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Spin-boson model under dephasing: Markovian versus non-Markovian dynamics
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The spin-boson model, describing a two-level system coupled to a bosonic bath, is extensively studied as a
paradigmatic dissipative quantum system, exhibiting rich dynamical behavior and even a localization transition
in the strong coupling regime. Here, we additionally consider dephasing as a source of Markovian dissipation
on top of the non-Markovian dynamics due to an Ohmic bath, and investigate the dynamics of the spin. We
show that the characteristic frequency of the spin dynamics, while strongly renormalized by the bosonic bath,
changes in a simple fashion (or does not change at all) with dephasing. To obtain these results, we develop an
exact nonperturbative method known as the stochastic Schrödinger equation, mimicking the Ohmic bath via a
stochastic magnetic field combined with the Lindblad quantum master equation due to dephasing, which allows
us to numerically compute the dynamics. Furthermore, we derive weak-coupling analytic results utilizing the
well-known noninteracting blip approximation. Our findings are relevant to quantum simulation of the spin-
boson model in the regime of strong coupling in trapped ions and circuit QED architectures among others.
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I. INTRODUCTION

A quantum impurity coupled to a bath defines a paradig-
matic problem in quantum many-body physics. It leads to
emergent phenomena ranging from the Anderson orthogo-
nality catastrophe [1] and the x-ray edge problem [2] to the
resistivity upturn in the Kondo problem [3]. Furthermore, the
paradigm of the quantum impurity model provides a power-
ful computational approach to strongly correlated many-body
systems via dynamical mean field theory [4]. In general, cou-
pling to the surrounding environment entangles the impurity
with the degrees of freedom in the environment and leads to
dissipative dynamics. Maintaining the coherence in qubits in
spite of the coupling to environment is a fundamental chal-
lenge in quantum computation and simulation.

A widely studied quantum impurity problem is the so-
called spin-boson model (also intimately related to the Kondo
physics) where a two-level spin is coupled to a bath consist-
ing of many bosonic degrees of freedom usually considered
as an infinite collection of harmonic oscillators [5]. The
coupling between the spin and the bath can be fully charac-
terized by the bath spectral function J (ω). For an Ohmic bath
characterized by J (ω) ∼ αω, the spin-boson model exhibits
distinct phenomena depending on the coupling α between the
spin and the bath such as (underdamped) coherent oscilla-
tions (0 < α < 1/2), incoherent damping (1/2 < α < 1), and
a delocalized-to-localized quantum phase transition (α > 1)
[5]. A characteristic feature of the spin-boson model is the
strong renormalization of the underdamped oscillations due
to the coupling to the Ohmic bath when 0 < α < 1/2. The
strong coupling regime in the spin-boson model has been
recently realized in superconducting quantum circuits [6,7].

While the spin-boson model was originally introduced in
the domain of condensed matter physics, there are various
proposals realizing this model in quantum simulation plat-
forms. In particular, ultrastrong coupling of an artificial atom

to an electromagnetic continuum—mimicking the bath—has
been recently observed in superconducting circuits [6,8,9].
Beside superconducting qubits [6,10], trapped ions [11,12]
and cold atoms [13] have also emerged as versatile platforms
for realizing the spin-boson model; more generally, models
where one or many spins are coupled to a single or several
bosonic modes have been realized or proposed in a wide
range of platforms [14–20]. Quantum simulation in many such
platforms relies on driving the system to engineer an effective
Hamiltonian in the rotating frame. A regime of immense
interest is where an (ultra)strong coupling between a two-level
system and the bosonic environment is achieved.

Quantum simulation thus provides an attractive alternative
for exploring quantum impurity problems [21]. However, un-
wanted dissipation, for example, the noise in lasers, cannot
be avoided in these platforms [22]. This unwanted feature
should be contrasted with the desired dissipation due to the
coupling to the bosonic bath: the former may be approximated
as Markovian and typically results from weak coupling to
an environment, while the latter is desired in the regime of
strong coupling, and is therefore non-Markovian by nature.1 A
timely question is then how the quantum characteristics—
from coherent oscillations to a localization transition—of the
spin-boson model are affected in the presence of the unavoid-
able Markovian dissipation. And how should one describe the
competition between Markovian and non-Markovian dynam-
ics? A challenge presents itself immediately: In the presence
of the drive and Markovian dissipation in quantum simulation
platforms, the resulting spin-boson model is inherently driven-
dissipative. That is, the system will not be in its ground state
even if the bosonic modes are at zero temperature, but will

1In this paper, we consider a specific notion of Markovianity in
the sense that the dynamics can be described by a set of Lindblad
operators.
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instead approach a nonequilibrium steady state as the result of
the competition between drive, dissipation, and the coupling
to the bosonic bath. These questions have been investigated
recently in mean-field Dicke-type models [23–26]; however,
a strongly interacting spin-boson model poses a formidable
challenge. To this end, a relatively large toolbox has been
developed to tackle this problem based on Bethe ansatz [27]
and perturbative methods [28] as well as the widely used
noninteracting blip approximation (NIBA) [5,29], functional-
integral approaches [5], renormalization group [30], and,
more recently, tensor-network methods [31–35]. Addition-
ally, several stochastic methods have been developed such
as Liouville-von Neumann equations [36,37] and quantum
state diffusion [38,39]. Specifically in the case of an Ohmic
bath, a stochastic Schrödinger-like equation (SSE) [40] is con-
structed, which enjoys rapid convergence while being exact.

In this paper, we investigate the dynamics of the spin-boson
model coupled to an Ohmic bath with 0 < α < 1/2 while
subject to Markovian dissipation. Specifically, we investigate
how the underdamped oscillations and their characteristic
renormalized frequency are affected in the presence of the
Markovian bath. We consider dephasing along different axes
as the primary source of Markovian loss. For dephasing
along the axis of the spin-only Hamiltonian (decoupled from
bosonic modes), we find that the characteristic frequency is
barely dependent on Markovian dissipation, underscoring its
robustness against dissipation. For dephasing along the axis
set by coupling to the bosonic bath, we find that the frequency
decreases with dissipation in a simple fashion, and that the
dynamics becomes overdamped at large values of dephasing.

We obtain the above results by a combination of a nu-
merically exact method based on a nonperturbative SSE as
well as the widely used NIBA [5,29]. The former method is
based on a reparametrization of the spin configuration in the
path integral combined with the influence functional of the
spin-bath coupled system [40]. We simplify, adapt, and extend
the method pioneered in Ref. [40] to the case of Markovian
(on top of non-Markovian) dissipation. As a complementary
approach, we derive analytical results based on NIBA, which
provides a weak-coupling approximation in the context of the
spin-boson model.

The structure of this paper is as follows. In Sec. II, we intro-
duce the spin-boson model in the presence of the Markovian
dissipation. We derive the SSE for the dynamics in Sec. III and
provide the numerically exact results in Sec. IV. In Sec. V, we
provide the analytical results from the NIBA in the presence
of Markovian dissipation, and show excellent agreement with
the numerically exact results. We also discuss and interpret
our results in this section. Finally, in Sec. VI, we summarize
our findings and remark on interesting future directions. We
present our simplified derivation of the SSE in Appendix A
and a detailed derivation of the NIBA in Appendix B.

II. SPIN-BOSON MODEL UNDER MARKOVIAN LOSS

In this section, we introduce the main model. Let us first
consider the paradigmatic spin-boson model describing a two-
level system S coupled to an infinite number of noninteracting
bosons denoted by B. The system-bath model is described by

the Hamiltonian H :

H = �

2
σx +

∑
k

ωkb†
kbk + σz

2

∑
k

λk (b†
k + bk ). (1)

We denote the three terms on the right-hand side by HS , HB,
and HSB representing the system, the bath, and the linear
coupling between the two, respectively. The effective cou-
pling between the spin and the bath depends on ωk and λk ,
and is fully characterized by the spectral function defined as
J (ω) = π

∑
k λ2

kδ(ω − ωk ). Specifically, for an Ohmic bath,
the spectral function is given by

J (ω) = 2παωe−ω/ωc , (2)

where the interaction parameter α controls the properties of
the spin and ωc is the frequency cutoff of the bath. In this
paper, we consider an Ohmic bath with 0 < α < 1/2. It is
well-known that, in this regime, the spin exhibits damped
oscillations at a frequency

�r = �(�/ωc)
α

1−α , (3)

which is strongly renormalized by the coupling to the Ohmic
bath and exhibits a universal dependence on α, a feature that
is intimately related to the Kondo physics [5]. Notice that �r

is smaller than the bare value � because spin transitions are
suppressed in the presence of a cloud of bath modes [40]. We
emphasize that the bosonic bath considered above constitutes
a non-Markovian bath, in general, since the coupling is gen-
erally of the same order as the energy scales of the system.
Additionally, the spectral function varies significantly with
frequency. This is in contrast to a Markovian environment,
which is frequency independent at the relevant optical fre-
quencies.

Now motivated by the quantum simulation proposals for
the spin-boson model, we also consider Markovian dissipa-
tion due to environmental sources of noise. The resulting
dynamics is more generally governed by a quantum master
equation [41,42] as

dρ(t )

dt
= −i[H, ρ] +

∑
μ

[
LμρL†

μ − 1

2
(L†

μLμρ + ρL†
μLμ)

]
,

(4)
where H is the Hamiltonian defined in Eq. (1), and Lμs
describe different types of Lindblad operators characterizing
Markovian dissipation. In this paper, we consider two ex-
amples of Markovian dissipation: dephasing Ldph = √


φσz

and depolarization Lx = √

xσx. While depolarization is com-

monly referred to as a quantum channel where the Block
sphere contracts uniformly, here we have used it to refer
to dephasing along the x direction. These Lindblad opera-
tors could result, for example, from the laser noise. More
precisely, consider a noisy field in the Hamiltonian, H →
H + B(t )σz mimicking laser fluctuations. Assuming that this
term is rapidly fluctuating, it can be considered as white noise,
B(t )B(t ′) = 
zδ(t − t ′). It is then easy to see that the above
quantum master equation is recovered for the noise-averaged
density matrix with L = √


zσz [43]. A Lindblad operator
L ∼ σx could emerge on similar grounds. These types of noise
are ubiquitous in quantum simulation platforms where the
spin-boson model can be realized. In this respect, H should
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be interpreted as the Hamiltonian in the rotating frame; for
example, see Refs. [11,12] for drive schemes where the above
dynamics is realized in trapped ions. The driven nature of
the model is thus disguised in the rotating frame. An alter-
native perspective is to consider the Hamiltonian HS = �

2 σx

as the system Hamiltonian, while the two (Markovian and
non-Markovian) baths are mutually out of equilibrium. This
is conceptually similar to a system coupled to two baths at
different chemical potentials, resulting in a nonequilibrium
steady state [44].

In this paper, we investigate the interplay of coherent
dynamics, coupling to the bosonic modes, and Markovian
dissipation. In particular, we investigate if and how the renor-
malized frequency in Eq. (3) changes in the presence of
Markovian dissipation. We show that, rather surprisingly, the
frequency is unaffected by depolarization even at moderate
values of 
x; in contrast, the frequency decreases in the pres-
ence of dephasing and the dynamics becomes overdamped at
sufficiently large values of 
φ . To this end, we first develop a
nonperturbative method to exactly simulate the dynamics.

III. STOCHASTIC SCHRÖDINGER EQUATION

In this section, we introduce a nonperturbative technique
for an exact numerical solution of the dynamics via the SSE
method. A similar approach has been developed for the spin-
boson model in the absence of Markovian bath [40]; see
also Ref. [45]. We first provide a brief introduction of this
method for the standard spin-boson model before considering
Markovian loss.

A first step is to vectorize the density matrix via |i〉〈 j| →
|i j〉〉 ≡ |i〉 ⊗ | j〉. The Hamiltonian dynamics can be then ex-
pressed as

|ρ(t )〉〉 = e−i(Hu−Hl )t |ρ(0)〉〉, (5)

where we have defined Hu = H ⊗ I and Hl = I ⊗ HT .
In a convenient basis, where σx,z as well as bk and b†

k
(in the number basis) are real, we have HT = H∗ = H . We
further assume that at time t = 0 the bath is at the in-
verse temperature β and is decoupled from the spin which
is initially in a state given by the density matrix ρS (0).
Hence, the initial density matrix of the system plus bath
is ρ(0) = ρS (0) ⊗ e−βHB/TrB(e−βHB ). In the vectorized form,
the initial density matrix is then given by

|ρ(0)〉〉 = |ρS (0)〉〉 ⊗ |e−βHB〉〉
TrB(e−βHB )

. (6)

We then trace out the bath degrees of freedom to find the
reduced density matrix of the spin, ρS (t ) = TrB(ρ(t )). In
our vectorized notation, the latter density matrix is given by
|ρS〉〉 = 〈〈IB|ρ(t )〉〉, where 〈〈IB| is the vectorized form of the
identity matrix corresponding to the bath. We can thus write

|ρS (t )〉〉 = 〈〈IB|e−i(Hu−Hl )t |ρ(0)〉〉. (7)

The bath degrees of freedom can be traced out exactly
in an elegant fashion using the Feynman-Vernon formal-
ism [46,47]. The resulting influence functional comes with
nontrivial kernels that involve long-range coupling between
the spin variables at different times. Assuming an Ohmic

bath and ωc � �, the kernel corresponding to the retarded
(causal) component becomes local in time, while the kernel
corresponding to the quantum fluctuations of the bosonic bath
can be dealt with using a Hubbard-Stratonovich transforma-
tion [48,49]. The result is the SSE that can be efficiently
simulated in the limit 0 < α < 1/2 and large ωc. We refer the
interested reader to Appendix A for details, and just quote the
expression for the state at time t :

|ρS (t )〉〉 =
∞∏

m=0

∫
dxm√

2π
e−x2

m/2Tt e
−i
∫ t

0 dsA (s)|ρS (0)〉〉. (8)

Here, Tt denotes time ordering, and the matrix A (t ) is given
by (in the σz basis)

A (t ) =

⎛⎜⎜⎜⎜⎝
0 −�

2
�
2 0

−�
2 eiπα h(t ) 0 �

2 e−iπα

�
2 e−iπα 0 −h(t ) −�

2 eiπα

0 �
2 −�

2 0

⎞⎟⎟⎟⎟⎠, (9)

with the function h(t ) defined as

h(t ) =
∞∑

m=0

xm

√
Gm

π
ψm(t ). (10)

Here, Gm and ψm(t ) are known variables and functions de-
fined in Appendix A. Notice that h(t ) mimics a stochastic
longitudinal field as the coefficients xm are drawn from a nor-
mal distribution. The expression in Eq. (8) can be computed
by solving a time-dependent Schrödinger equation as

d

dt
|ψ (t )〉 = −iA (t )|ψ (t )〉, (11)

where |ψ〉 represents the state of a four-level system.
In practice, the integral over xm is performed by sam-

pling from a normal distribution [40]. For each realization,
we generate x0, x1, ..., xmmax , which we may truncate at the
order mmax, compute h(t ) defined in Eq. (10), which is then
substituted in Eq. (11) to solve for |ψ (t )〉 as a function of
time. Finally, we take the arithmetic average of |ψ (t )〉 over
different realizations, which yields the vectorized density ma-
trix |ρS (t )〉〉 = |ψ (t )〉, with the bar indicating the average over
different realizations.

Solving the SSE allows us to compute quantities of inter-
est; for example, 〈↑|ρS (t )|↑〉 = 〈〈↑↑|ρS〉〉 = ψ1(t ), is given by
the first component of the vector |ψ (t )〉 upon averaging over
different realizations. We will be particularly interested in the
expectation value of σz which is given by

〈σz(t )〉 = 2ψ1(t ) − 1. (12)

Finally, we remark that our derivation of the SSE (see
Appendix A) is rather simple compared to the more involved
approach in the literature [40].

Next, we consider Markovian dissipation which can be
naturally and simply incorporated into the SSE. Let us first
recall that the evolution of the density matrix of the systems
plus bath in the presence of Markovian dissipation is governed
by the Lindblad master equation in Eq. (4). A first step then is
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to vectorize this equation as

d

dt
|ρ(t )〉〉 = L |ρ(t )〉〉,

where L = −i(H ⊗ I − I ⊗ HT ) +
∑

μ

[
Lμ ⊗ L∗

μ − 1

2
(L†

μLμ ⊗ I + I ⊗ LT
μL∗

μ)

]
, (13)

where we consider dephasing Ldph = √

φσz as well as depolarization Lx = √


xσx. The Hamiltonian involves the bosonic bath
which should be traced out systematically. On the other hand, the Markovian dissipation in the last line of the above equation is
simply a superoperator that acts only on the spin. Therefore, the same steps leading to the SSE in Eq. (11) can be adapted
to the full dynamics simply by adding the dissipative superoperator to the matrix A . The result is a stochastic Schrödinger
equation governed by the evolution operator

B(t ) = A (t ) +

⎛⎜⎜⎝
−i
x 0 0 i
x

0 −i(
x + 2
φ ) i
x 0
0 i
x −i(
x + 2
φ ) 0

i
x 0 0 −i
x

⎞⎟⎟⎠. (14)

A sum over different realizations of the stochastic field is
conducted to compute expectations values of observables of
interest. With the Ising symmetry, both the model and the
formalism bear resemblance to a driven-dissipative quantum
Ising model that have been studied recently using a quantum-
to-classical mapping [50].

IV. NUMERICAL RESULTS

In this section, we use the SSE to numerically simulate
the dynamics of a spin coupled to an Ohmic bath as well as
a Markovian bath at temperature T = 0. To benchmark our
method, we first consider the spin dynamics in the absence
of Markovian dissipation. In particular, we verify that the
spin exhibits underdamped oscillations at the renormalized
frequency given by Eq. (3). To compute the dynamics us-
ing the SSE approach, we have included 10 000 and 50 000
realizations of the stochastic field for dephasing and depo-
larization, respectively. We start from the initial state |↑〉 (in
the σz basis), take the tunneling rate � = 2 and a large cutoff
ωc = 100 where the SSE is applicable. The expectation value
〈σz(t )〉 is then computed from Eqs. (11) and (9), and 12;
we use the fourth-order Runge-Kutta method [51] to solve
the time-dependent Schrödinger equation. In Fig. 1, we show
〈σz(t )〉 in the absence of Markovian dissipation. In the top
panel of Fig. 1, we find underdamped oscillations for different
values of α = 0.05 − 0.35 and show that the frequency of
oscillations is the same in units of �r . We also consider the
quality factor �/γ , where � (γ ) is the frequency (decay
rate) of 〈σz(t )〉. In the lower panel of Fig. 1, we contrast
this factor computed from the SSE against the exact result
(obtained from conformal field theory [52]), and find excellent
agreement.

We now switch on the Markovian dissipation. In Fig. 2,
we show 〈σz(t )〉 as a function of time for both depolariza-
tion (upper panel) and dephasing (lower panel). We make
the following observations. For depolarization (i.e., dephas-
ing along the x direction), the dynamics decays faster, but
interestingly the frequency is barely dependent on the dissi-
pation strength and is just set by the (non-Markovian) Ohmic
bath. This can also be viewed as a kind of robustness against

depolarization. This behavior suggests a nonrenormalization
of the frequency by the Markovian dissipation. On the other
hand, the dephasing channel not only changes the decay rate,
but clearly changes the frequency of oscillations as well. In
fact, for sufficiently large 
φ , we find a transition into over-
damped dynamics.

To gain a better analytical understanding of the dynamics
in the presence of Markovian dissipation, we perform a weak-
coupling perturbative approach, widely known as the NIBA,
in the next section.

V. NONINTERACTING BLIP APPROXIMATION

In this section, we compute 〈σz(t )〉 for different types
of Markovian dissipation using NIBA, which is effectively
a weak-coupling approximation that correctly produces the
renormalized frequency and quality factor of the spin-boson
model for an Ohmic bath [29]. In this section, we employ and
extend the methodology of NIBA to the spin-boson model
in the presence of Markovian dissipation. To illustrate this
method, we first consider the spin-boson model with the spin
subject to dephasing. The dynamics in our vectorized notation
is given by

d

dt
|ρ(t )〉〉 = L |ρ(t )〉〉, (15)

where the Liouvillian superoperator is given by
(using H = HT )

L = −i[H ⊗ I − I ⊗ H] + 
φ (σz ⊗ σz − I ). (16)

We then apply a polaron transformation [53] via the
unitary operator U = exp(−iσzB) ⊗ exp(−iσzB) with B =
i
∑

k (λk/ωk )(b†
k − bk ) to obtain2

L̃ = −i[H̃ ⊗ I − I ⊗ H̃ ] + 
φ (σz ⊗ σz − I ), (17)

2Upon vectorization, the unitary transformation becomes U •
U † → U ⊗ U ∗. Since U ≡ exp(−iσzB) is purely real, we have U =
U ⊗ U .
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FIG. 1. Top panel: Magnetization 〈σz(t )〉 as a function of time
in units of �−1

r without Markovian dissipation at different α using
SSE method; we have taken ωc = 100 and � = 2.0. Bottom panel:
Quality factor �/γ as a function of α using the SSE. We compare
the SSE results against the exact relation (dashed line). For this plot,
we have taken mmax = 8000 and included 50000 realizations.

where H̃ = �(σx cos B − σy sin B)/2 +∑
k ωkb†

kbk . Notice
that the coupling term is now removed but at the ex-
pense of the modified form of the first term. We can then
write the following equations of motion for σx, σy, and σz

(in the transformed basis) as

d

dt
σx = −�σz sin B − 2
φσx,

d

dt
σy = −�σz cos B − 2
φσy,

d

dt
σz = �(σy cos B + σx sin B).

(18)

Next, we solve for σz(t ) exactly and then take the average
over the Ohmic bath assuming that the spin and the bath are
uncoupled. We find

d

dt
〈σz〉 = −

∫ t

0
dse−2
φ (t−s) f (t − s)〈σz(s)〉, (19)

where f (t − s) = �2/2〈eiB(t )e−iB(s) + H.c.〉. It is conve-
nient to solve this equation using the Laplace trans-
form f (t ) → f (λ) where, in a slight abuse of notation,

0 2 4 6 8 10
t

−0.6

0.0

0.5

1.0

〈σ
z
(t

)〉
0 2 4 6 8 10

t

−0.6

0.0

0.5

1.0

〈σ
z
(t

)〉
FIG. 2. Magnetization 〈σz(t )〉 as function of time in the pres-

ence of Markovian dissipation using the SSE method; we have set
α = 0.1. Top and bottom panels represent 〈σz(t )〉 in the presence
of depolarization and dephasing, respectively. Markovian dissipation
leads to a faster decay in both cases, although the frequency remains
unchanged under depolarization only.

we use the same symbol for the Laplace-transformed
functions. Upon this transformation, we have f (λ) =
�eff (�eff/λ)1−2α where we have defined �eff = [
(1 −
2α) cos(πα)]1/2(1−α))�(�/ωc)α/(1−α), with 
(x) the gamma
function. The solution for the above equation together with
the initial condition 〈σz(t = 0)〉 = 1 becomes

〈σz(λ)〉 = (λ + 2
φ )1−2α

λ(λ + 2
φ )1−2α + �2−2α
eff

. (20)

Taking the inverse Laplace transform of 〈σz(t )〉, we then find
the dynamics of the spin in real time as

〈σz(t )〉 = eλ1t (λ1 + 2
φ )

2λ1(1 − α) + 2
φ

+ eλ2t (λ2 + 2
φ )

2λ2(1 − α) + 2
φ

+ Pinc,

(21)

where λ1,2 are the two solutions of

λ(λ + 2
φ )1−2α + �2−2α
eff = 0. (22)

The last term in Eq. (21) is a contribution from the branch
cut in Eq. (20). In the absence of Markovian dissipation, Pinc

decays as a power law in time, and becomes dominant at
long times, therefore NIBA does not give the correct result
in this limit. However, Pinc ∼ exp(−2
φt ) decays exponen-
tially under dephasing (see Appendix B), and NIBA correctly
captures the qualitative behavior of 〈σz(t )〉 at all times. There-
fore, the first two terms in Eq. (21) determine the nature of
the dynamics depending on the eigenvalues λ1,2. Let us first
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FIG. 3. Magnetization 〈σz(t )〉 as a function of time in the pres-
ence of dephasing. The left and right panels represent α = 0.1 and
α = 0.2, respectively. Solid (blue), dotted (green), and dashed (red)
lines are computed using SSE, NIBA, and a fit of the SSE results to
〈σz(t )〉 = A0 cos(�t + φ0 )e−γ t . We find SSE in excellent agreement
with the NIBA and the fit to underdamped dynamics.

consider the spin-boson model without Markovian dissipation
by setting 
φ = 0. In this case, the two eigenvalues become
λ1,2 = −γ0 ± i�0, resulting in underdamped dynamics with
the decay rate γ0 and frequency �0; the subscript 0 denotes
the absence of Markovian dissipation. With 
φ = 0, we re-
cover �0 = �eff sin[π/(2 − 2α)] consistent with Eq. (3) for
small α [40]. Turning on the Markovian dissipation, these
eigenvalues and the nature of the dynamics could change. In
Fig. 3, we plot the numerically exact dynamics governed by
the SSE for different values of dephasing rate 
φ as well as α

and contrast the results against the NIBA prediction. We find
an excellent agreement between the two. We also observe that
the dynamics becomes overdamped at sufficiently large 
φ .
This feature too can be reproduced from the NIBA.

To make an even more quantitative comparison between
the SSE and NIBA, we also extract the frequency and the
decay rate directly from the SSE by fitting the dynamics to
the function 〈σz(t )〉 = A0 cos(�t + φ0) exp(−γ t ). Indeed, we
find excellent agreement between the exact SSE, the above fit
and the NIBA in all cases involving dephasing. Extracting the
decay rate γ and frequency � from this fit, we show these
parameters in Fig. 5 and contrast them with the prediction of
the NIBA. Most notably, we observe a clear transition from
underdamped to overdamped dynamics at sufficiently large
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FIG. 4. Magnetization 〈σz(t )〉 as function of time in the presence
of depolarization. The left and right panels represent α = 0.1 and
α = 0.2, respectively. Solid (blue), dotted (green), and dashed (red)
lines are computed using SSE, NIBA, and a fit of the SSE results to
〈σz(t )〉 = A0 cos(�t + φ0)e−γ t . We find SSE in excellent agreement
with the NIBA and the fit to underdamped dynamics.


φ . In fact, we find that the dependence of the frequency �

on 
φ is quantitatively consistent with the function

� ≈
√

�2
0 − 
2

φ. (23)

We recall that �0 is the oscillation frequency in the absence
of Markovian dissipation (although it depends on α). We can
also fit the dissipation approximately to

γ ≈ γ0 + 
φ, (24)

where γ0 is again the effective decay rate in the absence of
Markovian dissipation.

Next we consider the depolarization channel. We refer the
reader to Appendix B for details and just quote the final result
from the NIBA:

〈σz(t )〉 = eλ1t (λ1 + 
x )

(λ1 + 
x ) + (1 − 2α)(λ1 + 2
x )

+ eλ2t (λ2 + 
x )

(λ2 + 
x ) + (1 − 2α)(λ2 + 2
x )
+ Pinc, (25)

where λ1,2 are the two solutions of

(λ + 2
x )(λ + 
x )1−2α + �
2(1−α)
eff = 0. (26)

075126-6



SPIN-BOSON MODEL UNDER DEPHASING: … PHYSICAL REVIEW B 110, 075126 (2024)

0.0 0.5 1.0 1.4
Γφ

0.0

0.5

1.0

1.5

Ω

α = 0.2

α = 0.1

NIBA SSE FitFit

0.0 0.5 1.0
Γφ

0.0

0.5

1.0

1.6

γ

α = 0.1 NIBA
SSE

α = 0.2 NIBA
SSESSE

0.0 0.5 1.0 1.5 2.0
Γx

0.0

0.5

1.0

1.5

Ω

α = 0.2

α = 0.1

NIBA SSESSE

0.0 0.5 1.0 1.5 2.0
Γx

0

1

2

3

4
γ

α = 0.1 NIBA
SSE

α = 0.2 NIBA
SSESSE

FIG. 5. Frequency � and decay rate γ obtained from the SSE and
NIBA as a function of the dissipation strength. The top panels depict
� and γ in the presence of dephasing. SSE and NIBA results are
in excellent agreement. The frequency is very well described by the
fit � =

√
�2

eff − 
2
φ ; see the dashed-dotted line. The bottom panels

depict � and γ in the presence of depolarization. The frequency �

obtained from the SSE barely depends on 
x .

In Fig. 4, we show NIBA vs SSE in the presence of depolar-
ization, and again find an excellent agreement. It can be shown
that the last term in Eq. (25) decays exponentially Pinc ∼
exp(−
xt ). This term must be included to ensure 〈σz〉 = 1
at t = 0, but it can be ignored at intermediate or long times
as it is suppressed exponentially. We remark that Eq. (25) is
derived in a perturbative fashion in 
x. In this case too, the
dynamics is generally characterized by a frequency � and
an effective decay rate γ . Unlike the dephasing, however,
we find that the frequency changes only slightly with the
rate of depolarization. Indeed, the dynamics appears to be
underdamped regardless of the depolarization rate, although
it will decay more quickly for large dissipation (cf. Fig. 2).
For a quantitative comparison, we also plot the frequency �

extracted from the SSE, and contrast that against the NIBA
prediction in Fig. 5. We find good agreement for � at small
dissipation rate 
x and an overall good agreement for γ in
the entire range considered. We, however, observe that the
NIBA prediction deviates from the exact SSE at larger values
of 
x, which might be expected given the perturbative nature
of Eq. (25). We can approximately fit the frequency and the
decay rate as a function of 
x as

� ≈ �0, γ ≈ γ0 + 3
x/2. (27)

Before ending this section, an interpretation of its main
results is in order. We recall that, in the absence of any
Markovian dissipation, the spin 〈σz(t )〉 exhibits underdamped
dynamics at the frequency �0 and with the decay rate γ0,
both depending nontrivially on the coupling to the Ohmic bath
α. As we turn on the Markovian dissipation, these character-
istic frequency and time scales change in a simple fashion;
cf. 23, (24), and (27). The behavior for dephasing, for ex-
ample, is reminiscent of an effective single-spin dynamics

characterized by a Rabi frequency �0 and the dephasing rate

φ . This would reproduce the frequency and the decay rate
in Eqs. (23) and (24), assuming that γ0 � 
φ ; however, this
interpretation is not entirely correct since it doesn’t capture
the full aspects of the dynamics [54]. Similarly, the behavior
in Eq. (27) might suggest an effective dynamics characterized
by depolarization and the Rabi frequency �0. This would
be consistent with the fact that the frequency is almost in-
dependent of the depolarization rate. However, the effective
depolarization rate would be 
eff = 3
x/4, which is smaller
than the intrinsic dissipation rate 
x. Interestingly, this sug-
gests that the depolarization rate is effectively reduced due
to the coupling to the bosonic bath. We emphasize again that
this picture is incomplete since it would not correctly describe
the dynamics more generally. In general, the coupling to the
bosonic bath generates non-Markovian dynamics which can-
not be mimicked by an effective Markovian master equation.

VI. SUMMARY AND OUTLOOK

In this paper, we have considered the dynamics of a single
spin coupled to an Ohmic bath at zero temperature with the
coupling strength 0 < α < 1/2 and a large cutoff ωc as well
as a Markovian bath inducing depolarization or dephasing. We
have studied the dynamics using a nonperturbative approach
known as the SSE valid in the regime of interest. Furthermore,
we have derived analytic results based on the NIBA to gain
insight into our exact numerical results. We have shown that
NIBA is in excellent agreement with the SSE. Our results in-
dicate that, under depolarization, the characteristic frequency
of the spin oscillations is approximately unchanged from its
renormalized value for a given α, showing a kind of robustness
against dissipation. On the other hand, dephasing changes the
frequency, albeit in a simple fashion, and eventually renders
the dynamics overdamped at large dissipation rates.

The results obtained in this paper hint at a simple picture
where the renormalized spin interacts with the Markovian
dissipation in a simple way. While an effective single-spin
dynamics cannot describe the full dynamics, it is worthwhile
finding an effective picture that consistently explains the
main features. An interesting future direction is to identify
to what extent the conclusions of this paper extend to more
general settings where α > 1/2 and the cutoff frequency is
not restricted to large values. It is particularly interesting to
determine the existence or destruction of the localization tran-
sition in the presence of Markovian dissipation [55,56]. These
questions will have practical consequences for the emergent
quantum simulation platforms that aim to simulate spin-boson
models and yet unavoidably come with intrinsic dissipation
due to the unwanted coupling to the environment.
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APPENDIX A: STOCHASTIC SCHRÖDINGER EQUATION

We express the density matrix of the system plus bath in a
Trotterized form as

|ρ(t )〉〉 = e−i(Hu−Hl )δt ...e−i(Hu−Hl )δt︸ ︷︷ ︸
N times

|ρ(0)〉〉, (A1)

where N = t/δt and |ρ(0)〉〉 is initial density matrix of the
system plus bath. We also assume that at time t = 0 the system
and the bath are decoupled, and take

|ρ(0)〉〉 = |ρS (0)〉〉 ⊗ |e−βHB〉〉
Z

, (A2)

where β is the inverse temperature and Z = TrB(e−βHB ). It
should be noted that while our focus is on T = 0 in the main
text, we present a more general derivation that is valid at any
finite temperature. At zero temperature, the density matrix of
the bath is simply the vacuum. We then insert at the time slice
n in Eq. (A1) the identity superoperator I SB which acts on
the system plus bath as

I SB = I S ⊗ I B, (A3)

where I S and I B are the identity superoperators for the
system and the bath, respectively,

I S =
∑
{σ u/l

n }
|σ u

n , σ l
n〉〉〈〈σ u

n , σ l
n|, (A4)

where |σ u/l
n 〉 represents eigenstates of σz, that is, σz|σ u/l

n 〉 =
σ u/l

n |σ u/l
n 〉. In principle, we can also define the identity super-

operator for bosonic operators in terms of coherent states, but
we do not need it for our calculations.

The system density matrix |ρS (t )〉〉 is expressed by tracing
out the bath degrees of freedom as

|ρS (t )〉〉 = 〈〈IB|ρ(t )〉〉, (A5)

where the identity superket |IB〉〉 is the vectorized form of the
bath identity matrix.

By using Eqs. (A1) and (A3) to (A5), the density matrix of
the system in Trotterized form can be expressed as

|ρS (t )〉〉 =
∑

σ̄

〈〈IB| · · · ∣∣σ u
2 σ l

2

〉〉〈〈
σ u

2 σ l
2

∣∣e−i(Hu−Hl )δt
∣∣σ u

1 σ l
1

〉〉
× 〈〈

σ u
1 σ l

1e−i(Hu−Hl )δt
∣∣ρ(0)

〉〉
, (A6)

where σ̄ indicates the collections of all {σ u/l
n }. For δt → 0, we

can use the Trotter-Suzuki decomposition as

e−i(Hu−Hl )δt = e−i(Hu
S −Hl

S )δt e−i(Hu
B+Hu

SB−Hl
B−Hl

SB )δt eO(δt2 ). (A7)

Using this identity, Eq. (A5) can then be expressed as

|ρS (t )〉〉
= lim

δt→0

∑
σ̄

e−i(Hu
S −Hl

S )δt ...
∣∣σ u

2 σ l
2

〉〉
× 〈〈

σ u
2 σ l

2

∣∣e−i(Hu
S −Hl

S )δt
∣∣σ u

1 σ l
1

〉〉〈〈
σ u

1 σ l
1

∣∣e−i(Hu
S −Hl

S )δt |ρS (0)〉〉

× 1

Z
〈〈IB|Tt e

−i
∫ t

0 ds(H ′u[σ u(s)]−H ′l [σ l (s)])|e−βHB〉〉. (A8)

where H ′u/l [σ u/l (t )] are expressed as

H ′u/l [σ u/l (t )] = Hu/l
B + 1

2
σ u/l (t )

∑
k

λk
[
bu/l

k + b†
k

u/l]
. (A9)

We note that in the above equation σ u/l (t ) is a scalar quantity
which takes the ±1 values while Hu

B = HB ⊗ IB, Hl
B = IB ⊗

HB (similarly for bu/l ).
While the first two lines in Eq. (A8) describe the dynamics

due to the spin-only Hamiltonian, the last line defines the
influence of the bath on the spin and is known as the influence
functional F [σ u(t ), σ l (t )]:

F [σ u(t ), σ l (t )] ≡ 〈〈IB|Tt e−i
∫ t

0 ds(H ′u[σ u(s)]−H ′l [σ l (s)])|e−βHB〉〉

Z
.

(A10)
This equation is given in the vectorized form but can be

easily converted back to the operator form as

F [σ u(t ), σ l (t )]

= TrB(e−βHB Tt̄ ei
∫ t

0 dsH ′[σ l (s)]Tt e−i
∫ t

0 dsH ′[σ u(s)] )

Z
,

= 〈
Tt̄ e

i
∫ t

0 dsH ′[σ l (s)]Tt e
−i
∫ t

0 dsH ′[σ u(s)]
〉
B
, (A11)

where 〈..〉B denotes the thermal average with respect to Hamil-
tonian HB, and Tt and Tt̄ denote the time and antitime ordering
operator.

To simplify Eq. (A11), we express the propagators
Tt e−i

∫ t
0 dsH ′[σ u(ds)] and Tt̄ ei

∫ t
0 dsH ′[σ l (s)] in the interaction pic-

ture [57] as

Tt e
−i
∫ t

0 dsH ′[σ u(s)] = e−iHBt Tt e
−i
∫ t

0 dsX u (s),

Tt̄ e
i
∫ t

0 dsH ′[σ l (s)] = Tt̄ e
i
∫ t

0 dsX l (s)eiHBt , (A12)

where X u/l (s) is defined as

X u/l (s) = eiHBs σ
u/l (s)

2

∑
k

λk (bk + b†
k )e−iHBs,

= σ u/l (s)

2

∑
k

λk (bk (s) + b†
k (s)), (A13)

and bk (s) = e−iωk sbk . The influence functional in the interac-
tion picture is now defined as

F [σ u(t ), σ l (t )] = 〈Tt̄ e
i
∫ t

0 dsX l (s)Tt e
−i
∫ t

0 dsX u (s)〉B. (A14)

A Gaussian integral then yields the standard form of the
Feynman-Vernon influence functional [5,47],

F [σ u(t ), σ l (t )]

= exp

[
− 1

4π

∫ t

0

∫ s

0
dsds′[σ u(s) − σ l (s)]

× {
L(s − s′)σ u(s′) − L∗(s − s′)σ l (s′)

}]
, (A15)
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where L(s − s′) is the bath correlation function, and is
given by

L(s − s′) =
〈(∑

k

λk (bk (s) + b†
k (s))

)

×
(∑

k

λk (bk (s′) + b†
k (s′))

)〉
B

,

= L2(s − s′) − iL1(s − s′). (A16)

Finally, in the basis defined by

η(s) = σ u(s) + σ l (s)

2
,

ξ (s) = σ u(s) − σ l (s)

2
,

(A17)

the influence functional takes the form

F [ξ (t ), η(t )] = exp

[
− 1

π

∫ t

0
ds
∫ s

0
ds′{−iL1(s − s′)

×ξ (s)η(s′) + L2(s − s′)ξ (s)ξ (s′)}
]
. (A18)

For a bath defined by the spectral functional J (ω), the
functions L1,2 are explicitly given by

L1(t ) =
∫ ∞

0
dωJ (ω) sin(ωt ),

L2(t ) =
∫ ∞

0
dωJ (ω) cos(ωt ) coth(βω/2). (A19)

Next, we consider that at time t = 0, the system is in the
|↑〉 state in the σz basis. Let us say that we are interested
in the density matrix of the system at time t and, more
specifically, 〈↑|ρS (t )|↑〉, which in the vectorized form can be
expressed as

〈↑|ρS (t )|↑〉 = 〈〈↑↑|ρS (t )〉〉. (A20)

Using Eqs. (A8) and (A20) together with the definition of the
influence functional can be written as

〈↑|ρS (t )|↑〉 =
∑
σ u,σ l

〈〈↑↑| · · · e−iδt�[σ u
z −σ l

z ]|σ u
2 σ l

2〉

× 〈σ u
2 σ l

2|e−iδt�[σ u
z −σ l

z ]|σ u
1 σ l

1〉
× 〈σ u

1 σ l
1|e−iδt�[σ u

z −σ l
z ]|↑↑〉〉

× exp

[
− 1

π

∫ t

0
ds
∫ s

0
ds′(−iL1(s−s′)ξ (s)

× η(s′) + L2(s − s′)ξ (s)ξ (s′))

]
. (A21)

For an Ohmic bath with the spectral function given by Eq. (2),
we have L1(s) = π2αδ′

ε (s), where we have defined δε (x) =
1
π

ε
x2+ε2 , used the notation δ′

ε (s) = dδε (s)/ds, and identified
ε = 1/ωc. We then compute the kernel corresponding to L1

as

A1(t ) = i

π

∫ t

0
ds
∫ s

0
ds′L1(s − s′)ξ (s)η(s′)

= iπα

∫ t

0
dsξ (s)

[
η(s′)δε (s − s′)|s0

−
∫ s

0
ds′ ∂η(s′)

∂s′ δ(s − s′)
]

= −iπα

∫ t

0
dsξ (s)

∂η(s)

∂s

−−→
ε→0

−iπα
∑

k

ξ (k)[η(k) − η(k − 1)]

= iπα
∑

k

ξ (k)η(k − 1), (A22)

where in the last line we have taken the limit of ε → 0,
which is justified for large ωc. We have also used the fact
that ξ (k)η(k) = 0. For the same Ohmic bath, we also find the
kernel L2(s) = 2παω2

c (1 − ω2
c s2)/(1 + ω2

c s2)2, which decays
as a power law at long times. We can express L2(s) in a time
window [−tmax, tmax], where tmax is the total simulation time
beyond which L2(s) can be approximately taken to be zero.
We now cast L2(s − s′) in terms of a Fourier series so L2

becomes separable in time:

L2(s − s′) = g0 +
mmax/2∑
m=1

gm cos
(mπ (s − s′)

tmax

)
. (A23)

We then expand the cosine function as

L2(s − s′) = g0 +
mmax/2∑
m=1

gm

(
cos

(
mπs

tmax

)
cos

(
mπs′

tmax

)

+ sin

(
mπs

tmax

)
sin

(
mπs′

tmax

))
, (A24)

where g0 and gm are the Fourier series components given by

g0 = 1

2tmax

∫ tmax

−tmax

dsL2(s),

gm = 1

tmax

∫ tmax

−tmax

dsL2(s) cos(mπs/tmax). (A25)

We can recast Eq. (A24) as

L2(s − s′) =
mmax∑
m=0

Gmψm(s)ψm(s′). (A26)

By comparing (A24) and (A26), we obtain

G0 = g0, G2m−1 = G2m = gm,

ψ0(s) = 1, ψ2m−1(s) = cos

(
mπs

tmax

)
,

ψ2m(s) = sin

(
mπs

tmax

)
. (A27)
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Now the integral involving L2 in Eq. (A21) can be written as

A2(t ) = − 1

π

∫ t

0
ds
∫ s

0
ds′L2(s − s′)ξ (s)ξ (s′),

= −
mmax∑
m=0

Gm

π

∫ t

0
ds
∫ s

0
ds′ξ (s)ξ (s′)ψm(s)ψm(s′) = −1

2

mmax∑
m=0

Gm

π

[∫ t

0
dsξ (s)ψm(s)

]2

. (A28)

Next, we introduce the auxiliary fields xm corresponding to each frequency component (ωm) and employ the Hubbard-
Stratonovich transformation as

e− 1
2

∑mmax
m=0

Gm
π

[
∫ t

0 dsξ (s)ψm (s)]2 =
mmax∏
m=0

∫
dxm√

2π
e−x2

m/2e−i
∫ t

0 dsξ (s)h(s), (A29)

where we have defined h(s) = ∑mmax
m=0 xm

√
Gm
π

ψm(s). In a discretized time with the time step δt , we can now express Eq. (A29)
as

e−i
∫ t

0 dsξ (s)h(s) = e−iδt
∑

k ξ (k)h(k). (A30)

By substituting Eqs. (A22) and (A30) into Eq. (A21), the density matrix of the system is described as a sum over different spin
configurations.

Now we can see from Eqs. (A22) and (A30) that the action of both L1 as well as L2 after the Hubbard-Stratonovich
transformation becomes local in time involving only adjacent time steps. We can then express the matrix elements of the
time-evolution generator ˜A between two immediate time steps as〈

σ u
k σ l

k

∣∣ ˜A
∣∣σ u

k−1σ
l
k−1

〉 = e−iδtξ (k)h(k)eiπαη(k−1)ξ (k)
〈
σ u

k σ l
k

∣∣e−iδt �
2 [σ u

z −σ l
z ]
∣∣σ u

k−1σ
l
k−1

〉
.

We can then write the matrix ˜A as

˜A =

⎛⎜⎜⎜⎜⎝
1 iδt �

2 −iδt �
2 0

iδt �
2 eiπα 1 − iδth(k) 0 −iδt �

2 e−iπα

−iδt �
2 e−iπα 0 1 + iδth(k) iδt �

2 eiπα

0 −iδt �
2 iδt �

2 1

⎞⎟⎟⎟⎟⎠. (A31)

Finally defining ˜A = I − iδtA (k) ≈ e−iδtA (k), we find

A (k) =

⎛⎜⎜⎜⎝
0 �

2 −�
2 0

�
2 eiπα −h(k) 0 −�

2 e−iπα

−�
2 e−iπα 0 h(k) �

2 eiπα

0 −�
2

�
2 0

⎞⎟⎟⎟⎠, (A32)

and using Eqs. (A21), (A22), (A29), and (A31), the density
matrix ρS (t ) can be written as

〈↑|ρS (t )|↑〉 =
mmax∏
m=0

∫
dxm√

2π
e−x2

m/2〈〈↑↑|Tt e
−i
∫ t

0 dsA (s)|↑↑〉〉

with A (t ) =

⎛⎜⎜⎜⎝
0 −�

2
�
2 0

−�
2 eiπα h(t ) 0 �

2 e−iπα

�
2 e−iπα 0 −h(t ) −�

2 eiπα

0 �
2 −�

2 0

⎞⎟⎟⎟⎠.

(A33)

To solve Eq. (A33), we express Tt e−i
∫ t

0 dsA (s)|↑↑〉〉 as

d|ψ (t )〉
dt

= −iA (t )|ψ (t )〉, (A34)

and we recover Eq. (11) in the main text.

APPENDIX B: NIBA

In this Appendix, we extend the NIBA used in
the spin-boson model [29] to the case of Markovian

dissipation, specifically dephasing along both z and x
directions.

1. NIBA for depolarization

We start with the time evolution of vectorized density ma-
trix in the presence of depolarization (i.e., dephasing along the
x direction):

d|ρ(t )〉〉
dt

= L |ρ(t )〉〉, (B1)

L = −i[H ⊗ I − I ⊗ H] + 
x(σx ⊗ σx − I ). (B2)

We then follow the steps outlined in Ref. [29]. We first apply a
polaron transformation U = exp(−iσzB) ⊗ exp(−iσzB), with
B = i

∑
k (λk/ωk )(b†

k − bk ) on the Liouvillian L ,

L̃ = −i[H̃ ⊗ I − I ⊗ H̃ ] + 
x(σ̃x ⊗ σ̃x − I ), (B3)

where H̃ = �/2(σx cos(B) − σy sin(B)) +∑
k ωkb†

kbk and
σ̃x = σx cos(B) − σy sin(B). We can write the equations of
motion for σx, σy, and σz as

d

dt
σx = −�σz sin B + 
x[σx cos 2B − σy sin 2B − σx],

d

dt
σy = −�σz cos B + 
x[−σy cos 2B − σx sin 2B − σy],

d

dt
σz = �[σy cos B + σx sin B] − 2
xσz. (B4)
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From this equation, σx and σy can be expressed as

σx(t ) =
∫ t

0
dse−
x (t−s){−�σz(s) sin(B(s))

+ 
x[cos(2B(s))σx(s) − cos(2B(s))σy(s)]},

σy(t ) =
∫ t

0
dse−
x (t−s){−�σz(s) cos(B(s))

− 
x[cos(2B(s))σy(s) − sin(2B(s))σx(s)]}.

(B5)

We can now write the equation for σz in Eq. (B4) as

d

dt
σz(t ) + 2
xσz(t )

= � cos(B(t ))
∫ t

0
dse
x (s−t ){−�σz(s) cos(B(s))

− 
x[cos(2B(s))σy(s) − sin(2B(s))σx(s)]}

+ � sin(B(t ))
∫ t

0
dse
x (s−t ){−�σz(s) sin(B(s))

+ 
x[cos(2B(s))σx(s) − cos(2B(s))σy(s)]}. (B6)

Finally, we take thermal average over both sides of Eq. (B6)
and now assume that the spin and the bath are decoupled from
each other. We then obtain〈

d

dt
σz(t ) + 2
xσz(t )

〉
= −�2

2

[∫ t

0
dse
x (s−t )〈σz(s)〉〈eiB(t )e−iB(s)〉 + H.c.

]
,〈

d

dt
σz(t ) + 2
xσz(t )

〉
= −

∫ t

0
dse
x (s−t )〈σz(s) f (t − s)〉. (B7)

Notice that the terms involving σx and σy have disappeared be-
cause of the neutrality condition 〈exp(i(nB(t ) − mB(s)))〉 = 0
if n �= m. In deriving the above equation, we have implicitly
kept the terms to the first order in 
x (assuming that the spin
and the bath are decoupled to the first order in 
x). Now, we
take the Laplace transform of the above equation to find

〈σz(λ)〉 = 1

λ + 2
x + f (λ + 
x )
, (B8)

where the Laplace transformed function f (λ) is given by

f (λ) = �eff

(�eff

λ

)1−2α

, (B9)

and, for completeness, we recall the expression for �eff :

�eff = [
(1 − 2α) cos(πα)]1/2(1−α))�(�/ωc)α/(1−α).

(B10)

Finally, by taking inverse Laplace transform of Eq. (B8),
we find

〈σz(t )〉 = eλ1t (λ1 + 
x )

(λ1 + 
x ) + (1 − 2α)(λ1 + 2
x )

+ eλ2t (λ2 + 
x )

(λ2 + 
x ) + (1 − 2α)(λ2 + 2
x )
+ Pinc, (B11)

where Pinc can be expressed as

Pinc = − 1

π

∫ ∞

0
dz

z1−2αe−(zt+
xt ) sin(π (1 − 2α))�2−2α
eff

D
,

D = (−z + 
x )2z2(2−2α) + �4−4α
eff

+ 2�2−2α
eff (−z + 
x )z1−2α cos(π (1 − 2α))), (B12)

where λ1,2 are the solutions to the equation (λ + 2
x )(λ +

x )1−2α + �

2(1−α)
eff = 0.

2. NIBA for dephasing

In this section, we consider dephasing 
φ along the z di-
rection. By following similar steps to Section B 1, we find

d

dt
σx = −�σz sin B − 2
φσx,

d

dt
σy = −�σz cos B − 2
φσy,

d

dt
σz = �(σy cos B + σx sin B).

(B13)

A similar procedure to Section B 1 yields the equation of
motion for 〈σz〉 as

d

dt
〈σz〉 = −

∫ t

0
ds f (t − s)〈σz(s)〉e2
φ (s−t ),

〈σz(λ)〉 = 1

λ + f (λ + 2
φ )
. (B14)

We point out that Eq. (B14) is nonperturbative in 
φ unlike the
case of depolarization. The above equation can now be written
as

〈σz(λ)〉 = (λ + 2
φ )1−2α

λ(λ + 2
φ )1−2α + �2−2α
eff

. (B15)

Taking the inverse Laplace transform, we obtain

〈σz(t )〉 = eλ1t (λ1 + 2
φ )

2λ1(1 − α) + 2
φ

+ eλ2t (λ2 + 2
φ )

2λ2(1 − α) + 2
φ

+ Pinc.

(B16)

Pinc is expressed as

Pinc = −
∫ ∞

0
dy sin(π − 2πα)/πe−yt

× e−2
φ t y(1−2α)�
(2−2α)
eff /D1, (B17)

where D1 is expressed as

D1 = (
(y + 2
φ )(y + 2
φ )y2−4α − 2 cos(π − 2πα)

�
(2−2α)
eff (y + 2
φ )y(1−2.0α) + �4−4α

eff

)
, (B18)

and λ1,2 are given by the solutions to the equation λ(λ +
2
φ )1−2α + �2−2α

eff = 0.
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Lett. 104, 073602 (2010).

[17] J. W. Britton, B. C. Sawyer, A. C. Keith, C.-C. J. Wang, J. K.
Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, Nature
(London) 484, 489 (2012).

[18] K. Kim, M.-S. Chang, R. Islam, S. Korenblit, L.-M. Duan, and
C. Monroe, Phys. Rev. Lett. 103, 120502 (2009).

[19] D. Porras and J. I. Cirac, Phys. Rev. Lett. 92, 207901 (2004).
[20] A. Sørensen and K. Mølmer, Phys. Rev. Lett. 82, 1971

(1999).
[21] A. Frisk Kockum, A. Miranowicz, S. De Liberato, S. Savasta,

and F. Nori, Nat. Rev. Phys. 1, 19 (2019).
[22] A. Burger, L. C. Kwek, and D. Poletti, Entropy 24, 1766 (2022).
[23] D. Nagy and P. Domokos, Phys. Rev. Lett. 115, 043601 (2015).
[24] D. Nagy and P. Domokos, Phys. Rev. A 94, 063862 (2016).
[25] R. Lundgren, A. V. Gorshkov, and M. F. Maghrebi, Phys. Rev.

A 102, 032218 (2020).
[26] O. Chelpanova, A. Lerose, S. Zhang, I. Carusotto, Y.

Tserkovnyak, and J. Marino, Phys. Rev. B 108, 104302 (2023).
[27] V. V. Ponomarenko, Phys. Rev. B 48, 5265 (1993).

[28] K.-J. Noh and U. R. Fischer, Phys. Rev. B 90, 220302(R)
(2014).

[29] H. Dekker, Phys. Rev. A 35, 1436 (1987).
[30] H. Shapourian, Phys. Rev. A 93, 032119 (2016).
[31] F. A. Y. N. Schröder and A. W. Chin, Phys. Rev. B 93, 075105

(2016).
[32] J. Prior, A. W. Chin, S. F. Huelga, and M. B. Plenio, Phys. Rev.

Lett. 105, 050404 (2010).
[33] M. L. Wall, A. Safavi-Naini, and A. M. Rey, Phys. Rev. A 94,

053637 (2016).
[34] A. Strathearn, P. Kirton, D. Kilda, J. Keeling, and B. W. Lovett,

Nat. Commun. 9, 3322 (2018).
[35] A. Strathearn, B. W. Lovett, and P. Kirton, New J. Phys. 19,

093009 (2017).
[36] J. T. Stockburger and H. Grabert, Phys. Rev. Lett. 88, 170407

(2002).
[37] J. T. Stockburger, Chem. Phys. 296, 159 (2004).
[38] Z.-Y. Zhou, M. Chen, T. Yu, and J. Q. You, Phys. Rev. A 93,

022105 (2016).
[39] Z.-Z. Li, C.-T. Yip, H.-Y. Deng, M. Chen, T. Yu, J. Q. You, and

C.-H. Lam, Phys. Rev. A 90, 022122 (2014).
[40] P. P. Orth, A. Imambekov, and K. Le Hur, Phys. Rev. B 87,

014305 (2013).
[41] V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, J. Math.

Phys. 17, 821 (1976).
[42] G. Lindblad, Commun. Math. Phys. 48, 119 (1976).
[43] A. Barchielli and M. Gregoratti, Quantum Trajectories and

Measurements in Continuous Time: the Diffusive Case (Springer
Science & Business Media, Berlin, Heidelberg, 2009), Vol. 782.

[44] A. Kamenev, Field Theory of Non-equilibrium Systems
(Cambridge University Press, Cambridge, UK, 2023).

[45] G. B. Lesovik, A. V. Lebedev, and A. O. Imambekov, J. Exp.
Theor. Phys. Lett. 75, 474 (2002).

[46] R. P. Feynman and F. Vernon, Jr., Ann. Phys. 281, 547 (2000).
[47] U. Weiss, Quantum Dissipative Systems (World Scientific, Sin-

gapore, 2012).
[48] R. L. Stratonovich, in Doklady Akademii Nauk (Russian

Academy of Sciences, 1957), Vol. 115, pp. 1097–1100.
[49] J. Hubbard, Phys. Rev. Lett. 3, 77 (1959).
[50] D. A. Paz and M. F. Maghrebi, Phys. Rev. A 104, 023713

(2021).
[51] D. Tan and Z. Chen, J. Math. Sci. Math. Edu. 7, 1 (2012).
[52] F. Lesage and H. Saleur, Phys. Rev. Lett. 80, 4370 (1998).
[53] F. Grusdt, Y. E. Shchadilova, A. N. Rubtsov, and E. Demler,

Sci. Rep. 5, 12124 (2015).
[54] K. L. Hur, Ann. Phys. 323, 2208 (2008).
[55] E. G. Dalla Torre, E. Demler, T. Giamarchi, and E. Altman, Nat.

Phys. 6, 806 (2010).
[56] E. G. Dalla Torre, E. Demler, T. Giamarchi, and E. Altman,

Phys. Rev. B 85, 184302 (2012).
[57] G. D. Mahan, Many-Particle Physics (Springer Science & Busi-

ness Media, New York, 2013).

075126-12

https://doi.org/10.1103/PhysRevLett.18.1049
https://doi.org/10.1103/PhysRev.178.1097
https://doi.org/10.1143/PTP.32.37
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.59.1
https://doi.org/10.1038/nphys3905
https://doi.org/10.1038/s41467-018-03626-w
https://doi.org/10.1038/nphys3906
https://doi.org/10.1038/s41586-019-1196-1
https://doi.org/10.1016/j.crhy.2016.05.003
https://doi.org/10.1103/PhysRevA.78.010101
https://doi.org/10.1088/1367-2630/aac87d
https://doi.org/10.1103/PhysRevLett.111.265302
https://doi.org/10.1038/nphys1730
https://doi.org/10.1103/RevModPhys.85.553
https://doi.org/10.1103/PhysRevLett.104.073602
https://doi.org/10.1038/nature10981
https://doi.org/10.1103/PhysRevLett.103.120502
https://doi.org/10.1103/PhysRevLett.92.207901
https://doi.org/10.1103/PhysRevLett.82.1971
https://doi.org/10.1038/s42254-018-0006-2
https://doi.org/10.3390/e24121766
https://doi.org/10.1103/PhysRevLett.115.043601
https://doi.org/10.1103/PhysRevA.94.063862
https://doi.org/10.1103/PhysRevA.102.032218
https://doi.org/10.1103/PhysRevB.108.104302
https://doi.org/10.1103/PhysRevB.48.5265
https://doi.org/10.1103/PhysRevB.90.220302
https://doi.org/10.1103/PhysRevA.35.1436
https://doi.org/10.1103/PhysRevA.93.032119
https://doi.org/10.1103/PhysRevB.93.075105
https://doi.org/10.1103/PhysRevLett.105.050404
https://doi.org/10.1103/PhysRevA.94.053637
https://doi.org/10.1038/s41467-018-05617-3
https://doi.org/10.1088/1367-2630/aa8744
https://doi.org/10.1103/PhysRevLett.88.170407
https://doi.org/10.1016/j.chemphys.2003.09.014
https://doi.org/10.1103/PhysRevA.93.022105
https://doi.org/10.1103/PhysRevA.90.022122
https://doi.org/10.1103/PhysRevB.87.014305
https://doi.org/10.1063/1.522979
https://doi.org/10.1007/BF01608499
https://doi.org/10.1134/1.1494045
https://doi.org/10.1006/aphy.2000.6017
https://doi.org/10.1103/PhysRevLett.3.77
https://doi.org/10.1103/PhysRevA.104.023713
https://doi.org/10.1103/PhysRevLett.80.4370
https://doi.org/10.1038/srep12124
https://doi.org/10.1016/j.aop.2007.12.003
https://doi.org/10.1038/nphys1754
https://doi.org/10.1103/PhysRevB.85.184302

