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Weyl semimetallic state with antiferromagnetic order in the Rashba-Hubbard model
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We study the phase diagram of the Rashba-Hubbard model by employing the Hartree-Fock mean-field
theory and thereby establish the existence of an antiferromagnetically ordered Weyl semimetallic state with
in-plane magnetic moments. This phase is found to be sandwiched between the antiferromagnetic insulator
and Rashba metal in the interaction vs spin-orbit coupling phase diagram. The antiferromagnetically ordered
topological semimetallic state exists in the presence of combined time-reversal and inversion symmetry, although
individually both are broken. The study of the static magnetic susceptibility indicates the robustness of the
antiferromagnetic order within a realistic range of interaction and spin-orbit coupling parameters. In addition to
the edge states associated with the Weyl points, we also investigate the spin-resolved quasiparticle interference,
which provides important insight into the possible spin texture of the bands, especially in the vicinity of Weyl
points.
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I. INTRODUCTION

Different phases are classified according to the differ-
ent symmetries that may spontaneously be broken at low
temperature because of a variety of interactions inherent
in material systems and that can lead to intriguing diverse
phases and associated features [1–9]. One such important in-
teraction, which has attracted considerable attention recently
and which can profoundly affect the properties of various
phases as well the nature of the phase transition, is spin-
orbit coupling (SOC), i.e., the entanglement of spin and orbit
degrees of freedom [10–12]. The investigation of proximity
effects in heterojunctions of superconductors and magnetic
systems suggests that SOC may play a critical role in shaping
magnetic, transport, and other exciting properties [13–16].
The signature of nontrivial topological states accompanied
by Majorana quasiparticles [17–21] was obtained in systems
with SOC.

In two-dimensional systems, especially at the interface of
heterostructures, the absence of inversion symmetry can gen-
erate SOC, which is referred to as Rashba SOC [22]. Rashba
SOC depends linearly on the crystal momentum k and lifts
the spin degeneracy of the energy bands and therefore can
significantly influence the electronic and transport properties,
giving rise to a wide variety of fascinating properties [23–25].
Moreover, by controlling the layer thickness of the het-
erostructure or through the application of an external electric
field, the strength of Rashba SOC can be controlled, making
such systems more suitable for several potential technological
applications [26–32]. This is unlike centrosymmetric sys-
tems with transition metals as indispensable constituents, in
which the SOC results from the LS coupling in the d and
f orbitals.

The SOC in a correlated-electron system introduces quan-
tum frustration, which, in addition to affecting the nature of
the Mott transition, can stabilize a plethora of exotic states of
matter. These states of matter can include axion insulators,

spin-orbit coupled Mott insulators, topological semimetals
and insulators, etc. [30,33–37]. However, in noncentrosym-
metric systems, despite the significant progress made in
understanding different aspects of Rashba SOC, relatively
less attention has been paid to the consequences of its in-
terplay with the electronic correlation. In a few steps taken
in this direction, the nature of the metal-to-insulator transi-
tion (MIT) and the phase diagram in the Rashba-Hubbard
model were studied by using a variety of methods, including
the Hartree-Fock (HF) approximation [38], variational Monte
Carlo (VMC) [39], and cluster dynamical mean-field theory
(CDMFT) [40].

Sine-deformed mean-field theory based on the HF approx-
imation predicts incommensurate spin-density wave (SDW)
states even when the SOC is vanishingly small and spiral
orders for larger SOC [41]. Other HF-based theories suggest
that a metallic state with antiferromagnetic (AFM) order for
moderate electronic correlation, an AFM insulator for strong
electronic correlation, and a striped magnetic order when
both SOC and electronic correlations being large, are stabi-
lized [38]. The existence of AFM order for smaller SOC is
also supported by CDMFT [40] as well as plaquette-based
investigations [42]. VMC studies point out the existence of
a Weyl semimetallic (WSM) state without AFM order for
stronger SOC and electronic correlation [39]. Among the var-
ious phases thus found, the metallic AFM state appears to be
of considerable interest, particularly given its pseudogaplike
behavior. The current study attempts to provide a detailed
investigation of this phase, most importantly, revealing its
topological nature.

Our finding suggests that for a reasonable range of SOC
and on-site Coulomb interaction, a significant portion of
the SOC vs interaction phase diagram is occupied by the
metallic and insulating AFM ordered states with in-plane
magnetic moment. The transition from the Rashba metal to
AFM insulator does not happen directly upon increasing the
electronic correlation parameter U . Instead, a WSM state with
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AFM order is stabilized between the two aforementioned
phases. The associated Weyl points (WPs) shift from the
high-symmetry points � and M in the paramagnetic Rashba
metallic state to the points along the high-symmetry directions
given by ±kx ∓ ky = π and kx = −ky in the WSM-AFM state.
Their respective winding numbers are 1 and −1. We also
examine the spin-resolved quasiparticle interference (QPI)
patterns, which are capable of revealing the nature of elec-
tronic states, including the spin texture in the vicinity of
the WPs.

The layout of this paper is as follows. Section II describes
the Rashba-Hubbard Hamiltonian, mean-field Hamiltonian,
static magnetic susceptibility calculation in the unordered
state, and spin-resolved QPI. In Sec. III, the robustness of the
AFM ordering, the phase diagram in the U -λ space, the neces-
sary conditions for the WSM state, linearized dispersions near
WPs, winding numbers and edge states associated with the
WPs, and QPI patterns in the WSM-AFM state are presented.
In Sec. IV, we provide a brief discussion in reference to
previous works. Finally, we conclude in Sec. V.

II. MODEL AND METHOD

A. Model

We consider the one-orbital Rashba-Hubbard Hamiltonian
defined on a square lattice, given by

H = Ht + HU + HR, (1)

where

Ht = −t
∑
<i,j>

∑
σ

(d†
iσ djσ + H.c.) (2)

is the kinetic energy term representing the delocalization en-
ergy gain due to the nearest-neighbor hopping. t is the hopping
amplitude, and d†

iσ (diσ ) is the operator creating (annihilating)
an electron at site i with spin σ . The unit of interaction param-
eters and energy is henceforth set to be t .

The second term,

HU = U
∑

i

n̂i↑n̂i↓, (3)

accounts for the on-site Coulomb repulsion between electrons
of opposite spins, where n̂iσ = d†

iσ diσ denotes the number op-
erator. The third term, HR, represents the Rashba SOC, which
is defined as

HR = λ
∑
i,σ,σ ′

[i(d†
i,σ σ x

σσ ′di+ŷ,σ ′ − d†
i,σ σ

y
σσ ′di+x̂,σ ′ ) + H.c.],

(4)

where λ is the strength of SOC and σ i is one of the Pauli
matrices.

After Fourier transformation, Eq. (2) in momentum space
is given by

Ht (k) =
∑
k,σ

εkd†
kσ dkσ , (5)

with εk = −2t (cos kx + cos ky), whereas the Rashba term
[Eq. (4)] takes the following matrix form:

HR(k) =
∑

k,σ,σ ′
d†

kσ [βkσ
x
σσ ′ − γkσ

y
σσ ′]dkσ ′ , (6)

with βk = 2λ sin ky and γk = 2λ sin kx.

B. Hartree-Fock mean-field theory

The Hubbard term HU , which is quartic in terms of
electron-field operators, has been treated in the absence of
Rashba SOC via a variety of techniques based on mean-
field theoretic approaches, perturbation techniques, dynamical
mean-field theory [43], quantum Monte Carlo [44], VMC
[45], etc. Here, we use the static mean-field approach based
on the Hartree-Fock approximation in order to decouple the
interaction Hamiltonian because our focus is mainly on the
low-temperature phases. The bilinear term in the electron-
field operator thus obtained is

Him = −U

2

∑
iσ

ψ
†
i (σ · mi)ψi, (7)

where ψ
†
i = (d†

i↑, d†
i↓). The jth component of the magnetic

moment at site i is m j
i = 1

2 〈ψ†
i σ jψi〉, with mi being the mag-

netic moment. σ j is the jth component of the Pauli matrices.
When the decoupled interaction term is incorporated, the
Hamiltonian in the basis (dk↑, dk↓, dk+Q↑, dk+Q↓)T with wave
vector Q = (π, π ) becomes

HHF =
∑

k

(ψ†
kσψ

†
k+Qσ )

(
ĥk σ · �

�† · σ ĥk+Q

)(
ψkσ

ψk+Qσ

)
, (8)

where

ĥk =
(

εk βk − iγk

βk + iγk εk

)

and

σ · � =
(


z 
x − i
y


x + i
y −
z

)
.

Here, � is the exchange field given by 2� = Um, where m =
mxx̂ + myŷ + mzẑ represents the magnetic-moment vector in
one of the sublattices. The direction of the magnetic-moment
vector will be the opposite in the other sublattice. The
twofold-degenerate eigenvalues of the Hamiltonian [Eq. (8)]
can be shown to be

Ek = ±
[

± 2

(√
ε2

k β
2
k + ε2

k γ
2
k + β2

k 
2
y + γ 2

k 
2
x − 2βkγk
x
y

)
+ (

ε2
k + β2

k + γ 2
k + 
2

x + 
2
y

)] 1
2

. (9)
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The components of the magnetic moments are given in terms
of the eigenvectors of the Hamiltonian as follows:

mz =
∑
k,l

(φ∗
k↑lφk+Q↑l − φ∗

k↓lφk+Q↓l ) f (Ekl ),

mx =
∑
k,l

(φ∗
k↑lφk+Q↓l + φk↑lφ

∗
k+Q↓l ) f (Ekl ),

my =
∑
k,l

(−iφ∗
k↑lφk+Q↓l + iφ∗

k↑lφk+Q↓l ) f (Ekl ), (10)

where l is the band index and f (E ) is the Fermi-Dirac distri-
bution function.

C. Magnetic susceptibility

In the previous subsection, we discussed only the Hamilto-
nian for the commensurate AFM order. Whether a commen-
surate or incommensurate AFM ordered state with in-plane
or out-of-plane magnetic moments can be stabilized can be
ascertained by examining the static susceptibility given by the
4 × 4 matrix

χ̂0(q) =

⎛
⎜⎜⎜⎜⎜⎝

χ0
↑↑↑↑(q) χ0

↑↓↑↑(q) χ0
↑↑↓↑(q) χ0

↑↓↓↑(q)

χ0
↑↑↑↓(q) χ0

↑↓↑↓(q) χ0
↑↑↓↓(q) χ0

↑↓↓↓(q)

χ0
↓↑↑↑(q) χ0

↓↓↑↑(q) χ0
↓↑↓↑(q) χ0

↓↓↓↑(q)

χ0
↓↑↑↓(q) χ0

↓↓↑↓(q) χ0
↓↑↓↓(q) χ0

↓↓↓↓(q)

⎞
⎟⎟⎟⎟⎟⎠
(11)

in the presence of SOC [46,47]. A matrix element of the
spin susceptibility χ0

σ1σ2σ3σ4
(q) is defined in terms of the two

Green’s functions in the unordered state as follows:

χ0
σ1σ2σ3σ4

(q) =
∑

k

G0
σ1σ4

(k)G0
σ3σ2

(k + q), (12)

where

G0(k) = [−ĥ(k)]−1. (13)

In the presence of SOC, the directional spin susceptibilities
in different directions may be different. Therefore, they can
indicate whether magnetic ordering with an in-plane or out-of-
plane magnetic moment is preferred. The spin susceptibilities
along the three orthogonal directions are χ0

xx, χ0
yy, and χ0

zz,
given by

χ0
xx(q) = χ0

↑↓↑↓(q) + χ0
↑↓↓↑(q) + χ0

↓↑↑↓(q) + χ0
↓↑↓↑(q),

χ0
yy(q) = −χ0

↑↓↑↓(q) + χ0
↑↓↓↑(q) + χ0

↓↑↑↓(q) − χ0
↓↑↓↑(q),

χ0
zz(q) = χ0

↑↑↑↑(q) − χ0
↑↑↓↓(q) − χ0

↓↓↑↑(q) + χ0
↓↓↓↓(q).

(14)

The largest peak for the spin susceptibility χ0
xx(q) or χ0

zz(q)
occurring at a wave vector q = Q implies inherent instability
against magnetic ordering with the wave vector Q.

D. Density of states modulation due to a single impurity

Quasiparticle interference is a powerful technique to study
low-energy quasiparticle excitations in a system [48]. The

elastic scattering of quasiparticles by an impurity atom gen-
erates interference patterns, which may provide important
insight, especially into the electronic band structure in the
vicinity of the Fermi level. The modulation in the local density
of states (DOS) corresponding to the interference patterns can
be calculated with the help of a Green’s function.

The change induced in the Green’s function due to a single
impurity with δ potential can be studied by using the t-matrix
approximation [49,50]. This change is

δĜ(k, k′, ω) = Ĝ0(k, ω)T̂ (ω)Ĝ0(k′, ω), (15)

where Ĝ0(k, ω) = (ωÎ − ĤHF)−1 is the free particle Green’s
function in an AFM ordered state. The T̂ matrix of scattering
by an impurity atom is defined in terms of the Green’s function
given by

T̂ (ω) = [Î − V̂ impĜ0(ω)]−1V̂ imp, (16)

where the Green’s function summed over all momenta in the
Brillouin zone is

Ĝ0(ω) = 1

N

∑
k

Ĝ0(k, ω) (17)

and

V̂ imp
i = V̂i ⊗ σ̂i,

where

V̂i = Voi

(
1 1
1 1

)
. (18)

V̂ imp
i denotes the 4 × 4 scattering matrix due to an im-

purity atom, which is written in terms of Pauli matrices
σi(i = 1, 2, 3) representing various spin-resolved channels of
impurity scattering. i = 0 corresponds to scattering due to
nonmagnetic impurity. We also investigate the behavior of
interference patterns generated when the tip of the probe
is able to resolve the spin state of the quasiparticle. The
spin-resolving tip V̂ tip can be described in terms of Pauli
matrices as

V̂ tip
i = V̂i ⊗ σ̂i,

where

V̂i = Vot

(
1 1
1 1

)
. (19)

Now, the change δρi j (k, ω) recorded by a spin-resolving tip
in the DOS due to the scattering by an impurity atom can be
given by [49]

δρi j (q, ω) = − 1

2π

∑
k

Im
[
TrV̂ tip

i Ĝ0(k, ω)T̂ (ω)

× V̂ imp
j Ĝ0(k + q, ω)

]
. (20)

III. RESULTS

A. Magnetic-ordering instability

We begin by examining the magnetic ordering instability
in the Rashba-Hubbard model. Figure 1 shows the static mag-
netic susceptibilities in different directions for the unordered
state. Because of the SOC, SU (2) rotational symmetry is
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χxx

λ = 0.3

(a)

Min Max

χyy(b) χzz(c)

χxx

λ = 0.6

(d) χyy(e) χzz(f)

 0

 0.5

 1

 1.5

 2

Γ X M Y Γ

χxx+χyy
χxx
χyy
χzz

(g) λ = 0.3

Γ X M Y Γ

χxx+χyy
χxx
χyy
χzz

(h) λ = 0.6

FIG. 1. Various components of the static spin susceptibility (a)–
(f) in the whole Brillouin zone and also (g) and (h) along the high-
symmetry directions, showing peaks for λ = 0.3 and 0.6.

absent; therefore, the in-plane component χ0
xx(q) and the out-

of-plane component χ0
zz(q) are different. Moreover, χ0

xx(q)
and χ0

yy(q) are also different along high-symmetry directions
such as � − X , � − Y , and M − Y . We find that both χ0

xx(q)
and χ0

yy(q) show stronger divergences at (π, π ) compared to
χ0

zz(q) when λ is small, implying that the magnetic moments
will preferably be oriented in the x-y plane. Second, upon
increasing λ, the peak position for χ0

zz(q) shifts away from
(π, π ) to an incommensurate wave vector. There is no similar
shift in the peak position for the in-plane component of the
magnetic susceptibility. The latter is a robust feature in a
realistic range for the SOC parameter, which is a result of
nesting between the Fermi pockets around the � and M points
with nesting vector (π, π ) (Fig. 2). In the large SOC limit,
t/λ → 0, we find that χxx and χyy are peaked at (0, π ) and

Q

(a)

Q

(b)

Min

Max

FIG. 2. Fermi surfaces with one of the prominent nesting vectors
Q = (π, π ) at half filling for (a) λ = 0.4 and (b) λ = 0.8, where the
range of both kx and ky is [−π, π ].

 0

 2

 4
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 8

 0  0.2  0.4  0.6  0.8  1

λ

U

WSM−AFM

RM

AFM−I

FIG. 3. Phase diagram showing various phases for the corre-
lation strengths 0 � U � 8 and Rashba SOC strength 0 � λ � 1.
The three different phases are the antiferromagnetic insulator (AFM-
I), Weyl semimetallic antiferromagnet (WSM-AFM), and Rashba
metal (RM).

(π, 0), respectively, whereas χzz is peaked at (0, 0) instead.
Interestingly, all three peaks have the same height, indicating
the same strength of instability against ferromagnetic or stripe
order. The former set of peaks arises from the interpocket
scattering between the pockets around (0, 0) and (π, π ). The
latter peak originates from the intrapocket scattering. It should
be noted that, when t/λ → 0, the tiny pockets forming around
(0, 0) and (π, π ) become Weyl points [45]. Upon inclu-
sion of electron-electron interaction within the random-phase
approximation (RPA), the susceptibilities are expected to di-
verge at the peak positions for a critical value of U and a given
λ, indicating a singularity in the free energy and hence the
instability of the system against a magnetic order. Our findings
thus suggest that the commensurate AFM order with in-plane
magnetic moments will be stabilized.

B. WSM-AFM state

Having examined the robustness of the AFM state with
in-plane magnetic moment, we now explore the phase dia-
gram in the U -λ parameter space by using the self-consistent
mean-field theoretic approach discussed above. Since the in-
plane RPA-level magnetic susceptibility is expected to show
divergence at the wave vector (π, π ), the initial value of the
out-of-plane magnetic moment, i.e., mz, is set to be zero
without any loss of generality. Only two types of phases
are expected to occur, one with self-consistently obtained
magnetic order and another without magnetic order. Through-
out the calculations, the inverse temperature parameter (β =
1/kT ) is fixed to be 1000, with k being the Boltzmann con-
stant, which corresponds to ∼5 K if t ∼ 0.5 eV.

Figure 3 shows the phase diagram, which consists of
phases with magnetic order as well as the Rashba metal (RM)
phase without magnetic order. There are two types of mag-
netically ordered states. One is the AFM insulator (AFM-I)
occurring for higher U , and the other is the topological WSM
state with magnetic order (WSM-AFM) existing for relatively
lower values of U , which will be discussed at length later
because it is the main focus of the current work. In an earlier
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 0

 0.1

 0.2

 0.3

 0.4

−5 −4 −3 −2 −1  0  1  2  3  4  5

U, λ = 0, 0.5

                 5, 0.5

                 5, 1.0

ω

Ν
(ω

)

FIG. 4. DOS corresponding to the three different phases, RM,
AFM-I, and WSM-AFM. For U = 0 and λ = 0.5, a significant DOS
is obtained at the Fermi level characteristic of a metallic system. In
the case of U = 5 and λ = 0.5, the DOS is gapped at the Fermi level,
indicating the insulating behavior of the system. Upon increasing
SOC further so that λ = 1, the DOS is zero at the Fermi level,
whereas it does not vanish in the immediate vicinity, indicating a
semimetallic state.

work [38], a pseudogaplike phase with AFM order was re-
ported based on the finding of a dip in the DOS (Fig. 4), which
is similar to the one observed in the so-called pseudogap
phases found in hole-doped cuprates [51,52]. However,
the dispersion plotted in various high-symmetry directions
(0, 0) −→ (π, π ) −→ (0, π ) −→ (−π/2, π/2) provides a hint
about the topological nature of this magnetically ordered state
because two pairs of linear nondegenerate band crossings at
the Fermi level exist, giving rise to two pairs of symmetry-
protected Weyl points (Figs. 5 and 6).

-4

-2

 0

 2

 4

E
k

λ = 0.5(a) U = 0,

-4

-2

 0

 2

 4

E
k

(b) U = 5,λ = 1.0

-4

-2

 0

 2

 4

(0,0) (π,0) (0,π) (-π/2,π/2 ) (0,0)

E
k

λ = 0.5(c) U = 5,

FIG. 5. Electronic dispersions are plotted for different sets of U
and λ values. They correspond to the three phases: (a) RM, (b) WSM-
AFM, and (c) AFM-I.

-π 0 π

kx

-π0π

ky

-4

-2

 0

 2

 4

W1
W2

FIG. 6. Electronic dispersion in the WSM-AFM shown for the
entire Brillouin zone.

The Hamiltonian HHF lacks both the time-reversal invari-
ance (T ) and inversion (P) symmetries, when considered
independently. In order to see this, we rewrite the mean-field
Hamiltonian in the sublattice basis formed because of AFM
ordering as

HHF = εkσ0 ⊗ τ1 + 
xσ1 ⊗ τ0 + 
yσ2 ⊗ τ0

+ 2λ sin kyσ1 ⊗ τ1 − 2λ sin kxσ2 ⊗ τ1. (21)

Here, σi and τ j are the Pauli matrices used for the spin and
sublattice degrees of freedom. It should be noted that only a
few of the five matrices formed by σi and τ j in the Hamiltonian
anticommute; i.e., they do not form Dirac algebra.

None of the terms in the Hamiltonian commute even for

x = 
y = 0, i.e., when the AFM order is absent. In that
case, along ±kx ∓ ky = π , the first term’s contribution van-
ishes, and the remaining two terms anticommute. Then, the
Hamiltonian has both time-reversal (T = iσ2K) and inversion
(P = τ1) symmetries, which leads to the twofold-degenerate
bands along (0, π ) → (−π/2, π/2) and Dirac points (DPs) at
(0, π ) and (π , 0). This is mainly the consequence of Brillouin
zone folding. In the absence of magnetic ordering, the folding
is not required; then the degeneracy disappears, and the DPs
change into the WPs. The degeneracy of the bands is lifted,
and the DPs are split into WPs if the system develops nonzero
magnetic moment. One of the WPs is shifted away from (0,
π ) along (0, π ) → (−π/2, π/2). Another band degeneracy
occurs along (π, 0) → (0, π ), i.e., along kx + ky = π , which
persists even in the AFM ordered state. This is a consequence
of the fact that the first term vanishes while the rest anticom-
mute with each other.

With magnetic order, both the time-reversal and inver-
sion symmetries are broken. It is not difficult to see that
the second and third terms break the time-reversal symme-
try, while the fourth and fifth terms are responsible for the
absence of inversion symmetry. However, the Hamiltonian is
invariant under the combined operation defined by T P , i.e.,
T P (HHF(k))(T P )−1 → HHF(k). Unlike the system consid-
ered here without inversion symmetry, earlier works show that
stable DPs can be obtained in the nonsymmorphic system
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with second-neighbor SOC in the absence of time-reversal
and inversion symmetries while both combinedly remain
intact [53].

The bands crossing at the Fermi level in the WSM-AFM
state disappears with a rise in the value of U . The boundary
between the AFM-I and WSM-AFM states is determined by
the condition |
| � 2λ, which should be satisfied by the mag-
netic exchange coupling 
. On lowering U further, there is a
phase transition from WSM-AFM to RM, with the magnetic
moment vanishing to zero in the self-consistent scheme. This
happens because the spin susceptibility does not diverge at Q
for a given set of parameters, which includes on-site Coulomb
interaction. In the following, we find the condition satisfied by
the magnetic order parameter to determine whether the AFM
ordered state is Weyl semimetallic or not. First of all, we note
that the self-consistently obtained in-plane magnetization has
the same magnitude along both directions, i.e., 
x = 
y = 
.
If the condition |
| � 2λ is satisfied, then one pair of WPs
(W1) is located along the kx − ky = π and −kx + ky = π di-
rections, whereas the other pair (W2) is located along kx =
−ky, as seen in Fig. 5. Note that the word “pair” does not
necessarily mean that they have opposite winding numbers,
which will be discussed later; it is used here only to indicate
their location in the Brillouin zone.

C. WPs along ±kx ∓ ky = π

For the pair of Weyl points W1 located along kx − ky = π

and −kx + ky = π (Fig. 5), εk = 0, and βk = −γk. Therefore,
the eigenvalues [Eq. (9)] of the Hamiltonian matrix in the
magnetically ordered state reduce to

E1k = ±
√

2(βk − 
)2. (22)

As the dispersion near WPs [say, (kxo, kyo )] is linear, Taylor-
series expansion around these points by replacing k′

x −→ kxo +
qx and k′

y −→ kyo + qy with small q gives

E1q = ±
√

2
[
2λ

(
sin kyo + qy cos kyo

) − 

]
. (23)

The dispersion can be linear, and the band crossing will appear
at (kxo, kyo ), provided 2λ sin kyo = 
. In that case

E1q = ±cqy, (24)

where c is a constant term given by c = 2
√

2λ[
√

1 − ( 

2λ

)2].
Since | sin kyo| � 1, a linearized dispersion will be obtained
at kyo = sin−1 


2λ
whenever the self-consistently computed ex-

change field satisfies the condition |
| � 2λ.

D. WPs along kx = −ky

Next, we examine the linear-band crossing for the other
pair of WPs, W2, which is found along kx = −ky. Along this
direction, βk = −γk, and εk = −4t cos ky. Therefore, the en-
ergy eigenvalues reduce to

E2q = ±[
√

(−4t cos ky)2 + 2
2 −
√

2βk]. (25)

Now introducing the Taylor-series expansion around the
momenta corresponding to W2 = (kxo, kyo ), we obtain the lin-
earized dispersion

E2q = ±c′qy, (26)

where

c′ =
(

16t2b′
√

b
+ 2

√
2λ

)
(
√

1 − b′2) (27)

and

b = (4t
√

1 − b′2)2 + 2
2. (28)

The linearized dispersion and WPs are possible only when
|b′| � 1, where

b′ = sin kyo =
√

8t2 + 
2

4λ2 + 8t2
. (29)

This again yields the condition |
| � 2λ, the same as in the
case of W1 points. The location of W2 can be obtained with the
help of Eq. (29) by calculating kyo .

E. Chern numbers for WPs W1 and W2

In the previous subsections, we focused on the linearized
dispersion in the vicinity of WPs W1 and W2. Next, we address
the question of winding numbers associated with these WPs.
In the unordered state, the WPs occurring at (0, 0) and (π, 0)
have winding numbers 1 and −1, respectively. However, in the
magnetic Brillouin zone, the calculation of winding numbers
using Eq. (9) analytically may be a difficult task; therefore,
we adopt a numerical approach. The winding number for the
pair of WPs W1 and W2 can be obtained by calculating the
following line integral [54]:

w = − i

2π

∮
A(n)(k) · dl, (30)

performed along a closed contour enclosing a WP, where the
Berry connection A(n)(k) for the nth band is given by

A(n)
i (k) = 〈un(k)| ∂

∂ki
|un(k)〉. (31)

|un(k)〉 is the eigenvector of the Hamiltonian given by Eq. (8).
The calculation using Eq. (29) yields the winding number w

for WPs W1 and W2 along ±kx ∓ ky = π and kx = −ky, 1 and
−1, respectively. Figure 7 shows the vector field associated
with the Berry connection in the entire Brillouin zone, and a
zoomed-in view of two such points with counterclockwise and
clockwise rotation is presented in Fig. 8.

F. Edge states

As discussed above, WPs exist inside and on the boundary
of the reduced Brillouin zone with winding numbers ±1.
Therefore, the existence of edge states along a quasi-one-
dimensional chain is guaranteed in a way similar to the case of
graphene [55,56] or other magnetically ordered systems with
Dirac points [53,57]. These edge states, in the case of topo-
logical insulators, are pairs of states propagating in directions
opposite to each other. The edge state dispersion crosses the
Fermi level and connects the valence and conduction bands.
In order to explore the edge state in the WSM-AFM state, we
consider a ribbon oriented along the x direction consisting of
N chains of atoms positioned along the y direction such that
kx becomes a good quantum number. Thus, the Hamiltonian
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FIG. 7. Berry connection A(k) plotted for the whole Brillouin
zone. The nature of winding about each WP is denoted by either W+
or W−, where positive and negative signs indicate counterclockwise
and clockwise windings, respectively.

HRbx for the ribbon is a 4N × 4N matrix given by

HRbx (k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

H+
1 H2 O H3 · · ·

H†
2 H−

1 H3 O · · ·
O H†

3 H+
1 H2 · · ·

H†
3 O H†

2 H−
1 · · ·

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (32)

where

H±
1 =

(
0 ±(
x − i
y)

±(
x + i
y) 0

)
,

H2 =
(

2t cos kx 2iλ sin kx

−2iλ sin kx 2t cos kx

)
,

W1+ W2-

FIG. 8. Zoomed-in view of the Berry connection about the Weyl
points shown in Fig. 7 because the rotation of the fields is not clear,
especially in the case of W2−.
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(b) N = 25

-π -π/2  0 π/2 π
kx
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FIG. 9. For the set of parameters U = 5 and λ = 1, (a) the edge
state and bulk band dispersions are plotted for a ribbon of width
N = 50 extended along the x direction and projected onto a one-
dimensional Brillouin zone. The edge states crossing the band gap
are colored differently for clarity. Also shown are zoomed-in versions
for different sizes: (b) N = 25 and (c) N = 100.

and

H3 =
(

t iλ
iλ t

)
.

In Fig. 9, the bands crossing the Fermi energy shown in dif-
ferent colors correspond to the edge states. Above and below
are the bulk dispersion bands, which are gapped. The edge
states cross the Fermi level at four different points; two of
the crossings lie very close to −π and π , while the other
two lie near kx = 0. We find that the crossing turns into a
flat degenerate band as the number of chains in the ribbon
is increased. Here, we focus on a ribbon oriented along the x
direction. When the ribbon is oriented along the y direction,
the same edge state dispersion is obtained, which is a conse-
quence of the reflection symmetry about the line kx = ky in the
Brillouin zone. Although we have restricted our calculations
to the direction along the primitive translational vectors of the
original lattice, it would be interesting to study the edge states
when the ribbons are oriented along the primitive translational
vector of the reduced Brillouin zone, when the chains consist
of sites belonging to only a particular sublattice, i.e., the
magnetic moments are aligned along the same direction.
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(a) ω = 0.0 (b) ω = -0.1

Min

Max

(c) ω = -0.2

FIG. 10. Constant-energy contours (CECs) obtained in the
WSM-AFM state for energies (a) ω = 0.0, (b) ω = −0.1, and
(c) ω = −0.2. The arrows in (c) indicate orientation of spin along
the CECs.

G. Quasiparticle interference

A conclusive signature of Weyl points may be obtained
with the help of spin- and angle-resolved photoemission spec-
troscopy [58]. In addition, the scanning-tunneling microscopy
(STM), which can detect the impurity-generated modulation
in the local density of states, i.e., QPI, can be another effective
tool to confirm Weyl points.

The QPI pattern for a nontopological system is deter-
mined primarily by the spectral-density distribution along the
constant-energy contours (CECs) for a given energy as well
as by the shape of the contours [59]. In particular, the patterns
are dominated by those scattering vectors which connect the
regions with high spectral density [60]. However, the situ-
ation is contrastingly different for a helical Fermi liquid in
topological semimetals, where the backscattering by a non-
magnetic impurity atom may not be allowed; therefore, no
characteristic response is expected in the patterns. On the
other hand, the magnetic impurity generates only a weak
response [49]. If the tip of the probe can differentiate the
spin state of the quasiparticle, the QPI patterns can provide
crucial information about the band structure in the vicinity
of the Fermi surface as well as the spin texture. Here, in the
WSM-AFM, only two species of quasiparticles exist, with
spin oriented either along x̂ + ŷ or along −x̂ − ŷ, where x̂
and ŷ are the unit vectors directed along the primitive trans-
lational vectors. The orientation of the quasiparticle spin is in
accordance with the direction of the magnetic moments in the
WSM-AFM state.

Figures 10(a) and 10(b) show CECs for ω = −0.1 and
−0.2. There are two types of CECs in the magnetic Brillouin
zone. One has a circular shape, which has spins pointing
along x̂ + ŷ in one half and along −x̂ − ŷ in the other half.
The quasiparticle spin is required to change direction abruptly
at the intersection of a circular CEC and a line running
along the zone-diagonal direction and bisecting the CEC. The
other set of CECs looks like the cross section of a banana
along its length, with highly nonuniform spectral density. It
should be noted that each of these CECs in the magnetic
Brillouin zone has a quasiparticle with spin pointing along
only one direction. In other words, upon moving along the
CECs and completing one cycle, there is no change in the
spin direction. Thus, the orientation of the quasiparticle spin
changes along CECs, which is different from the way it
changes along the cross section of a Dirac cone in a he-
lical liquid existing on the surface of a strong topological
insulator [49].

(a) ω = -0.1

δρ00 -7x10
-3

-5x10
-3

-3x10
-3

-1x10
-3

1x10
-3

(b) ω = -0.2

(c)

δρ01 -2.3x10
-3

-1x10
-3

0

1x10
-3

2.3x10
-3

(d)

δρ11

(e)

-6x10
-3

-4x10
-3

-2x10
-3

0

 0.0012

(f)

δρ12

(g)

-4x10
-3

-2x10
-3

0

2x10
-3

4x10
-3

(h)

FIG. 11. QPI patterns due to nonmagnetic impurity ρ00 (first
row) and magnetic impurity ρ01 (second row). The third and fourth
rows show the QPI patterns ρ11 and ρ12 detected by the spin-state-
sensitive tip due to a magnetic impurity. The first column corre-
sponds to energy ω = −0.1, while the second column corresponds
to ω = −0.2.

Unlike the Dirac cone generated QPI patterns, in which
the nonmagnetic impurities can give rise to only weak and
nonsingular response [61], the patterns in the WSM-AFM
state are not featureless. Figure 11 shows the QPI patterns
obtained for Voi = 0.1 and Vot = 0.1. The main reason for
obtaining such patterns is only two possible orientations of
electronic spin along the CECs. The intrapocket scattering of
the banana-shaped CECs generates a pattern with a similar
shape at � because the quasiparticle spin has the same ori-
entation everywhere. The pattern at � also has an intrapocket
contribution due to the circular pockets near points like (π, 0),
which is weak and unnoticeable because of tiny scattering
vectors. The patterns at (±π,∓π ) are generated by the inter-
pocket scattering between the banana-shaped CECs belonging
to the reduced Brillouin zone and the one outside it, separated
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by (±π,∓π ) in momentum space. It should be noted that they
have the same orientation of the spin. On the other hand, the
interpocket scattering between the two banana-shaped CECs
belonging to the reduced Brillouin zone does not generate any
pattern because of opposite spin orientation. The interpocket
scattering between the circular and banana-shaped pockets
also creates a noticeable pattern because one side of the circu-
lar pocket has the quasiparticle spin aligned along the spin of
the quasiparticle associated with the banana-shaped CECs.

The second row in Fig. 11 shows ρ01, the patterns gener-
ated by the magnetic impurity with spin along the x direction
when the STM is spin insensitive. The pattern generated by
the intrapocket scattering from the banana-shaped CECs ap-
pears to be weak. More or less similar behavior is observed for
the patterns originating from the interpocket scattering. The
weak patterns originate because the quasiparticle spin direc-
tion is flipped after impurity scattering. Further, the scattered
quasiparticle has a reduced DOS with spin oriented along
the positive x direction. Note that this is also true for the
quasiparticle with the spin component along the negative x
direction. On the other hand, the spin-resolved QPI shows
strong patterns, which arise because of the specific orientation
of the quasiparticle spin after scattering and are then detected
by the spin-sensitive STM probe. ρ11 patterns show strong
singular features resulting from both the intrapocket and in-
terpocket scatterings. The intrapocket scattering leads to two
linear patterns around � as well as around ±(π,±π ). The
interpocket scattering between the two nearest banana-shaped
CECs results in two linear patterns around (±π/2, ∓π/2).
The orientation of the pattern follows directly from the align-
ment of CECs. QPI patterns resulting from the interpocket
scattering between the circular and banana-shaped CECs are
also easily noticeable. These features are more or less repeated
for ρ12 when the impurity spin is oriented along the y direction
while the STM probe has spin oriented along the x direction.
The similarity results from the fact that the quasiparticle spins
are not oriented along the x or y direction but instead along
x + y or −x − y.

IV. DISCUSSION

The search for symmetry-protected two-dimensional topo-
logical semimetals similar to graphene has significant theo-
retical interest as well as technological applications. These
topological semimetals may be protected by the crystalline
symmetries and can be destroyed by magnetic ordering as
the time-reversal symmetry is broken [62,63]. However, some
recent studies indicated that the magnetic order can coex-
ist with a topological semimetallic state. For instance, the
DPs were observed in the SDW state of iron pnictides [64].
These DPs are protected by the collinearity of the SDW
state, inversion symmetry about an iron atom, and invariance
under the combined time-reversal and inversion symmetry
of magnetic moments [65]. Similarly, a Dirac-semimetallic
state was predicted to exist in a system with nonsymmor-
phic symmetry when both T and P are broken [53,66]. In
this current work, we have demonstrated the existence of a
WSM state with AFM order with a checkerboard arrange-
ment of spins within the Rashba-Hubbard model, where the

time-reversal and inversion symmetries are both individually
absent. However, the combined time-reversal and inversion
symmetry is protected even in the absence of nonsymmorphic
symmetries.

In the current work, the phase diagram is obtained at a
temperature T = 0.001 in units of t . This particular value
of temperature corresponds to ∼5 K if t is taken to be
∼500 meV. With the rise in the temperature, the magnetic
moments can melt away within the static mean-field theory,
or randomness can be introduced in their orientation if more
sophisticated approaches involving Monte Carlo simulations
based on auxiliary-field methods are used [67,68]. For this
reason, the AFM order makes room for the RM phase in the
phase diagram. A similar phase diagram without the WSM-
AFM state was reported previously at a very low temperature,
where the difference between the free-energy and ground state
energy becomes increasingly small [38]. It is worth noting that
when T → 0 K, the Rashba metallic state will not be found
at all. Therefore, the area occupied by the WSM-AFM state
will increase with decreasing temperature. Second, with a rise
in temperature, as the magnetic moments melt away, W1 will
be shifted to the point (π, 0), whereas W2 will move toward
the momentum with kyo = sin−1 ( 8t2

4λ2+8t2 ). A similar effect on
the phase diagram is expected when the quantum correction
to the sublattice magnetization is incorporated, which will re-
duce the sublattice magnetization [69]. The current approach
ignores the spatial and thermal fluctuations in the magnetic
moments. It is of strong interest to see the consequences of
such fluctuations on the stability of the WSM state, which can
be studied most effectively with the exact diagonalization plus
Monte Carlo approach [67,68].

In addition to the Hartree-Fock mean-field theory, the U -λ
phase diagram was obtained via VMC [39]. However, the
WSM is found for larger λ when the Fermi surface shrinks to
a point at the high-symmetry points (0, 0) and (π, π ). Such a
Fermi surface structure is unlikely to lead to robust magnetic
ordering, and therefore, the corresponding WSM state may
exist without any magnetic order. Second, the WSM state
sandwiched between the Rashba metal and AFM insulator
does not occur for a low value of λ. Our calculations, on
the other hand, demonstrate that if the magnetic moments
in the AFM ordered state satisfy the condition |
| � 2λ,
then the AFM ordered state can coexist with the WSM state.
Therefore, in future studies, it would be interesting to deter-
mine what kind of band structure will be supported for the
AFM insulating state obtained via the VMC method when the
condition |
| � 2λ is fulfilled.

Here, we have restricted our effort to half filling with a
focus on the previously reported metallic antiferromagnetic
state with pseudogaplike features in the density of states
[38]. It would be interesting in future work to examine the
possible existence of topological states with incommensurate
magnetic order stabilized away from half filling. Moreover,
our calculation shows that the second-neighbor hopping can
also support the Weyl points but not necessarily a Weyl
semimetallic state. This is because the pairs of Weyl points
are shifted away from the Fermi level in opposite direc-
tions. It may appear that the band filling can be changed
in order to force one of the Weyl points to lie at the
Fermi level. However, it will be accompanied by additional
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bands crossing the Fermi level. In addition, the nature of
magnetic order may not necessarily remain the checkerboard
type.

V. CONCLUSION

In conclusion, we showed the existence of Weyl
semimetallic states with antiferromagnetic order in the
Rashba-Hubbard model in a realistic range of interaction and
spin-orbit coupling parameters. The Weyl semimetallic state is
accompanied by two pairs of Weyl points inside the reduced
Brillouin zone, where the combination of both inversion and
time-reversal symmetries exists when they are taken together,
although both symmetries are absent individually because of

the Rashba spin-orbit coupling and magnetic order. In ad-
dition, the linear dispersion in the vicinity of Weyl points,
winding numbers, and associated edge state dispersion were
also studied. Finally, both spin-sensitive and spin-insensitive
quasiparticle interferences were investigated, which provided
valuable insight into the nature of quasiparticle spin states in
the vicinity of the Weyl points.
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