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In the slave particle representation with U (1) gauge symmetry, local constraints on physical states charac-
terized by various mean field solutions belong to Dirac’s second-class ones. Although constrained systems are
extensively investigated, realistic methods to solve the gauge theory problem with second-class constraints are
yet to be developed. We formulate a Becchi-Rouet-Stora-Tyutin (BRST) quantization theory, called consistent
U (1) gauge theory, that is consistent with both first- and second-class local constraints for strongly correlated
condensed matter systems. In our consistent U (1) gauge theory, the redundant gauge degrees of freedom are
removed by proper gauge fixing conditions while the constraints are exactly retained and the gauge invariance
is guaranteed by the BRST symmetry. Furthermore, the gauge fixing conditions endow the gauge field with
dynamics. This turns the strongly correlated electron model into a weakly coupled slave boson model, so most of
the system’s physical properties can be calculated by the conventional quantum many-body perturbation method.
We focus on the property of the strange metal phase in the t-J model. The electron momentum distribution
and the spectral function are calculated, and the non-Fermi-liquid behavior agrees with the angle-resolved
photoemission spectroscopy measurements for cuprate materials. We also study the electromagnetic responses
of the strange metal state. The observed non-Fermi-liquid anomalies are captured by our calculations. Especially,
we find that the Hall resistivity decreases as temperature increases, and the sign of the Hall resistivity varies from
negative to positive when the dopant concentration varies from optimal doping to underdoping in the strange
metal regime.
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I. INTRODUCTION

The gauge principle plays a fundamental role in our under-
standing of various phenomena in diverse physical systems,
ranging from high energy to condensed matter physics. The
slave boson and fermion representation of the electron opera-
tor [1–12] has an intrinsic gauge symmetry and is a powerful
tool in the study of strongly correlated condensed matter
systems [13–22].

The constraints on the local quantum states are serious
obstacles to solving strongly correlated problems. A well-
known example is no double occupation of the electron at one
lattice site in the t-J model [23–25] where the Gutzwiller pro-
jected variational wave functions (or renormalized mean field
theory) are usually used [26–31]. The statistically consistent
Gutzwiller projection [32–36] is equivalent to the slave boson
mean field theory. Based on the Faddeev-Jackiw approach
[37] to constrained systems, an X -operator formalism that can
be mapped to the slave particle representation was developed
[38] and was used to calculate the spectral function of the
pseudogap phase [39].

*Contact author: yuyue@fudan.edu.cn
†Contact author: xiluo@usst.edu.cn

Aside from various analytical methods, large-scale numer-
ical simulation techniques, such as quantum Monte Carlo
[40,41], functional [42], density matrix [43], tensor network
[44] renormalization group methods, as well as dynamical
mean field theory [45,46], have been greatly developed to
solve strongly correlated problems. It is far beyond the scope
of this paper to summarize the analytical and numerical
developments.

The Hubbard model and the t-J model were suggested as
the simplest models to explain the basic physics of anomalous
properties of cuprates [25,47], which are strongly corre-
lated materials exhibiting high-Tc superconductivity [48]. The
recently discovered high-Tc nickelate superconductor under
pressure La3Ni2O7 [49] is also believed to be described by a
bilayer t-J model [50–57]. The slave boson mean field theory
may qualitatively capture the phase diagram for cuprate and
nickelate materials. Recently, the Rashba-type spin-orbital
coupling on the surface of Bi2Sr2CaCu2O8+d was reported
[58], and the corresponding theoretical proposals on possible
nonlinear and nonreciprocal transport phenomena, which are
based on the slave boson theory with the Rashba spin-orbital
coupling, may provide a new angle of view to explore the
phases and electronic states in high-Tc cuprates [59]. The
gauge theory has been developed in [13–17] to obtain more
quantitative results that can be compared to the experimental
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data for cuprates. However, since the gauge field in that theory
is not dynamical in the first place, only the electromagnetic
responses can be calculated microscopically under the Gaus-
sian approximation after integrating over the holon and spinon
fields. The electronic properties such as the spectral function,
self-energy, and pairing gap can only be calculated by either
introducing phenomenological approximations or at the mean
field level.

In a recent work, we found that the previous studies of the
gauge theory based on the slave boson and fermion represen-
tation are incomplete and further gauge fixing conditions are
needed [60]. For example, in the slave boson representation,
the no-double occupancy constraint for the t-J model reduces
to the condition that only one holon or one spinon can oc-
cupy a local lattice site. Relaxing this constraint breaks the
fermionic nature of the electron and introduces unphysical
degrees of freedom. Therefore, the saddle-point approxima-
tion of the slave boson mean field theory is unreliable and
uncontrollable if the gauge fluctuations around the saddle
point do not restore the local constraint. We showed that to
retain the local constraint, proper gauge fixing conditions have
to be added to remove the redundant gauge degrees of freedom
in the Lagrange multiplier that enforces the local constraint.
Some features of Dirac’s first-class constraint [61,62] for
the t-J model in the slave particle representation have been
studied [63]. In fact, the procedure to introduce the gauge
fixing condition is equivalent to the gauge fixing procedure for
Dirac’s first-class constrained systems developed by Fradkin,
Vilkovisky, and Batalin (FVB) [64–66]. The presence of the
Becchi-Rouet-Stora-Tyutin (BRST) symmetry [67–69] after
gauge fixing is the criterion for determining whether the gauge
fixing condition is consistent with the local constraint or not.
This is because the requirement of BRST invariance is exactly
equivalent to Dirac’s first-class constraints.

In the trivial atomic limit of the t-J model, the local con-
straints are the first-class ones; however, as we will see, the
constraints on all other ordered mean field states are Dirac’s
second-class ones as the local constraints of vanishing coun-
terflow between the holon and spinon currents are enforced.
The FVB’s BRST procedure [64–66] does not work for the
second-class constraints in these ordered mean field states in
which violations of the Fermi-liquid behavior are discovered.
As recognized in the previous gauge theory [13,14,70], the
spatial components of the gauge field should be introduced to
recover the gauge invariance.

In this work, we develop a BRST quantization procedure
for a realistic physical system with second-class constraints.
We then provide a reliable and effective method for deal-
ing with the stability of the ordered mean field states of a
strongly correlated system under quantum fluctuations with
a controlled perturbation calculation.

The problems in the previous gauge theory are, in turn,
that (a) since the spatial components of the gauge field play
the role of the Lagrange multipliers that enforce the vanishing
counterflow between the holon and spinon currents, a gauge
fixing condition consistent with the vanishing counterflow
constraint is also required. But this was not considered in
the previous theory. (b) The coupling constant of the previous
gauge field theory is in the strong coupling limit, and there is
no small parameter for perturbation calculations. (c) To obtain

the dynamics of the gauge field in the previous method, one
must integrate over the spinon and holon, but this leads to
the problem that many physical observables cannot be directly
calculated.

By using our BRST quantization procedure, we show that
the aforementioned problems can be solved. The gauge field
acquires dynamics due to the consistent choice of the gauge
fixing conditions, and the coupling constant of the gauge
theory becomes finite. For the U (1) gauge theory, the problem
can be solved without using BRST quantization in general.
However, in such a constrained system, it is not easy to
check if the gauge fixing conditions are consistent with the
constraints. With the BRST quantization, this consistency can
be easily checked according to the BRST symmetry, which
requires that the physical states are BRST charge free. How-
ever, as we mentioned, a new BRST procedure beyond the
FVB theory needs to be developed for the mean field states
because both the local constraints of no-double occupation
and the vanishing counterflow are no longer the Dirac’s first-
class ones but are second-class ones. Although several formal
developments in applying BRST methods to systems with
second-class constraints were proposed [71–75], we find that
these methods cannot be applied to our condensed matter
systems. Fortunately, for the t-J model, we find that the BRST
symmetry consistent with these second-class constraints ex-
ists. The BRST is charge free in the physical states, and the
Euler-Lagrange equations self-consistently recover the origi-
nal constraints and the gauge fixing conditions. In this way,
we obtain a well-defined perturbation theory with a weak
coupling constant.

In this work, we focus on the properties of the strange
metal phase of the t-J model and leave those of the Fermi
liquid, pseudogap, superconducting, and antiferromagnetic
phases for further study. In the weak coupling region, the
mean field state of the strange metal phase is the uniform
resonant valence bond (uRVB) state proposed by Anderson
[47]. We calculate the electron momentum distribution and
the electron spectral function in the strange metal phase. The
non-Fermi-liquid behavior with the spin-charge separation is
explicitly shown through the zero-temperature electron mo-
mentum distribution, which violates Luttinger’s theorem [76].
The electron spectral function in the strange metal phase co-
incides with the angle-resolved photoemission spectroscopy
(ARPES) measurement data for cuprates [77–79]. Our results
substantially improve upon previous findings by Anderson
and Zou [80], as well as the gauge theory [13,14]. The electro-
magnetic responses are also calculated perturbatively. We see
that there is a temperature region where the resistivity depends
linearly on temperature, which is an anomalous phenomenon
in a wide temperature region for the optimally doped cuprates
[81]. As an improvement of the approximate analytical calcu-
lation in [13,14], we numerically calculate the Hall resistivity
and find that in the strange metal phase, the Hall resistivity
decreases as temperature increases, and the sign of the Hall
resistivity changes from negative to positive when the dopant
concentration x varies from the optimal doping one to the
underdoping side. Our result is consistent with the behav-
ior of the Hall resistivity observed experimentally [82–84],
and in our theory, additional scattering time [85] is not
needed.
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This paper is organized as follows: In Sec. II, we quantize
the t-J model by using the path integral within the BRST for-
malism. In Sec. III, we focus on the strange metal phase and
present the noninteracting gauge propagators and interaction
vertices. In Sec. IV, we calculate the momentum distribution
of the electrons in the strange metal phase and show the non-
Fermi-liquid nature. We also calculate the electron spectral
function for the strange metal phase and compare the result to
the ARPES data. Possible violation of Luttinger’s theorem is
discussed. In Sec. V, we study the electromagnetic responses
to the external electric and magnetic fields. The longitudinal
resistivity and the Hall resistivity are calculated. Especially,
the dependence of the Hall resistivity on temperature and the
dopant concentration are presented. Section VI is devoted to
conclusions and perspectives.

II. CONSISTENT U (1) GAUGE THEORY
FOR THE t-J MODEL

The Hamiltonian for the t-J model on a square lattice is
given by

Ht-J = −t
∑
〈i j〉,σ

c†
iσ c jσ + J

∑
〈i j〉

(
Si · S j − 1

4
nin j

)
, (1)

where ciσ is the electron annihilation operator at a lattice site
i with spin σ ; Sa

i = 1
2

∑
σ,σ ′ c†

iσ σ a
σσ ′ciσ ′ are the spin operators,

and σ a (a = x, y, z) are Pauli matrices. The hopping ampli-
tude t and the exchange amplitude J are fixed in-between the
nearest-neighbor sites. The constraint is that there is no double
occupation at each lattice site, i.e., c†

i ci � 1 for all i with a
fixed total electron number.

In the slave boson representation, the electron operator is
decomposed into the fermionic spinon and bosonic holon,
c†

iσ = f †
iσ hi, where f †

iσ is the spinon creation operator and hi

is the holon annihilation operator. This decomposition works
when the local constraint is enforced for every site i by

Gi = h†
i hi +

∑
σ

f †
iσ fiσ − 1 = 0. (2)

The electron number is fixed so that the average density of the
spinon is 1 − x, where x is the holon concentration. Notice
that if we write the Hamiltonian (1) in the slave boson repre-
sentation, it involves only the operator combinations f †

iσ fiσ ′ ,
fiσ h†

i , etc., at any local site i. Thus, one has [Gi, Ht−J ] = 0,
and Gi = 0 is the first-class constraint.

In Lagrangian field theory, the local constraints can be
imposed by introducing Lagrange multipliers for every lattice
site. For finite temperature and in the imaginary time formal-
ism, the effective slave boson t-J Lagrangian reads as [13,14]

Lλ =
∑

i

h†
i ∂τ hi +

∑
iσ

f †
iσ (∂τ − μ) fiσ

− ig
∑

i

λiGi + Ht-J , (3)

where 0 < τ < β with β = 1/T being the inverse of tem-
perature. Note that the Lagrange multipliers λi are treated as
dynamical variables, which become time dependent and can
be identified as the temporal component of the U (1) gauge
potential. This introduces redundant degrees of freedom that

should be eliminated through a suitable gauge fixing condition
that is consistent with local constraints.

The Lagrangian (3) is gauge invariant under the transfor-
mation ( fiσ (τ ), hi(τ )) → eigθi (τ )( fiσ (τ ), hi(τ )), and λi(τ ) →
λi(τ ) + ∂τ θi(τ ). The gauge-invariant partition function is

Z =
∫ ∏

i,τ

d�i(τ )e− ∫ β

0 dτLλ , (4)

where �i(τ ) represents for all fields, λi(τ ), hi(τ ), h†
i (τ ), . . . ,

and g is introduced as an arbitrary coupling constant because∫
dλi(τ )eigλi (τ )Gi = δ(gGi )

also imposes the constraint Gi = 0. As we have done in [60],
for such a constrained gauge theory, in order to remove the re-
dundant gauge degrees of freedom while keeping the partition
function gauge invariant, a proper gauge fixing condition for
λi(τ ) is needed.

A. BRST quantization for the exact theory

Since Gi = 0 is the first-class constraint, one can apply
FVB’s procedure to quantize the theory [64–66]. In our previ-
ous work [60], we used the gauge fixing condition

∂τλi(τ ) = ξ1πλi , (5)

where ξ1 is an arbitrary constant and πλi (τ ) is the canonical
conjugate of λi(τ ) [64–66]. For a detailed explanation of why
this gauge fixing is necessary, see Appendix A. Physically,
since there is no “potential energy” of λi, it cannot be “ac-
celerated.” The Euler-Lagrange equation of λi confirms this
point, i.e.,

∂2
τ λi = ∂τπλi = 0. (6)

Applying to the t-J model, the BRST invariant Lagrangian,
which removes the redundant gauge degrees of freedom, is
given by

L(1)
BRST = Lλ − 1

2ξ1

∑
i

(∂τλi )
2 +

∑
i

ū1i∂
2
τ u1i, (7)

where u1i(τ ) and ū1i(τ ) are the ghost and antighost fields
satisfying the anticommutation relation {u1i, ū1 j} = δi j ; and
the BRST transformations read as δB1 fσ = iεgu1 fσ , δB1h =
iεgu1h, δB1λ = ε∂τ u1, δB1u1 = 0, and δB1ū1 = ε∂τλ/ξ1,
where ε is a Grassmann constant with ε2 = 0.

The BRST invariant partition function reads as

Z (1)
BRST =

∫ ∏
i,τ

d�i(τ )dū1i(τ )du1i(τ )e− ∫ β

0 dτL(1)
BRST . (8)

Up to a constant factor, this partition function is gauge invari-
ant. The Euclidean BRST charge is given by

QB1 =
∑

i

(
igGiui − 1

ξ1
(∂τλi )∂τ u1i

)
. (9)

One can check [QB1, H (1)
BRST] = 0 with H (1)

BRST being the corre-
sponding Hamiltonian, which implies the BRST invariance of
the theory. Since the BRST symmetry is a global symmetry,
the physical states of the theory are the eigenstates of the
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BRST charge. Furthermore, the gauge fixing terms together
with the ghost part in a general BRST invariant theory can
be rewritten in the form of the BRST transformation of a
functional with the ghost number −1, i.e., a BRST exact
form [86]. Therefore, the variation of any matrix element
between two physical states 〈phys′|phys〉 in an arbitrary BRST
transformation under which the action is invariant vanishes
identically. Consequently, any physical state must be BRST
charge free [86]. For this model, we can easily verify this
result, and then the physical states satisfy

QB1|phys〉 = 0. (10)

Furthermore, since ui(τ ) and ∂τ ui(τ ) are independent local
fields, the constraints Gi = 0 and ∂τλi = 0 are exactly re-
covered. This means that the BRST quantization consistently
combines the local constraints and the gauge fixing conditions
in a systematic way.

Notice that for the Abelian gauge theory, the ghost sec-
tor is decoupled from the gauge field. One can integrate
over the ghost sector, and this leads to a determinant that is
independent of the “matter” sector. Dropping this constant
determinant, we arrive at the gauge fixed partition function,
where the gauge symmetry seems to be broken but actually
not because the gauge symmetry is now replaced by the global
BRST symmetry and the locality in the gauge transformation
is hidden in the ghost field. Thus, for the U (1) gauge theory,
the effective partition function can be written as

Z (1)
eff =

∫ ∏
i,τ

d�i(τ )e− ∫ β

0 dτL(1)
eff , (11)

where

L(1)
eff = Lλ − 1

2ξ1

∑
i

(∂τλi )
2. (12)

So far, the theory for L(1)
eff is exactly equivalent to the original

t-J model. Although the BRST formalism is not actually used
in the effective theory, it ensures consistency between the
gauge fixing condition and the local constraint. Furthermore,
it is easy to check that the BRST operator is nilpotent Q2

B1 =
0, and the BRST cohomology could be used to classify the
topology of the physical state space.

For a non-Abelian gauge theory, the ghost part cannot be
dropped because, in that case, the ghost part of the Lagrangian
does depend on the gauge field, i.e., the ghost sector cou-
ples with the gauge field in general. The BRST formalism
will greatly simplify the consistent quantization of the SU (2)
gauge theory of the slave boson [16,87], which goes beyond
the scope of this work and will not be discussed further.

B. BRST quantization for ordered gauge theory

The theory described by Eq. (11) is exactly equivalent to
the original t-J model. However, if we perform perturbation
calculations around a trivial nonordered ground state, we can-
not arrive at ordered states, which may be more favorable
in energy below some characteristic temperature. A common
strategy to obtain these ordered phases is to do mean field ap-
proximations. Previously, we used the BCS mean field theory
to study the superconducting state [60]. We show that after

integrating out the λi(τ ) field, the second term of Eq. (12)
gives an extra dynamic pairing term, which corrects the con-
ventional mean field pairing term. As a result, the mean field
pairing gap is suppressed. In this section, we would like to
develop a complete gauge theory based on various mean field
states using BRST quantization. To this end, we first write the
U (1) gauge theory in the slave boson mean field approxima-
tion [13,14],

LMF = J

4

∑
〈i j〉

[
|γ f |2 + |�a|2 −

∑
σ

(γ f †eiai j f †
iσ f jσ + H.c.)

]

+
∑
〈i j〉

J

4
[�aeiφi j ( f †

i↑ f †
j↓ − f †

i↓ f †
j↑) + H.c.]

+
∑

i

h†
i (∂τ − μh)hi +

∑
iσ

f †
iσ (∂τ − μ f ) fiσ

− t
∑
〈i j〉

[eiai j (γ f h†
i h j + γ h† f †

iσ f jσ ) + H.c.]

+
∑

i

igλiGi, (13)

where �a for a = x, y labels the pairing parameter in the a
link, and γ h, f are the hopping parameters for the spinon and
the holon. We choose �a and γ h, f as expectation values in
the mean field approximation. The phase fields ai j and φi j ,
which obey the periodic boundary condition, are quantum
fluctuations to compensate for the gauge symmetry break-
ing due to the mean field approximation. Aside from the
temporal gauge field λi, the mean field theory has a spatial
gauge invariance under the transformations ( fiσ (τ ), hi(τ )) →
eiθi (τ )( fiσ (τ ), hi(τ )), and ai j → ai j + θi − θ j and φi j → φi j +
θi + θ j . The equation of motion of ai j leads to the constraint of
vanishing counterflow between the holon and spinon currents
[13,14], i.e.,

Ji j = J f
i j + Jh

i j = 0. (14)

This is also a local constraint. Note that the gauge field ap-
pears in the expression of the spinon and holon currents. And
the constraint holds for nonvanishing gauge configurations.
The variation of φi j does not result in new constraints, and
this point will be further analyzed in Sec. II C. Therefore, our
problem becomes how to quantize the mean field theory with
the constraints Gi = 0 and Ji j = 0 with proper gauge fixing
conditions.

At the mean field approximation, one can take ai j = āi j ,
with āi j being a background gauge configuration determined
by solving the mean field self-consistent equations. To main-
tain translation symmetry as well as time-reversal symmetry,
the gauge flux through a plaquette takes 0 or π mod(2π ),
which corresponds to either the uRVB state [47] or the π -flux
state [9]. The mean field energy of the former is lower than
that of the latter in the strange metal phase [88]. Following
Nagaosa and Lee [13,14], we take the uRVB mean field state.
However, we still need to deal with the gauge fluctuation
gδai j = ai j − āi j around the uRVB state.

In the continuum limit, Gi changes to G(r), and āi j changes
to ā(r), which is zero in the uRVB state, and φ(r, τ ) is the
continuum limit of (φi + φ j )/2. The conserved current Jμ is
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given by Jτ = G + 1 and

Jb(δa) = Jf b(δa) + Jhb(δa)

= − 1

m f

∑
σ

f †
σ (i∂b + gδab) fσ − 1

mh
h†(i∂b + gδab)h,

where 1/mh ∼ γ f t , 1/m f ∼ γ f J + γ ht , and δab is the con-
tinuum limit of δai j , namely, δai j = (ri − r j ) · a[(ri + r j )/2].
We also set gλ(r, τ ) = gδλ. The constraint (14) becomes
Jb(δa) = 0, which comes from the equation of motion of
the spatial gauge potential δab. This current Jb(δa) is gauge
invariant but not a physical observable because it is dependent
on the gauge fluctuation. The physical observable vanishing
counterflow constraint is given by

Jb = 〈Jb(δa)〉δa = 0, (15)

where 〈. . . 〉δa stands for integrating the gauge fluctuation δab.
However, due to the redundant gauge degrees of freedom
in integrating over δab, we need to choose the gauge fixing
conditions that are consistent with our constraints.

Before proceeding with quantization, we follow Dirac’s
classification [61] and check the class of the constraints. It
is easy to read out the mean field Hamiltonian from the La-
grangian (13) and we find that in the continuum limit

[HMF, G(r)] ∝
∑

b

∂bJb(δa). (16)

However, this is the only closed relation in the constrained
problem {HMF, G, Jb}. All other commutators are not closed.
This means that FVB’s procedure cannot be directly ap-
plied. Recently, Komijani et al. proposed a method to solve
this problem by including projectors to impose the con-
straints in the Hamiltonian [89]. This introduces, however,
six-operator interactions. Here, using the BRST invariance as
a guiding principle, we managed to find general gauge fixing
conditions that are consistent with both the first- and second-
class constraints. Our approach, in principle, is equivalent to
the method in [89] provided that no further approximations
are made. But, in practice, various approximations are un-
avoidable and further research is needed to understand the
connections between the approximations used in our work and
in [89].

We describe the procedure to determine the gauge fixing
conditions in Appendix B. Below we present an intuitive way
to find the gauge fixing condition used in our calculations.
First of all, for any U (1) gauge theory with the temporal and
spatial components of the gauge field, we can start from a
well-known gauge fixing condition, the Lorenz gauge

ζ∂τ δλ +
∑

b

∂bδab = 0, (17)

where ζ is an arbitrary constant introduced for later conve-
nience. With this gauge fixing condition, we have the BRST
invariant Lagrangian in the continuous limit

L(2)
BRST = LMFC −

∫
d2r

1

2ξ

(
ζ∂τ δλ +

∑
a

∂aδaa

)2

+ 1

ξ

∫
d2r ū

(
ζ∂2

τ +
∑

a

∂2
a

)
u, (18)

where ξ is an arbitrary gauge parameter and the BRST trans-
formations read as

δB fσ = iεgu fσ , δBh = iεguh, δBφ = 2iεgu,

δBδλ = ε∂τ u, δBδab = ε∂bu, δBu = 0,

δBū = ε

(
ζ∂τ δλ +

∑
b

∂bδab

)
; (19)

and LMFC is the continuum limit of the mean field Lagrangian
(13). Our theory can be applied to various pairing potentials,
but here we focus on the d-wave pairing, such that LMFC takes
the form

LMFC =
∫

d2r

[∑
σ

f †
σ (∂τ − μ f − igδλ) fσ

+ h†(∂τ − μh − igδλ)h

]

−
∫

d2r

[
1

2m f

∑
σ,a

f †
σ (−i∂a − gδaa)2 fσ

− 1

2mh

∑
a

h†(−i∂a − gδaa)2h

]

+ 1

2

∫
d2r

∑
a

(�a∂a(eiφ/2 f †
↑ )∂a(eiφ/2 f †

↓ ) + H.c.).

(20)

However, it is easy to check that the determinant of the
free gauge field propagator read out from (18) is singular,
i.e., det D−1(iνn, q) = 0. This means that the redundant gauge
degrees of freedom are not completely fixed. A further gauge
fixing condition is required. For the FVB’s procedure in
Sec. II A, ∂2

τ λi = 0 [Eq. (6)] ensures that λi is not accelerated.
In mean field theory, inspired by the fact that the spatial gauge
fluctuations are included, we generalize this condition into
a D’Alembert-type one ∂2

τ δλ + 1
ξ

∑
b ∂2

b δλ = 0, where ξ is a
parameter. For a rigorous derivation of this condition, see Ap-
pendix B where a general form of the quadratic gauge fixing
Lagrangian with BRST symmetry is presented. By acting ∂τ

on the Lorenz gauge (17), we have ζ∂2
τ δλ + ∑

b ∂τ ∂bδab = 0.
The D’Alembert-type condition, combined with this equation,
reduces to the following gauge fixing condition to the La-
grangian (18):

ζ

ξ

∑
b

∂2
b δλ −

∑
b

∂τ ∂bδab = 0. (21)

We find that, up to some total divergence terms, the BRST
invariant Lagrangian that is consistent with the constraints
G = 0 and Jb = 0 as well as the gauge fixing conditions (17)
and (21) is given by

LBRST = LMFC−
∫

d2r

[
ζ

2
(∂τ δλ)2 + 1

2ξ

(∑
b

∂bδab

)2

+ 1

2

∑
b

(∂τ δab)2 + ζ

2ξ

∑
b

(∂bδλ)2

]
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+ 1

ξ

∫
d2r ū

(
ζ∂2

τ +
∑

a

∂2
a

)
u

≡ Leff + 1

ξ

∫
d2r ū

(
ζ∂2

τ +
∑

a

∂2
a

)
u. (22)

The determinant of the free gauge propagator corresponding
to (22) is nonvanishing besides some poles; see Eq. (32).

In this way, we obtain a BRST symmetric theory with
second-class constraints. By Noether’s theorem, the Euclidean
BRST charge is then given by (see Appendix B)

QB =
∫

d2x

(
igG + ζ

ξ
∂2δλ −

∑
b

∂τ ∂bδab

)
u

+
[
ζ∂τ δλ +

∑
b

∂bδab

]
∂τ u. (23)

The physical states are then constrained by [86]

QB|phys〉 = 0. (24)

Since the local ghost field u and its τ derivative ∂τ u are
independent, we recover the constraint G = 0 and the gauge
fixing conditions (17) and (21).

However, the vanishing counterflow condition Jb = 0 is not
included in QB|phys〉 = 0. Notice that to obtain the BRST
charge (23) from Noether’s theorem, the Euler-Lagrange
equations of motion of all fields are already used. Thus, we
check the equations of motion involved in the current Jb(δa).
According to the Euler-Lagrange equations for δab

δLeff

δ(δab)
− ∂τ

(
δLeff

δ∂τ δab

)
−
∑

c

∂c

(
δL

δ∂cδab

)
= 0, (25)

we have

Jb(δa) − 1

2
∂2
τ δab − 1

ξ
∂b

(∑
c

∂cδac

)
= 0, (26)

which does not directly give the vanishing spinon-holon coun-
terflow constraint. As we have pointed out, we need to average
Eq. (26) for the fluctuating gauge field, and the physical
gauge-invariant current obeys〈

Jb(δa) − 1

2
∂2
τ δab − 1

ξ
∂b

(∑
c

∂cδac

)〉
δa

= 〈Jb(δa)〉δa = 0, (27)

which is the vanishing spinon-holon counterflow constraint.
Summarily, in the BRST quantization procedure, the re-

dundant gauge degrees of freedom are fixed while the original
physical constraints are consistently maintained. Based on this
well-defined theory, we can perform perturbation calculations.
Again, for the U (1) gauge theory, the ghost part is decoupled
from Leff, and we will only consider the Lagrangian Leff for
the rest of this work.

C. Higgs mechanism

Before proceeding with perturbation calculations, let us
discuss the Higgs mechanism for the pairings. By defining

ψσ = e−iφ/2 fσ , the fermionic field ψσ remains gauge invari-
ant. The effective Lagrangian becomes

Leff =
∫

d2r
∑

σ

ψ†
σ

[
∂τ − μ f − igA0

− 1

2m f

∑
a

(−i∂a − gAa)2

]
ψσ

+
∫

d2rh†

[
∂τ − μh + gδλ

− 1

2mh

∑
a

(−i∂a − gδaa)2

]
h

+
∫

d2r
∑

a

[(�a∂aψ
†
↑∂aψ

†
↓) + H.c.]

−
∫

d2r

[
ζ

2
(∂τ δλ)2 + 1

2ξ

(∑
b

∂bδab

)2

+ 1

2

∑
b

(∂τ δab)2 + ζ

2ξ

∑
b

(∂bδλ)2

]
. (28)

We see that the φ field is absorbed into ψ , which is gauge
invariant, while gA0 = gδλ − φ̇/2 and gAa = gδaa − ∂aφ/2
are also gauge invariant. This is the Higgs mechanism and it
is known that no further gauge fixing condition is required.
To see this explicitly, we check the equation of motion of φ.
Varying φ, we obtain

∂τ Jψτ − ∂bJψb = 0, (29)

where Jψτ = ∑
σ ψ†

σψσ = n f and Jψb = − 1
m f

∑
σ ψ†

σ (i∂b +
gAb)ψσ = Jf a. This is exactly the spinon current conservation
and does not result in a new constraint. In other words, φ is not
a gauge field, and there are no redundant degrees of freedom to
be fixed. The effect of φ on the pairing physics will be studied
in other works.

III. PERTURBATION THEORY

We study the strange metal phase where the holons are not
condensed and the spinons are not paired. Since �a = 0, we
do not need to distinguish fσ from ψσ , i.e., we take φ = 0. Ac-
cording to the Faddeev-Popov path integral quantization, the
gauge-invariant partition function with no redundant gauge
degrees of freedom is given by

Zeff ∝
∫ ∏

r,τ

d� dū du e− ∫ β

0 dτLBRST

∝
∫ ∏

r,τ

d� e− ∫ β

0 dτLeff . (30)

A. Noninteracting Green’s functions and interaction vertices

We can now draw Feynman’s diagrams according to
Leff. Taking μ = τ, 1, 2 and kμ = (νn, k1, k2), the inverse of
the free one-particle Green’s function of the gauge field is
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FIG. 1. The Feynman diagrams for the free one-particle Green’s
functions of (a) fσ , (b) h, (c) δaμ = (δλ, δaa ). ξ f (h)k = k2

2m f (h)
− μ f (h).

given by

D(0)−1
μν (k, iνn)

= −

⎡
⎢⎢⎢⎣

ζν2
n + ζ

ξ
k2 0 0

0 ν2
n + 1

ξ
k2

x
1
ξ
kxky

0 1
ξ
kxky ν2

n + 1
ξ
k2

y

⎤
⎥⎥⎥⎦. (31)

The determinant of this matrix is

det
(
D(0)−1

μν

) = ζν2
n

(
ν2

n + 1

ξ
k2

)2

. (32)

As expected, the Green’s function is regular except for some
singular poles. Aside from ν2

n = 0, we have two poles at ν2
n =

−k2/ξ .
The one-particle Green’s function of the gauge field is then

given by

D(0)μν (k, iνn)

= − 1

ν2
n

(
ν2

n + k2/ξ
)

×

⎡
⎢⎢⎣

1
ζ
ν2

n 0 0

0 ν2
n + (

k2 − k2
x

)/
ξ −kxky/ξ

0 −kxky/ξ ν2
n + (

k2 − k2
y

)/
ξ

⎤
⎥⎥⎦.

(33)

The one-particle Green’s functions of the other fields can
be easily read out from Leff. The free one-particle Green’s
functions for ψσ , h, δλ, and δ�a are shown in turns in Fig. 1.

When h condenses, the holon Green’s function becomes
Gh = ρh0 + G′

h. In the fermion-paired phases, there exist
anomalous Green’s functions. In this work, we do not intend
to deal with the paired states and thus put these Green’s
functions in Appendix C.

FIG. 2. The Feynman diagrams for the three-point vertex.

The interaction vertices can be directly read out from Leff

(see Figs. 2 and 3). The Feynman’s rules and Dyson’s equa-
tions are given in Appendix D.

IV. ONE-ELECTRON GREEN’S FUNCTION
AND NON-FERMI LIQUID

In this section, we will calculate the one-electron Green’s
function and the momentum distribution of the electron.

A. One-electron Green’s function

The one-electron Green’s function in the slave boson the-
ory is given by

Geσ (r, τ ) = −〈Tτ [h†(r, τ ) fσ (r, τ ) f †
σ (0, 0)h(0, 0)]〉. (34)

In the path integral calculation, we introduce a fermionic
source term to obtain the electron Green’s function through

FIG. 3. The Feynman diagrams for the four-point vertex.
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FIG. 4. The electron Green’s function is constructed from the full
Green’s functions of holon and spinon, and a full vertex correction,
which are represented by thick lines and black circles. The second
to the fourth lines represent the self-energy corrections of holons
and spinons up to g2 order. The fourth line represents the vertex
correction up to g2 order. The ellipsis (. . . ) represents higher-order
terms. The Green’s function of δλ is indicated by the dotted line,
while the wavy line indicates that of δab.

the function derivative

Geσ (r, τ ) = − δ2Wη

δη̄(r, τ )δη(r, τ )

∣∣∣∣
η̄=η=0

, (35)

where the free energy Wη is defined by

e−Wη ≡ Zeff,η =
∫ ∏

r,τ

d�(r, τ ) exp

{
−
∫

dτ Leff

−
∫

dτ d2r[η̄(r, τ )h†(r, τ ) fσ (r, τ )

+ η(r, τ )h(r, τ ) f †
σ (r, τ )]

}
.

The second line is called the source vertex, which can be
diagrammatically represented as

⊗ = −
∫

dτ d2r η(r, τ ). (36)

The electron Green’s function can then be calculated by the
Feynman diagram (see Fig. 4). We remark that the one-
electron Green’s function is gauge invariant. According to the
perturbation theory, this gauge invariance is kept loop by loop.
However, under the RPA, the results may be gauge dependent
because we have neglected the fluctuations from the source
vertex and gauge field self-energy. Due to the complexity of
the full Green’s function, we here perform the RPA calculation
and leave the gauge-invariant calculation to further work.

B. Momentum distribution

According to the electron Green’s function (35), one can
calculate the momentum distribution of the electrons. Without
considering gauge fluctuations, the Green’s function (35) has
been calculated in [80,90].

The momentum distribution of the electrons is defined by

nk = 2〈c†
σkcσk〉 = 2

∑
q,q′

〈 f †
σk+q fσk+q′hqh†

q′ 〉. (37)

The momentum distribution may also be calculated according
to the spectral function, i.e.,

nk =
∫

dω

2π
Ae(k, ω)nF (ω), (38)

where nF (ω) is the Fermi distribution. The electron spectral
function Ae(k, ω) = −2 ImGr

eσ (k, ω).
We calculate Gr

eσ (k, ω) perturbatively. To the zeroth order
of g, there is no correction to the source vertex, and the
single-electron Green’s function is approximated by the right
diagram in the first line of Fig. 4, which in the Matsubara
frequency space is

G (0)
eσ (k, iωn) = 1

Nβ

∑
m

∫
d2q

(2π )2
G (0)

f σ (k + q, iωn + iνm)

×G (0)
h (q, iνm), (39)

where N is the number of lattice sites. This expression has
been obtained in [80]. The retarded thermodynamic Green’s
function Gr

eσ (k, ω) is given by iωn → ω + i0+ in the Mat-
subara function. Thus, the zeroth-order contribution to the
momentum distribution is given by

n(0)
k = 1

(2π )3

∫
d2q

∫
dω nF (ω)A(0)

f (k + q, ω)

×
(

1 +
∫

dν nB(ν)B(0)
h (q, ν)

)
, (40)

where A(0)
f = −2 ImGr(0)

f σ is the free-spinon spectral function

and B(0)
h = −ImGr(0)

h is the free-holon spectral function with
Gr(0)

h being the retarded free Green’s function of the holon, and
nF/B is the fermion/boson distribution function at temperature
T . In the strange metal phase, there is no holon condensation.
Thus, at zero temperature,

n(0)
k,T =0 = 1

(2π )3

∫
d2q

∫
dω �(−ω)A(0)

f (k + q, ω), (41)

where �(x) is the step function. It is clear that the momentum
distribution n(0)

k,T =0 is a constant independent of k. If we do
not consider the higher-order contributions, the momentum
distribution obeys the sum rule

1 − x = 1

L2

∫
d2k

(2π )2
nk, (42)

which gives n(0)
k,T =0 ∼ 1 − x at zero temperature for L being

the lattice size. Furthermore, it is easy to see that by replacing
the free-spinon and -holon Green’s functions with the full ones
and neglecting the vertex correction, the zero-temperature
momentum distribution is still constant. This is an extreme
non-Fermi-liquid behavior because although the momentum

075125-8



NON-FERMI-LIQUID BEHAVIOR OF THE t-J … PHYSICAL REVIEW B 110, 075125 (2024)

FIG. 5. The Feynman diagrams of the g4 order with kakb-
dependent contributions.

distribution of the spinon obeys the standard Fermi distribu-
tion, the integrations over ω and q destroy the discontinuity at
the Fermi momentum of the electron momentum distribution.
However, if we do not consider the source vertex correction,
this constant momentum distribution is obviously not physi-
cal. Thus, to obtain a physical result, the spinon-holon source
vertex correction with the effect of the dynamics of the gauge
field has to be considered.

The g2-order correction to the source vertex comes from
the fourth line of Fig. 4. But their contribution to the mo-
mentum distribution is still a constant, i.e., independent
of the momentum (see Appendix E for details). Let us
check the g4-order contribution. Aside from the linearly k-
dependent diagrams, which eventually become zero due to
reflection symmetry, the diagrams in Fig. 5 provide the
nonzero quadratic kakb-dependent contributions to the elec-
tron momentum distribution. And we have (see Appendix E
for details)

n(4)
ek,T =0 = 2

(
n4A

eσk + n4B
eσk

) = −C(4)k2. (43)

Other contributions to the k2 terms come from the correction
of G00 to n(4)

ek,T =0, which are of the order O(g6) and higher. Tak-
ing these contributions into account, C(4) is corrected to C(4).
Similarly, the 2n-loop diagrams with the spinon-holon vertex
and 2n − 1 lines of the spatial gauge field Green’s function
do not contribute to the g4n−2 order, while such (2n + 1)-loop
diagrams contribute to nek with

n(2n+2)
ek,T =0 = (−1)nC(2n+2)k2n, (44)

and C(2n+2) is corrected to C̃(2n+2). The momentum distribu-
tion at T = 0 is then given by

nek,T =0 =
∑
n=0

(−1)nC̃(2n+2)k2n. (45)

This is a continuous function of k2 and there is no jump
at the Fermi momentum kF . Note that nek=0,T =0 does not
approach unity when k → 0. The discontinuity of the spinon
momentum distribution is integrated to be smooth, and the
nek,T =0 near k ∼ kF is not an interaction-dependent power law
like |k − kF |α(J ) for an α depending on J as in the Luttinger
liquid. Instead, there is no particularity about the expansion
at kF . In general, the expansion around any given k0 is linear
in |k − k0| based on loop expansion in Feynman diagrams.
We note that Luttinger’s theorem [76], although it has a topo-
logical origin and is valid for certain non-Fermi liquids [91],
can be violated in strongly correlated systems [92] . In our
theory, Luttinger’s theorem does hold for spinons. However,
since the one-electron Green’s function is actually the spinon-
holon two-particle Green’s function and the holons do not
condense, Luttinger’s theorem breaks down for electrons. The

violation of Luttinger’s theorem, however, should be viewed
with caution because we have not proven that our perturbative
expansion converges. The possibility of the breakdown of
Luttinger’s theorem will be explored in the future. We do
not give the numerical result for nek,T =0 here because the
zero-temperature momentum distribution of the strange metal
is not experimentally observable. Instead, we calculate the
finite-temperature electron spectral function which is exper-
imentally more relevant.

C. Electron spectral function

We showed that without the source vertex correction, the
momentum distribution at zero temperature is constant. How-
ever, the spectral function without the source vertex correction
depends on k and ω at a finite temperature. In this section, we
focus on the finite-temperature case and neglect the source
vertex correction and use the RPA correction to Eq. (39)
from the spinon and holon self-energies to calculate Ae(k, ω).
According to the Dyson equations (see Appendix D), the
one-electron Matsubara’s function in this approximation can
be written as

Geσ (k, iωn)

= 1

β(2π )2N

∑
m

∫
d2q

1

iνm − ξh,q − �h(q, iνm)

× 1

iωn + iνm − ξ f ,k+q − � f (k + q, iωn + iνm)
,

(46)

which is also related to the spectral function by

Geσ (k, iωn) =
∫

dz

2π

Ae(k, z)

iωn − z
. (47)

If one ignores the spinon and holon self-energies in the
electron’s Green’s function (46), then the corresponding spec-
tral function was discussed by Lee and Nagaosa [14]. They
pointed out that the holon part leads to a peak centered around
μ f − |μh|, and the spinon part contributes to a continuum dip-
bump with a threshold. They further used a phenomenological
gauge propagator to estimate the effect of gauge fluctuations.
Here, we use our controlled gauge theory to perturbatively
calculate the electron spectral function in the presence of
gauge fluctuations.

With the help of the spinon and holon spectral functions
A f ,h(k, z), one can write Eq. (46) as

Geσ (k, iωn) = −
∑

m

∫
d2q

(2π )2

∫
dz1

π

A f σ (k + q, z1)

iωn + iνm − z1

×
∫

dz2

π

Ah(q, z2)

iνm − z2

=
∫

d2q dz1dz2

4π4

nF (z1) + nB(z2)

iωn − z1 + z2

× A f σ (k + q, z1)Ah(q, z2). (48)

075125-9



LONG LIANG, YUE YU, AND XI LUO PHYSICAL REVIEW B 110, 075125 (2024)

FIG. 6. The electron spectral function without gauge fluctuations
at T = 200 K > T ∗.

The electron spectral function can then be expressed by using
spinon and holon spectral functions as

Aeσ (ω, k) =
∫

d2q dz

(2π )2π
[nF (ω + z) + nB(z)]

× A f σ (k + q, ω + z)Ah(q, z). (49)

We first calculate the electron spectral function with the
free spinon and holon by taking � f = 0 and �h = 0 in
Eq. (46). Without gauge fluctuations, the spinon and holon
spectral functions are

A0
f (ω, k) = πδ(ω − ξ f ,k ), (50)

A0
h(ω, k) = πδ(ω − ξh,k ), (51)

and then the electron spectral function is given by

A0
eσ (ω, k) =

∫
d2q

4π
[nF (ξ f ,k+q) + nB(ξh,k )]

× δ(ω + ξh,k − ξ f ,k+q). (52)

We consider a square lattice model with dispersion Ek =
−t (cos kxa + cos kya) − μ with t ∼ 0.1 eV, μ ∼ −0.05 eV,
and x = 0.2, which are typical for the cuprates in the strange
metal phase [93]. The lattice constant a is set to be unity.
In the continuum limit, the above parameters correspond to
k2/(2m f ) − μ f with a2t ∼ 1/m f , and μ f = 0.15 eV. The
Fermi momentum is kF ∼ √

3/a. Near the Fermi surface (k ≈
kF ), the electron spectral functions with the free spinon and
holon are shown in Fig. 6, in which T = 200 K is greater than
the temperature T ∗, above which the system is in the strange
metal phase. Although this electron spectral function without
gauge fluctuations is not physical at zero temperature, it shows
some features that also appear in the spectral function with
gauge fluctuations. In particular, we can see the peak of the
quasiparticle spectral weight near the Fermi momentum and
a dip-bump structure of the spectral function below the Fermi
momentum. These features of the electron spectral function
seem to fit with the experimental observation at T ∼ 200 K
as noticed by Anderson and Zou [80].

We now consider the effect of the gauge fluctuations from
the RPA. The coupling constant g is taken to be 0.1 for the
perturbation theory, and the gauge parameter is taken to be
ξ = 1. In the PRA calculation, we need the one-loop spinon

FIG. 7. The electron spectral function for different momentum
and frequency. Solid line: holon self-energy is neglected. Dashed
line: both spinon and holon self-energies are neglected.

self-energy

�
(0)
f (iωm, q) =

∑
n

∫
d2k γμD(0)

μν (iνn, k)

× γνG (0)
f (iνn + iωm, k + q), (53)

where γμ = −g(i, k+q/2
m f

) are the interaction vertices read
from Figs. 2 and 3. The expression for the holon self-energy is
similar, and detailed expressions are presented in Appendix F.
The momentum integral diverges in �

(0)
f ,h. The ultraviolet di-

vergence may be removed by simply taking a cutoff because
the lattice spacing is finite and we take kUV = 10k f in our
numerical calculations. In principle, the infrared divergence
should be canceled by other gauge fluctuations, such as the
source vertex correction and the gauge field self-energy. Un-
der the RPA, we simply take a long-wavelength cutoff of
kIR = 10−5k f . We checked that the result is not sensitive to
the cutoff.

Figure 7 shows the spectral function with only spinon
self-energy included, and in Fig. 8, we put the gauge fluc-
tuations from both spinon and holon self-energies into the
electron spectral function. The results are similar. One can
see that gauge fluctuations suppress the peaks of the spectral
weight. Our result is consistent with the ARPES measure-
ment in the cuprates. The electron spectral function at kF is

FIG. 8. The electron spectral function for different momentum
and frequency. Solid line: with gauge fluctuations. Dashed line:
without gauge fluctuations.
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proportional to ±ω near the Fermi surface, and the slope
vanishes at k = kF , which are generic properties seen in the
ARPES measurements for the cuprates. For k < kF , the peak
of the spectral function moves inward and becomes higher,
and for k > kF , it moves outward and becomes lower, and its
1/ω2 decay away from the Fermi surface is also a characteris-
tic feature of the spectral function. Furthermore, the dip-bump
of the spectral weight was also observed in experiments. For
a review of the ARPES experiments for the cuprates, see, for
example, Refs. [77–79].

In principle, the BRST symmetry guarantees the gauge
invariance of the theory and the physical correlation func-
tions. But, in practice, correlation functions may become
gauge dependent because approximations cannot be avoided
in the perturbation computation. To obtain the gauge-invariant
form of correlation functions, a Ward identity, which is the
quantum version of the conservation law, is required. As long
as the path integral measure does not change under the BRST
transformation, there is no quantum anomaly. According to
the general theory of gauge fields, if we consider all diagrams
in the same order of perturbation, the Ward identity is auto-
matically satisfied. However, we have used the RPA method
when calculating the spectral function, so the results will be
gauge dependent in general. The proof of the Ward identity
and renormalizability is now beyond the goal of this work,
and we shall present them in future works. To check the effect
of the gauge dependence, we take another gauge choice, and
the electron spectral function behaves similarly to that shown
in Fig. 8.

Before closing this section, two remarks are in order: (i)
The conventional wisdom is that the ARPES data are propor-
tional to the electron spectral function, which is dependent
on the coupling constant g, and we take g = 0.1 in our cal-
culations. The interpretation of the ARPES data in terms of
the spectral function Ae(k, ω) is based on the sudden approxi-
mation [94], which introduces the gauge coupling constant in
the photoemission current. In this approximation, the coupling
constant can be determined phenomenologically. Precisely,
the photoemission current can be perturbatively calculated by
evaluating the correlation function of three current operators,
and the result does not depend on the coupling constant g
[94]. We will give an example to demonstrate this kind of
independence in Sec. V A. (ii) We also notice that when the
rotational symmetry reduces to the C4 symmetry for the square
lattice, the spectral function becomes angle dependent, as
found in the ARPES measurement. We will leave these further
calculations and the detailed comparisons to the experiments
to further works.

V. RESPONSES TO THE EXTERNAL ELECTRIC
AND MAGNETIC FIELDS

A. Ioffe-Larkin rule and the coupling constants

We now study the linear responses to the external electro-
magnetic field in the strange metal phase. We first review the
Ioffe-Larkin composite rule [70]. In the original t-J Hamilto-
nian, the external electromagnetic field couples to the t term

tc†
i c j + H.c. → eiAi j c†

i c j + H.c. → eiAi j f †
i f jhih

†
j + H.c.

(54)

This means that in the electromagnetic U (1) gauge trans-
formation Ai j → Ai j + ϑi − ϑ j , the spinon’s and holon’s
gauge transformations transform the t term as ( f †

i f j )(hih
†
j ) →

(eiαϑi j f †
i f j )(e−iβϑi j hih

†
j ) for α − β = 1. We chose α = 1 and

β = 0, and physically this means that the electromagnetic
field couples to the spinon only [16]. Thus, if Ea is the ex-
ternal electric field and Ea

in is the “electric” field for δaa, the
currents are

Ja
f = σ f

(
Ea + g

e
Ea

in

)
, Ja

h = σh
g

e
Ea

in. (55)

In the above equations the gauge coupling g and elec-
tric charge e are written explicitly. Using the constraint
Ja

f + Ja
h = 0, we have

Ea
in = − σ f

σ f + σh
Ea. (56)

The electric current coincides with the spinon current

Ja = Ja
f = −Ja

h = σhσ f

σ f + σh
Ea = σEa, (57)

which gives the Ioffe-Larkin composite rule

σ−1 = σ−1
h + σ−1

f , R = R f + Rh. (58)

This means that the spinon and holon form a sequential circuit,
not a parallel one [70]. Note that the gauge coupling constant
g does not appear in the Ioffe-Larkin rule, in other words, the
Ioffe-Larkin rule is satisfied no matter what the value of g is.

According to the linear response Kubo formula and the
constraints Jf ,μ = −Jh,μ (where Jhτ = −1 − h†h = −hh†),
we have

Jμ(q, ω) = �e,μν (q, ω)Aν = Jf ,μ(q, ω) = −Jhμ(q, ω).

(59)

This gives that

�−1
e,μν (q, ω) = �−1

f ,μν (q, ω) + �−1
h,μν (q, ω). (60)

We now calculate �
f ,h
ab (q, ω) using perturbation theory. For

expressions for the polarization function, see Appendix G.

B. Linear dependence on T of resistivity

We first qualitatively estimate these electromagnetic re-
sponses. We focus on the resistivity in the high-temperature
limit. The spinon contribution to the conductivity is σ f ∼
� f aa/ω with � f aa being the diagonal polarization, and
we find

σ−1
f ∼ ω

B f + A f T
, (61)

where the coefficients A f and B f are temperature independent.
Similarly, the holon contribution to the conductivity is

σ−1
h ∝ ω

x
T . (62)

This is the same result obtained in [13,14]. As recognized by
Nagaosa and Lee [13,14], the spinon conductivity dominates,
i.e., σ−1

h � σ−1
f . We then have

σ−1 = σ−1
f + σ−1

h ≈ σ−1
h , (63)
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which is linearly dependent on T . Note that our result is
obtained at high temperature. Experimentally, the T linear
behavior persists down to the superconducting transition tem-
perature and has Planckian slope [95], which goes beyond the
scope of this paper and will be investigated in future work.

C. Hall resistivity

We have neglected the terms that are proportional to q2

of the polarization in the last subsection. The coefficients
before q2 are known as the Landau diamagnetic susceptibil-
ities for spinon and holon, which can be calculated through
the momentum expansion of the polarization functions in the
zero-frequency limit,

χ f = g2

8m2
f π

2N

∫
d2 p

nF (ξ f ,p+q) − nF (ξ f ,p)

ξ f ,p − ξ f ,p+q
(64)

and

χh = g2

16m2
hπ

2N

∫
d2 p

nB(ξh,p+q) − nB(ξh,p)

ξh,p − ξh,p+q
. (65)

The Hall resistivity is then given by [13,14],

RH = R f ,Hχh + Rh,Hχ f

χh + χ f
, (66)

where R f ,H and Rh,H are the Hall resistivity of the spinon
and holon, respectively, and χ f and χh are the Landau dia-
magnetic susceptibilities for the spinon and holon. In the
low-temperature limit, we found that χ f ∼ (1 − x)/m f and
χh ∼ 2πx/mhT , which are the same as the results obtained
in [13,14]. Taking Rh,H ≈ 1/x, R f ,H ≈ −1/(1 − x), the Hall
resistivity of the free spinon and holon [13,14], the Hall re-
sistivity (66) in the low-temperature limit is approximated by
[13,14]

RH ≈ − 1

1 − x
+ 1

x
(
1 − x + 2πm f x

mhT

) , (67)

which increases as temperature rises. However, the tempera-
ture dependence is opposite to the experimental measurements
[82–84].

In a previous theory, Chien et al . introduced an addi-
tional scattering time to explain the Hall coefficient anomaly
in cuprates [85]. However, the origin of such an additional
scattering time was not found in the gauge theory. We now
see if there is a Hall coefficient anomaly in our theory. We
do not plan to examine if the high-order perturbation by the
gauge fluctuations can result in such an anomaly. Instead, we
first check the Landau diamagnetic susceptibility at a high-
temperature limit, and in this case we have

χ f ≈ g2

m2
f T

(1 − x) (68)

and

χh ≈ g2T

4m2
h(2π )2N

∫
d2 p

1

ξpξp+q
≡ g2T

T 4
0

. (69)

Using the Hall resistivity of the free spinon and holon, the Hall
resistivity (66) in the high-temperature limit is approximated

FIG. 9. Dependence of temperature and dopant concentration on
Hall resistivity. We choose q = (0.01, 0.01) in Eqs. (64) and (65).

by

RH ≈ − 1

1 − x
+ 1

x
(

1 − x + T 2m2
f

T 4
0

) . (70)

In the high-temperature limit, RH decreases as T increases.
This implies that for the t-J model, there is indeed a tempera-
ture interval where the Hall coefficient anomaly is consistent
with the experimental results for cuprates.

From the above analytical estimates, we see that the Hall
resistivity increases at low temperatures while decreasing at
high temperatures as T increases. In fact, with Eq. (66), we
can calculate the Hall resistivity by numerically computing
χ f ,h in Eqs. (64) and (65). In the long-wavelength limit, nu-
merical results qualitatively agree with the above estimations
(see Fig. 9). We see that the numerical results are even better
than the analytical estimations, compared with the experi-
ments [82–84]. The increasing region of the Hall resistivity
as T increases is at a very low temperature, in which the
system is not in the strange metal phase. When T > T ∗,
where T ∗ is the temperature at which strange metal appears,
the Hall resistivity monotonously decreases as T raises for a
given dopant concentration x. On the other hand, in very low
underdoping (say, x = 0.05), the Hall coefficient is positive.
This means that the observed Fermi surface is hole type.
As x increases (say x = 0.09), the Hall resistivity changes
sign in some T > T ∗. This implies that the observed Fermi
surface changes from the hole type to the electron type. Close
to the optimal doping (e.g., x = 0.18), the Hall resistivity
is always negative when T > T ∗ and the Fermi surface is
the electron type. This explains the puzzle of the Fermi sur-
face that changes from the “small” one to the “large” one
as x raises.

VI. CONCLUSIONS AND DISCUSSIONS

In conclusion, we have formulated a consistent U (1) gauge
theory with constraints on the local numbers and currents of
the spinon and holon within the slave boson representation of
the t-J model. After considering further constraints on the La-
grange multipliers of the number and current constraints, the
gauge fluctuations are dynamical. The BRST symmetry plays
an important role in the construction of the theory. Especially,
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in the ordered phases, the local number and current constraints
are the second-class ones, and there is no general method
to quantize this system so that the gauge fixing conditions
and the constraints are consistent. However, we managed to
develop a consistent example in this work by using BRST
quantization. We then focused on the strange metal phase,
where the holons do not condense and the spinons are not
paired. We argued that in the uRVB state, the coupling con-
stant of the gauge field is small, and then our model can be
perturbatively solved. Our gauge theory method depends on
the choice of mean field and, in principle, a renormalization
group study would tell us when the mean field approximation
becomes unreliable and new physics emerges.

We computed the electron momentum distribution and
demonstrated its non-Fermi-liquid character. We calculated
the electron spectral function and found that our result can
explain the ARPES data for cuprates. In the traditional slave
boson treatment of the mean field theory, the occupation num-
ber distribution is independent of the momentum, which is
unphysical. In our method, we found that the normal state of
the t-J model in the strange metal phase was not only not a
Fermi liquid as expected but also not a Luttinger liquid or
a marginal Fermi liquid because the Luttinger theorem was
violated. Experimentally, this new physics could be confirmed
by checking the occupation number distribution, which can be
obtained by summing over frequency in the ARPES data. This
gives a new starting point to understand the strongly correlated
physical phenomena such as various anomalous properties
in the normal state of high-temperature superconductivity,
especially for the cuprates. For the transport properties, we
recovered the T linear resistance, which is the main result
of the previous gauge theory [13]. On the other hand, we
found that, in the high-temperature limit, although the resis-
tivity is not linear in T , the Hall resistivity decreases as T
increases. This is the Hall coefficient anomaly, which was
confirmed by the numerical calculation of the Hall resistivity
in our theory. Furthermore, we revealed that the “large” Fermi
surface crosses to the “small” Fermi surface as the dopant
concentration and temperature vary.

Our theory is BRST invariant, so the results should not
depend on the gauge fixing parameters. However, since in
our calculations the RPA approximation was used, the results
become gauge dependent. To restore gauge invariance, other
corrections which are of the same level of approximation as
the RPA should be included. We can use the Ward-Takahashi
identity as a guiding principle to develop gauge-invariant ap-
proximations, which will be studied elsewhere.

The thermodynamics of the uRVB was studied before,
and the overestimation of the mean field entropy and the
underestimation of the mean field free-energy loss were found
in comparison with the exact results in the high-temperature
limit [96]. The gauge fluctuations may improve the free en-
ergy and entropy considerably. However, we do not study the
thermodynamics with our BRST quantized gauge theory. This
will be left for further work.

We only focused on the strange metal phase, but other
phases are also important. Our previous work shows that the
gauge fluctuations may improve the critical temperatures of
the pseudogap and superconducting phases [60]. We hope
that these results can be recovered by using the perturbation

framework developed in this paper. Especially, the physics
of the pseudogap state has been extensively studied recently
(see, for example, [97,98]). We expect to study the physical
properties of this phase more quantitatively to compare with
experimental data and the results from other theories. With
proper modification, our theory can be applied to heavy-
fermion systems and may lead to a better understanding
of the rich physical properties of these materials. Our con-
strained gauge theory model in the slave boson (or fermion)
representation may apply to other strongly correlated sys-
tems, including the topologically nontrivial ones for which the
BRST cohomology determines the topological structure of the
quantum state space.

Finally, the BRST formalism developed in this work fo-
cuses on the continuum theory around the � point. If we
want to solve the constrained problem around other highly
symmetric points, we need to obtain the continuum limit of the
theory around these points and study the corresponding BRST
formalism. We can then perform the perturbation calculations
away from the � point.
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APPENDIX A: CONSTRAINTS
TO THE LAGRANGE MULTIPLIER

To understand the gauge theory with Dirac’s first-class
constraint, we start with the slave boson Hamiltonian

Hλ = H0 −
∑

i

λiGi = −J

4

∑
〈i j〉

[∣∣γ f
i j

∣∣2 + ∣∣� f
i j

∣∣2

−
(

γ
f †

i j

∑
σ

f †
iσ f jσ + H.c.

)]

−
∑
〈i j〉

J

4
[� f

i j ( f †
i↑ f †

j↓ − f †
i↓ f †

j↑) + H.c.]

+ t
∑
〈i j〉

hih
†
j f †

iσ f jσ −
∑

i

λiGi. (A1)

In Schrödinger’s picture, H , λi, and Gi are all time indepen-
dent. Because [Hλ, λi] = 0, λi does not evolve with time t .
Notice that here we use the real time t but not the imaginary
time iτ .

1. Additional constraint

To see why the additional constraint on λi is needed,
we turn to Heisenberg’s picture. All operators and fields �i
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become time dependent, �i(t ) = eiHλt�ie−iHλt , except for λi

since [Hλ, λi] = 0, where �i represents the “matter” fields
(holon, doublon, and spinon). To reveal the gauge structure
of the problem and properly quantize it, we first promote the
Lagrange multiplier λi to a dynamical variable. Thus, one has
to add an additional constraint in order to be consistent with
λi(t ) having no time evolution, namely,

∂tλi(t ) ≡ λ̇i(t ) = 0. (A2)

By introducing a new Lagrange multiplier πλi (t ) to force
λ̇i(t ) = 0, the Lagrangian is then given by

Lλ =
∑

i

πλi (t )λ̇i(t ) +
∑

iσ

f †
iσ [i∂t + λi(t )] fiσ

+
∑

i

[h†
i (i∂t + λi(t )]hi +

∑
i

d†
i [i∂t + λi(t )]di

−
∑

i

λi(t ) − H0. (A3)

2. Classical field theory understanding

We may understand the relation between the Hamiltonian
(A1) and the Lagrangian (A3) from the point of view of classi-
cal field theory. According to (A3), πλi(t ) = δL

δλ̇i (t )
, i.e., πλi(t )

is the canonical conjugate field of λi(t ). Therefore, according
to classical mechanics, the Lagrangian for the Hamiltonian
(A1) reads as

Lλ =
∑

i

(πλiλ̇i + ��i�̇i ) − Hλ, (A4)

where ��i are the canonical conjugate fields of �i, which
stand for the holon and spinon fields. The Lagrangian (A4)
is exactly the same as (A3).

3. Gauge symmetry

We now explain the reason for adding the constraint
λ̇i(t ) = 0 from the gauge symmetry point of view. In the liter-
ature, instead of (A3), the following Lagrangian is considered
[8,27]:

LGI =
∑

iσ

f †
iσ [i∂t + λi(t )] fiσ +

∑
i

[h†
i (i∂t + λi(t )]hi

+
∑

i

d†
i [i∂t + λi(t )]di − Hλ. (A5)

It is known that the electron operator c†
iσ = f †

iσ hi + σ fi,−σ d†
i

is gauge invariant under (hi, di, fiσ ) → e−iθi (hi, di, fiσ ). LGI

is invariant under this gauge transformation, accompanied by
λi(t ) → λi(t ) − θ̇i, i.e., λi(t ) plays a role of a scalar gauge
potential. There are redundant gauge degrees of freedom in
the path integral

W ′ =
∫ ∏

i,t

d�
†
i (t )d�i(t )dλi(t )ei

∫
dt LGI . (A6)

One way to remove the redundant gauge degrees of freedom
is by taking the gauge fixing λ̇i(t ) = 0, namely, replacing LGI

with the Lagrangian (A3), the path integral reads as

W =
∫ ∏

i,t

d�
†
i (t )d�i(t )dπλi (t )dλi(t )ei

∫
dt Lλ . (A7)

For the gauge theory, we can make a gauge transformation

λ̇i → λ̇i + ξπλi (A8)

for Eq. (A7), where ξ is an arbitrary constant, and then the
λ̇iπλi term changes to

λ̇iπλi + ξπ2
λi
. (A9)

Integrating away the πλi field, the path integral becomes

W ∝
∫ ∏

i,t

d�
†
i (t )d�i(t )dλi(t )ei

∫
dt Leff , (A10)

where

Leff = LGI − 1

2ξ

∑
i

λ̇2
i (t ). (A11)

This is a correct gauge fixing Lagrangian of the Abelian
gauge theory, but Eq. (A10) is not gauge invariant. In or-
der to resolve this paradox, we recall the Faddeev-Popov
quantization of the gauge theory. We insert 1 into the gauge in-
variant (A6) to fix the redundant gauge degrees of freedom in
terms of

1 =
∫ ∏

i,t

dθi,tδ(λ̇i(t ))det

(
δλ̇i(t )

δθ j (t ′)

)
, (A12)

and finally [99]

1W ′ = N (ξ )
∫ ∏

i,t

d�
†
i (t )d�i(t )dλi(t )det

(
∂2

t

)

× exp

{
i
∫

dt Leff

}
, (A13)

where N (ξ ) is an unimportant infinity constant. The path in-
tegral (A13) is gauge invariant. Comparing (A13) and (A10),
they differ from a factor det(∂2

t ) after dropping N (ξ ). In the
present case, this determinant does not contain any fields
and is a constant. This means that (A10) is equivalent to
(A13). Therefore, up to a constant determinant, (A10) is gauge
invariant. However, for a non-Abelian gauge theory, the deter-
minant in general is dependent on the gauge field and cannot
be dropped. This is why Faddeev-Popov ghost fields are
introduced.

At finite temperature, we replace t → iτ and finally obtain
the effective Lagrangian (12) in the main text.

APPENDIX B: GENERAL FORM OF QUADRATIC GAUGE
FIXING CONDITIONS WITH BRST INVARIANCE

In this Appendix, we will demonstrate how to identify
consistent gauge fixing conditions. Our guiding principle will
be the BRST invariance.

We first write possible gauge fixing conditions with the
ghost term. Since our theory is not Lorentz invariant, the
quadratic gauge fixing condition with the ghost term in
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the Lagrangian can be generalized from the Lorenz gauge to
the following general form:

LGF+gh = A

2
(∂τ δλ)2 + B

∑
b

∂τ δab∂bδλ + C

2

(∑
b

∂bδab

)2

+ D

2

∑
b

(∂τ δab)2 + E

2

∑
b

(∂bδλ)2 + ūKu, (B1)

where the coefficients A, B, C, D, and E are constants, and
K (∂τ , ∂b) is an operator describing the dynamics of the ghost
field. The parameters A, B, C, D, and E and the operator
K (∂τ , ∂b) should be determined by the BRST invariance. We
assume that K is independent of the gauge fields, i.e., the
coupling between ghost and gauge fields is absent. We will
see that either B = 0 or E = 0 is allowed. In the main text, we
take

A = −ζ , B = 0, C = −1

ξ
,

D = −1, E = −ζ

ξ
, (B2)

to simplify perturbative calculations.

1. BRST invariance

We denote the infinitesimal BRST transformation by δε ,
where ε is an infinitesimal Grassmann constant. It is con-
venient to write δθ as δε ≡ εs with s being a fermion
operator [86]. Then the infinitesimal BRST transformation
for the gauge fields δλ and δab as well as the ghost
field u is

δεδλ = ε∂τ u = εsδλ, δεδab = ε∂bu = εsδab,

δεu = 0 = εsu, (B3)

and since the operator K is not known yet, the transfor-
mation rule of the antighost ū is to be determined. The
effect of the BRST transformation, acting on the matter
and matter-gauge coupling terms, is the same as that of the
gauge transformation. Therefore, the matter and matter-gauge
coupling sector is invariant under the transformation. The
changes come from the gauge fixing and ghost parts, Eq. (B1).
Under the BRST transformation, the Lagrangian density L
changes as

sL = A∂τ δλ∂2
τ u + B

∑
b

∂τ ∂bu∂bδλ

+ B
∑

b

∂τ δab∂b∂τ u + C
∑

b

∂bδab

∑
c

∂c∂cu

+ D
∑

b

∂τ δab∂τ ∂bu + E
∑

b

∂bδλ∂b∂τ u + sūKu

= A∂τ δλ∂2
τ u + (B + E )

∑
b

∂τ δλ∂b∂bu

+ (B + D)
∑

b

∂bδab∂
2
τ u + C

∑
b

∂bδab

∑
c

∂c∂cu

+ sūKu + ∂μKμ

=
[

A∂τ δλ + (B + D)
∑

b

∂bδab

]
∂2
τ u

+
[

(B + E )∂τ δλ + C
∑

b

∂bδab

]∑
b

∂2
b u

+ sūKu + ∂μKμ, (B4)

where

∂μKμ = B∂τ

(∑
b

∂bu∂bδλ

)
− B

∑
b

∂b(∂bu∂τ δλ)

+ B∂τ

(∑
b

δab∂b∂τ u

)
− B

∑
b

∂b
(
δab∂

2
τ u
)

+ D∂τ

(∑
b

δab∂τ ∂bu

)
− D

∑
b

∂b
(
δab∂

2
τ u
)

+ E∂τ

(∑
b

∂bδλ∂bu

)
− E

∑
b

∂b(∂τ δλ∂bu).

(B5)

The BRST invariance of the theory requires that the La-
grangian density is invariant up to a total derivative, and
therefore the first three terms in Eq. (B4) must vanish
identically,[

A∂τ δλ + (B + D)
∑

b

∂bδab

]
∂2
τ u

+
[

(B + E )∂τ δλ + C
∑

b

∂bδab

]∑
b

∂2
b u + sūKu = 0,

(B6)

which leads to

A

B + E
= B + D

C
≡ ξ or

B + E

C
= A

B + D
≡ ζ , (B7)

K = −C

(
ξ∂2

τ +
∑

b

∂2
b

)
, (B8)

sū = ζ∂τ δλ +
∑

b

∂bδab. (B9)

We thus find relations between the gauge fixing parameters
and also determine the ghost Lagrangian and the BRST trans-
formation for the antighost field.

For completeness, we write the equations of motion for δλ,
δab, and u:

A∂2
τ δλ + B

∑
b

∂τ ∂bδab + E
∑

b

∂2
b δλ = −igG, (B10)

B∂τ ∂bδλ + C∂b

(∑
c

∂cδac

)
+ D∂2

τ δab = Jb, (B11)

(
ξ∂2

τ +
∑

b

∂2
b

)
u = 0, (B12)
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where G is the local constraint in the continuous limit defined
in the main text. Note that if we take ξ = ζ , then ssū = 0 due
to the equation of motion of u.

2. BRST charge

The BRST symmetry is a global symmetry, thus accord-
ing to Noether’s theorem, there is a conserved charge that
generates the transformation. In this subsection we calculate
the BRST charge Q. Under the BRST transformation (ε is an
anticommuting constant), the action changes as

δεS =
∫

d3x
∂L

∂∂μ�
δε∂μ� + ∂L

∂�
δε�

=
∫

d4x
∂L

∂∂μ�
δε∂μ� + ∂μ

∂L
∂∂μ�

δε�

=
∫

d3x ∂μ

(
∂L

∂∂μ�
δε�

)
. (B13)

To obtain the second equation from the first one, we utilized
the equations of motion of the fields and conducted integration
by parts. On the other hand [see Eq. (B4)],

δεS = ε

∫
d4x ∂μKμ. (B14)

Comparing the above expressions, we find that

εQ =
∫

d2x

(
∂L

∂∂τ�
δε� − εKτ

)
(B15)

= ε

∫
d2x

(
igGu + A∂τ δλ∂τ u + B

∑
b

∂bδλ∂bu

+ D
∑

b

∂τ δab∂bu − B
∑

b

∂bu∂bλ − B
∑

b

δab∂b∂τ u

− D
∑

b

δab∂τ ∂bu − E
∑

b

∂bδλ∂bu

)

= ε

∫
d2x

(
igGu + A∂τ δλ∂τ u + D

∑
b

∂τ δab∂bu

− B
∑

b

ab∂b∂τ u − D
∑

b

δab∂τ ∂bu − E
∑

b

∂bδλ∂bu

)
,

(B16)

i.e.,

Q =
∫

d2x

(
igGu + A∂τ δλ∂τ u + D

∑
b

∂τ δab∂bu

− B
∑

b

δab∂b∂τ u − D
∑

b

ab∂τ ∂bu − E
∑

b

∂bδλ∂bu

)

=
∫

d2x

(
igG + E

∑
b

∂2
b δλ − D

∑
b

∂τ ∂bδab

)
u

+
[

A∂τ δλ + (B + D)
∑

b

∂bδab

]
∂τ u. (B17)

The BRST charge can also be obtained by calculating δε(τ,r)S,
which gives the same result. Physical states must be anni-
hilated by the BRST charge, and thus we shall have the
constraints [100]

G = 0, (B18)

E
∑

b

∂2
b δλ − D

∑
b

∂τ ∂bδab = 0, (B19)

A∂τ δλ + (B + D)
∑

b

∂bδab = 0. (B20)

Substituting the parameters (B2) into (B19) and (B20), we get
the gauge fixing conditions (21) and (17) in the main text.

3. Gauge field Green’s function

After gauge fixing, the gauge field Green’s function can be
determined. The inverse of Mastubara Green’s function for the
gauge field is

D(0)−1(k, iνn)

=

⎡
⎢⎣

Aν2
n + Ek2 Bνnkx Bνnky

Bνnkx Dν2
n + Ck2

x Ckxky

Bνnky Ckxky Dν2
n + Ck2

y

⎤
⎥⎦ (B21)

and

det D(0)−1

= Dν2
n

[
ADν4

n + (AC + DE − B2)k2ν2
n + CEk4]. (B22)

When D → 0, D(0)
μν is not well defined, which means that∑

b ∂2
b δλ cannot be zero in order to perform the well-defined

gauge fixings.
For B = 0, the temporal and spatial components are decou-

pled, and Eq. (B7) becomes

A

E
= D

C
≡ ξ or

E

C
= A

D
≡ ζ , (B23)

and the Green’s function is simplified as

D(0)00(k, iνn) = 1/A

ν2
n + k2/ξ

, (B24)

D(0)i j (iνn, k)

= 1/D

ν2
n

(
ν2

n + k2
/
ξ
)

×
[
ν2

n + (
k2 − k2

x

)
/ξ −kxky/ξ

−kxky/ξ ν2
n + (

k2 − k2
y

)
/ξ

]
. (B25)

APPENDIX C: ANOMALOUS GREEN’S FUNCTIONS

In the fermion paired phases, the effective Lagrangian is
rewritten using the Nambu representation, and the anomalous
Green’s functions are defined by

G(k, τ − τ ′) = −〈Tτψk,σ (τ )ψ†
k,σ

(τ ′)〉,
F (k, τ − τ ′) = 〈Tτψ−k,↓(τ )ψk,↑(τ ′)〉,

F †(k, τ − τ ′) = 〈Tτψ
†
k,↑(τ )ψ†

−k,↓(τ ′)〉. (C1)
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FIG. 10. The Feynman diagrams for the anomalous Green’s
functions of (a) G(0), (b) F (0)†, and (c) F (0).

And then

G(0)(k, iωn) = u2
p

iωn − Ek
+ v2

k

iωn + Ek
,

F (0)(k, iωn) = F (0)†(k, iωn)

= −upvp

(
1

iωn − Ek
− 1

iωn + Ek

)
, (C2)

where uk, vk , and Ek follow the standard BCS notion. The
Feynman diagrams are shown in Fig. 10.

APPENDIX D: FEYNMAN’S RULES
AND DYSON’S EQUATIONS

In this Appendix, we provide the Feynman’s rules
and Dyson’s equations. The Feynman’s rules are as
follows:

(1) For each line, associate a corresponding free one-
particle Green’s function where νn = 2nπ/β for bosons and
ωn = (2n + 1)πn/β for fermions.

(2) Conservation of energy and momentum at each vertex.
(3) Sum over internal degrees of freedom: momentum,

energy, and spin, including the momentum and energy associ-
ated with loop diagrams.

(4) Finally, multiply each diagram by the factor

(−1)m+F

(2π )3
, (D1)

where F is the number of closed fermion loops. For the
fermion self-energy, m is the number of internal gauge field
lines. For the boson self-energy (or vacuum polarization), m
is one-half of the number of vertices.

For the spinon ψσ and holon h, the full one-particle Green’s
functions are given by Dyson equations

G(k, iωn) = G (0)(k, iωn)

1 − G (0)(k, iωn)�(k, iωn)
, (D2)

where � is the self-energy. Under the random phase approx-
imation (RPA), the self-energies are replaced by �(0) in (D2)
with �(0) being the bubbles in the one-loop diagrams.

For the gauge fields, the full one-particle Green’s function
is given by Dyson’s equation

D(q, iνn) = D(0)(q, iνn)

1 − D(0)(q, iνn)�(q, iνn)
, (D3)

where � is the vacuum polarization.

APPENDIX E: MOMENTUM DISTRIBUTION

Here we present calculations for the momentum distribu-
tion function. The g2-order correction to the source vertex
comes from the fifth line of Fig. 4. The former is still a
constant, while the latter is dependent on k and given by

Z−1
eff

∑
a,b,q,q′,νm,ν ′

l

∫ ∏
d� e−S0

∑
σ ′k′,k′′,p,p′

× g2

2m f mh
f †
σ ′k′δaa(−p) fσ ′k′+p(2k′

a + pa)

× h†
k′′+p′δa†

b(−p′)hk′′ (2k′′
b + p′

b)

× f †
σk+q,iνm

fσ,k+q′,iν ′
l
hqh†

q′ , (E1)

where k′ stands for (iωn, k′) and so on. At zero temperature,
we can separate the k-dependent part in Eq. (E1), which is
given by

g2

m f mh

∑
a,b,q,q′,ω1,ω2

(qa + q′
a)(2kb)

× ReD(0)
ab ( − (q − q′), ω1 − ω2)

� (−ω1)�(−ω2)A(0)
f (q′, ω1)A(0)

f (q, ω2). (E2)

Due to the reflection symmetry, Eq. (E2) vanishes. Hence, the
g2-order contribution to the momentum distribution is also a
constant.

Let us check the g4-order contribution. Aside from the
linearly k-dependent diagrams, which eventually become zero
due to reflection symmetry, the diagrams in Fig. 5 provide
the nonzero quadratic kakb-dependent contributions to the
electron momentum distribution. Namely, corresponding to
Figs. 5(a) and 5(b), the contributions to the electron Green’s
functions are given by

G4A
eσ (k, iωn) = −

∑
m1,m2,m3;q1,q2,q3

G (0)
f σ

(
k + q1, iωn + iνm1

)
G (0)

f σ

(
k + q2, iωn + iνm2

)
G (0)

f σ

(
k + q3, iω + iνm3

)

× G (0)
h

(
q1, iνm1

)
G (0)

h

(
q2, iνm2

)
G (0)

h

(
q3, iνm3

) ∑
a,b,c,d

D(0)
ab

(
q1 − q2, iνm1 − iνn2

)

× D(0)
cd

(
q3 − q2, iνm3 − iνm2

)
(q1a + q2a)(2kb + q1b + q2b)(q2c + q3c)(2kd + q2d + q3d )

g4

m2
f m2

h

, (E3)
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G4B
eσ (k, iωn) = −

∑
m1,m2,m3;q1,q2,q3

G (0)
f σ

(
k + q1, iωn + iνm1

)
G (0)

f σ

(
k + q1 − q2 + q3, iωn + iνm1 − iνm2 + iνm3

)
× G (0)

f σ

(
k + q3, iωn + iνm3

)
G (0)

h

(
q1, iνm1

)
G (0)

h

(
q2, iνm2

)
G (0)

h

(
q3, iνm3

)
×

∑
a,b,c,d

D(0)
ab

(
q1 − q2, iνm1 − iνm2

)
D(0)

cd

(
q3 − q2, iνm3 − iνm2

)

× (q1a + q2a)(2kb + 2q1b − q2b + q3b)(q2c + q3c)(2kd + q1d − q2d + 2q3d )
g4

m2
f m2

h

. (E4)

At zero temperature, the contributions to the electron momentum distribution are as follows:

n4A
eσk ≈ −

∑
a,b,,c,d,ν1,ν2,ν3,q1,q2,q3

�(−ν1)�(−ν2)�(−ν3)A(0)
f σ (q1, ω + ν1)A(0)

f σ (q2, ω + ν2)A(0)
f σ (q3, ω + ν3)

× D(0)
ab (q1 − q2, ν1 − ν2)D(0)

cd (q3 − q2, ν3 − ν2)(−2ka)(q1b + q2b)(−2kc)(q2d + q3d )
g4

m2
f m2

h

≡ −
∑
b,c

C4A
bc kbkc, (E5)

n4B
eσk ≈ −

∑
a,b,c,d,ν1,ν2,ν3,q1,q2,q3

�(−ν1)�(−ν2)�(−ν3)A(0)
f σ (q1, ω + ν1)A(0)

f σ (q1 − q2 + q3, ω + ν1 − ν2 + ν3)

× A(0)
f σ (k + q3, ω + ν3)D(0)

ab (q1 − q2, ν1 − ν2)D(0)
cd (q3 − q2, ν3 − ν2)

× (−2ka)(2q1b − q2b + q3b)(−2kc)(q1d − q2d + 2q3d )
g4

m2
f m2

h

≡ −
∑
a,c

C4B
ac kakc. (E6)

Due to the rotational symmetry, we have

n(4)
ek,T =0 = 2

(
n4A

eσk + n4B
eσk

) ≡ −
∑

ab

C(4)
ab kakb = −C(4)k2,

as C(4)
ab = C(4)δab. Other contributions to the k2 terms come

from the correction of G00 to n(4)
ek,T =0, which is of the order

O(g6) and higher. This corrects C(4) → C̃(4). Similarly, the 2n-
loop diagrams with the spinon-holon vertex and 2n − 1 lines
of the spatial gauge field Green’s function do not contribute to
the g4n−2 order, while such (2n + 1)-loop diagrams contribute

to nek with

n(2n+2)
ek,T =0 = (−1)nC(2n+2)k2n, (E7)

and C(2n+2) is corrected to C̃(2n+2). The momentum distribu-
tion at T = 0 is then given by

nek,T =0 =
∑
n=0

(−1)nC̃(2n+2)k2n. (E8)

APPENDIX F: SPINON AND HOLON SELF-ENERGIES

In this Appendix, we present expressions for spinon and
holon self-energies. We first integrate over the azimuth angle
φ, and the retarded self-energy of the spinon reads as

�
(0)
f (ω + i0+, q) = g2

∑
s=±

∫
k dk

2π

snB(sk)m f

2k2q

[
k2I+

1 (ωs, f ) + kqI+
2 (ωs, f ) + q2I+

3 (ωs, f )/4

m2
f

+ I+
1 (ωs, f )

]

− g2
∫

k dk

2π

nF (ξ f ,k )

2kq

[
J1(ω f ) + (k2 + q2/4)J1(ω f ) + kqJ2(ω f )

m2
f

]

+ g2

m2
f

∫
k dk

2π

nF (ξ f ,k )kq[J1(ω f ) − J3(ω f )]

8(ω + i0+ − ξ f ,k )2
, (F1)

where

ωs, f = m f

kq

(
ω + sk − k2 + q2

2m f
+ μ f

)
(F2)
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and

ω f = 1

2kq
[(ω − ξ f ,k )2 − k2 − q2]. (F3)

The functions I±
1,2,3(x) are defined by

I±
1 (x) = sgn(x)θ (|x| − 1)√

x2 − 1
∓ i

θ (1 − |x|)√
1 − x2

, I±
2 (x) = −1 + xI±

1 (x),

I±
3 (x) = −x + x2I±

1 (x).

And J1,2,3(ω f ) are given by

J1,2,3(ω f ) = I
sgn(ω−ξ f ,k )
1,2,3 (ω f ). (F4)

Similarly, the retarded holon self-energy is given by

�
(0)
h (ω + i0+, q) = g2

∑
s=±

∫
k dk

2π

snB(sk)mh

2k2q

[
k2I+

1 (ωs,h) + kqI+
2 (ωs,h) + q2I+

3 (ωs,h)/4

m2
h

+ I+
1 (ωs,h)

]

+ g2
∫

k dk

2π

nB(ξh,k )ξ

2kq

[
(k2 + q2/4)J1(ωh) + kqJ2(ωh)

m2
h

+ J1(ωh)

]

− g2

m2
h

∫
k dk

2π

nB(ξh,k )kq[J1(ωh) − J3(ωh)]

8(ω + i0+ − ξh,k )2
, (F5)

where

ωs,h = mh

kq

(
ω + sk − k2 + q2

2mh
+ μh

)
(F6)

and

ωh = ξ

2kq
[(ω − ξh,k )2 − k2 − q2], (F7)

and the functions J1,2,3(ωh) are similar to J1,2,3(ω f ).

APPENDIX G: POLARIZATION FUNCTIONS �
f ,h
ab

In this Appendix we will now calculate �
f ,h
ab (q, ω) using

perturbation theory. There are two types of vacuum polariza-
tion for both spinon and holon:

�1
f ab(q, iωn) = g2

4m2
f (2π )2βN

∑
σ,m

∫
d2 p

× G f σ (p + q, iωn + iω′
m)

× G f σ (−p,−ω′)(2pa + qa)(−2pb − qb),

(G1)

�1
hab(q, iωn) = g2

4m2
h(2π )2βN

∑
m

∫
d2 pGh(p + q, iωn+ iω′

m)

× Gh(−p,−ω′)(2pa + qa)(−2pb − qb),
(G2)

�2
f ab(q, ω) = −g2

2m f (2π )2βN

∑
σ,m

∫
d2 pG f σ (p, iω′

m)δab,

(G3)

�2
hab(q, ω) = −g2

2mh(2π )3

∑
m

∫
d2 pGh(p, iω′

m)δab. (G4)

To the order of O(g2), all spinon and holon Green’s func-
tions are approximated by free ones. Then

�1
f ab(q, iωm) = g2

2m2
f (2π )2N

∫
d2 p

nF (ξ f ,p) − nF (ξ f ,p+q)

iωm + ξ f ,p − ξ f ,p+q

× (2pa + qa)(−2pb − qb), (G5)

�2
f ab(q, iωm) = −g2

m f (2π )2N

∫
d2 p nF (ξ f ,p)δab, (G6)

�1
hab(q, iωm) = −g2

4m2
h(2π )2N

∫
d2 p

nB(ξh,p) − nB(ξh,p+q)

iωm + ξh,p − ξh,p+q

× (2pa + qa)(−2pb − qb), (G7)

�2
hab(q, iωm) = g2

2mh(2π )2N

∫
d2 p nB(ξh,p)δab. (G8)
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