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The design of better exchange-correlation functionals for density functional theory (DFT) is a central chal-
lenge of modern electronic structure theory. However, current developments are limited by the mathematical
form of the functional, with efficient semilocal functionals being inaccurate for many technologically important
systems and the more accurate hybrid functionals being too expensive for large solid-state systems because of
the use of the exact exchange operator. In this paper, we use machine learning combined with exact physical
constraints to design an exchange functional that is both orbital dependent and nonlocal, but which can be
evaluated at roughly the cost of semilocal functionals and is significantly faster than hybrid DFT in plane-wave
codes. By training functionals with several different feature sets, we elucidate the roles of orbital-dependent
and nonlocal features in learning the exchange energy and determine that both types of features provide
vital and independently important information to the model. Having trained our exchange functional with an
expressive, nonlocal feature set, we substitute it into existing hybrid functionals to achieve hybrid-DFT accuracy
on thermochemical benchmark sets and improve the accuracy of band gap predictions over semilocal DFT. To
demonstrate the scalability of our approach as well as the practical benefits of improved band gap prediction,
we compute charged defect transition levels in silicon using large supercells. Because of its transferability and
computational efficiency for both molecular and extended systems, our model overcomes the cost-accuracy
trade-off between semilocal and hybrid DFT, and our general approach provides a feasible path toward a
universal exchange-correlation functional with post-hybrid DFT accuracy and semilocal DFT cost.
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I. INTRODUCTION

One of the central challenges of density functional the-
ory (DFT) research is to design accurate approximations to
the exchange-correlation (XC) functional [1]. As the one
unknown term in Kohn-Sham DFT [2], errors in the XC
functional limit the predictive power of DFT for a wide vari-
ety of technological problems, including catalysis [3], battery
materials [4], and semiconductor physics [5,6]. Increasing the
complexity of the XC functional can improve its accuracy,
but often at drastically increased computational cost, which
can be prohibitive for large condensed matter simulations. In
this paper, we use machine learning (ML) to overcome this
cost-accuracy trade-off by training a functional that obeys
exact physical constraints and is accurate, transferable across
a broad range of chemistries, and scalable to hundreds of
atoms.

The key cost-accuracy trade-off we address is that between
semilocal and hybrid XC functionals. Semilocal functionals,
which include the local density approximation (LDA), gener-
alized gradient approximation (GGA), and meta-generalized
gradient approximation (meta-GGA) [7], are computationally
efficient but insufficiently accurate for many applications.
For example, LDA and GGA functionals are incapable of
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correctly predicting band gaps because of their lack of deriva-
tive discontinuity [8,9], and they are of limited accuracy
for many molecular systems [1,10]. Meta-GGAs introduce
derivative discontinuities into the XC functional and can
therefore improve band gap predictions, but they typically
account for only 20–50% of the GGA band gap error [11].
Meta-GGAs can be designed to further improve band gap
prediction [12,13], but modifying a given meta-GGA form
to predict larger, more accurate band gaps typically reduces
the accuracy of that functional for other chemical and ma-
terial properties, such as bond dissociation energies [13,14].
On the other hand, hybrid functionals, which mix a frac-
tion of the nonlocal, orbital-dependent exact exchange energy
into an XC functional [15], provide significantly improved
predictions of band gaps [11,16] and thermochemical prop-
erties [1,10] over semilocal DFT, but this accuracy comes
at a steep additional computational cost, especially within
plane-wave DFT. In spite of the remarkable recent progress
of efficient implementations for solids [17–22], hybrid DFT
is not as efficient or practical as semilocal DFT for these
calculations.

Several approaches to design improved XC functionals
have been pursued in the literature. Many popular functionals,
like PBE [23] and SCAN [24], are designed primarily or en-
tirely based on mathematical constraints obeyed by the exact
functional. Constraint-based functionals are often considered
trustworthy because they can predict molecular properties
without being explicitly tuned to match them, reducing the
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risk of bias toward a particular property or set of systems
[25,26]. However, some of the most popular and accurate
XC functionals for main-group chemistry are empirically
fit to chemical data [27,28]. Recently, significant progress
has been made toward combining constraint and data-based
design approaches using machine learning [29–35], culminat-
ing in the development of the DM21 functional [36], which
achieves state-of-the-art accuracy on main-group chemistry
benchmarks and also improves the description of static cor-
relation by fitting fractional charge constraints.

While promising, these developments have a few key short-
comings, the most notable of which is their computational
cost. DM21 uses a local range-separated hybrid formal-
ism, which is both computationally expensive (even more
so than global hybrid DFT) and not widely available for
the plane-wave DFT codes typically used for investigating
large extended systems. As a result, DM21 has not been
applied to solids. To the best of our knowledge, no non-
local machine-learned functional has yet been implemented
for both molecular (Gaussian-type orbital) and extended
(plane-wave) DFT calculations, with the exception of the
DeePKS approach [37,38]. However, DeePKS uses geometry-
dependent (rather than universal) functionals and is trained for
specific systems, so it does not fulfill the role of a broadly
chemically transferable model. All other ML XC function-
als that have been applied to solids have been limited to
the semilocal form [13,32,33,39–41] (with the exception of
minimally parameterized van der Waals functionals and one
paper by Riemelmoser et al. [42] that introduced a nonlocal
functional for C, H, and O-containing systems). This limi-
tation restricts the application space of ML functionals by
preventing their use in applications where hybrid DFT accu-
racy is needed. For example, hybrid DFT has proven useful
for studying problems in catalysis within both Gaussian-type
orbital and plane-wave codes [43,44] and for addressing the
“band-gap problem” in DFT [45]. In addition to this technical
limitation, applications of ML functionals to complex and het-
erogeneous systems are limited by their lack of transferability
and universality, as they have previously only been trained on
molecular systems.

These limitations raise the question of whether machine
learning models can leverage more efficient features to bal-
ance accuracy and computational cost. One possible approach
in this direction is to generate nonlocal features by taking inte-
grals of the density over some set of kernel functions [30,46].
This way, an ML model of the XC functional can capture
nonlocal information about the density without evaluating the
computationally demanding exact exchange operator required
for hybrid DFT. In line with this strategy, we recently intro-
duced the “compressed scale-invariant density representation”
(CIDER) formalism for learning the exchange functional [35],
in which the nonlocal features were designed to enforce the
uniform scaling rule [47] on the learned exchange functional.
We demonstrated that the exchange functional can be accu-
rately learned with the CIDER approach. However, the high
computational cost of computing the features, lack of imple-
mentation for plane-wave DFT, and need to compute and fit
the exchange energy density (rather than the total exchange
energy) limited the practicality of our model and restricted its
application to small molecules.

In this paper, we overcome all of these limitations by revis-
ing the form of the features, implementing efficient algorithms
to evaluate the features for both molecular and extended
systems, and redesigning our Gaussian process model to fit
the total exchange energy. These improvements enable the
construction of the first nonlocal, universal ML exchange
functional for solids, which can be applied to large systems
with similar computational cost to semilocal DFT. We use
this exchange functional to implement efficient and accurate
hybrid DFT surrogates that can be used in a variety of ap-
plications. Because our functional form is both transferable
and numerically stable, we believe that our approach will also
be useful for learning the full XC functional, allowing us
to address problems where DFT accuracy is limited by both
exchange and correlation effects.

By training and testing exchange functionals with different
feature sets, we find that to learn the exchange functional well
enough to reproduce hybrid DFT accuracy, it is necessary
to include both a semilocal orbital-dependent feature (i.e.,
the kinetic energy density) and nonlocal density-dependent
features in the model input. Having developed this “nonlocal
meta-GGA,” we show that it accurately predicts molecular
properties and improves solid-state band gap predictions over
standard meta-GGAs, which is a central problem in DFT. The
performance for solid-state band gaps is particularly promis-
ing because only nine systems in the training set are solids,
with the others being isolated molecules and complexes. We
also encounter only a few convergence problems in our self-
consistent field (SCF) calculations of 2462 molecular and
453 periodic systems, indicating that the functional has good
numerical stability. To demonstrate the transferability and effi-
ciency of the model, we simulate systems with over 500 atoms
to predict charged defect transition levels in silicon.

The paper is organized as follows. Section II describes the
features and models used in this paper. Section III presents our
results and discusses the accuracy of the CIDER functionals as
well as their computational efficiency within plane-wave DFT.
Section IV contains our conclusion. Appendix A provides
a detailed description of the computational methods used in
this study, and Appendix B provides additional mathematical
details for the plane-wave implementation of CIDER.

II. THEORY

In Kohn-Sham DFT [2], it is often convenient to sepa-
rate the XC energy into exchange and correlation parts, i.e.,
Exc[n] = Ex[n] + Ec[n]. The exchange energy Ex[n] accounts
for the antisymmetric nature of the fermionic wave function,
while the correlation energy Ec[n] accounts for additional
many-body correlation effects between the electrons. The ex-
change energy is the main focus of this paper and can be
trivially generalized from non-spin-polarized DFT to spin-
polarized DFT as [48]

Ex[n↑, n↓] = 1
2 Ex[2n↑] + 1

2 Ex[2n↓], (1)

so all formulas in the theory section are written for the non-
spin-polarized case for simplicity.
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The exact exchange energy can be expressed in terms of
the occupied Kohn-Sham orbitals {φi(r)} as

E exact
x [n] = −

∑
i j

∫
d3r
∫

d3r′ φ
∗
i (r)φ j (r)φi(r′)φ∗

j (r′)

|r − r′| .

(2)

Evaluating Eq. (2) is computationally expensive. However, the
improved accuracy of hybrid DFT arises from mixing a frac-
tion of E exact

x [n] into an otherwise semilocal XC functional.
These considerations explain the cost-accuracy trade-off be-
tween semilocal and hybrid DFT. Our goal is to fit Eq. (2) as
accurately as possible with a computationally efficient surro-
gate model.

The remainder of this section sets up our machine learning-
based approach to this problem. Specifically, Secs. II A–II C
cover the design of the exchange functional form, nonlocal
features, and Gaussian process models, and Secs. II D–II F
cover the computationally efficient implementation of the
nonlocal features. The feature implementation requires differ-
ent algorithms for Gaussian-type orbital and plane-wave DFT
codes owing to the use of different basis sets and integration
grids within these codes.

A. Uniform scaling and semilocal exchange functionals

The simplest approximate exchange functional is the local
density approximation (LDA), in which the exchange energy
is written as an integral over a function of the density n(r) at
each point in space

Ex[n] =
∫

d3r eLDA
x (n(r)), (3)

where in the Kohn-Sham formalism [2], the density is ex-
pressed in terms of the occupied orbitals as

n(r) =
∑

i

|φi(r)|2. (4)

Typically, eLDA
x (n) is defined as the exchange energy density

of the uniform electron gas [49]

eLDA
x (n) = −3

4

(
3

π

)1/3

n4/3. (5)

In addition to making Eq. (3) exact for the uniform electron
gas, Eq. (5) also satisfies an important property of the ex-
change functional known as uniform scaling [47,50], which
states that for a scaled density distribution nλ(r) = λ3n(λr),

Ex[nλ] = λEx[n], (6)

where λ is a positive scalar.
More sophisticated functionals that obey Eq. (6) can be de-

signed by writing the exchange energy density as the product
of Eq. (5) and an exchange enhancement factor Fx,

Ex[n] =
∫

d3r eLDA
x (n(r))Fx(x(r)). (7)

In the above equation, x(r) is a vector of scale-invariant fea-
tures xi, where scale invariance is defined as

xi[nλ](r) = xi[n](λr). (8)

For example, a generalized gradient approximation (GGA)
exchange functional is constructed by making Fx a function
of the reduced gradient s of the density

s = |∇n|
2(3π2)1/3n4/3

. (9)

Because s satisfies Eq. (8), the GGA form

Ex[n] =
∫

d3r eLDA
x (n(r))Fx(s(r)) (10)

satisfies Eq. (6). Likewise, a meta-GGA can be constructed by
making the exchange enhancement factor a function of two
ingredients Fx(s, α), where

α = τ − τW

τ0
(11)

is a scale-invariant quantity that depends on the kinetic energy
density

τ (r) = 1

2

∑
i

|∇φi(r)|2, (12)

and τW = |∇n|2
8n and τ0 = 3

10 (3π2)2/3n5/3 are the single-orbital
and uniform electron gas kinetic energies, respectively.

B. Updated nonlocal features for CIDER

In our initial construction of the CIDER formalism [35],
the exchange functional is defined as

Ex[n] =
∫

d3r eLDA
x (n(r))Fx(s(r), α(r), {Gnlm(r)}). (13)

In Eq. (13), the functions {Gnlm(r)} are nonlocal features of
the density defined by

Gnlm(r) =
∫

d3r′ gnlm(r′; r) n(r + r ′), (14)

where gnlm(r′; r) is the kernel function

gnlm(r′; r) = MlYlm(r̂′)(a(r)|r′|2)n+l/2e−a(r)|r′ |2 , (15)

with Ml = B3/2
0

√
4π l−1( 8π

3 )
l
3 . The position-dependent expo-

nent a(r) is defined as a semilocal quantity

a[n](r) = π

(
n(r)

2

)2/3[
B0 + C0

(
τ (r)

τ0(r)
− 1

)]
, (16)

where B0 and C0 are adjustable constants that control how
quickly the width of the Gaussian-type function in Eq. (15)
decreases as the density and kinetic energy density increase.
Equation (16) behaves quadratically under uniform scaling,
i.e.,

a[nλ](r) = λ2a[n](λr). (17)

This property ensures that Gnlm(r) is scale invariant [Eq. (8)]
and therefore that Eq. (13) satisfies the uniform scaling rule
[Eq. (6)].

Using these scale-invariant nonlocal features, we were able
to train an ML exchange functional that accurately reproduced
hybrid DFT atomization energies [35], but there is room for
improvement in making the features more physically intuitive
and easier to implement with production-level performance.
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In this paper, we simplify the features by removing the spheri-
cal harmonics and instead adding a second position-dependent
exponent to the kernel function, resulting in the features

Gi(r1) =
(

Bi + B0

2

)3/2 ∫
d3r2 �(a(r2), bi(r1), r12)n(r2),

(18)

�(a, b, r) = exp[−(a + b)r2], (19)

where r12 = |r1 − r2|. Multiple features G1, G2, ... are gener-
ated by evaluating Eq. (18) with different choices of exponent
bi(r), which in turn are tuned by constants Bi and Ci as
discussed below. Because the position-dependent exponents
increase as the density increases, the a exponent effectively
damps the value of the integrand when r2 is near the atomic
core, which we intend to limit the interaction between the
valence region and core region. The prefactor ( Bi+B0

2 )3/2 is
chosen so that Gi = 2 for the non-spin-polarized uniform
electron gas.

To retain the scale invariance of the features, any choice
of a[n](r) and bi[n](r) that satisfies Eq. (17) is sufficient.
For example, the exponents can be an orbital-independent
function of the density and its gradient

a[n](r) = π

(
n

2

)2/3[
B0 + C0

( |∇n|2
8nτ0

)]
, (20)

bi[n](r) = π

(
n

2

)2/3[
Bi + Ci

( |∇n|2
8nτ0

)]
, (21)

or can be made kinetic energy dependent, as in our previous
paper,

a[n](r) = π

(
n

2

)2/3[
B0 + C0

(
τ

τ0
− 1

)]
, (22)

bi[n](r) = π

(
n

2

)2/3[
Bi + Ci

(
τ

τ0
− 1

)]
. (23)

Equations (20) and (21) are used for the nonlocal GGA pre-
sented in this paper (c.f. Sec. II C), while Eqs. (22) and (23)
are used for the nonlocal meta-GGA. Throughout Secs. II D–
II F, the ( Bi+B0

2 )3/2 factor and the feature index i will be
dropped for simplicity, as the inclusion of the scaling factor
and the introduction of additional features by introducing new
Bi and Ci is trivial. The motivation for the form of Eqs. (20)–
(23) is discussed in our previous paper introducing CIDER
[35], and the heuristic selection of the Bi and Ci coefficients is
discussed in Appendix A 8.

Before continuing, we briefly discuss the construction of
the XC potential when nonlocal features are employed. A
typical semilocal functional has a multiplicative XC potential

δExc

δn(r)
= ∂exc(r)

∂n(r)
. (24)

A meta-GGA also has a nonmultiplicative potential

δExc

δτ (r)
= ∂exc(r)

∂τ (r)
. (25)

This above term is nonmultiplicative because it depends on the
orbitals through τ (r), rather than depending exclusively on the
density n(r). For a given basis set {χμ(r)}, the contributions
of the XC potential to the effective Kohn-Sham Hamiltonian

matrix are

V xc
μν =

∫
d3r χ∗

μ(r)χν (r)
δExc

δn(r)

+ 1

2

∫
d3r ∇χ∗

μ(r) · ∇χν (r)
δExc

δτ (r)
. (26)

When nonlocal features are included in the XC energy
density, e.g.,

Exc =
∫

d3r exc(n(r), |∇n(r)|, τ (r), G(r)), (27)

both δExc
δn(r) and δExc

δτ (r) include terms that depend on other coordi-
nates r′,

δExc

δn(r)
= ∂exc(r)

∂n(r)
+ ∂exc(r)

∂G(r)

∂G(r)

∂n(r)
+
∫

d3r′ ∂exc(r′)
∂G(r′)

δG(r′)
δn(r)

,

(28)

δExc

δτ (r)
= ∂exc(r)

∂τ (r)
+ ∂exc(r)

∂G(r)

∂G(r)

∂τ (r)
+
∫

d3r′ ∂exc(r′)
∂G(r′)

δG(r′)
δτ (r)

.

(29)

In Eq. (28), ∂G(r)
∂n(r) describes the local dependence of G(r) on

the density, and δG(r′ )
δn(r) describes the nonlocal dependence on

the density. While the expressions for δExc
δn(r) and δExc

δτ (r) are more
complicated than for a meta-GGA, they still contribute to
the XC potential matrix exclusively via Eq. (26). Therefore,
any DFT code supporting meta-GGAs can evaluate this type
of functional if a routine is added to evaluate the nonlocal
contributions to Eqs. (28) and (29).

C. Gaussian process models for the exchange functional

1. Overview

To study the impact of different features on the accuracy
of an ML exchange functional, we implement four functional
types that use different sets of features.

SL-GGA is a standard, semilocal GGA like PBE [23], ex-
cept trained via machine learning. The exchange enhancement
factor [Fx in Eq. (7)] is a function of s only.

NL-GGA is a nonlocal GGA. The exchange enhancement
factor is a function of s and also three nonlocal features of the
form in Eq. (18), with Eqs. (20) and (21) for the exponents.

SL-MGGA is a standard, semilocal meta-GGA like SCAN
[24], except trained via machine learning. The exchange en-
hancement factor is a function of s and α.

NL-MGGA is a nonlocal meta-GGA. The exchange en-
hancement factor is a function of s, α, and three nonlocal
features of the form in Eq. (18), with Eqs. (22) and (23) for
the exponents.

In short, the SL-GGA and SL-MGGA are semilocal func-
tionals, while the NL-GGA and NL-MGGA augment the
semilocal functional form with nonlocal features of the den-
sity. As described below, Gaussian process models for the
exchange energy are trained using each of these four feature
sets. Section II C 2 explains how a Gaussian process can be
fit to total exchange energies of systems, Sec. II C 3 lists the
specific mathematical form of each feature vector that is used
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as input to the Gaussian processes, and Sec. II C 4 lists the
covariance kernels for each feature set.

Gaussian process regression is a Bayesian machine-
learning method in which the values of the predictive function
f (x) are treated as dependent random variables. The key
ingredient in a Gaussian process is the covariance between
values of the function Cov( f (x), f (x′)) = k(x, x′), where the
user-defined covariance kernel function k(x, x′) determines
the relationship between the values of f for different inputs
x. Suppose one has training data of the form (xi, yi ), where
yi is assumed to be the sum of f (xi ) and Gaussian-distributed
random noise of variance σ 2

noise. Then the predictive mean, or
expected value, of the function f is given by

f (x∗) =
∑

i

k(x∗, xi )αi, (30)

with the weight vector α defined as

α = (K + σ 2
noiseI

)−1
y. (31)

In the above equation Ki j = k(xi, x j ) is called the covariance
matrix, and I is the identity matrix. The reader is referred
to the textbook by Rasmussen and Williams [51] for a more
thorough introduction to Gaussian processes. The following
subsection introduces a modified Gaussian process regression
approach for training exchange-correlation functionals.

2. Fitting the total exchange energy

In this section, we introduce a method to train a
Gaussian process to the total exchange energy, as opposed to
the nonunique exchange energy density used in our previous
paper [35]. While we only learn the exchange energy in this
paper, the approach in this section also applies to the XC
energy, so we write the formulas for Exc for the sake of
generality. We index the chemical systems in the training set
by i and j; while the feature implementations are different
for Gaussian-type orbital and plane-wave DFT, the role of
systems computed within these two frameworks is identical
with regard to model training. The XC energy of a system i is
given by a numerical integral of the energy density

Ei
xc =

∑
g∈i

wi
gexc
(
xi

g

)
, (32)

where g indexes grid points, wi
g are the quadrature weights,

and xi
g is the feature vector of molecule i at point g.

Constructing a Gaussian process for Exc requires defining
the covariance between the XC energies for two different
systems, i.e., Cov(Ei

xc, E j
xc) (c.f. Chapter 2.2 of Ref. [51]). The

covariance of sums of random variables a, b, c, and d is

Cov(a + b, c + d ) = Cov(a, c) + Cov(b, c)

+ Cov(a, d ) + Cov(b, d ). (33)

Using Eq. (33), Cov(Ei
xc, E j

xc) can be expressed in terms of the
covariances between the exchange energy densities as

Cov
(
Ei

xc, E j
xc

) =
∑
g∈i

∑
h∈ j

wi
gw

j
hCov

(
exc
(
xi

g

)
, exc

(
x j

h

))
(34)

=
∑
g∈i

∑
h∈ j

wi
gw

j
hkexc (xi

g, x j
h), (35)

where kexc (x, x′) is the kernel function for the covariance
between the exchange energy densities for feature vectors x
and x′. Unfortunately, this expression can be quite expensive
to compute because there are tens of thousands of grid points
for each small molecule in the training database, and there
are several hundred training molecules. Therefore, even for a
database of this size, at least 1012 evaluations of the kernel are
required. To circumvent this problem, a set of control points
x̃a can be sampled from the training database to use as a basis
set for the feature space (as described in Appendix A 6), effec-
tively creating a sparse Gaussian process [51]. Equation (35)
is then approximated as

Cov
(
Ei

xc, E j
xc

) ≈(k̃i
exc

)T
K̃−1k̃ j

exc
, (36)

(K̃)ab = kexc (x̃a, x̃b), (37)(
k̃i

exc

)
a

=
∑
g∈i

wi
gkexc

(
xi

g, x̃a
)
. (38)

The approximation of Eq. (35) by Eq. (36) is called the
Nyström approximation, and it is covered in more detail in
Chapter 8.1 of Ref. [51]. The approximation can be thought of
as interpolating the kernel function over the control points x̃a.
Supplemental Material Section S9 investigates the accuracy
of this approximation with respect to the number of control
points used.

In this paper, the exchange functional alone is trained, and
the kernel function is expressed in terms of the exchange
enhancement factor Fx = ex/eLDA

x . This leads to the adjusted
expressions

Cov
(
Ei

x, E j
x

) ≈ (k̃i )T K̃−1k̃ j = Ki j, (39)

(K̃)ab = kFx (x̃a, x̃b), (40)

(k̃i )a =
∑
g∈i

wi
g

(
eLDA

x

)i
gkFx

(
xi

g, x̃a
)
, (41)

where kFx (x, x′) is the covariance kernel for the exchange
enhancement factor and (eLDA

x )i
g = eLDA

x (ni(rg)) is the LDA
exchange energy density at coordinate g for molecule i [see
Eq. (5)]. Having obtained these covariance expressions, they
can be plugged into the predictive function for a Gaussian
process to obtain the predicted exchange energy density [51]

eCIDER
x (x∗) = eLDA

x (n∗)
∑

a

kFx (x∗, x̃a)αa, (42)

α =
∑

i

k̃i{[K + �noise]−1y}i, (43)

where n∗ and x∗ are the density and feature vector at a test
point and �noise is the noise matrix for the training points.

3. Model types and feature vectors

This section lists the feature vectors for each model type in
terms of s [Eq. (9)], α [Eq. (11)], and the nonlocal features Gi

[Eq. (18)]. All of the feature vectors below are designed such
that for the uniform electron gas, x = 0. Since the exchange
enhancement factor is Fx = 1 for the uniform electron gas
[49], the uniform electron gas constraint is enforced with a
single noiseless training point F CIDER

x (0) = 1. All functionals
in this paper satisfy the uniform electron gas constraint.
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The primary purpose of the transformations performed
on the features below is to constrain the ML feature vector
elements to fall in a finite range (e.g., [0,1]), which makes
it easier to map the resulting models to cubic splines as
discussed in Sec. II C 4. Aside from that, the exact form of
the feature transformation is a flexible choice, informed by
physical considerations, but should not matter much as long
as the target is a reasonably smooth function of the trans-
formed features. However, more systematically fine-tuning
these transformations in the future could potentially improve
model performance slightly.

For the SL-GGA, the feature vector x [Eq. (7)] is of dimen-
sion 1,

x1 = γ s2

1 + γ s2
, (44)

where γ = 0.243 was empirically chosen by Becke [52] to fit
the exact exchange energies of noble gas atoms. This value of
γ was also used in our previous paper [35] and in the B97-
type functionals of the Head-Gordon group [28,53,54]. For
the SL-MGGA, the feature vector is of dimension 2,

x1 = γ s2

1 + γ s2
, (45)

x2 = 2

1 + α2
− 1. (46)

The NL-GGA feature vector is of dimension 4,

x1 = γ s2

1 + γ s2
, (47)

x2 = G1

2 + G1
− 1

2
, (48)

x3 = G2

2 + G2
− 1

2
, (49)

x4 = G3

2 + G3
− 1

2
. (50)

Lastly, the NL-MGGA feature vector is of dimension 5,

x1 = γ s2

1 + γ s2
, (51)

x2 = 2

1 + α2
− 1, (52)

x3 = G1

2 + G1
− 1

2
, (53)

x4 = G2

2 + G2
− 1

2
, (54)

x5 = G3

2 + G3
− 1

2
. (55)

The three nonlocal features G1, G2, G3 are given by Eq. (18),
and the parametrization of the kernel exponents [i.e., the con-
stants Bi and Ci in Eqs. (20)–(23)] is described in detail in
Appendix A 8.

4. Kernels

To fully define the Gaussian process model for the ex-
change energy, we need to specify the kernel function
kFx (x, x′) and the noise matrix �noise. The noise matrix is con-
structed to heuristically approximate the model uncertainty

for each data point as described in Appendix A 7. To reflect
the different number of features in each functional type, a
different kernel is used for kFx (x, x′) for each, as specified
below:

kSL-GGA(x, x′) = �Covk1(x1, x′
1), (56)

kSL-MGGA(x, x′) = �Covk1(x1, x′
1)k2(x2, x′

2). (57)

kNL-GGA(x, x′) = �Covk1(x1, x′
1)

×
4∑

i=2

4∑
j=i+1

ki(xi, x′
i )k j (x j, x′

j ). (58)

kNL-MGGA(x, x′) = �Covk1(x1, x′
1)

×
5∑

i=2

5∑
j=i+1

ki(xi, x′
i )k j (x j, x′

j ), (59)

where �Cov is a covariance hyperparamter that can be tuned
for each model, and the base kernel ki(x, x′) for all of the
above is the squared-exponential kernel

ki(x, x′) = exp

[
−1

2

(
x − x′

li

)2
]
. (60)

Equations (58) and (59) use the additive Gaussian process
approach of Duvenaud et al. [55].

Because the cost of evaluating Gaussian processes scales
linearly with the number of training points, we map the
models to cubic splines after training so they can be evalu-
ated efficiently. The semilocal kernels have 1 and 2 features,
so they can be mapped to one- and two-dimensional cubic
splines, respectively. The nonlocal kernels are a sum of three-
dimensional kernels, so they can be mapped to a sum of
three-dimensional cubic splines [35,56–58]. For a description
of the hyperparameter selection process for these models, see
Appendix A 8.

D. Auxiliary expansion of the CIDER features

The rest of this section focuses on the efficient imple-
mentation of nonlocal features within Gaussian-type orbital
and plane-wave DFT, which is vital for the practicality of
CIDER as well as any nonlocal density functional. Evaluating
Eq. (18) via simple numerical integration is computationally
expensive as a result of quadratic scaling with the number of
grid points. The key insight to designing a faster approach
comes from Román-Pérez and Soler [59], who developed a
method to expand van der Waals density functionals as a sum
of convolutions that could be computed efficiently using the
fast Fourier transform (FFT). They observed that a function
of the form in Eq. (19), which depends exclusively on the
distance between two points and on a semilocal functional of
the density at each point, can be approximately expanded as
[59]

�(a(r2), b(r1), r12) ≈
∑
αβ

pa
α (a(r2))pb

β (b(r1))�αβ (r12).

(61)
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In Eq. (61), α and β are indices, which each correspond
to interpolation control points qα and qβ , respectively, and
pa

α (a(r)) and pb
β (b(r)) are interpolating functions, which take

the values pa
α (qα′ ) = δαα′ and pb

β (qβ ′ ) = δββ ′ at the interpolat-
ing points. The term �αβ (r) ≡ �(qα, qβ, r).

The Gaussian form of Eq. (19) is particularly conducive to
the use of an even-tempered basis for interpolation, in which
qα takes the form

qα = q0λ
α (62)

for some constant λ > 1. Román-Pérez and Soler [59] used
cubic splines for interpolation, and for the solid-state imple-
mentation of CIDER we follow this approach, with pa

α (a(r))
being a cubic spline in the transformed coordinate γ (r) =
ln(a(r)/q0 )

ln(λ) . However, for the molecular implementation, we in-

stead treat the control points as a basis set of Gaussians e−qαr2
12

onto which the function e−a(r1 )r2
12 is projected,

pa
α (a(r)) ≡

∑
β

(
S−1

a

)
αβ

sα (a(r)), (63)

(Sa)αβ =
∫

d3r exp[−(qα + qβ )|r|2] (64)

sα (a(r)) =
∫

d3r′ exp{−(a(r) + qα )|r′|2}. (65)

As λ → 1, the number of control points (for the interpolation
scheme) and number of basis functions (for the basis expan-
sion scheme) both become infinite, and the kernel expansion
becomes exact for both approaches. We determined that the
cubic interpolation yields better numerical stability for the
plane-wave implementation, while the basis expansion form
is sufficiently stable for the molecular implementation.

The benefit of expanding the kernel in this manner is that
it allows the nonlocal features [Eq. (18)] to be expressed as a
sum of convolutions

G(r1) =
∑

β

pb
β (b(r1))

∑
α

∫
d3r2�αβ (r12)θα (r2), (66)

with θα (r) = pa
α (a(r))n(r). Within plane-wave DFT, the con-

volutions can be performed with quasilinear computational
complexity by using FFTs [59]. In addition, because CIDER
uses a squared exponential for �αβ (r12) [Eq. (19)], the in-
tegrals of Eq. (66) can be evaluated analytically if θα (r) is
projected onto a Gaussian-type orbital basis. We use this
approach to design an efficient implementation of nonlocal
features for molecular DFT (Sec. II E).

The Román-Pérez and Soler technique effectively solves
the problem of implementing CIDER for an all-electron
plane-wave DFT calculation. However, such calculations
are infeasible for all but the smallest atoms because a
prohibitively large plane-wave basis would be required to
describe the core electrons. In addition, pseudopotentials can-
not be reliably used with nonlocal features because G(r)
calculated on the pseudodensity is not sufficiently similar
to the exact, all-electron feature to get accurate results. To
solve this problem, in Sec. II F a method is introduced to
implement nonlocal features within the projector-augmented
wave (PAW) formalism, which requires careful attention to the
contributions to G(r) from the core regions around the atoms.

Before proceeding, we note that while we borrow and ex-
pand on numerical techniques developed for nonlocal van der
Waals functionals, we emphasize that the functionals in this
paper are still fit only to the exchange energy and therefore do
not account for the correlation effects that give rise to van der
Waals interactions. Because of their nonlocality, the nonlocal
features in this paper could prove useful for learning van der
Waals interactions, but demonstrating this will require further
research.

E. Efficient implementation of nonlocal CIDER features
for molecular DFT

Computing Eq. (18) using simple numerical integration
is prohibitively expensive because the number of operations
is proportional to the square of the number of grid points.
While van der Waals functionals like VV10 [60] are usu-
ally computed this way within Gaussian-type orbital codes,
the contribution of such functionals is sufficiently small and
smooth that a very sparse grid can be used. The nonlocal
features require a grid of the same density as the semilocal
XC grid, and the number of operations per pair of grid points
is higher for evaluating Eq. (18) than, for example, the VV10
kernel. It is therefore necessary to reduce the computational
complexity of evaluating the nonlocal features for molecular
systems.

In this section, we present a charge-partitioning and den-
sity fitting-based approach to compute the nonlocal features
within Gaussian-type orbital DFT codes for molecular sys-
tems, which we have implemented for use in the PySCF
code [61,62]. Much of this approach is based on the study
of Franchini et al. [63], who developed a similar method
for computing the Coulomb energy. To start, the density is
partitioned into atomic contributions using Becke partitioning
[64],

nA(r) = WA(r)n(r), (67)∑
A

WA(r) = 1, (68)

where A is the atom index and WA(r) are the atomic Becke
weights. The first step in evaluating G(r) is to project θα (r)
onto spherical harmonics for each atom (with L being the
combined l and m indices and RA being the position of atom
A),

θA
α,L(r) =

∫
d�Aθα (r)WA(r)YL(�A) (69)

r = RA + (r cos φ sin θ, r sin φ sin θ, r cos θ ), (70)

where �A = (θ, φ) is the solid angle and YL(�) are the spher-
ical harmonics. This projection is done numerically using
Lebedev grids [65]. Then each L channel is projected onto
an even-tempered Gaussian basis {χA,L,μ(r)} as follows:

χA,L,μ(r) = YL(r̂)Nl,μrl exp(−μr2), (71)

θ̃A
α,L,μ =

∫
dr r2+lNl,μ exp(−μr2)θA

α,L(r), (72)

where Nl,μ is a normalization constant. The exponents μ are
constructed using the even-tempered Gaussian approach with
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tunable parameter βaux,

μn = μmin(βaux)n n = {0, 1, ..., N}. (73)

A transformation to θA
α,L,μ is then performed by multiplying

θ̃A
α,L,μ by the inverse overlap matrix of the χ basis for each l

channel,

θA
α,L,μ =

∑
ν

[(
Sχ

A,L

)−1]
μν

θ̃A
α,L,ν , (74)(

Sχ
A,L

)
μν

= 〈χA,L,μ|χA,L,ν〉. (75)

For each atom, a second even-tempered basis {ξA,L,μ(r)}
is introduced to serve as a basis for the convolutions of
χA,L,μ(r). The following projections are computed using ana-
lytical Gaussian integrals:

F̃ A
β,L,ν =

∑
α,μ

θA
α,L,μ

∫
d3r1d3r2 �αβ (r12)χA,L,μ(r1)ξA,L,ν (r2).

(76)

The transformation to F A
β,L,ν is then performed by multiplying

F̃ A
β,L,ν by the inverse overlap matrix of the ξ basis, similarly to

Eq. (74).
The second to last step is to transform F A

β,L,ν to Fβ (rg),
where rg are the DFT integration grid points. Because eval-
uating every ξ orbital of every atom at every rg would be
computationally expensive, F A

β,L,ν is first transformed to a
cubic spline F A

β,L,G,p, where G is a radial coordinate index
and p indexes the polynomial coefficients of the spline in the
interval between points G and G + 1. The transformation from
F A

β,L,G,p to Fβ (rg) is then performed as

Fβ (rg) =
∑

A

∑
L

YL(r̂gA)
3∑

p=0

(rgA − rG)pF A
β,L,G,p, (77)

where rgA = rg − RA. The spline index G is a step function
of |rgA|. The computational cost of evaluating the splines
depends heavily on the efficiency of memory access patterns
on the processor, so the coordinates are sorted by G before
evaluating the contributions to Fβ (rg) from each atom.

The last and simplest step to compute G(r) is to evaluate
the sum

G(r) =
∑

β

pb
β (rg)Fβ (rg). (78)

After computing the XC energy from G(r) and the semilocal
features, the contributions to the XC potential from the θα (r)
terms can then be computed by passing backward through the
matrix multiplications and spline evaluations detailed above.

The gradient of the total energy with respect to nuclear
positions is required for the evaluation of forces. For this im-
plementation of the CIDER functional with nonlocal features,
the energy gradient with respect to the nuclear position of
atom A is given by

∇AExc =∇sl
A Exc +

∑
g

(∑
α

δExc

δθα (rg)
θα (rg)

)
∇Awg

+
∑

g

⎛⎝∑
β

δExc

δFβ (rg)
∇AFβ (rg)

⎞⎠wg, (79)

where wg is the numerical integration quadrature weight
corresponding to the coordinate rg. The analytical energy
gradient for a semilocal functional ∇sl

A Exc is given by Johnson
et al. [66] Eq. (11).

The computational bottleneck of this algorithm is the
spline evaluation in Eq. (77), whose cost scales quadrat-
ically with system size. Specifically, the cost scales as
�(Ngrid Natom Nβ l2

max), where Ngrid is the number of integration
grid points, Natom is the number of atoms, Nβ is the number
of kernel interpolation points in Eq. (61), and lmax is the
maximum spherical harmonic order used in the ξ basis. All
other components of the algorithm are performed on individ-
ual atoms and therefore scale linearly with system size.

F. Quasilinear-scaling implementation of nonlocal CIDER
features for plane-wave DFT with PAW

This section covers our algorithm for evaluating the non-
local CIDER features within the projector-augmented wave
(PAW) method [67], a generalization of the pseudopotential
method that can recover the full wave function and electron
density. We have implemented this algorithm in the GPAW
code [68,69]. As discussed above, Eqs. (61) and (66) enable
the evaluation of G(r) in O(N log N ) complexity if the density
n(r) is represented on an FFT grid. However, in the PAW
formalism of Blöchl [67], the all-electron density n(r) is rep-
resented as

n(r) = ñ(r) +
∑

A

(
n1

A(r) − ñ1
A(r)

)
, (80)

where A indexes the atoms, ñ(r) is the pseudo-density on the
FFT grid, and the terms with the 1 superscript are represented
on radial support grids centered around each atom and extend-
ing to some cutoff radius rc. Within the cutoff radius of atom
A, ñ(r) = ñ1

A(r) and n1
A(r) is the all-electron density. Outside

the cutoff radius of atom A, n1
A(r) = ñ1

A(r).
For a semilocal functional, Eq. (80) yields a simple expres-

sion for the XC energy Exc[n],

Exc[n] = Exc[ñ] +
∑

A

(
Exc
[
n1

A

]− Exc
[
ñ1

A

])
. (81)

However, the case is not so simple for a nonlocal functional
such as CIDER. If Eq. (18) is evaluated on the pseudodensity
ñ(r), the resulting G(r) is not equal to the all-electron feature
even outside the cutoff radius because the convolutions used
to compute the feature are nonlocal. For the same reason,
evaluating Eq. (18) on the atomic density n1

A(r) does not yield
the all-electron feature inside the cutoff radius. Therefore,
an implementation of CIDER (and other nonlocal functionals
with similar forms, such as some kinetic energy and van der
Waals functionals) for PAW must construct a “pseudofeature”
G̃(r) that is smooth but yields the correct feature outside the
cutoff radius, as well as construct the “all-electron feature”
G(r) on the radial support grids inside the cutoff radius. Be-
cause of this difficulty, current plane-wave implementations
of nonlocal functionals like van der Waals correlation [70]
use the pseudodensity rather than the full PAW density. When
this approach is used, one may need to use PAW datasets with
more valence electrons, increasing computational cost [70].
In addition, because CIDER computes the exchange energy,
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which is of much larger magnitude than the van der Waals
correlation energy, higher precision is required. A similar
problem exists for kinetic energy density functionals. There
is an implementation of semilocal kinetic energy functionals
with PAW [71], and of nonlocal kinetic energy functionals
with ultrasoft pseudopotentials [72], but no nonlocal kinetic
energy functional implementation within PAW. Therefore, by
designing an algorithm for computing nonlocal features for
CIDER within the PAW formalism, we also enable the full
integration of van der Waals functionals and orbital-free DFT
[73] into the PAW method.

Starting from Eq. (80), the all-electron value of G(r) out-
side the core region is given by

G̃(r) =
∑

β

pb
β (b̃(r))

[
F̃β (r) +

∑
A

�FA,β (r)

]
, (82)

F̃β (r1) =
∑

α

∫
d3r2 �αβ (r12)θ̃α (r2), (83)

�FA,β (r1) =
∑

α

∫
d3r2 �αβ (r12)

(
θ1

A,α (r2) − θ̃1
A,α (r2)

)
.

(84)

The quantities b̃(r) and θ̃α (r) are evaluated on the pseudo-
density ñ(r); θ1

A,α (r) and θ̃1
A,α (r) are evaluated on n1

A(r) and
ñ1

A(r), respectively. F̃β (r) can be evaluated simply using FFTs.
To compute �FA,β (r), the term �θ1

A,α (r) = θ1
A,α (r) − θ̃1

A,α (r)
is first projected onto spherical harmonics and Gaussians as
described in the previous section. Because �θ1

A,α (r) is lo-
calized within the augmentation region and mostly spherical,
far fewer spherical harmonics and Gaussians are required per
atom than for the Gaussian-type orbital implementation. This
projection yields �θ1

A,α,L,μ. The Gaussians are then analyti-
cally projected into reciprocal space to yield �θ1

A,α,L(k). In
reciprocal space,

�FA,L,β (k) =
∑

α

�αβ (k)�θ1
A,α,L(k). (85)

The above equation applies because the convolution �αβ (k)
has angular momentum number l = 0. Note that in this sec-
tion, denoting a symbol as function of k implies that it is the
Fourier transform of the real-space function corresponding to
that symbol. For example, �αβ (k) is the Fourier transform of
�αβ (r).

Inspired by the PAW method itself, we perform the fol-
lowing trick to approximate �FA,β (r) on the FFT grid. We
introduce two sets of functions, {gA

i (r)} and {hA
j (r)}. The

hA
j (r) functions form a localized basis (i.e., each function

vanishes for r > rc) and are meant to fit the high-frequency
components of �FA,β (r) introduced by the all-electron den-
sity inside the core region. For the current implementation of
these functions, we use differences between Gaussians and
smooth polynomials that match their derivatives at rc. The
other functions gA

i (r) are both localized and smooth, and are
meant to augment �θ1

A,α (r) to yield the correct values of
�FA,β (r) outside of the augmentation region. To do this, least-
squares linear regression is used to fit the following function

to �FA,β (r),

ŷA,β (r) = ŷ1
A,β (r) + ŷ2

A,β (r), (86)

ŷ1
A,β (r) =

∑
j

D jβhA
j (r), (87)

ŷ2
A,β (r1) =

∑
i,α

Ciα

∫
d3r2φαβ (r12)gA

i (r2), (88)

where the coefficients Ciα and Djβ are determined by the
regression. The necessary integrals are actually performed in
reciprocal space since Eq. (85) yields �FA,L,β (k) rather than
�FA,β (r). At first glance, this appears to be a complicated
and expensive fitting problem, but by separating the basis
functions into their individual angular momentum channels
and doing a separate regression for each channel, it becomes
tractable. The details for this procedure are described in
Appendix B 1.

Because the functions hA
j (r) are localized, in the complete

basis set limit �FA,β (r) = ŷ2
A,β (r) outside the augmentation

region. Therefore, by defining

θ̃ aug
α (r) ≡ θ̃α (r) +

∑
A

∑
i

CA
iαgA

i (r), (89)

one can compute

G̃(r) =
∑

β

pb
β (b̃(r))F̃ aug

β (r), (90)

F̃ aug
β (r) =

∑
α

∫
d3r2�αβ (r12)θ̃ aug

α (r), (91)

which satisfies the condition that the pseudofeature G̃(r) is
equal to the all-electron feature G(r) outside the augmentation
region (within the limit of complete basis sets).

Within the core regions, F̃ aug
β (r) is projected onto the radial

support grids using a set of projectors in a very similar for-
malism to PAW itself. This quantity will be called F̃ 1,aug

A,β (r),
in keeping with the PAW notation, and it takes the form

F̃ 1,aug
A,β (r) =

∑
j

BA
jβ f̃ A

j (r) + F̃ 1,0
A,β (r)

−
∑

j

f̃ A
j (r)

[∫
1

d3r′ p̃A
j (r′)F̃ 1,0

A,β (r′)
]
, (92)

BA
jβ = dv

∑
g∈A

F̃ aug
β (rg) p̃A

j (rg). (93)

In the above equations, f̃ A
i (r) and p̃A

j (r) are sets of atom-
centered functions satisfying 〈 f̃ A

i | p̃A
j 〉 = δi j , and p̃A

j (r) vanish
for r > rc so that the numerical integral of Eq. (93) can be
performed efficiently on the FFT grid points inside the cutoff
sphere of atom A. The symbol dv represents the FFT grid
volume element. This is directly analogous to the projector-
partial wave pairs in PAW [67]. The construction of f̃ A

i (r) and
p̃A

j (r) is described in Appendix B 2. F̃ 1,0
A,β (r) is an approximate

convolution of θ̃1
A,α (r), and while arbitrary, it helps make the

f̃ A
j (r) expansion more efficient. Using this construction, the
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all-electron and pseudo-features on the radial support grids
are, respectively,

G1
A(r) =

∑
β

pb
β

(
b1

A(r)
)(

F̃ 1,aug
A,β (r) + ŷ1

A,β (r)
)
, (94)

G̃1
A(r) =

∑
β

pb
β

(
b̃1

A(r)
)
F̃ 1,aug

A,β (r). (95)

The exchange correlation energy is then

Exc[n] = Exc[ñ, G̃] +
∑

A

(
Exc
[
n1

A, G1
A

]− Exc
[
ñ1

A, G̃1
A

])
,

(96)

where all three terms are semilocal functionals of the density
and of the nonlocal features. The first term is evaluated on the

FFT grid and the second two on the radial support grids on the
atoms.

The use of nonlocal features introduces a few additional
terms to the forces and stresses not present for semilocal DFT.
The force terms are

FA = Fsl
A + FPASDW

A , (97)

FPASDW
A =

∑
α

dv
∑

ig

CA
iα∇gA

i (rg)
∂Exc

∂θα (rg)

+
∑

β

dv
∑

jg

∂Exc

∂BA
jβ

∇ p̃A
j (rg)F̃β (rg). (98)

The stress terms are

σμν = σ sl
μν + σ PASDW

μν , (99)

σ PASDW
μν =

∑
α

∑
A

dv
∑

g

{[
(rg − RA)μ

∂Exc

∂θα (rg)

][∑
i

CA
iα∇νgA

i (rg)

]}
+ δμν

∑
β

∑
A

∑
j

(
∂Exc

∂BA
jβ

BA
jβ

)

+
∑

β

∑
A

dv
∑

g

⎧⎨⎩[(rg − RA)μFβ (rg)]

⎡⎣∑
j

∂Exc

∂BA
jβ

∇ν p̃A
j (rg)

⎤⎦⎫⎬⎭+
∑

k

GkμGkν

|Gk|
∑

β

(
∂Exc

∂F̃β (Gk )

)∗∑
α

�′
αβ (|Gk|)θα (Gk ).

(100)

In the above equations, Fsl
A and σ sl

μν refer to the force and stress
equations for semilocal functionals within the PAW formalism
(see Sec. III D of Ref. [74]).

There are several significant contributions to the com-
putational cost of the above approach for evaluating G(r),
which all scale linearly or quasilinearly with system size.
The first contribution comes from computing the Fourier
transforms of θ̃

aug
α (r) and F̃ aug

β (r) (as well as the functional
derivatives with respect to these quantities), which is nec-
essary to compute the convolutions like those in Eq. (91)
in reciprocal space. The cost of these operations scales as
�(Nα NFFT log(NFFT)), where Nα is the number of kernel in-
terpolation points in Eq. (61) and NFFT is the size of the FFT
grid used for integrating the XC energy. The second contri-
bution arises from computing the convolutions in Eq. (91)
in reciprocal space, and scales as �(N2

α NFFT). The third
contribution comes from computing the PAW correction to
θ̃

aug
α (r) [the sum in Eq. (89)]. This and related terms scale as

�(NFFT,atom Natom Nα ), where NFFT,atom is the number of FFT
grid points inside the core region of an atom and Natom is
the number of atoms. The last contribution consists of all the
other PAW correction-related routines (e.g., computing CA

iα),
which depend only on the density on the atomic radial grids
and therefore scale linearly with Natom. The overall scaling
with system size N is then �(N log(N )). Notably, none of
the components of the algorithm scale with the number of k
points.

III. RESULTS AND DISCUSSION

Using Gaussian process regression, we fit each of the
model types in Sec. II C (SL-GGA, NL-GGA, SL-MGGA,

and NL-MGGA) to match the exact exchange energy on sub-
sets of the GMTKN55 [10] and SOL62 [33,75] databases,
as well as a few dozen other training points. We provide a
summary of our methods in this section and explain them in
more technical detail in Appendix A.

To train the ML functionals, ground-state DFT calculations
were first performed using the PBE functional [23]. Then,
for each chemical system in the training set, the density
and orbitals obtained from the PBE calculation were used
to compute the features described in Sec. II C 3, as well the
exact exchange energy of Eq. (2). The computed features
were used as the inputs to the Gaussian process to predict
the exact exchange energy. See Appendices A 2 and A 3 for
details.

The training and validation systems were chosen as
described in Appendix A 4. The SOL62 database [75] con-
tains cohesive energies for a mix of metals and nonmetals,
for which nine were used for training, 22 for validation,
and 31 for testing. The GMTKN55 database contains 55
subdatabases blocked into five categories: small-molecule
properties (“small”), larger molecule reactions and isomer-
izations (“big”), barrier heights (“barrier”), intermolecular
noncovalent interactions (“inter NCI”), and intramolecular
noncovalent interactions (“intra NCI”). The training and val-
idation data consist of twelve subdatabases of GMTKN55
and contain some representative systems from each category,
but disproportionately taken from the “small” category. All
data not used for training or validation is considered the
GMTKN55 test set. This GMTKN55 partitioning results in
280 train data, 163 validation data, and 1062 test data. Further
technical details for training are provided in Appendices A 6
and A 7.
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The SL-GGA, NL-GGA, SL-MGGA, and NL-MGGA
functionals used for benchmarking below are the functionals
of each type with the best validation set performance, as de-
scribed in Appendix A 8. One important technical note is that
each functional was trained via delta learning on top of some
baseline exchange functional. We tried PBE and the Chachiyo
GGA [76] as baselines, and Chachiyo proved more accurate
for each functional class. However, as described in Sec. III C
below, slight numerical stability improvements were found
when using the NL-MGGA with a PBE baseline (dubbed
NL-MGGA-PBE). As described in more detail in Sec. III C,
we also found that retraining NL-MGGA-PBE with a more
diverse training set from GMTKN55 (which is described in
Appendix A 5) results in improved numerical stability. There-
fore, the resulting functional, dubbed NL-MGGA-DTR, was
used for the applications in Secs. III D–III G.

When testing and benchmarking the functionals, all cal-
culations (both conventional and CIDER functionals) were
performed self-consistently, with the exception of the SOL62
cohesive energies. These were obtained non-self-consistently
from PBE orbitals, because of the difficulty of computing the
isolated atom energies in plane-wave DFT. This is a small
technical barrier that will be addressed in future work. All
calculations in the main text used static geometries, with the
exception of the defect calculations in Sec. III G; in this sec-
tion, the silicon lattice parameters and defect structures were
optimized with both PBE and CIDER.

In Sec. III A, we demonstrate that the NL-MGGA is ca-
pable of learning the exchange functional more accurately
than the other feature sets, and in Sec. III B we use one-
and two-electron systems to provide intuition for why this
is. Next, we fine-tune the accuracy and numerical stability of
the NL-MGGA (Sec. III C) and demonstrate that the resulting
exchange functional can be used to match the accuracy of
hybrid DFT (Sec. III D).

Having designed an accurate exchange functional, we
demonstrate that it can be used to improve band gap predic-
tions over standard meta-GGAs in Sec. III E. In Sec. III F,
we show that for large systems in plane-wave DFT, our im-
plementation of the NL-MGGA form is similarly efficient
to semilocal meta-GGAs and much more efficient than hy-
brid DFT. Lastly, in Sec. III G, we take advantage of our
functional’s efficiency and accurate band gap predictions to
compute charge transition levels of point defects in silicon,
which is a notoriously challenging task for DFT because of
the underestimation of band gaps and the large supercell sizes
required to simulate isolated point defects [6].

Taken together, the benchmarks provided below test the
capacity of our ML models as well as their transferability
across different chemical compositions and structures, includ-
ing more complicated geometries like defect sites that are not
present in the training data. However, our benchmarks mostly
lack some system types and properties that play important
roles in chemistry and materials science, including out-of-
equilibrium geometries (with the exception of the barrier
heights in GMTKN55), more complex materials like ternary
and quaternary compounds and disordered phases, elastic and
vibrational properties, etc. Transferability to these types of
systems should not be assumed until future work provides
more insight and further improvements to the ML models.

For now, our benchmarks of CIDER functionals for predicting
bond lengths and lattice constants in Sec. S6 within the Sup-
plemental Material [77] provide some initial insight into the
ability of CIDER functionals to accurately predict structural
properties in addition to energetic properties.

A. Accuracy of different model types for molecular
and solid-state benchmarks

We assess the accuracy of our exchange functionals by
substituting them for exact exchange in hybrid functionals
to create a “surrogate hybrid” functional. For example, one
of the simplest and most popular hybrid functionals is PBE0
[78], which mixes a 1/4 fraction of exact (Hartree-Fock, HF)
exchange into the PBE functional [23],

Exc[n] = 3
4 EPBE

x [n] + 1
4 EHF

x [n] + EPBE
c [n]. (101)

In this section we perform so-called PBE0/CIDER calcula-
tions, where the exchange-correlation energy is

Exc[n] = 3
4 EPBE

x [n] + 1
4 ECIDER

x [n] + EPBE
c [n]. (102)

One can also generalize PBE0/CIDER with different frac-
tions of CIDER exchange, giving the PBE0(α)/CIDER form,
which is used in later sections,

Exc[n] = (1 − α)EPBE
x [n] + αECIDER

x [n] + EPBE
c [n]. (103)

Throughout the results, we will also use abbreviations like
PBE0/SL-GGA and PBE0/NL-MGGA, which indicate that
the specific CIDER functionals used in PBE0/CIDER are the
SL-GGA and NL-MGGA, respectively.

All ML functional results in this section refer to the
PBE0/CIDER surrogate hybrid form. Because our exchange
functionals are trained on exact exchange energies, they are
“perfect” if they exactly reproduce the predicted reaction
energies of PBE0 on the test set. To measure the error of
the exchange functionals, we calculate the average error be-
tween PBE0/CIDER and PBE0 for each functional type on
GMTKN55 and SOL62. All calculations on GMTKN55 are
SCF calculations, but the SOL62 cohesive energy CIDER and
PBE0 calculations are performed non-self-consistently with
PBE orbitals. See Appendices A 2 and A 3 for details.

The average deviations of the machine-learned functionals
from PBE0, using the mean of means (MoM) metric (i.e.,
the mean of the mean absolute deviations, or MADs, for the
sub-databases of GMTKN55), are presented in Fig. 1. Results
for all functionals include D4 dispersion corrections [79],
with the PBE0/CIDER functionals using the PBE0 dispersion
parameters. The nonempirical PBE and r2SCAN [80] func-
tionals, while not designed to reproduce PBE0, are included in
Fig. 1 to show typical deviations between GGAs, meta-GGAs,
and hybrids.

While the trends vary slightly in the different subsets of
GMTKN55, the key trend is that the quality of the fit to exact
exchange improves going from SL-GGA to NL-GGA to SL-
MGGA to NL-MGGA. Notably, the SL-GGA and NL-GGA
suffer from out-of-distribution transferability issues, resulting
in larger deviations from PBE0 even compared to the PBE
functional on the test set. On the other hand, the ML meta-
GGAs are more transferable outside the training data than the
ML GGAs, so they match PBE0 more closely than PBE and
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FIG. 1. Accuracy of PBE0/CIDER [Eq. (102)] compared to PBE0 for each functional type on the GMTKN55 database of molecular
properties, using the MoM error metric. The database subsets are [10]: “all”, Full database; “small”, Basic properties and reaction energies for
small systems; “big”, Reaction energies for large systems and isomerization reactions; “barrier”, Barrier heights; “inter NCI”, Intermolecular
noncovalent interactions; “intra NCI”, Intramolecular noncovalent interactions.

r2SCAN on the test set. The NL-MGGA is more accurate than
the SL-MGGA, achieving an MoM of less than 1 kcal/mol
on the test set. The fact that the NL-MGGA outperforms
both the NL-GGA and SL-MGGA suggests that the kinetic
energy and nonlocal features provide nonredundant informa-
tion, meaning that nonlocal density features cannot replace the
kinetic energy density nor vice versa. As shown in Fig. 2, the
same general trends apply for SOL62; the NL-MGGA is the
most accurate and transferable ML functional for reproducing
PBE0, followed by the SL-MGGA and then the NL-GGA.

Because GMTKN55 contains a variety of properties and
systems, the performance of the functionals is somewhat de-
pendent on the choice of error metric. However, the general
trends are the same as for the MoM metric. See Sec. S2A
within the Supplemental Material [77] for a discussion of the
impact of error metric on the results.

B. Impact of nonlocality and derivative discontinuity
on model accuracy

Overall, the SL-MGGA model is more accurate than the
NL-GGA model across the databases tested here. However,
the fact that NL-GGA improves over SL-GGA and that NL-
MGGA improves over SL-MGGA suggests that the nonlocal
features contribute useful, nonredundant information about
the density for exchange energy prediction. This raises the
question: What types of systems require the nonlocal features,

FIG. 2. Average deviation of PBE and the PBE0/CIDER ML
functionals from PBE0 on the SOL62 cohesive energies database.

and which require the semilocal orbital dependence of the
kinetic energy density? We hypothesize that the derivative
discontinuity of the exchange functional [81] plays a key role.
Because only the kinetic energy density—and not the nonlocal
features of the NL-GGA—includes a derivative discontinuity
passing through integer electron number, the NL-GGA (as
well as any smooth, pure density functional) cannot be ex-
pected to accurately capture energy differences involving a
change in electron number, such as ionization energies and
electron affinities. On the other hand, existing semilocal meta-
GGAs are fundamentally limited by their locality and cannot
be expected to improve over GGAs for energy differences
between systems of like electron number. This is especially
true of one-electron systems, for which the kinetic energy is
simply determined by the density gradient.

To explore this hypothesis, we set up two simple sets of
systems. The first set is one-electron systems for different
arrangements of protons: the hydrogen atom, the H2

+ molec-
ular ion, the linear H3

2+ molecular ion, and the triangular
H3

2+ molecular ion, all with bond lengths of 0.7 Å, as il-
lustrated in Fig. 3. Because each system contains only one
electron with different degrees of delocalization, we expect
that only the functionals with nonlocal features can accurately
predict energy differences between these systems. Table I
shows the MAD between the ML exchange functionals and
Hartree-Fock for the energy differences between the hydrogen
atom and the molecular ions. As expected, the SL-GGA and
SL-MGGA are both less accurate than NL-GGA and NL-
MGGA. This confirms that the nonlocal features successfully

(a) (b) (c) (d)

FIG. 3. Geometries and density distributions of the one-electron
systems dataset. (a) Hydrogen atom. (b) H2

+. (c) H3
2+ linear.

(d) H3
2+ triangular.
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TABLE I. Mean absolute deviation (kcal/mol) of the four types
of ML functional for simple one- and two-electron systems compared
to Hartree-Fock.

Model 1e systemsa 2e systemsb

SL-GGA 2.9 8.7
NL-GGA 2.5 5.5
SL-MGGA 4.8 3.9
NL-MGGA 1.1 2.7

aThe one-electron system dataset consists of the energies of H2
+,

H3
2-linear, and H3

2-triangular referenced to the energy of the isolated
hydrogen atom. All nearest-neighbor bond lengths are 0.7 Å.
bThe two-electron system dataset consists of three energy differences
between He+, He singlet, and He triplet, where He triplet is the
neutral helium atom excited state with both electrons having the same
spin.

characterize single-electron delocalization in a way that is not
feasible with semilocal functionals.

The second set of systems consists of the He+ ion, the
He singlet (closed-shell ground state), and the He triplet
(open-shell excited spin state with two same-spin electrons).
Because the exchange energy has a discontinuous derivative
as the number of electrons of a given spin passes through
an integer [81,82], the energy differences between He+ and
He triplet and between He singlet and He triplet can only be
described accurately by functionals that capture this derivative
discontinuity. As shown in Table I, the absolute deviations
from Hartree Fock for the energy differences between these
three systems are larger for SL-GGA and NL-GGA than for
SL-MGGA and NL-MGGA. This indicates that the deriva-
tive discontinuity included in the kinetic energy density is
essential for capturing energy differences related to electron
addition/removal. Notably, the NL-MGGA is the most accu-
rate of the four functional types for both datasets.

These observations regarding the role of the derivative dis-
continuity explain why a previous attempt at machine learning
a GGA resulted in more accurate atomization energies but less
accurate ionization potentials than PBE [31]. It also provides
a possible reason for the poor generalization of the SL-GGA
and NL-GGA in Fig. 1; training on properties like ionization
potentials and electron affinities that are difficult to describe
with orbital-free functionals could lead to overfitting and de-
crease the accuracy of other properties. Likewise, the role
of nonlocality explains why Kovács et al. [13] found that
existing meta-GGAs, as well as 25 meta-GGAs they empiri-
cally trained, suffer from a trade-off between cohesive energy
accuracy and band gap accuracy. Meta-GGAs are limited in
their ability to describe both these properties at once due
their semilocality. In addition, while we do not exhaustively
try many possible NLDFs to conclusively show that they
can only yield accurate models when paired with orbital-
dependent features, the NLDFs we have implemented do need
to be paired with a meta-GGA formalism to improve their
accuracy. These findings provide evidence that to accurately
and transferably fit a nonlocal, orbital-dependent quantity like
the exchange energy, an ML functional should contain both
orbital dependence and nonlocality in its feature set.

TABLE II. The number of systems in the GMTKN55 database
for which a given functional did not achieve SCF convergence with
thresholds of 10−8 Eh for total energy and 10−4 Eh for the orbital
gradient of the energy. All functionals use the PBE0/CIDER form
[Eq. (102)].

Functional No. unconverged

SL-GGA 10
NL-GGA 16
SL-MGGA 5
NL-MGGA 3
NL-MGGA-PBE 1
NL-MGGA-DTR 0

C. Fine-tuning for numerical stability

Because XC functionals are used within SCF calculations,
they must be numerically stable and consistently achieve elec-
tronic convergence on real systems to be useful for practical
applications. For the GMTKN55 dataset, we found that some
systems do not quite converge to our default convergence
thresholds, which were 10−8 Hartree atomic unit (Eh) for
the total energy and 10−4 Eh for the orbital gradient of the
energy. (See Appendix A 9 for more details on how we reme-
died convergence problems.) We found that these calculations
could only be converged with a 10−7-Eh energy threshold and
2 × 10−3-Eh gradient threshold. Interestingly, this problem
is least severe for the NL-MGGA, as illustrated in Table II,
which shows the number of systems for each functional type,
which did not converge to the 10−8-Eh energy and 10−4-Eh
gradient thresholds. We believe this is because the increased
model dimensionality of the NL-MGGA allows it to fit the ex-
change energy with a smoother function of the input features.

Because the NL-MGGA still sees some convergence
problems, we decided to explore two modifications of the
NL-MGGA for improved numerical stability. The first is the
NL-MGGA-PBE, which has the same hyperparameters and
feature shape as the NL-MGGA but uses the PBE functional
as a baseline rather than the Chachiyo functional [76]. NL-
MGGA-PBE was screened during the validation procedure
(Appendix A 8) but was found to be slightly less accurate
than the NL-MGGA with the Chachiyo baseline. However,
only one system sees a convergence issue in Table II with NL-
MGGA-PBE, compared to three with NL-MGGA. We also
tried training an NL-MGGA model with the PBE baseline and
a more chemically diverse subset of GMTKN55, as described
in Appendix A 5. We refer to this new train/validation/test
partition as DTR (for “diverse training”), and it yields the
NL-MGGA-DTR, for which all GMTKN55 systems achieve
an orbital gradient convergence of 10−4 Eh or lower. In fact,
all but 10 of the 2462 GMTKN55 systems converge to within
10−9 Eh for energy and 10−4.5 Eh for orbital gradient with
NL-MGGA-DTR, and the rest to within 10−8 and 10−4 Eh,
respectively.

As shown in Fig. 4, which displays MoM errors of
PBE0/CIDER versus PBE0, the accuracy of these three NL-
MGGA variants is similar across the GMTKN55 dataset.
The three functional variants also have nearly identical per-
formance for the SOL62 cohesive energies, with MADs
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FIG. 4. Accuracy of GMTKN55 predictions for the NL-MGGA
and the NL-MGGA-PBE and NL-MGGA-DTR variants described
in the text (all using the PBE0/CIDER form), compared to PBE0.
Train/test partition results are not shown because the train and test
data are different for the NL-MGGA-DTR functional.

compared to PBE0 of 0.13 eV/atom for all three. Therefore,
for the remainder of this paper, we adopt the NL-MGGA-DTR
model as our primary functional of choice for applications,
and we name it CIDER23X-NL-MGGA-DTR. This func-
tional is provided (along with several others used in this paper)
with an early release version of the CiderPress package as
described in Sec. V, and it is the recommended functional for
any researchers interested in running DFT calculations with
CIDER.

In addition to the stability of a functional for the purpose
of SCF convergence, one might also be interested in other
metrics of numerical stability, such as the accuracy of the
approximate evaluation of nonlocal density features described
in Secs. II E and II F and the convergence of the CIDER
functional with respect to the size of the grid used to integrate
the XC energy. These characteristics are discussed in Sec. S8
within the Supplemental Material [77].

D. Obtaining hybrid DFT accuracy

In this section, we show that by substituting NL-MGGA-
DTR for exact exchange in hybrid functionals, accurate
predictions of the XC energy can be obtained for molecular
systems without additional parameter tuning. In particular,
we look at PBE0/CIDER [Eq. (102)] and another type of
functional called PW6B95/CIDER. The original PW6B95
functional [83] is

EPW6B95
xc [n] = 0.28EHF

x [n] + EPW6B95
xc,sl [n], (104)

where EPW6B95
xc,sl is a meta-GGA term. Just like with

PBE0/CIDER, we substitute CIDER in for Hartree-Fock ex-
change to obtain PW6B95/CIDER,

EPW6B95
xc [n] = 0.28ECIDER

x [n] + EPW6B95
xc,sl [n]. (105)

We chose to construct PW6B95/CIDER functionals because
the original PW6B95 [83] is among the most accurate func-
tionals on the GMTKN55 database [10,36].

For PBE0/NL-MGGA-DTR, PW6B95/NL-MGGA-
DTR, and several semilocal [23,53,80,84] and hybrid
[27,28,54,78,83] functionals, Fig. 5 shows the MoM error
on all of GMTKN55 as well as the mean absolute error
(MAE) on the test partition used for NL-MGGA-DTR. The

FIG. 5. MoM error for all of GMTKN55 (left) and MAD on
the DTR test set (right) relative to GMTKN55 reference values, for
semilocal, hybrid, and CIDER functionals.

errors are relative to the high-accuracy benchmark data
collected in the GMTKN55 database [10]. All functionals
include D4 dispersion corrections [79] except for B97M-V
[53], ωB97X-V [28], and ωB97M-V [54], which all use
VV10 dispersion [60]. PBE0/CIDER calculations use PBE0
dispersion parameters, and PW6B95/CIDER calculations
use PW6B95 dispersion parameters. We show conventional
semilocal functionals in shades of blue, conventional hybrid
functionals in orange, and CIDER functionals in green.

As Fig. 5 shows, the PBE0/NL-MGGA-DTR functional is
comparable in accuracy to r2SCAN, but the combination of
systematic errors in the NL-MGGA-DTR functional and in
PBE0 itself prevent it from outperforming the most accurate
meta-GGA (B97M-V) or any of the hybrid functionals. On
the other hand, because PW6B95 is much more accurate than
PBE0 on the GMTKN55 dataset, PW6B95/NL-MGGA-DTR
is more accurate than all semilocal functionals explored here.
It is also more accurate than the PBE0 and B3LYP [27] hybrid
functionals and equivalent in accuracy to the range-separated
hybrid ωB97X-V [28]. This shows that the NL-MGGA-DTR
exchange functional can be used to calculate molecular reac-
tion energies with an accuracy that was previously not feasible
without exact exchange mixing.

As with Sec. III A, the analysis of the errors on GMTKN55
depends somewhat on the error metric used. These nuances
are discussed in further detail in Sec. S2B within the Sup-
plemental Material [77], which also provides a comparison
between the nonlocal and semilocal meta-GGA models.

E. Using CIDER for improved band gap prediction

The band gap problem [85,86], in which semilocal DFT
tends to drastically underestimate the band gaps of solids,
stands in the way of a variety of important applications like
high-throughput screening for optical and electronic prop-
erties and semiconductor point defect physics [5,6,87]. By
introducing a derivative discontinuity into the XC functional,
meta-GGAs partly mitigate this problem [88], but they still
tend to significantly underestimate band gaps [89]. Exceptions
include mBJ [90] and TASK [12], which each have impor-
tant drawbacks. The mBJ functional provides the exchange
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TABLE III. Error statistics for 255 band gaps from the database published by Borlido et al. [45], in eV. The ML functionals use the
PBE0(α)/CIDER formalism of Eq. (103).

SL-MGGAa NL-MGGA-DTRa

PBEa r2SCANa α = 0.25 α = 0.25 α = 0.35 HSE06b PBE0b

MEc (eV) −1.14 −0.81 −0.74 −0.61 −0.38 −0.17 0.40

MAEd (eV) 1.16 0.87 0.82 0.71 0.58 0.53 0.73

RMSEe (eV) 1.50 1.18 1.10 1.02 0.86 0.80 0.90

MAREf 0.53 0.41 0.41 0.35 0.33 0.33 0.67

aThis paper.
bBorlido et al. [45].
cMean error.
dMean absolute error.
eRoot mean square error.
fMean absolute relative error.

potential only, not the energy [90], and TASK does not predict
atomization energies and lattice constants as well as SCAN
[12–14]. This reinforces the discussion in Sec. III B regarding
the accuracy trade-offs meta-GGAs must make because of
their semilocality.

By introducing nonlocality into the exchange energy,
PBE0/NL-MGGA-DTR [Eq. (102) or Eq. (103) with α =
0.25] improves band gap predictions over PBE and r2SCAN,
as shown in Table III. This improvement occurs even though
the CIDER functionals are not fit to solid-state band gaps. The
PBE0/SL-MGGA also improves band gap predictions over
r2SCAN, but significantly less so than PBE0/NL-MGGA-
DTR. The database used for testing covers 255 of the 472
band gaps in the database published by Borlido et al. [45],
with La, Yb, and Th-containing systems being excluded as
well as systems with a greater than 0.05 eV difference be-
tween the spin-orbit-corrected and non-spin-orbit-corrected
band gaps (as computed with PBE by Borlido et al. [45]). See
Appendix A 11 for details, and Sec. S3 within the Supple-
mental Material [77] for error metrics for all 453 solids in the
database that do not contain La, Yb, or Th.

To provide a clearer picture of the improved band gap pre-
diction provided by the NL-MGGA-DTR functional, Table IV
shows the band gap predictions for a selected subset of sys-
tems that are commonly studied [11]. In addition, Figs. 6 and
7 contain band structures for silicon (Si) and boron phosphide
(BP), respectively, which show that PBE0/NL-MGGA-DTR
provides similar band structures to PBE and r2SCAN but with
a wider band gap.

There is room for improvement in these band gaps, since
PBE0/NL-MGGA-DTR still systematically underestimates
band gaps compared to the state-of-the-art HSE06 [91,92]
range-separated hybrid functional, as well as the PBE0 func-
tional to which PBE0/CIDER is an approximation. One
possible solution is to tune the fraction of CIDER exchange,
which is already done with exact exchange within hybrid DFT
to optimize functional accuracy for different applications [93].
As shown in Table III, PBE0(α)/NL-MGGA-DTR with α =
0.35 has increased band gaps over α = 0.25 and similar error
statistics to HSE06. However, one drawback of this approach
is that because NL-MGGA-DTR increases band gaps less
than exact exchange for a given mixing fraction, one might

need a large fraction of NL-MGGA-DTR to fit band gaps.
This large fraction might not provide accurate predictions of
other material properties. Alternative approaches to improve
CIDER band gaps include using physical intuition and exact
constraints to tune the derivative discontinuity contribution
from the kinetic energy density (as is done in the TASK func-
tional [12]), introducing more nonlocal features to improve
the accuracy of the functional in general, and training on
fundamental band gaps (i.e., differences between ionization
potentials and electron affinities). However, considering the
drastic increase in computational cost associated with using
HSE06 or PBE0 compared to semilocal DFT, the ability to
mitigate the underestimation of band gaps without explicitly
fitting them—and while accurately predicting other properties

TABLE IV. Band gaps for a small subset of solids (in eV).
CIDER refers to PBE0/NL-MGGA-DTR.

PBE r2SCAN CIDER HSE06 Expt. [45]

Si 0.57 0.76 1.05 1.15 1.17
Ge 0.12 0.48 0.71 0.81 0.74
InP 0.69 1.12 1.47 1.52 1.42
GaAs 0.59 1.08 1.36 1.43 1.52
CdSe 0.71 1.19 1.48 1.69 1.74
BP 1.25 1.42 1.71 1.98 2.10
GaP 1.61 1.88 2.09 2.29 2.35
CdS 1.20 1.65 2.02 2.27 2.48
GaN 1.88 2.33 2.65 3.18 3.50
ZnS 2.13 2.69 3.04 3.37 3.72
C 4.13 4.34 4.70 5.33 5.50
BN 4.21 4.79 5.08 5.63 5.96
CaO 3.68 4.23 4.53 5.32 6.88
MgO 4.73 5.63 6.11 6.42 7.67
NaCl 5.11 5.90 6.32 6.45 8.75
LiF 9.07 10.05 10.40 11.39 13.60
Ar 8.71 9.61 9.71 10.36 14.15

ME −1.93 −1.42 −1.11 −0.74
MAE 1.93 1.42 1.11 0.76
RMSE 2.41 1.88 1.66 1.31
MARE 0.45 0.29 0.18 0.11

075130-15



KYLE BYSTROM AND BORIS KOZINSKY PHYSICAL REVIEW B 110, 075130 (2024)

FIG. 6. Band structures of silicon with three different functionals. The black dotted line is positioned at the valence band maximum, and
the orange dotted line is located at the experimental band gap of 1.17 eV. (a) PBE. (b) r2SCAN. (c) PBE0/NL-MGGA-DTR.

like bond energies—already serves as a major step toward
solving the band gap problem.

F. Benchmarking performance on large condensed
matter systems

The key benefit of the nonlocal features used to learn the
exchange functional is that the quasilinear-scaling algorithm
used to compute them within plane-wave DFT (Secs. II D and
II F) is much faster than the evaluation of exact exchange for
large systems and does not depend on the number of k-points.
To illustrate this efficiency, Fig. 8(a) shows the wall time to
perform a ground-state SCF calculation for a 216-atom dia-
mond supercell with semilocal and PBE0/CIDER functionals
in GPAW [68,69]. These wall times are compared to those
of the hybrid DFT implementation in Quantum ESPRESSO
[94,95], which uses the adaptively compressed exchange
(ACE) algorithm [17] to compute the exact exchange en-
ergy as efficiently as possible. A � point only k-point mesh
was used for these calculations. The CIDER functionals, in-
cluding those with nonlocal features, all take less than 170
seconds (compared to 60 seconds for PBE and 79 seconds for
r2SCAN). The total wall time for PBE0 is roughly 6.5 times
slower than the NL-MGGA-DTR functional, in spite of the
use of the ACE algorithm to accelerate the exact exchange
calculation. Also, Quantum ESPRESSO has a general per-
formance advantage over the plane-wave version of GPAW,
with the 216-atom PBE calculation in Fig. 8(a) requiring
60 seconds for GPAW and only 21 seconds for Quantum

ESPRESSO. Therefore, more performance optimization in
both the GPAW code and the CIDER feature evaluation might
further increase the computational advantage of CIDER over
hybrid DFT.

The efficiency of CIDER functionals for large systems
makes it practical to perform more complicated calculations
like defect formation energies. Figure 8(b) shows the wall
time for computing the neutral vacancy formation energies in
diamond and silicon using 216-atom supercells for semilo-
cal and PBE0/CIDER functionals. These calculations used
a 2 × 2 × 2 Monkhorst-Pack k-point mesh [96]. All of the
functionals are of comparable computational cost, with the
NL-MGGA-DTR model being only about 25% slower than
r2SCAN for diamond and 50% slower for silicon. This small
decrease in efficiency comes with a significant benefit: As
shown in Table V, of the functionals tested, the NL-MGGA
model and its variants give the closest match to PBE0 for
predicting these vacancy formation energies, with PBE0/NL-
MGGA-DTR giving deviations of 0.18 eV and 0.23 eV for
diamond and silicon, respectively. The HSE06 and PBE0
formation energies were computed using VASP [97–99]. See
Appendix A 12 for further calculation details.

G. Charged defect transition levels in silicon

One of the consequences of the band gap problem is
that transition levels in charged defects are not accurately
described by semilocal DFT, so hybrid DFT is typically
used when accurate transition level predictions are needed.

FIG. 7. Band structures of boron phosphide with three different functionals. The black dotted line is positioned at the valence band
maximum, and the orange dotted line is located at the experimental band gap of 2.10 eV. (a) PBE. (b) r2SCAN. (c) PBE0/NL-MGGA-DTR.
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FIG. 8. Computational cost for plane-wave DFT SCF calculations of large systems with different functionals. The semilocal (blue) and
CIDER (green) calculations were performed with GPAW on one 64-core Intel Ice Lake node for diamond and two 64-core nodes for silicon.
The PBE0 calculation (orange) was performed on one 64-core node with the Quantum ESPRESSO (QE) code [94,95]. An additional PBE
calculation was also performed with QE to compare the computational cost of GPAW and QE. (a) Total SCF calculation wall time for diamond
216-atom bulk supercell with �-point sampling only. (b) Total SCF calculation wall times for diamond and silicon neutral vacancy formation
energies in a 216-atom supercell with 2 × 2 × 2 Monkhorst-Pack k-point mesh [96].

In this section, we show that by improving band gap pre-
diction, CIDER is able to accurately predict defect transition
levels in silicon. The transition levels associated with the
single vacancy [101], as well as the boron [102], phosphorus
[103], copper [104], and sulfur [105,106] substitutionals, were
computed as described in Appendix A 13, using a 512-atom
supercell, 2 × 2 × 2 �-centered k-point mesh, and full struc-
tural relaxation for each defect and functional.

Figure 9 shows the computed transition levels compared to
experiment with two different finite-size correction schemes:
the Freysoldt finite-size corrections [100] [Fig. 9(a)] and the
potential alignment correction [Fig. 9(b)]. We computed the
transition levels with PBE and PBE0(0.3)/NL-MGGA-DTR
[Eq. (103) with α = 0.3]. The latter functional was chosen
because its band gap matches the 1.17 eV experimental gap;
however, PBE0/NL-MGGA-DTR yields similar results (see
Sec. S7 within the Supplemental Material [77]). Table S13
within the Supplemental Material provides a more detailed list

TABLE V. The formation energies of the neutral vacancies in
diamond and silicon (in eV), computed with 216-atom supercells
and a 2 × 2 × 2 Monkhorst-Pack k-point mesh [96]. All CIDER
functionals use the PBE0/CIDER surrogate hybrid form.

Functional C Si

PBE 6.47 3.61
r2SCAN 6.36 4.19
SL-GGA 6.11 3.48
NL-GGA 6.73 3.50
SL-MGGA 6.66 4.16
NL-MGGA 6.77 4.58
NL-MGGA-PBE 6.77 4.58
NL-MGGA-DTR 6.79 4.42
HSE06 6.96 4.54
PBE0 6.97 4.65

of all computed transition levels. In the rest of this section,
PBE0(0.3)/NL-MGGA-DTR is referred to simply as CIDER
for brevity.

PBE and CIDER both give reasonable descriptions of the
++/0 transition level in the silicon vacancy and the boron ac-
ceptor level. However, the phosphorus donor level is not well
described by PBE because of its severe underestimation of the
band gap; CIDER remedies the band gap underestimation and
therefore predicts a transition level in good agreement with ex-
periment. To correct for band gap underestimation, one could
predict defect levels from PBE by scaling the gap (and with it,
the transition levels) to the experimental gap, but this makes it
difficult to distinguish true shallow levels from deep levels that
happen to sit near the (too-low) PBE conduction band edge
[5]. For example, PBE predicts a transition level of 0.66 eV
for the −/– transition of CuSi [Fig. 9(a)], 0.05 eV above the
conduction band minimum. Without further information, it is
unclear whether this state is resonant in the conduction band
or localized in the gap. CIDER, on the other hand, places the
−/– level inside the gap at 0.97 eV, in good agreement with
the 1.00 eV level from experiment.

More generally, Fig. 9(a) shows that paired with the
Freysoldt correction, CIDER matches each level in the fig-
ure with an error of 0.10 eV or less compared to experiment,
with the exception of the +/0 level in CuSi. For this transition,
the experimental level is 0.20 eV [104], while the CIDER
level is 0.02 eV with the Freysoldt correction and 0.07 eV
with the potential alignment correction only. The HSE06 level
was previously reported to be 0.21 eV by Sharan et al. [107],
in good agreement with experiment. However, Sharan et al.
used a 64-atom supercell with a 2 × 2 × 2 Monkhorst-Pack
k-point mesh [96]. This supercell size is relatively small, and
the k-point mesh is both small and fails to sample the band
edges, which can interfere with the description of relatively
delocalized defect states. When we recalculated the CIDER
transition level using Sharan et al.’s supercell size and k-point
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FIG. 9. Electronic transitions levels for the single vacancy and several substitutional defects in silicon computed using different functionals
and finite-size correction schemes. The grey bars represent the band gap for the given functional (or experiment). The experimental references
are from the following sources: vacancy [101], boron [102], phosphorus [103], copper [104], and sulfur [105,106]. CIDER refers to
PBE0(0.3)/NL-MGGA-DTR. (a) Transition levels computed using Freysoldt finite-size corrections [100]. (b) Transition levels computed using
potential alignment correction only.

mesh, we obtained 0.18 eV with Freysoldt corrections, in
good agreement with their result and with experiment. In
Sec. S7A within the Supplemental Material [77], we provide
further evidence that the HSE06 level itself is not converged
with respect to k-point mesh. This finding illustrates the im-
portance of using well-converged supercell sizes and k-point
meshes in point defect calculations, a requirement that is
made much easier by the efficiency of the CIDER function-
als compared to hybrid DFT. Why this particular transition
level is underestimated by both hybrid DFT and CIDER is an
interesting question warranting future investigation.

In addition to yielding more accurate transition levels,
CIDER predicts somewhat different charge distributions than
PBE as well. Figure 10 shows the charge density differ-
ences between charge states for several of the transition levels
in Fig. 9. There are a few notable takeaways from these
plots. First, as expected, the charge density differences are
larger for transitions that result in large ionic displacements
(as indicated by the MaxDisp in the bottom of each plot).
Second, these ionic displacements and resulting charge dis-
tortions are noticeable more than 5 Å away from the defect
site for some transitions, indicating the importance of large

supercells. Lastly, a slightly larger fraction of the charge as-
sociated with the transition is contained within a 5-Å sphere
around the defect site for CIDER than for PBE (as indicated
by the Loc. metric in the bottom of each plot), suggesting that
CIDER localizes the defect charge more effectively than PBE.
This is reassuring because unphysical charge delocalization is
one of the key driving factors of erroneous charge transition
level predictions in semiconductor point defects [5].

In summary, our results indicate that the CIDER approach
could be a route toward high-accuracy defect calculations
at similar cost to semilocal DFT, which would significantly
broaden the potential scope of point defects research. In
particular, it could be used to improve the accuracy of high-
throughput point defects studies [108], which are currently
only computationally feasible with semilocal functionals like
PBE.

IV. CONCLUSIONS

We have demonstrated that by combining the kinetic
energy density (a semilocal, orbital-dependent quantity) with
nonlocal, density-dependent features, it is possible to design
functionals with comparable accuracy to hybrid DFT at a
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FIG. 10. Change in charge distribution in the (001) plane (integrated over the z axis) for several charge transition levels in point defects
of silicon. Blue shades represent an increase in electron density, while red shades indicate a decrease in electron density. “MaxDisp” is the
maximum ionic displacement between the charge states, and “Loc.” is the fraction of the charge difference contained within a 5 Å sphere
around the defect site. Loc. is greater than one for the vacancy ++/0 transition because more than two electrons are drawn in to the defect
region upon addition of an electron pair, depleting electron density in the surrounding region.

drastically reduced computational cost for plane-wave DFT
calculations. We can do this by learning exact exchange
energies, without the use of any high-accuracy reference
data from experiments or wave function theory. We have
shown that our nonlocal meta-GGA model has higher
accuracy than semilocal functionals on both molecular
benchmarks and solid-state band gap prediction, and that
these improvements can assist with applications such as
semiconductor point-defect calculations.

The developments presented here serve a variety of pur-
poses. As is, the exchange functional we designed can be
used as an exact exchange surrogate in scenarios where hybrid
DFT is impractical, such as large extended systems. This
expands the scope of calculations that can be performed at
hybrid DFT accuracy. In addition, the techniques we have
introduced to learn smooth, physically constrained functionals
and implement efficient nonlocal features could be used in
other contexts, such as orbital-free DFT [73] and van der
Waals functional design [59,70,109].

Importantly, the ability to systematically vary the descrip-
tor complexity in our machine learning approach allows us
to extract physically nontrivial information about the nature
of the exchange interactions. Specifically, we find that both
nonlocality and derivative discontinuity are independently
important for the structure of the exchange energy density
functional. This clarifies a key limitation of existing semilocal
functionals.

Lastly, our approach can be generalized to learn the
full XC functional, providing a path to highly transferable
and universal functionals capable of describing challeng-
ing and heterogeneous chemistry. We anticipate that these
developments will contribute to significantly improving the
cost-accuracy trade-off of DFT, accelerating the pace and
efficacy of materials and chemical research by providing a
stronger theoretical backing in various subfields.

The code to run CIDER calculations in both the PySCF and
GPAW codes is available at the following Github repository
[110]. The SL-GGA, NL-GGA, SL-MGGA, NL-MGGA, NL-
MGGA-PBE, and NL-MGGA-DTR functionals are available
for download using the instructions in the Github repository.
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APPENDIX A: COMPUTATIONAL DETAILS

1. Overview

To explore the effectiveness of different features for learn-
ing the exchange energy, four types of functional were
trained, with the model and feature vector details provided in
Sec. II C:

(i) SL-GGA: A semilocal GGA model based on the re-
duced squared gradient s2 [Eq. (9)].

(ii) NL-GGA: A nonlocal model based on s2 and three
nonlocal features with Eqs. (20) and (21) for the exponents.

(iii) SL-MGGA: A semilocal meta-GGA model based on
s2 and the iso-orbital indicator α [Eq. (11)].

(iv) NL-MGGA: A nonlocal model based on s2, α, and
three nonlocal features with Eqs. (22) and (23) for the
exponents.

The purpose of training semilocal GGA and meta-GGA
models is to test the expressive power of the nonlocal de-
scriptors. In our previous paper (see Table S1 of Ref. [35]),
we found that a standard, semilocal meta-GGA could not
effectively learn the exchange energy density, but in this paper,
we determined that a semilocal meta-GGA can learn the total
exchange energy much more effectively than it can learn the
exchange energy density.

The two primary datasets used in this paper were
the GMTKN55 [10] and SOL62 [33,75] databases. The
GMTKN55 database contains 1505 molecular reaction en-
ergies based on 2462 single-point calculations, covering
five categories: small-molecule properties, larger molecule
reactions and isomerization, barrier heights, intermolecular
noncovalent interactions, and intramolecular noncovalent in-
teractions. The SOL62 dataset consists of 42 nonmetals and
20 metals as categorized by Zhang et al. [75]. We fol-
low Trepte and Voss [33] in excluding Pb and Th from
Zhang et al.’s initial set of 64 solids. Twelve subsets of
GMTKN55 and half of SOL62, along with a few other sys-
tems, were used for training and validation, as detailed in
Appendix A 4.

Throughout this paper, we used pymatgen [111] and
ase [112] for structure manipulation and calculation setup,
fireworks [113] for automated workflow management, and
Scikit-learn [114] for the Gaussian process models. The
computational details for the PySCF and GPAW calcula-
tions are provided in Appendices A 2 and A 3, respec-
tively. Appendices A 4 and A 5 describe the training and
validation set selection, and Appendix A 6 covers the se-
lection of control points for the sparse Gaussian processes.
Appendix A 7 describes the selection of noise hyperpa-
rameters and training/validation loss functions, and Ap-
pendix A 8 describes the list of hyperparameters tested
for each model and the model selection procedure. Ap-
pendix A 9 describes how we handled convergence issues
for CIDER models on GMTKN55, and Appendix A 10 de-
scribes the PySCF and GPAW settings that are specific
to the CIDER functionals. Appendix A 11 describes the
band gap benchmark methods. Appendix A 12 describes
the computational cost benchmarking of CIDER for plane-
wave DFT calculations. Finally, Appendix A 13 describes
our methodology for computing charged defect transition
levels.

2. Molecular calculations and reference data generation

Molecular systems, including the nanoclusters discussed in
Appendix A 4, were computed using the PySCF code [61,62].
All calculations were performed using the def2-QZVPPD ba-
sis set (with effective core potentials for atoms larger than Kr)
[115,116] for the atomic orbitals and the def2-universal-jkfit
auxiliary basis set [117] for the classical Coulomb energy.
The seminumerical exchange (SGX) module in PySCF, which
is similar to the computationally efficient chain-of-spheres
exchange algorithm [118], was used to compute the exchange
energy and potential for hybrid functionals. For SGX, level 1
PySCF grids were used with P-junction screening turned off.
For a given subdatabase in GMTKN55, restricted DFT was
used if all systems in that subdatabase had Sz = 0; otherwise,
unrestricted DFT was used. The exception was the PCl3 tran-
sition state in the INV24 database, for which spin symmetry
breaking occurs for some functionals. This system was calcu-
lated with unrestricted DFT as well. For SCF calculations, the
nonlocal features and XC energy were computed on level 3
PySCF grids.

For benchmarking comparison, the GMTKN55 database
was evaluated with the above settings using the PBE [23],
revPBE [84], r2SCAN [80], PBE0 [78], B3LYP [27], and
PW6B95 [83] functionals, all with D4 dispersion corrections
[79], as well as with the B97M-V [53], ωB97X-V [28], and
ωB97M-V [54] functionals.

To collect the exact exchange energy training data, the
ground-state orbitals from the PBE calculations were used to
compute the exact exchange energy E exact

x via Eq. (2), and the
feature vectors were computed from the corresponding PBE
densities. The features were computed on level 1 PySCF grids.
For training set feature generation only (not the SCF calcula-
tions), the integral in Eq. (18) was computed numerically with
the r2 coordinate evaluated on level 3 PySCF grids without
pruning. This dense grid is necessary for numerical stability
and precision in the core region.

3. Solid-state calculations and reference data generation

The electron densities and ground-state energies of the
SOL62 dataset were computed in GPAW [68,69] using the
PBE geometries obtained by Trepte and Voss [33], with an
energy cutoff of 1000 eV and the same k-point meshes as
Trepte and Voss. The h parameter in GPAW was set to the
minimum value required to avoid aliasing of the density, i.e.,
0.096 Å. Fermi-Dirac smearing with a width of 0.01 eV was
used for periodic systems. For isolated atoms, fixed occupa-
tions were used unless numerical instabilities occurred as a
result, which was the case for six atoms (Pb-2, Pd-2, Pt-2,
Sn-2, Ta-5, and V-5, where the number is the ground-state
magnetic moment 2S). In these cases, Fermi-Dirac smearing
with a width of 0.002 eV was used. The default Davidson
solver was used for all solids except the alkaline earth met-
als, which were solved with the conjugate gradient (CG)
method. The CG method was used for all isolated atomic
systems. To compute cohesive energies for training, the
experimental ground state magnetic moments were used for
the isolated atom references. The convergence threshold was
set to 10−6 eV per valence electron for both isolated atoms and
periodic systems. The density convergence threshold was set
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to 10−4 per electron for periodic systems and 10−3 per elec-
tron for isolated atoms. The eigenstates convergence threshold
was set to 4 × 10−8 eV2/electron for periodic systems and
10−5 eV2/electron for isolated atoms. The cell size for the
isolated atoms was chosen to be about 11.7 Å across, with
perturbations included to break symmetry. Compared to a
larger box size of 17.5 Å, the PBE atomic energies had a root
mean square deviation of 0.012 eV and maximum deviation
of 0.080 eV (for Zr). Because of the small average deviation,
and the fact that the train and test reference values were com-
puted on the atom-in-a-box systems rather than determined
by experiment, the smaller boxes were used to lower the
computational cost and memory requirements of training and
testing. Symmetry constraints were also turned off for the
isolated atom calculations.

Training the CIDER models to the solid-state data required
computing the exact exchange energy and the nonlocal fea-
tures for each system. To obtain exact exchange energies,
the hybrid module of GPAW was used to compute the non-
self-consistent exact exchange energy (EXX) from the PBE
orbitals obtained in the above calculations. However, because
the k-point meshes above are too dense for evaluation of EXX
to be computationally feasible, the periodic systems were first
recomputed with a coarser k-point mesh (for each system, the
smallest even, �-centered mesh with a linear k-point density
of at least 4.5 k-points per Å−1), and the EXX was computed
on this mesh. All nonlocal density features were evaluated
on the density and orbitals obtained from the denser k-point
mesh. They were evaluated with the internal CIDER settings
qmax = 300 and λ = 1.8 (see Appendix A 10 for details).

The PBE0 cohesive energies were computed using the
same procedure above, with the PBE0 energies being defined
as

EPBE0 = EPBE,dense − EPBE,coarse + EPBE0,coarse, (A1)

with dense denoting the calculation done with the dense k-
point mesh and coarse denoting the coarser k-point mesh
discussed above.

4. Construction of training and validation sets

The total exchange energy of a molecule is highly basis
set and code dependent, and it is dominated by the core con-
tributions for large atoms. In practice, only relative exchange
energies between systems is relevant for most chemistry and
materials science applications. Therefore, rather than training
the model to match total exchange energies, we trained to
match the exchange energy differences between systems. For
example, the target and predicted values for the atomization
energy of water would be

E target
x = E ex

x [nO] + 2E ex
x [nH] − E ex

x [nH2O], (A2)

Epred
x = Êx[nO] + 2Êx[nH] − Êx[nH2O], (A3)

where E ex
x [n] and Êx[n] are the exact and model ex-

change energies for density distribution n(r), respectively.
The training and validation sets were constructed from four
sources:

Molecules. The W4-11 (atomization energies), BH76 (bar-
rier heights), BH76RC (reaction energies for BH76 reactions),

MB16-43 (“mindless benchmarking” of reaction energies),
S22 (noncovalently bound dimers), G21IP (ionization po-
tentials), PA26 (proton affinities), RG18 (noble gas dimers),
ACONF (alkane conformers), ALKBDE10 (alkali/alkaline
earth diatomic bond energies), HEAVYSB11 (dissociation
energies for molecules with heavy atoms), and SIE4x4 (self-
interaction problems) subsets from the GMTKN55 database
were used for training and validation. See the original
GMTKN55 paper [10] and references therein for more details
on the datasets. Each set was randomly split into two-thirds
training and one-third validation, except for the BH76 and
BH76RC subsets. Because the data points in these subsets are
based on the same systems, and also because they include the
forward and backward reactions for the same chemical equa-
tion, a different splitting procedure was chosen to maintain
train-validation independence. First, the 34 unique transition
states in BH76 were identified and split half-and-half into the
training and validation sets. All 40 reactions with the training
transition states were used for training, and all 36 reactions
with the validation transition states were used for validation.
All 17 BH76RC reactions with systems in the BH76 training
partition were used for training, and the other 13 reactions
were used for validation. All data not in the training or vali-
dation set was classified as the GMTKN55 test set. This data
partitioning scheme resulted in 280 train data, 163 validation
data, and 1062 test data in GMTKN55.

Bulk solids. Half of the SOL62 cohesive energy database
(11 randomly selected elemental metals and 20 randomly
selected nonmetals) was used for training and validation. Nine
systems (C-diamond, Li, GaAs, MgO, LiF, ZrC, TiC, Pd, and
Pt) were hand-selected for the training set to cover a range
of chemical space, while the other 22 systems were used for
validation. All data not in the training or validation set was
classified as the SOL62 test set.

Nanoclusters. Six nanocluster atomization energies were
added to the training set as a “bridge” between the isolated and
extended systems in the study. These were Ca13 and Zn26, with
the initial structure obtained based on the Materials Project
[119] bulk lattice constant and structure optimization at the
PBE/def2-TZVP level in Orca [120–122]; C35H36 (hydrogen-
capped diamond), obtained from Refs. [123,124] and also
structurally optimized in Orca at the PBE/def2-TZVP level;
and Na4Cl4, [Na13Cl14]−, and [Na14Cl13]+, all using the Ma-
terials Project bulk lattice constant without further structure
optimization.

Atoms. Absolute and relative energies of the isolated atoms
H-Kr and a few excited spin states were included in the
training set. Specifically, the training points consisted of the
absolute energies of the H atom and the noble gases He, Ne,
Ar, and Kr; the relative energies of the elements with nuclear
charge Z and Z + 1 for Z = {1, ..., 35}, and the relative en-
ergies of the following ground state/excited state spin pairs:
Sc 1/3, Ti 2/4, V 3/5, Cr 6/4, and Ni 2/0. The preceding
numbers correspond to the magnetic moment 2S.

In addition to fitting to the above training data, the uni-
form electron gas constraint was enforced as described in
Sec. II C 3, and the uniform scaling constraint was enforced
by the scale-invariance of the input features. The ground-
state total energies of the SOL62 solids and isolated atoms
were computed with GPAW as described in Appendix A 3.
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The ground-state energies for all other training data were
evaluated with PySCF as described in Appendix A 2. The
selection of train and validation databases from GMTKN55
includes a wide variety of chemistries and properties. How-
ever, because training data is sampled disproportionately from
small-molecule properties, there is a large distribution shift
between the train/validation and test sets, with the test sets
containing more large molecules, isomerization reactions, and
barrier heights. The use of this train/test partition therefore
serves as a strong test of transferability. The accuracy on
SOL62 also strongly reflects the transferability of a model
because only nine solid-state systems were included in the
training set, and SOL62 covers a wide variety of chemistries.

5. A more diverse training set for numerical stability

To design a more diverse training set for the NL-MGGA-
DTR functional, a kernel function was defined for the
“covariance” between two training points in GMTKN55,

kGMTKN(x, x′) = exp

(
−|x − x′|2

328

)
, (A4)

where x is the vector of errors for 82 functionals benchmarked
on the GMTKN55 database by Goerigk et al. [10] with D3(BJ)
dispersion corrections [125–127], normalized so that the mean
square error across all functionals for that individual data
point is 1. This kernel essentially provides a larger similarity
score between data points for which the (normalized) errors
tend to be similar for a given functional. The kernel matrix
was constructed for the entire GMTKN55 database and then
factorized using a method called Cholesky decomposition
with complete pivoting [128,129], which factors a given ma-
trix A as follows:

P�AP = LL�. (A5)

In Eq. (A5), P is a permutation matrix that orders the vectors
x in Eq. (A4) in decreasing order of their variance, condi-
tioned on the preceding feature vectors, in the space implicitly
spanned by the kernel function. Intuitively, this means that
later vectors, as ordered by P, are likely to be nearly lin-
early dependent (in the kernel space) on the earlier vectors.
Therefore, by picking the first N training points as ordered
by P and using the remaining data for testing, we can get a
training set whose errors correlate as much as possible with all
the test data, effectively making the training set more diverse
and potentially preventing out-of-distribution error of the ML
model.

We follow this procedure and select the first 225 pivots for
the training set, the next 75 pivots for the validation set, and
the remaining 1205 pivots for the test set. With this dataset
partitioning, more than 99% of the GMTKN55 test set data
points contain at least one system not present in the train or
validation sets, so the test set is still sufficiently independent
to assess the transferability of the functionals to new systems.
All training points not contained in GMTKN55 were kept the
same as in Appendix A 4.

6. Control point selection for sparse Gaussian processes

In Eqs. (37) and (38), a set of control points {x̃a} is required
to evaluate the Gaussian process covariance kernel in the
sparse approximation. These control points were initially se-
lected by randomly sampling feature vectors from the PySCF
grids for the training set (Appendix A 2). All training data was
sampled except the SOL62 data, since the features for these
systems were evaluated in GPAW.

Because of the size of the numerical grids from which the
features were sampled, there were a large number of potential
control points for the sparse Gaussian process, many of which
were nearly linearly dependent in the implicit feature space
of the covariance kernel function. To reduce the size of the
control point set, a Cholesky decomposition with pivoting
[Eq. (A5)] was performed on an initial sample size of roughly
104 feature vector samples with a tolerance of 10−5, and only
control points corresponding to significant pivot indices were
kept. This reduced the number of control points from roughly
104 to 102.

7. Selection of noise hyperparameters, training loss,
and validation loss

Chemical and material properties have a wide range of
magnitudes, from less than 1 kcal/mol for some van der Waals
binding energies to greater than 100 kcal/mol for many co-
valent bond dissociation energies. Correspondingly, different
magnitudes of XC errors are expected and acceptable for
these properties; an error of 1 kcal/mol might make a van
der Waals binding energy prediction useless but be acceptable
for an atomization energy. To train the exchange functionals,
it was therefore necessary to weight the noise hyperparame-
ter of each training point to reflect the feasible and desired
precision for the property of interest. To do so, we used the
data provided with GMTKN55 [10] to compute the MAD
of four hybrid functionals [PBE0-D3(BJ), B3LYP-D3(BJ),
PW6B95-D3(BJ), and ωB97X-V] compared to the reference
data on each subdatabase (denoted MADhybrid

DB , where DB is
the sub-database of interest), and then created characteristic
uncertainties for each sub-database as follows (in Hartree
atomic units):

σ̃DB = MADhybrid
DB

(
σ0

MADhybrid
W4-11

)
, (A6)

where W4-11 is a small-molecule atomization energy sub-
database in GMTKN55 and σ0 = 0.03 Eh. One drawback of
the above approach is that it favors high accuracy on systems
that are already described well by conventional, dispersion-
corrected DFT (like simple van der Waals dimers) and
assumes a large uncertainty on systems like self-interaction-
dominated bond energies, for which even hybrid functionals
with small exchange mixing perform poorly. To remedy this,
the noise parameter was augmented with a constant weighting
for every system,

σDB =
√

2

1/σ 2
0 + 1/σ̃ 2

DB

. (A7)

With this definition, the matrix �noise in Eq. (43) is a diagonal
matrix with (�noise)ii being the σ 2

DB for the database to which
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training point i belongs. Constructing the Gaussian process for
this noise parameter is equivalent to regression with the loss
function

L = 1

2

∑
DB

NDBMSDDB

(
1

σ 2
0

+ 1

σ̃ 2
DB

)
, (A8)

where MSDDB stands for the mean squared deviation of a
given GMTKN55 subdatabase labeled by “DB,” and NDB

is the number of points in the subdatabase. This weighting
ensures that training points with small expected errors are ap-
propriately weighted while those with larger expected errors
for conventional functionals do not become underweighted.
For systems outside the GMTKN55 database that were in the
training set, σ̃DB was set by hand.

8. Hyperparameter selection and validation procedure

The models tested in this paper have several discrete and
continuous hyperparameters to be optimized, which are listed
below.

(i) The covariance prefactor hyperparameter �Cov in
Eqs. (56)–(59).

(ii) The kernel length scale (li, where i is the feature
index) in Eq. (60).

(iii) For the nonlocal functionals only, the feature expo-
nent parameters Bi and Ci in Eqs. (20)–(23).

(iv) The baseline exchange functional on top of which the
CIDER model is trained via � learning. We tested
PBE [23] and the Chachiyo GGA [76].

It would be quite challenging and expensive to implement
differentiation of the marginal likelihood with respect to the
second parameter, and nearly impossible for the third since
backpropagation would need to be performed through the fea-
ture evaluation step. Therefore, we used various combinations
of hyperparameters to train the models, and then for each
functional type, we selected the best-performing model on the
validation set as the final candidate functional.

To obtain a discrete set of exponent hyperparameters to test
for the nonlocal functionals, we developed a reduced number
of parameters to specify the feature exponents. Similarly to
the previous CIDER paper [35], a control parameter A tunes
B2 and C2 simultaneously, in two different schemes. The first
scheme (S1) is

B2 = A,

C2 = A

32

6

5π
(6π2)2/3 ≈ 0.18A. (A9)

The second scheme (S2) provides a different mixture of
density-based and gradient/kinetic-energy-based terms,

B2 = A

16

6

5π
(6π2)2/3 ≈ 0.36A,

C2 = B2. (A10)

In both schemes, the other constants are determined by B2 and
C2,

B1 = 1

2
B2, B3 = 2B2, B0 = D

A
B2, (A11)

C1 = 1

2
C2, C3 = 2C2, C0 = D

A
C2, (A12)

where D is an additional parameter to tune the B0 and
C0 coefficients separately from the other coefficients. With

TABLE VI. R1 values for each functional type and baseline
functional.

Type/baseline R1

NL-GGA/PBE 1.0
NL-GGA/Chachiyo 20.0
NL-MGGA/PBE 0.05
NL-MGGA/Chachiyo 1.0

these schemes, all eight parameters {Bi}, {Ci} that define the
three-feature CIDER model were reduced to two parameters
per scheme. For each scheme, we performed a hyperpa-
rameter search over the grid A = {1/2, 1, 2, 4, 8} and D =
{1/2, 1, 2, 4, 8}, resulting in a total of 50 feature constructions
to test.

Because there were already 50 features from which to se-
lect the nonlocal functionals, we set the covariance and feature
length-scales for these models heuristically,

�Cov = R1
〈
�F 2

x

〉
train, (A13)

li = R2

√〈
x2

i

〉
train, (A14)

where 〈〉train is an expectation value over all the grid points in
the exchange energy training set, �Fx is the deviation of the
exact exchange enhancement factor at a given point from the
baseline functional enhancement factor, xi is the ith regular-
ized feature (see Sec. II C 3), and R1 and R2 are constants.
R1 and R2 were set based on the criteria that the resulting
functionals converge consistently in both GTO and plane-
wave calculations and exhibit a small total energy deviation
between the PAW and all-electron GTO atomization energies
for a few small molecules. R2 = 1 worked best for both the
nonlocal GGA and meta-GGA, while the most practical val-
ues of R1 depended on the baseline functional and model
type, as shown in Table VI. The meta-GGA models required
a smaller covariance prefactor to achieve good stability than
the GGA models. We set R1 to be larger by a factor of 20 for
functionals with the Chachiyo baseline compared to the PBE
baseline because 〈�F 2

x 〉train was roughly 20 times larger for
PBE than Chachiyo.

For the semilocal functionals, there was no need to
validate over the possible feature constructions, leaving
more flexibility to test R1 and R2 systematically. For
the functionals with Chachiyo baseline, we tested R1 =
{1, 2, 4, 8, 16, 32, 64, 128}, while for the PBE baseline each
R1 was divided by 20 to give a roughly equivalent �Cov. For
the semilocal functionals, R2 = {1, 1

2 , 1
4 } were tested, result-

ing in 24 functionals to validate. Note that for NL-MGGA-
DTR, we determined from validation set SCF calculations
that R1 = 0.1 with the PBE baseline resulted in sufficiently
stable models, so this larger value was used. In addition, we
did not search over feature length-scale for NL-MGGA-DTR,
and instead used the features determined to be most accurate
for NL-MGGA and NL-MGGA-PBE.

After the functionals were trained, we selected the top
10 functionals of each type and baseline functional, as
classified by non-self-consistent performance on the vali-
dation set via Eq. (A8). To validate these functionals, the
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GMTKN55 train and validation set reaction energies were
predicted using self-consistent calculations with a conver-
gence threshold of 10−6 Eh and a gradient threshold of 2 ×
10−3 Eh. For a given functional, if any calculation failed to
converge when starting from both the default initial guess of
PySCF and from the PBE orbitals, the functional was deemed
insufficiently numerically stable and disqualified from further
consideration. The non-self-consistent cohesive energies of
the SOL62 validation set were also computed. Of the function-
als for which all calculations converged, the validation loss
consisted of

Lval = LMOL + LSOL, (A15)

LMOL = 1

2

∑
DB

NDB/VAL × MSDSCF
DB/VAL ×

(
1 + σ 2

0

σ̃ 2
DB

)
,

(A16)

LSOL = MSDNSCF
SOL62/VAL22, (A17)

where MSDSCF
DB/VAL is the self-consistent mean square de-

viation on the validation partition of GMTKN55 subset
DB, NDB/VAL is the number of validation data in DB, and
MSDNSCF

SOL62/VAL22 is the non-self-consistent mean square de-
viation of the 22 validation-set cohesive energies per atom.
The final functional of each type was selected based on which
candidate had the lowest loss for Eq. (A15). The validation
results and selected hyperparameters for the functionals are
provided in Sec. S4 within the Supplemental Material [77].

9. Difficult convergence cases

The default convergence tolerance for the calculations per-
formed with CIDER functionals was 10−8 Eh, except for the
NL-MGGA-PBE and NL-MGGA-DTR calculations, which
were converged to 10−9 Eh when possible. Some CIDER
calculations did not converge to this tolerance within the
default PySCF settings. There were two different classes of
convergence problems. First, for a few systems, some CIDER
calculations did not converge from the PySCF starting guess,
but the convergence issues were resolved by starting from
PBE ground-state orbitals. Second, for some systems (espe-
cially isolated atoms and ions, as well as alkali and alkaline
earth-containing systems), a numerical stability issue was ob-
served for some CIDER calculations, in which the energy
converged to a reasonable tolerance (less than 10−7 Eh), but
the orbital gradients oscillated around 10−3 Eh without con-
verging fully. In these cases, the energy tolerance was set to
10−7 Eh, and the gradient tolerance was set to the (rather
large) 2 × 10−3 Eh. All CIDER calculations converged to
these thresholds. PBE starting orbitals were also used for
these loose-threshold calculations. Even with these looser
thresholds, the achieved energy and orbital gradient conver-
gence is still sufficient to compare thermochemical data in the
GMTKN55 database.

10. CIDER functional settings

The CIDER functionals require a few additional settings to
specify the precision of the accelerated feature calculations.
For the molecular version, these settings are lmax, the maxi-
mum spherical harmonic order for auxiliary basis expansions

in Sec. II E; λ, in Eq. (62); βaux, in Eq. (73); and qmax, the
maximum value of qα [Eq. (62)]. The ξ basis in Eq. (76) uses
the same parameter λ for the even-tempered basis as Eq. (62).
We chose lmax = 10, λ = βaux = 1.6, and qmax = 1000

36 Z2
max,

where Zmax is the minimum of 36 and the charge of the
largest nucleus in the given GMTKN55 subdatabase. These
settings were found to be in good agreement with numerical
integration of the features. The minimum control point q0 was
set automatically based on the minimum allowed value of the
kernel exponent a(r).

For the plane-wave implementation, only λ = 1.8 and
qmax = 300 needed to be specified. A larger qmax,atom = 10Z2

was used for each atom on the radial support grids, with Z
being the atomic number. In both the Gaussian-type orbital
and plane-wave implementations, all other CIDER-specific
parameters (like the minimum exponents for the various aux-
iliary bases) were set automatically based on the chosen basis
set and nonlocal feature parameters (i.e., the parameters in
Appendix A 8).

11. Band gap calculations

Band gaps for the database of Borlido et al. [45] were
computed in GPAW [68,69] as the difference between the
conduction band minimum and valence band maximum for
a ground-state SCF calculation. The energy cutoff for these
calculations was 520 eV, and the grid spacing was set to
h = 0.134 Å to avoid any aliasing of the density. Fermi-Dirac
k-point smearing was used with a width of 0.01 eV, except
for the noble gas systems, for which no k-point smearing was
used. The k-point mesh for each system was selected to be the
smallest even, �-centered mesh with a linear k-point density
of at least six k points per Å−1. For each system, if the PBE
band gap we obtained was more than 0.1 eV larger than the
PBE band gap obtained by Borlido et al. [45], we inferred
that the k-point mesh was too coarse and reran the band
gap calculation with a linear k-point density of 10 k points
per Å−1. Using this methodology, we reproduced the PBE
band gaps of Borlido et al. with a mean, mean absolute, and
maximum error of –0.01, 0.03, and 0.17 eV, respectively, and
the SCAN results with a mean, mean absolute, and maximum
error of 0.00, 0.03, and 0.15 eV, respectively.

For PBE0/NL-MGGA-DTR and PBE0(0.35)/NL-
MGGA-DTR, a few systems did not converge with
the default CIDER PAW corrections, and a denser core
integration grid and smaller set of feature projectors (i.e.,
the gA

i and pA
i functions of Sec. II F) were used. Even

with these settings, one system (ReSe2) did not converge
with PBE0(0.35)/NL-MGGA-DTR, and it had to be run
with SG15 norm-conserving pseudopotentials (NCPP)
[130]. For the 255 calculations in the main text, the
mean, mean absolute, and maximum deviations between
PBE0/NL-MGGA-DTR with NCPP and PAW were 0.03,
0.12, and 1.12 eV, respectively. In addition, the band gap
for ReSe2 with PBE0/NL-MGGA-DTR was 1.29 eV with
PAW and 1.30 eV with NCPP, so the use of pseudopotentials
appears reasonable for this particular case. We think that the
convergence issues are caused by numerical problems with
the PAW corrections for nonlocal features, and improving the
numerical stability of these corrections will be a subject of
future work.
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For the band gaps in Table IV, the same procedure was
used, except with denser k-point meshes containing 12 points
per Å−1. The HSE06 band gaps were computed using VASP
[97], with the k-point mesh set to contain 4000 k points
divided by the number of atoms in the unit cell. This is a
coarser mesh than was used for the semilocal and CIDER cal-
culations, but we found that the band gap difference compared
to larger k-point densities was less than 0.01 eV.

12. Supercell and neutral defect performance benchmark

For the neutral defect calculations, the atomic structure
of the 215-atom single vacancy cells of diamond and sili-
con were obtained using VASP [97–99] with PAW datasets
[67,74], an energy cutoff of 520 eV, the “Accurate” precision
setting, and a 2 × 2 × 2 Monkhorst-Pack k-point mesh [96],
starting with the PBE lattice constant obtained in VASP using
the same settings with a 14 × 14 × 14 �-centered k-point
mesh. Using these structures, SCF ground-state calculations
with static atomic positions were performed in GPAW [68,69]
for the 216-atom bulk and 215-atom vacancy cells for each
functional. The formation energy of the neutral defect was
computed as

E formen = Edefect − 215

216
Ebulk, (A18)

where the bulk and defect energies were computed with
216 and 215-atom supercells, respectively, with a 2 × 2 × 2
Monkhorst-Pack k-point mesh (resulting in one reduced k-
point for the bulk supercell and four reduced k-points for
the defect supercell), 520 eV plane-wave cutoff, 0.134 Å grid
spacing, and 10−5 eV convergence threshold. 523 bands were
computed for the bulk, and 520 bands were computed for
the defect cell. The time to evaluate the formation energy for
each functional was computed as the sum of the time taken
for the bulk and vacancy cell calculations, as obtained from
the GPAW internal calculation timer. The HSE06 and PBE0
formation energies were obtained using VASP with the same
structures, k-point grid, and energy cutoff.

For the �-point calculations used in Fig. 8(a), GPAW
was also used for the semilocal and ML functionals. For
the hybrid DFT calculations, Quantum ESPRESSO [94,95]
was used with the adaptively compressed exchange [17] algo-
rithm for exchange, a 38-Rydberg plane-wave cutoff for the
wave functions, a 152-Rydberg cutoff for the charge density
and potential, a 10−6 Rydberg convergence threshold, and
SG15 norm-conserving pseudopotentials [130]. The use of a
38-Rydberg (517 eV) plane-wave cutoff might be too small
when using norm-conserving pseudopotentials, but for perfor-
mance benchmarks, it provides the most fair comparison to the
520 eV cutoff used with the PAW setups in GPAW. The PBE
calculation with Quantum ESPRESSO used the same settings
but with PBE in place of PBE0. The GPAW calculations used
523 bands, and the Quantum ESPRESSO calculations used
432 bands.

13. Charged defect calculations

The charged defect levels were computed with PBE,
PBE0/NL-MGGA-DTR, and PBE0(0.3)/NL-MGGA-DTR.
The mixing parameter α = 0.3 of the last functional was

selected to match the zero-temperature experimental band
gap of silicon, 1.17 eV. For each functional, the lattice
constant, band edges, and band gap were obtained from a
unit-cell relaxation with 520 eV cutoff, h = 0.134 Å, and
a 24 × 24 × 24 k-point mesh in GPAW [68,69]. Then, a
512-atom supercell was created for each defect, with per-
turbed structures used for the vacancy to break symmetry.
For each charge state and defect, the geometry was relaxed
in GPAW using the BFGS with Line Search algorithm to a
tolerance of 0.05 eV/Å with a �-point only calculation. This
geometry was then used as the starting point for the final
geometry relaxation, which was performed with a 2 × 2 × 2
�-centered k-point mesh and a force convergence tolerance
of 0.01 eV/Å. Because PBE0(0.3)/NL-MGGA-DTR is so
similar to PBE0/NL-MGGA-DTR, and because the lattice
constants are similar, we saved time for this functional by
starting the final relaxation from the fractional coordinates of
the PBE0/NL-MGGA-DTR calculations.

The formation energies of the defects were calculated as
[6]

E f [X q] = Etot[X
q] − Etot[bulk]

−
∑

i

niμi + qEF + Ecorr[X
q], (A19)

where Etot is the total ground-state energy of the supercell
DFT calculation, X q is defect X in charge state q, EF is the
Fermi level, and Ecorr[X q] is a finite-size energy correction
for the defect. The stoichiometry changes and chemical po-
tentials ni and μi were neglected because they do not impact
electronic transition levels. We used the Freysoldt finite-size
correction-scheme for Ecorr[X q] [100], which combines an
electrostatic and potential alignment correction. This correc-
tion requires an estimate of the dielectric constant ε, for which
we used the experimental value of 11.9 [131].

Because some of the defects studied in this paper are
shallow donors and acceptors, and because electrostatic cor-
rections like those developed by Freysoldt et al. [100] and
Kumagai et al. [132] assume localized charges, these correc-
tions might be inaccurate. Therefore, for comparison, we also
computed the transition levels using the potential alignment
correction only, i.e.,

Ecorr[X
q] = q

(
V̄ ∞

esp[X q] − V̄ ∞
esp[bulk]

)
, (A20)

where V̄ ∞
esp is the average electrostatic potential in a region far

from the defect site. This is equivalent to the full Freysoldt
correction with ε → ∞. We used pymatgen [111] to perform
the corrections.

APPENDIX B: CONSTRUCTION OF FEATURE
PROJECTOR FUNCTIONS FOR CIDER WITHIN PAW

1. Construction of feature smoothing projectors

We solve for the coefficients Djβ and Ciα in Eqs. (87) and
(88) by minimizing the loss function

L =
∑

β

wβ

∫
d3r[ŷA,β (r) − �FA,β (r)]2. (B1)
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For the current implementation, wβ = 1, but this could be
changed if needed to encourage better smoothness or numeri-
cal precision. We start with the following set of functions:

gi←nlm(r) =
{

Ylm(r̂)P(2n + l, r/rc) r < rc

0 r � rc
, (B2)

P(n, x) =

⎧⎪⎨⎪⎩
1
2 (1 + cos πx) n = 0
Q(n − 1, x) n ∈ O

R(n − 2, x) n ∈ E

, (B3)

Q(m, x) = 5

(
sin

πx

2
− 1

2
+ 1

2
cos πx

)
xme−mx2

, (B4)

R(m, x) = 1

2
(1 − cos(2πx))xme−mx2

, (B5)

where O and E are the sets of positive odd and even integers,
respectively. Then we introduce the matrix P

P =
(

P11 P12

(P12)� P22

)
. (B6)

In the above equation, P11 is an NhNa × NhNa matrix,

P11
jβ, j′β ′ = δββ ′

〈
hA

j

∣∣h j′
〉+ δ j j′δββ ′σ11, (B7)

where Nh is the number of hA
j functions and Na is the number

of control points for kernel interpolation. Similarly, P22 is an
NgNa × NgNa matrix,

P22
iα,i′α′ =

∑
β

wβIβ,iα,i′α′ + δii′δαα′σ ′
22, (B8)

Iβ,iα,i′α′ =
∫

d3r φiαβ (r)φi′α′β (r)(1 + σ22 fcut (r)) (B9)

φiαβ (r) =
∫

d3r′ �αβ (r′ − r)gA
i (r′), (B10)

where Ng is the number of gA
i functions. The constants σ11,

σ22, and σ ′
22 are regularization constants to reduce the mag-

nitude of the feature augmentation correction in the core
region, which helps with numerical stability by preventing the
pseudo-feature from being unrealistically large in the core.

Lastly, P12 is an NhNa × NgNa matrix,

P12
jβ,iα = wβ

∫
d3r h j (r)φiαβ (r). (B11)

The coefficients can be solved by minimizing the loss
Eq. (B1), which results in the linear system(

D
C

)
=
(

P11 P12

(P12)� P22

)−1(
b1

b2

)
, (B12)

where

b1
jβ = wβ

∫
d3k �FA,β (k)hA

j (k), (B13)

b2
iα =

∑
β

wβ

∫
d3k �FA,β (k)φiαβ (k). (B14)

The matrix P is block diagonal in the angular momentum
channels because of the orthogonality of spherical harmonics,
so each angular momentum channel can be solved separately.
This makes the whole routine fairly efficient, and the number
of operations per SCF cycle is linear-scaling in the number
of atoms. The Fourier transforms of the gA

i and hA
j func-

tions needed for Eqs. (B13) and (B14) are obtained using the
NUMSBT algorithm [133], and the �FA,β (k) is decomposed
into angular momentum channels via the �FA,L,β (k) term
obtained in Eq. (85). Also, note that there are a larger number
of α and β indices in the atomic augmentation regions than
on the FFT grid. The above fitting procedure is only used for
indices going up to the maximum α index on the FFT grid.
The higher indices (corresponding to larger values of qα that
are only relevant in the core regions) are solved by simply
projecting onto the hA

j (r) basis, i.e., setting D = (P11)−1b1 in
the subspace of core region-only α indices. This procedure is
equivalent to assuming that the larger qα contributions to θα

and Fβ are localized in the core region, which is reasonable
because these contributions correspond to high densities and
short length-scales for �αβ (r) [Eq. (19)].

2. Construction of the feature augmentation projectors

The feature augmentation projectors used in Eq. (92) are
constructed as

pi←nlm(r) = Ylm(r̂)P(2n + l, r/r0), (B15)

P(n, x) =
{

xn(x2 − 1)2 x < 1
0 x � 1

. (B16)

The on-site function sets f̃ A
i (r) and p̃A

j (r) are then computed
as

p̃i(r) = pi(r) fcut(r), (B17)

f̃i(r) =
∑

j

(S−1)i j p j (r), (B18)

Si j =
∫

d3r pi(r)p j (r) fcut(r), (B19)

fcut(r) =
{ 1

2

(
1 + cos πr

rc

)
r < rc

0 r � rc
. (B20)

The construction localizes p̃A
j (r) inside the core region and

satisfies the condition that 〈 f̃ A
i | p̃A

j 〉 = δi j .
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