening the bands of the Hamiltonian, we can always write

H̄3(k) = 2u3(k) ⊗ u3(k) − 13, (G5)

which gives an explicit expression for the flattened Hamilto-
nian in terms of this map.

Since the real projective plane RP2 is isomorphic to S2/Z2,
many of the topological properties of two-band complex
Hamiltonians have analogs in three-band real Hamiltonians.
First, in two dimensions the topological invariant correspond-
ing to the homotopy group π2[RP2] ∼= π2[S2] ∼= Z—the
wrapping number of the sphere—is the Euler class [7],

χ = 1

2π

∫
BZ

Eu = 1

2π

∫
d2k u3 · (∂xu3 × ∂yu3). (G6)

The above expression for the Euler class in terms of the
skyrmion density third eigenvector is special to three-band
systems and is a consequence of the relation u3 = u1 × u2. In
general, the Euler class is a multiband invariant that character-
izes the topology of the occupied two-band subspace spanned
by two bands u1,2. It is calculated using the Euler form
Eu = da, where a = Pf[−i〈ui|du j〉] is the Euler connection,

which is equal to the Pfaffian of the non-Abelian Berry con-
nection in the occupied subspace.

Aside from the obvious similarity of Eqs. (G2) and (G6),
the Chern number and the Euler class are related through com-
plexification, in the sense that the Euler class of a subspace
spanned by the real eigenvectors |u1,2〉 is equal to the Chern
number of the single complex state |v〉 = (|u1〉 + i |u2〉)/

√
2,

i.e., χ [|u1〉 , |u2〉] = C[|v〉]. This formula is useful for deriving
properties of the multiband Euler class from those of the
single-band Chern class (see Appendix E).

As a central component of our work, we recognize that
in three dimensions, the eigenvector of H3 defines a map
u3 : T 3 ∼ S3 → S2, meaning that real three-band phases in
3D may display a Hopf index H ∈ π3[RP2] ∼= π3[S2] ∼= Z.
Writing (u3)i = z†σiz, where z(k) is, like z(k) in Eq. (G3), a
two-component complex vector of unit norm, we can express
the Hopf index as

H = − 1

16π2

∫
BZ

a ∧ Eu

= − 1

4π2

∫
BZ

d3k εi jk ẑ†(∂iẑ)(∂ j ẑ†)(∂k ẑ). (G7)

When H �= 0, the third eigenvector displays a nontrivial Hop-
fion texture in momentum space like that described for the
winding vector d̂ above.

Finally, we note that in three spatial dimensions, the sys-
tem may also host an Euler class on each of the coordinate
planes within the BZ. The subdimensional Chern numbers
discussed above are computed with Eq. (G2), and similarly
these Euler classes are computed with Eq. (G6). Moreover,
they are independent of the particular coordinate slice used to
compute them. The interplay of the real Hopf index and the
subdimensional Euler classes is a central focus of this work.
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