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Spin Hall effect and topological surface states in a cubic Laves phase superconductor
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In this work, we investigate the electronic structures, spin Hall effects, and topological properties of the
superconductor YIr2, which crystallizes in the cubic Laves phase and contains two-dimensional (2D) kagome-
lattice planes. We find it has an intrinsic 3D flat band originated from two intersecting kagome-lattice planes. This
3D flat band gives rise to large intrinsic spin Hall conductivity, which suggests YIr2 can be used for charge-spin
conversion devices. On the (111) surface, it has Dirac-cone type topological surface states in close vicinity of the
Fermi level. More importantly, they are distinct from the bulk states, indicating that YIr2 is a promising candidate
topological superconductor to host Majorana zero modes. Our work provides an encouraging platform on which
to study flat band physics, spin Hall effects, and topological superconductivity.
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I. INTRODUCTION

Layered transition-metal kagome compounds have at-
tracted a lot of interest recently [1–11] in which the
transition-metal atoms form two-dimensional (2D) kagome
networks giving rise to exotic band topology including flat
band, Dirac point (DP), and massive Dirac fermion (MDF)
with gap opened by spin-orbit coupling (SOC), which lead
to many exotic quantum phenomena such as supercon-
ductivity and anomalous quantum Hall effects. In addition
to extensive theoretical studies [12–21], many experimen-
tal groups have directly observed these intrinsic features
through angle-resolved photoemission (ARPES) experiments
[22–27]. Furthermore, with time-reversal symmetry breaking
in kagome magnets, intrinsic anomalous Hall conductivity
originated from the MDFs has been discovered in some
kagome compounds like Fe3Sn2 [28] and RMn6Sn6 (R =
Gd-Tm, Lu) [29,30]. Flat bands also lead to several other
emergent phenomena, for example, in-plane ferromagnetism
in Fe3Sn2 [31], flat-band phonons in CoSn [32], and near-flat
band Stoner excitations in Co3Sn2S2 [33].

Anomalous Hall effect in kagome lattice has been in-
tensively studied [28–30]. While it vanishes in the kagome
paramagnet and collinear antiferromagnet due to time-reversal
symmetry combined with the lattice translation symmetry
[34], spin Hall effect (SHE) can survive in these states [35,36].
The intrinsic spin Hall conductivity (SHC) is the integral of
spin Berry curvature (SBC) in the whole Brillouin zone (BZ)
according to the Kubo formula [see Eq. (1) below] [37]. Large
intrinsic SHC has been predicted to exist in materials with
multiple gapped crossings in their band structures, which can
create strong SBC around them [38]. Therefore, the flat band
and MDF of the kagome lattice can have continuous small
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band gaps which can serve as a source of large SBC and lead
to large intrinsic SHC.

The main feature of the kagome lattice can be derived
from the 2D nearest-neighbor tight-binding (TB) model [1].
However, in real materials, most kagome compounds have
non-negligible interlayer coupling, which prevents the band-
width of the flat band from approaching zero. More than
60 years ago, a series of cubic Laves phase compounds, the
so-called pyrocholore crystals, were synthesized and some
of them were reported to possess superconductivity [39,40].
They are mainly composed of corner-sharing tetrahedrons and
contain 2D kagome-lattice planes, which can be viewed as
a three-dimensional (3D) analog of the kagome lattice (see
Fig. 1). Recently, through a combination of ARPES, theo-
retical model, and first-principle calculations, two research
groups have independently reported the electronic structures
of the pyrochlore metals CeRu2 [41] and CaNi2 [42]. For
example, Huang et al. found flat bands with extremely small
band width around the Fermi level (EF ) and 3D DPs in CeRu2.
The flat bands come from the 3D destructive interference
[43,44] and the 3D DPs are protected by the lattice symmetry
[45]. This platform greatly enriches flat band physics and the
related transport properties and topological states of matter are
very interesting to study further [46–48].

In this work, through first-principle calculations, we inves-
tigate the electronic structures, SHEs, and topological surface
states of the cubic Laves phase compounds YX2 (X = Co, Rh,
Ir). We find that the band structures of these three compounds
possess intrinsic 3D flat bands, 3D DPs, and MDFs (with
SOC). In particular, both flat bands and MDFs are very close
to EF in YIr2. The calculated intrinsic SHC results show
that YIr2 has the largest intrinsic SHC among the three com-
pounds. The large intrinsic SHC originates from the flat bands
and can be attributed to a combination of the more extended
Ir 5d orbitals, the stronger SOC strength of Ir, and the unique
flat band distribution. Combined with the superconductivity
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FIG. 1. Crystal structure and Brillouin zone (BZ) of YX2 (X =
Co, Rh, Ir). (a) The crystal structure. (b) The schematic diagram of
three-dimensional (3D) analog of the kagome lattice, in which the
red dashed lines mark the (111) crystal plane and highlight the 2D
kagome lattice plane. (c),(d) 3D BZ and projected (111) surface BZ.

of YIr2, the inverse spin Hall effect (ISHE) could be greatly
enhanced. These two features enable YIr2 to be further ap-
plied in spintronics devices. Last but not least, we study the
topological properties of YIr2 and we find that YIr2 possesses
Dirac-cone type topological surface states very close to EF

on its (111) surface, which combined with superconductivity
can realize topological superconductivity. Our works provide
a great platform to study flat band physics, SHE, and topolog-
ical superconductivity.

II. METHODS

We perform density functional theory (DFT) calculations
as implemented in the Vienna ab initio simulation pack-
age (VASP) [49] to study the electronic structures of cubic
Laves phase compounds YX2 (X = Co, Rh, Ir) by using
the projector augmented wave method. We use the Perdew-
Burke-Ernzerhof (PBE) exchange correlation functional. The
cutoff energy of the plane-wave basis is set to be 500 eV. The
experimental lattice parameters are used in all our calculations
[39,40]. In order to investigate the intrinsic SHCs of YX2, we
use the maximally localized Wannier function (MLWF) meth-
ods implemented in WANNIER90 [50] to construct Wannier TB
models. Based on the TB models, we calculate the intrinsic
SHCs [51] by employing the Kubo formula

σ
γ

αβ = eh̄
∫

dkxdkydkz

(2π )3

∑
n

fnk�
γ

n,αβ (k),

�
γ

n,αβ (k) = −2 Im
∑
m �=n

〈ψnk| jγα |ψmk〉〈ψmk|νβ |ψnk〉
(Emk − Enk )2

, (1)

in which fnk is the Fermi-Dirac distribution of the nth band,
�

γ

n,αβ (k) is the spin Berry curvature (SBC) (α, β, γ = x, y, z),
jγα = 1/2{να, sγ } is the spin current operator with the spin
operator sγ and the velocity operator να , and the eigenvalue of

FIG. 2. Electronic structure of YIr2. (a),(b) The band structures
without and with spin-orbit coupling (SOC), respectively, in which
the green dashed boxes, blue arrows, and purple arrow highlight
the flat bands (FBs), the Dirac points (DPs), and the massive Dirac
fermion (MDF), respectively. (c) Total and orbital-resolved density
of states (DOS) without and with SOC. (d) Ir 5d orbital-resolved
DOS with SOC.

the Bloch function ψnk is Enk . As for the topological proper-
ties, we use WANNIERTOOLS [52] to calculate the surface states
and the Wilson-loop spectra of YIr2 based on its TB model.

III. RESULTS AND DISCUSSION

A. Crystal structure and electronic structure

The crystal structure and BZ of YX2 (X = Co, Rh, Ir)
are shown in Fig. 1. YX2 belongs to the pyrochlore lattice
and crystallizes in the cubic Fd3m (No. 227) space group.
The corner-sharing tetrahedrons, which are composed of X
atoms, form the 3D analog of the kagome lattice. The struc-
tural feature of the 2D kagome lattice plane can be clearly
seen if viewed from above along the [111] direction (or other
equivalent directions) and it is indicated by the red dashed
lines in Fig. 1(b).

We first investigate the electronic structure of YIr2 (the
electronic structures of YCo2 and YRh2 are shown in Supple-
mental Material Fig. S1 [53]). As illustrated in Refs. [41,42],
the calculated results of the TB model prove the existence
of intrinsic 3D flat bands due to the 3D destructive interfer-
ence and 3D DPs protected by the lattice symmetry in the
pyrochlore lattice. The band structure of YIr2 without SOC
shown in Fig. 2(a) clearly exhibits the flat band along 
-L-U
and W-L-K paths and DPs at X and W points. Once SOC is in-
cluded, the DP at X point still exists due to the combination of
nonsymmorphic and symmorphic symmetries [41], whereas
the DP at W point is gapped [Fig. 2(b)]. The large SOC
strength of Ir not only makes the flat band now distributed
along the K-
-L path, but also pushes it closer to EF . The
intrinsic flat band plays a crucial role in the intrinsic SHC of
YIr2, as we will illustrate below. We plot the density of states
(DOS) of YIr2 in Figs. 2(c) and 2(d). The main contribution
around EF comes from Ir 5d orbitals. Comparing the results
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FIG. 3. Calculation and detailed analysis of intrinsic spin Hall conductivity (SHC) of YX2 (X = Co, Rh, Ir). (a) The calculated intrinsic
SHC σ z

xy of YX2 (X = Co, Rh, Ir), in which the red, green, and blue curves represent YCo2, YRh2, and YIr2, respectively. (b) The schematic
diagram of Bogoliubov quasiparticle-mediated inverse spin Hall effect (ISHE) in superconducting YIr2, in which the JS , JQ, BQP, CP, ρBQP,
and ρSHE denote the spin current, ISHE-induced Bogoliubov quasiparticle current, Bogoliubov quasiparticle, Copper pair, the resistivity of
Bogoliubov quasiparticle, and the spin Hall resistivity, respectively. The arrow on the left indicates the cooling process in the same sample.
(d),(g) (111) k-plane momentum resolved spin Berry curvature (SBC) at EF . The cyan solid lines represent the BZ’s boundary and are also
drawn in (c),(f), respectively. The unit of the SBC color bar in (d),(g) is Å2. (e),(h) Momentum- and energy-resolved SBC along high symmetry
paths. The corresponding high symmetry points are shown in (c),(f), respectively. In (e), the main contribution of intrinsic SHC is highlighted
by the blue lines.

without SOC and with SOC, it can be seen that SOC causes
obvious DOS peak splitting near EF , which is consistent with
the changes in the energy position of flat bands [Figs. 2(a) and
2(b)]. As for Ir 5d orbitals, all five orbitals have significant
contributions near EF , especially dxz/yz.

B. Spin Hall conductivity

Now we turn to the SHE of YIr2. We calculate the intrinsic
SHCs of three pyrochlores YX2 (X = Co, Rh, Ir) and show
the results in Fig. 3(a). Due to the lattice symmetry of the py-
rochlore lattice, SHC is isotropic in YX2; hence we only show
one component σ z

xy in Fig. 3(a). Their values of intrinsic SHC
at EF are −19.3, −11.3, and −269.4 (h̄/e)(� cm)−1, respec-
tively. Comparing to the other two compounds, the intrinsic

SHC of YIr2 is one order of magnitude larger around EF . It is
important to trace the origin of this huge enhancement.

Since the intrinsic SHC is the integral of the SBC in the
whole BZ [Eq. (1)], we plot the (111) k-plane momentum
resolved SBC at EF in Figs. 3(d) and 3(g) [the results of
other (111) k planes are shown in Supplemental Material
Fig. S4 [53]]. Note that the intrinsic SHC is negative; the main
contribution to the large (absolute value) intrinsic SHC in YIr2

comes from the large blue area of negative SBC around the 


point in the (111) k plane shown in Fig. 3(d). We further plot
the momentum- and energy-resolved SBC along high sym-
metry paths in Fig. 3(e). The aforementioned large negative
SBC originates from the flat band along the 
-K path. This flat
band is mainly responsible for the significantly enhanced SHC
in YIr2, as evident in the comparison with the momentum- and
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FIG. 4. Surface states on the (111) surface and the Wilson-loop spectra of YIr2. (a) Surface states along the M-
-K path. (b) 2D surface
states at a constant energy Earc = EF + 25 meV highlighted by the green solid line in (a). The spin textures are indicated by the green arrows.
(c) The primitive cell of YIr2 with atom labels. (d) The band structure with the on-site energy modulation of a tight-binding (TB) model that
we shift all the on-site energy of d orbitals of Ir3 and Ir1,2,4 by 3μ and −μ, respectively. The gapped DPs at X points are highlighted by
the green dashed circles and the cyan dashed line represents the Fermi curve. (e),(f),(g) The Wilson-loop spectra along the 
-M path without
modulation, with μ = +20 meV and −20 meV, respectively. In (e), the green dashed lines and arrows indicate the projection positions of
the Dirac points which make the Wilson-loop bands not well defined. The black arrow highlights the topologically nontrivial feature of the
Wilson-loop bands. In (e),(f),(g), the black dashed lines represent the reference lines. The positions of 
 and M are (0,0,0) and (0.5,0,0.5) in
the units of the reciprocal lattice vectors of the primitive cell, respectively.

energy-resolved SBC of YCo2 and YRh2 shown in Supple-
mental Material Figs. S2 and S3 [53]. In addition, the more
extended Ir 5d orbitals and the stronger SOC strength of Ir
lead to relatively fewer bands near EF in YIr2, which in turn
result in less positive offsetting SBC for the intrinsic SHC of
YIr2. This is the other important reason why the (absolute)
intrinsic SHC value at EF in YIr2 is significantly larger than
that of YCo2 and YRh2.

We also notice that the MDF at the W point happens to be
around EF . Similar situations have received a lot of attention
in kagome materials such as RMn6Sn6, in which the quasi-2D
MDFs are believed to play a decisive role in the intrinsic
anomalous Hall conductivity [29,30]. As shown in Figs. 3(g)
and 3(h), because the top of the lower MDF is intersected
by EF , the MDF contributed SBC is very large around the
W point. However, the sign of SBC around the W point is
opposite to that of intrinsic SHC. Nevertheless, the integral
area is so small that the MDF does not make an important
contribution to the intrinsic SHC in YIr2.

While the intrinsic SHC of YIr2 is not as large as some
other well-known materials like α- and β-W [54], and Pt
[51,55], Wakamura et al. [56] found that, in the supercon-
ductor NbN, the spin transport was mediated by Bogoliubov
quasiparticles instead of electrons [Fig. 3(b)]. The spin cur-
rent JS with spin-polarization direction s controlled by the
external magnetic field H is injected into the material. In the

superconducting state, Bogoliubov quasiparticle (BQP) cur-
rent JQ can be induced by ISHE in the conversion region
whose direction is determined by JS × s, while outside the
conversion region, BQPs form Cooper pairs (CPs). When the
sample is cooled down, the number of BQP decreases and
the number of CP increases, resulting in an enhancement
of the resistivity of BQP (ρBQP) as well as the spin Hall
resistivity (ρSHE) [56]. Before their work, relevant theoret-
ical research also indicates that the output signals induced
by SHE are greatly enhanced in the superconducting states
[57]. Since YIr2 is a cubic Laves phase superconductor with
Tc equal to 2.18 K [39], these findings indicate that YIr2

is a potential platform to realize large intrinsic SHC and
superconductivity-enhanced SHE/ISHE and hence could be
used in spin electronic devices. In the normal state, YIr2 can
be a good spin-current generator whereas, in the supercon-
ducting state, it could serve as a sensitive spin-current detector
[56,58,59].

C. Topological surface states

Last but not the least, we calculate the surface states on
the (111) surface of YIr2 as shown in Fig. 4(a). We find
Dirac-cone type surface states centering at the 
 point just
above EF . We further calculate the constant energy surface
states at Earc = EF + 25 meV as shown in Fig. 4(b). The

075124-4



SPIN HALL EFFECT AND TOPOLOGICAL SURFACE … PHYSICAL REVIEW B 110, 075124 (2024)

resulting spin-helical surface states form a π Berry phase en-
closed and indicate its nontrivial topological properties [60].
It is interesting to know whether they are protected by the
topological invariant Z2 [61,62] due to the existence of time
reversal symmetry and inversion symmetry. To this end, based
on the Fu-Kane criterion [62], we need to know the parity
product of all the electronic states at eight time-reversal-
invariant momenta below EF for insulators or a Fermi curve
for (semi)metals whose “EF ” is momentum dependent [63].
However, in the case of YIr2, the relevant Fermi curve for the
corresponding occupied number passes through the DP at the
time reversal invariant momentum (TRIM) X point and the DP
along the 
-X path (Fig. S8) [53], both of which are protected
by the crystal symmetry, making the Fermi curve ill-defined.
As a result, we switch to the Wilson-loop method to clarify the
topological properties of YIr2 [64–66]. While the Wilson-loop
bands in Fig. 4(e) are also not well-defined at the projection
positions of the DPs, we can still see a topologically nontrivial
feature [highlighted by the black arrow in Fig. 4(e)], which
suggests the existence of the topological surface states if we
neglect the singularities.

In order to characterize these topological surface states
with the Z2 index, we modify the on-site energy of Ir 5d
orbitals in the TB model of YIr2 to gap the DPs at the X
point and along the 
-X path. As described in Ref. [46],
we shift the on-site energies of 5d orbitals of Ir atoms 1–4
by −μ, −μ, 3μ, and −μ, respectively, which breaks the C4

symmetry. We take μ as ±20 meV and plot the band structures
in Fig. 4(d). The DPs at X points and along the 
-X path
are indeed gapped, whereas there is no significant difference
elsewhere between the band structures with μ = ±20 meV.
We calculate the Wilson-loop spectra for the modulated TB
models [Figs. 4(f) and 4(g)]. Surprisingly, we find that the
reference lines cross the Wilson-loop bands odd and even
times, respectively, which means that for μ = 20 meV there
is only one surface Dirac cone located at the 
 point, whereas
for μ = −20 meV, except for a surface Dirac cone at the 


point, there is an additional surface Dirac cone at the M point.
This is in agreement with the calculated Z2 index: (1;111) for
μ = 20 meV and (0;111) for μ = −20 meV (see Fig. 8 in
Appendix D) [61], which means for μ = 20 meV (−20 meV),
the modulated system is in a strong (weak) topological in-
sulator phase. The above results indicate that, although these

two ways of modulation bring similar band structures around
the X point, the parities of the highest occupied state at the
X point under the Fermi curve are different [53,62]. Nev-
ertheless, with or without perturbation, the Dirac-cone type
topological surface states at the 
 point are robust (Fig. 9 in
Appendix D). These features make YIr2 a potential platform
to study topological superconductivity [67–69] and topologi-
cal phase transition upon crystal distortion [46].

IV. CONCLUSION

In conclusion, we find that the electronic structure of the
cubic Laves phase superconductor YIr2 shows interesting in-
trinsic features, i.e., 3D flat bands and MDFs very close to EF .
Compared to the other two compounds YCo2 and YRh2, YIr2

has the largest intrinsic SHC originating from the flat bands,
which is mainly due to the more extended Ir 5d orbitals, the
stronger SOC strength of Ir, and the unique flat band distribu-
tion. In addition, the SHE in YIr2 could be greatly enhanced in
the superconducting state. These two features enable YIr2 to
be further applied in spintronics devices: in the normal state,
YIr2 can be used for charge-spin conversion devices, while in
the superconducting state, YIr2 could serve as a sensitive spin
detector. Finally, we investigate the topological properties of
YIr2 and we find that the Dirac-cone type topological surface
states are very close to the Fermi level and they are distinct
from the bulk states, which means that YIr2 is a potential
platform to study topological superconductivity. Our work
provides a great platform for studying flat band physics, SHE,
and topological superconductivity in the cubic Laves phase
superconductor.
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APPENDIX A: PHYSICAL ORIGIN OF THE THREE-DIMENSIONAL FLAT BAND
IN THE PYROCHLORE LATTICE

In order to explore the physical origin of the three-dimensional (3D) flat band in YIr2 [Figs. 2(a) and 2(b)], we establish the
effective tight-binding (TB) model as the following process [41].

Because the pyrochlore lattice is formed by Ir atoms in YIr2, we take the primitive vectors of the lattice as a = (2, 0, 2),
b = (2, 2, 0), and c = (0, 2, 2). The primitive cell contains four atoms that are A1 = (0,0,0), A2 = (1,0,1), A3 = (1,1,0), and A4
= (0,1,1), whose schematic diagram is shown in Fig. 5(a).

We first consider the Hamiltonian without spin-orbit coupling (SOC). The Hamiltonian without SOC is defined as

H0 = −t
∑
〈i j〉

c†
i c j (A1)

in which t is the nearest neighbor hopping term; c†
i represents the operator creating an electron at site i. We handle the simple

situation here that the Hamiltonian only contains a single orbital which is isotropic (so does the hopping term) and only the
nearest neighbor hopping is considered. The complex situation about the anisotropic d orbitals is discussed in Ref. [42].
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FIG. 5. (a) Schematic diagram of the pyrochlore lattice, the calculated band structures of effective tight-binding (TB) model (b) without
spin-orbit coupling (SOC), and (c) with SOC.

We next transform H0 into momentum space and the Hamiltonian matrix H0(k) can be written as

H0(k) = −2t

⎡
⎢⎢⎢⎢⎣

ε0 cos(kx + kz ) cos(kx + ky) cos(ky + kz )

cos(kx + kz ) ε0 cos(ky − kz ) cos(kx − ky)

cos(kx + ky) cos(ky − kz ) ε0 cos(kx − kz )

cos(ky + kz ) cos(kx − ky) cos(kx − kz ) ε0

⎤
⎥⎥⎥⎥⎦ (A2)

in which ε0 is the on-site energy of the orbital.
We take t = 1 and ε0 = 0 here. By diagonalizing H0, we can obtain the eigenvalues and eigenstates. The calculated band

structure is shown in Fig. 5(b). We can find the flat band (double degeneracy) located along the whole k path at E = 2. In order
to explore the physical origin of the 3D flat band, we analyze the eigenstates of the flat band which are

v1 =
(

sin(kx − ky)

sin(kx + kz )
,− sin(ky + kz )

sin(kx + kz )
, 0, 1

)
,

v2 =
(

sin(ky − kz )

sin(kx + kz )
,− sin(kx + ky)

sin(kx + kz )
, 1, 0

)
. (A3)

Taking v2 as an example, the flat band can be considered as originating from the destructive interference of the three nonzero
components, i.e., the flat band in the 2D kagome lattice formed by A1, A2, and A3 atoms [Fig. 5(a)], which is disconnected
with the other parallel kagome planes due to the zero probability in the remaining fourth component. Thus we can know that the
physical origin of the flat band in the pyrochlore lattice can be seen as that of two nonparallel kagome lattices.

We further consider that the SOC term and the Hamiltonian of the SOC part is

Hsoc =
√

2iλ
∑

〈i j〉σσ ′

(
c†

iσ

bi j × di j

|bi j × di j |σσσ ′c jσ ′ + H.c.

)
(A4)

in which λ is the SOC strength, i and j represent sites i and j (not the one on the left side of λ, which is a unit imaginary
number), bi j is the vector which connects the center of the tetrahedron which is formed by A1–A4 atoms to the midpoint of the
bond connecting nearest neighbor atoms Ai and A j, di j is the vector which connects nearest neighbor atoms Ai and A j, σ and
σ ′ are the labels of spin, and σσσ ′ is the Pauli matrix.

Then we can transform the total Hamiltonian into momentum space and the Hamiltonian matrix H (k) can be written as

H (k) = I2×2 ⊗ H0(k) + Hsoc(k) (A5)

in which I2×2 is the 2 × 2 identity matrix and the Hsoc(k) is

Hsoc(k) = iλ(σx − σz ) ⊗

⎡
⎢⎢⎣

0 2 cos(kx + kz ) 0 0
−2 cos(kx + kz ) 0 0 0

0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

+ iλ(−σx + σy) ⊗

⎡
⎢⎢⎣

0 0 2 cos(kx + ky) 0
0 0 0 0

−2 cos(kx + ky) 0 0 0
0 0 0 0

⎤
⎥⎥⎦
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+ iλ(σz − σy) ⊗

⎡
⎢⎢⎣

0 0 0 2 cos(ky + kz )
0 0 0 0
0 0 0 0

−2 cos(ky + kz ) 0 0 0

⎤
⎥⎥⎦

+ iλ(−σy − σz ) ⊗

⎡
⎢⎢⎣

0 0 0 0
0 0 2 cos(ky − kz ) 0
0 −2 cos(ky − kz ) 0 0
0 0 0 0

⎤
⎥⎥⎦

+ iλ(σx + σy) ⊗

⎡
⎢⎢⎣

0 0 0 0
0 0 0 2 cos(kx − ky)
0 0 0 0
0 −2 cos(kx − ky) 0 0

⎤
⎥⎥⎦

+ iλ(−σx − σz ) ⊗

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 2 cos(kx − kz )
0 0 −2 cos(kx − kz ) 0

⎤
⎥⎥⎦ (A6)

in which

σx =
[

0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
. (A7)

We take λ = 0.05 and plot the band structure with SOC in Fig. 5(c).

APPENDIX B: EFFECTIVE k · p MODEL FOR A MASSIVE
DIRAC FERMION AROUND THE W POINT

In order to confirm the gapped crossing at the W point is
the massive Dirac fermion (MDF) [Fig. 2(b)], we construct
the effective k · p model Hk·p (considering SOC) for the states
around the W point by VASP2KP [70]:

Hk·p =

⎡
⎢⎢⎣

A1 0 C D
0 A1 E F

C∗ E∗ A2 0
D∗ F ∗ 0 A2

⎤
⎥⎥⎦ (B1)

in which

A1 = a1 + a3 + (c1 + c3)k2
x + (c8 + c11)

(
k2

y + k2
z

)
,

A2 = a1 − a3 + (c1 − c3)k2
x + (c8 − c11)

(
k2

y + k2
z

)
,

C = (b2 − b4 + b3 · i + b5 · i)ky + (b3 + b5 − b2 · i

+ b4 · i)kz + (c4 − c6 + c5 · i + c7 · i)kxky

+ (−c5 − c7 + c4 · i + c6 · i)kxkz,

D = (b3 − b5 − b2 · i − b4 · i)ky + (−b2 − b4 − b3 · i

+ b5 · i)kz + (c5 − c7 − c4 · i − c6 · i)kxky

+ (c4 + c6 + c5 · i − c7 · i)kxkz,

E = (b3 + b5 − b2 · i + b4 · i)ky + (b2 − b4 + b3 · i

+ b5 · i)kz + (c5 + c7 − c4 · i + c6 · i)kxky

+ (−c4 + c6 − c5 · i − c7 · i)kxkz,

F = (b2 + b4 + b3 · i − b5 · i)ky + (−b3 + b5 + b2 · i

+ b4 · i)kz + (c4 + c6 + c5 · i − c7 · i)kxky

+ (c5 − c7 − c4 · i − c6 · i)kxkz, (B2)

and the parameters in the expressions are a1 = 7.4119 eV,
a3 = −0.0144 eV, b2 = −0.371 eV Å, b3 = −0.3464 eV Å,
b4 = 0.6583 eV Å, b5 = 0.7051 eV Å, c1 = −8.0529 eV Å2,
c3 = 1.8959 eV Å2, c4 = 1.2978 eV Å2, c5 = 1.2119 eV Å2,
c6 = −1.8185 eV Å2, c7 = −1.9478 eV Å2, c8 =
2.8786 eV Å2, and c11 = 0.4346 eV Å2.

By diagonalizing Hk·p, we can obtain the eigenvalues and
the dispersions are plotted in Fig. 6 to be compared with the
VASP calculated results, which are in good agreement with
each other around the W point. In order to confirm whether
the eigenstates obey the massive Dirac equation, we transform

FIG. 6. Calculated dispersion of the k · p model (red) and VASP

(blue) results around W point of YIr2. The black dashed line repre-
sents the Fermi level (EF ).
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FIG. 7. Fatbands with spin-orbit coupling (SOC) of YIr2.

FIG. 8. (a),(b) Band structures considering SOC of YIr2 with and without the on-site energy modulation of a tight-binding (TB) model,
respectively, in which the cyan dashed lines represent the Fermi curves, the green dashed circles highlight the DP in (a), and the gapped DP in
(b) at the X point. The purple dashed circle in (a) highlights the crossing between the two bands with different irreducible representations DT6

and DT7 which is gapped in (b). (c),(d) The Wilson-loop spectra for six time reversal invariant planes (TRIPs) in which the red dashed lines
represent the reference lines.
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Hk·p into

Hk·p =

⎡
⎢⎢⎣

A1 C 0 D
C∗ A1 E∗ 0
0 E A2 F

D∗ 0 F ∗ A2

⎤
⎥⎥⎦. (B3)

We neglect the second-order terms and further write Hk·p
as

Hk·p = a1 · I4×4

+

⎡
⎢⎢⎣

a3 u1k+ 0 D(ky, kz )
u∗

1k− −a3 E∗(ky, kz ) 0
0 E (ky, kz ) a3 u2k+

D∗(ky, kz ) 0 u∗
2k− −a3

⎤
⎥⎥⎦

+ o(k2) (B4)

in which u1 = (b2 − b4) + (b3 + b5) · i, u2 = (b3 − b5) −
(b2 + b4) · i, and k± = ky ± kz · i. This is nothing but the mas-
sive Dirac equation with anisotropy in the ky,z plane and the
constant mass term a3 plus the ky,z-dependent mass terms.
Similar situations can be seen in Refs. [71,72].

APPENDIX C: FATBANDS OF YIr2

We plot the fatbands of YIr2 with SOC in Fig. 7. Besides
the flat band of interest in the main text along the K-
-L path
contributed by all the Ir 5d orbitals and massive Dirac fermion

at the W point mainly contributed by the Ir 5dxz+yz orbitals, we
find that the Y 4dt2g orbitals also make a contribution around
the 
 point (hybridized with the Ir 5d orbitals), but they do
not significantly break the flat band originating from the 3D
destructive interference of the Ir-atoms network.

APPENDIX D: TOPOLOGICAL PROPERTIES OF YIr2

WITH THE ON-SITE ENERGY MODULATION

We first try to define the Fermi curve [63] indicated by
the cyan dashed line in Fig. 8(a) to calculate a Z2 topological
invariant [61,62] of YIr2, but it will cross the DPs at X point
and along 
-X path, making the Fermi curve ill-defined. The
latter one is the crossing between the two bands with different
irreducible representations DT6 and DT7 [73] (protected by
C4 symmetry).

So, as mentioned in the main text, we induce the on-site
energy modulation of Ir 5d orbitals in the TB model of YIr2

to break those DPs and, in Fig. 8(b), we can find that the above
mentioned DPs are gapped. We next calculate the Wilson-loop
spectra to get Z2. It is known that the odd (even) crossing times
of the Wilson-loop bands and the reference line indicating ν2d

for this time reversal invariant plane (TRIP) is equal to 1(0)
[64,65]. Therefore, we can get Z2 = (1; 111) for μ = 20 meV
and Z2 = (0; 111) for μ = −20 meV [61].

Now, we look at the results of the surface states (Fig. 9)
and we can find that, with different ways of modulation or

FIG. 9. Surface spectral function (a),(b),(c) and constant energy surface (d),(e),(f) on the (111) surface with the on-site energy modulation
of the TB model of YIr2. For (a),(d) and (b),(c),(e),(f), μ is equal to 20 meV and −20 meV, respectively. The constant energy we set in
(d),(e),(f) are highlighted by the green solid lines in (a),(b),(c), respectively. The spin textures in (d),(e),(f) are indicated by the green arrows.
The surface Dirac cone at the M point in (c) is highlighted by the purple dashed box.
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without modulation (Fig. 4), the Dirac-cone type topological
surface states at 
 point are robust [Figs. 9(a) and 9(b)] and
the surface states all exhibit spin-helical features [Figs. 9(d)
and 9(e)] which indicate the nontrivial topological properties.

As shown in Fig. 4(g) in the main text, the reference line
crosses the Wilson-loop bands even times which means that
there must be another surface Dirac cone at the M point when
μ = −20 meV; this feature can be found in Fig. 9(c).

[1] J.-X. Yin, B. Lian, and M. Z. Hasan, Topological kagome mag-
nets and superconductors, Nature (London) 612, 647 (2022).

[2] H. Tsai, T. Higo, K. Kondou, T. Nomoto, A. Sakai, A.
Kobayashi, T. Nakano, K. Yakushiji, R. Arita, S. Miwa, Y.
Otani, and S. Nakatsuji, Electrical manipulation of a topological
antiferromagnetic state, Nature (London) 580, 608 (2020).

[3] S. Nakatsuji, N. Kiyohara, and T. Higo, Large anomalous Hall
effect in a non-collinear antiferromagnet at room temperature,
Nature (London) 527, 212 (2015).

[4] E. Liu, Y. Sun, N. Kumar, L. Muechler, A. Sun, L. Jiao, S.-Y.
Yang, D. Liu, A. Liang, Q. Xu, J. Kroder, V. Süß, H. Borrmann,
C. Shekhar, Z. Wang, C. Xi, W. Wang, W. Schnelle, S. Wirth,
Y. Chen et al., Giant anomalous Hall effect in a ferromagnetic
kagome-lattice semimetal, Nat. Phys. 14, 1125 (2018).

[5] Y.-X. Jiang, J.-X. Yin, M. M. Denner, N. Shumiya, B. R. Ortiz,
G. Xu, Z. Guguchia, J. He, M. S. Hossain, X. Liu, J. Ruff,
L. Kautzsch, S. S. Zhang, G. Chang, I. Belopolski, Q. Zhang,
T. A. Cochran, D. Multer, M. Litskevich, Z.-J. Cheng et al.,
Unconventional chiral charge order in kagome superconductor
KV3Sb5, Nat. Mater. 20, 1353 (2021).

[6] H. Chen, H. Yang, B. Hu, Z. Zhao, J. Yuan, Y. Xing, G. Qian,
Z. Huang, G. Li, Y. Ye, S. Ma, S. Ni, H. Zhang, Q. Yin, C.
Gong, Z. Tu, H. Lei, H. Tan, S. Zhou, C. Shen et al., Roton
pair density wave in a strong-coupling kagome superconductor,
Nature (London) 599, 222 (2021).

[7] C. Mielke III, D. Das, J.-X. Yin, H. Liu, R. Gupta, Y.-X. Jiang,
M. Medarde, X. Wu, H. C. Lei, J. Chang, P. Dai, Q. Si, H. Miao,
R. Thomale, T. Neupert, Y. Shi, R. Khasanov, M. Z. Hasan, H.
Luetkens, and Z. Guguchia, Time-reversal symmetry-breaking
charge order in a kagome superconductor, Nature (London)
602, 245 (2022).

[8] T. Kato, Y. Li, K. Nakayama, Z. Wang, S. Souma, F. Matsui,
M. Kitamura, K. Horiba, H. Kumigashira, T. Takahashi, Y.
Yao, and T. Sato, Fermiology and origin of Tc enhancement in
a Kagome superconductor Cs(V1−xNbx )3Sb5, Phys. Rev. Lett.
129, 206402 (2022).

[9] B. R. Ortiz, L. C. Gomes, J. R. Morey, M. Winiarski, M.
Bordelon, J. S. Mangum, I. W. H. Oswald, J. A. Rodriguez-
Rivera, J. R. Neilson, S. D. Wilson, E. Ertekin, T. M. McQueen,
and E. S. Toberer, New kagome prototype materials: Discov-
ery of KV3Sb5, RbV3Sb5, and CsV3Sb5, Phys. Rev. Mater. 3,
094407 (2019).

[10] T.-H. Han, J. S. Helton, S. Chu, D. G. Nocera, J. A. Rodriguez-
Rivera, C. Broholm, and Y. S. Lee, Fractionalized excitations
in the spin-liquid state of a kagome-lattice antiferromagnet,
Nature (London) 492, 406 (2012).

[11] J.-X. Yin, S. S. Zhang, G. Chang, Q. Wang, S. S. Tsirkin,
Z. Guguchia, B. Lian, H. Zhou, K. Jiang, I. Belopolski, N.
Shumiya, D. Multer, M. Litskevich, T. A. Cochran, H. Lin, Z.
Wang, T. Neupert, S. Jia, H. Lei, and M. Z. Hasan, Negative
flat band magnetism in a spin–orbit-coupled correlated kagome
magnet, Nat. Phys. 15, 443 (2019).

[12] I. Syôzi, Statistics of kagomé lattice, Prog. Theor. Phys. 6, 306
(1951).

[13] E. Tang, J.-W. Mei, and X.-G. Wen, High-temperature fractional
quantum Hall states, Phys. Rev. Lett. 106, 236802 (2011).

[14] H. Chen, Q. Niu, and A. H. MacDonald, Anomalous Hall effect
arising from noncollinear antiferromagnetism, Phys. Rev. Lett.
112, 017205 (2014).

[15] W.-H. Ko, P. A. Lee, and X.-G. Wen, Doped kagome system as
exotic superconductor, Phys. Rev. B 79, 214502 (2009).

[16] S.-L. Yu and J.-X. Li, Chiral superconducting phase and chiral
spin-density-wave phase in a Hubbard model on the kagome
lattice, Phys. Rev. B 85, 144402 (2012).

[17] L. Zheng, L. Feng, and W. Yong-shi, Exotic electronic states in
the world of flat bands: From theory to material, Chin. Phys. B
23, 077308 (2014).

[18] K. Ohgushi, S. Murakami, and N. Nagaosa, Spin anisotropy
and quantum Hall effect in the kagomé lattice: Chiral spin state
based on a ferromagnet, Phys. Rev. B 62, R6065 (2000).

[19] G. Xu, B. Lian, and S.-C. Zhang, Intrinsic quantum anomalous
Hall effect in the kagome lattice Cs2LiMn3F12, Phys. Rev. Lett.
115, 186802 (2015).

[20] T. Yu, R. Liu, Y. Peng, P. Zheng, G. Wang, X. Ma, Z. Yuan,
and Z. Yin, Correlated electronic structure of the kagome metal
Mn3Sn, Phys. Rev. B 106, 205103 (2022).

[21] J. Zhao, W. Wu, Y. Wang, and S. A. Yang, Electronic correla-
tions in the normal state of the kagome superconductor KV3Sb5,
Phys. Rev. B 103, L241117 (2021).

[22] M. Li, Q. Wang, G. Wang, Z. Yuan, W. Song, R. Lou, Z. Liu,
Y. Huang, Z. Liu, H. Lei, Z. Yin, and S. Wang, Dirac cone,
flat band and saddle point in kagome magnet YMn6Sn6, Nat.
Commun. 12, 3129 (2021).

[23] Z. Liu, M. Li, Q. Wang, G. Wang, C. Wen, K. Jiang, X. Lu, S.
Yan, Y. Huang, D. Shen, J.-X. Yin, Z. Wang, Z. Yin, H. Lei, and
S. Wang, Orbital-selective Dirac fermions and extremely flat
bands in frustrated kagome-lattice metal CoSn, Nat. Commun.
11, 4002 (2020).

[24] M. Kang, S. Fang, L. Ye, H. C. Po, J. Denlinger, C. Jozwiak,
A. Bostwick, E. Rotenberg, E. Kaxiras, J. G. Checkelsky, and
R. Comin, Topological flat bands in frustrated kagome lattice
CoSn, Nat. Commun. 11, 4004 (2020).

[25] M. Kang, L. Ye, S. Fang, J.-S. You, A. Levitan, M. Han, J. I.
Facio, C. Jozwiak, A. Bostwick, E. Rotenberg, M. K. Chan,
R. D. McDonald, D. Graf, K. Kaznatcheev, E. Vescovo, D. C.
Bell, E. Kaxiras, J. van den Brink, M. Richter, M. Prasad
Ghimire et al., Dirac fermions and flat bands in the ideal
kagome metal FeSn, Nat. Mater. 19, 163 (2020).

[26] B. R. Ortiz, S. M. L. Teicher, Y. Hu, J. L. Zuo, P. M. Sarte,
E. C. Schueller, A. M. M. Abeykoon, M. J. Krogstad, S.
Rosenkranz, R. Osborn, R. Seshadri, L. Balents, J. He, and
S. D. Wilson, CsV3Sb5: A Z2 topological kagome metal with
a superconducting ground state, Phys. Rev. Lett. 125, 247002
(2020).

075124-10

https://doi.org/10.1038/s41586-022-05516-0
https://doi.org/10.1038/s41586-020-2211-2
https://doi.org/10.1038/nature15723
https://doi.org/10.1038/s41567-018-0234-5
https://doi.org/10.1038/s41563-021-01034-y
https://doi.org/10.1038/s41586-021-03983-5
https://doi.org/10.1038/s41586-021-04327-z
https://doi.org/10.1103/PhysRevLett.129.206402
https://doi.org/10.1103/PhysRevMaterials.3.094407
https://doi.org/10.1038/nature11659
https://doi.org/10.1038/s41567-019-0426-7
https://doi.org/10.1143/ptp/6.3.306
https://doi.org/10.1103/PhysRevLett.106.236802
https://doi.org/10.1103/PhysRevLett.112.017205
https://doi.org/10.1103/PhysRevB.79.214502
https://doi.org/10.1103/PhysRevB.85.144402
https://doi.org/10.1088/1674-1056/23/7/077308
https://doi.org/10.1103/PhysRevB.62.R6065
https://doi.org/10.1103/PhysRevLett.115.186802
https://doi.org/10.1103/PhysRevB.106.205103
https://doi.org/10.1103/PhysRevB.103.L241117
https://doi.org/10.1038/s41467-021-23536-8
https://doi.org/10.1038/s41467-020-17462-4
https://doi.org/10.1038/s41467-020-17465-1
https://doi.org/10.1038/s41563-019-0531-0
https://doi.org/10.1103/PhysRevLett.125.247002


SPIN HALL EFFECT AND TOPOLOGICAL SURFACE … PHYSICAL REVIEW B 110, 075124 (2024)

[27] Y. Hu, X. Wu, B. R. Ortiz, S. Ju, X. Han, J. Ma, N. C. Plumb,
M. Radovic, R. Thomale, S. D. Wilson, A. P. Schnyder, and M.
Shi, Rich nature of Van Hove singularities in kagome supercon-
ductor CsV3Sb5, Nat. Commun. 13, 2220 (2022).

[28] L. Ye, M. Kang, J. Liu, F. von Cube, C. R. Wicker, T. Suzuki,
C. Jozwiak, A. Bostwick, E. Rotenberg, D. C. Bell, L. Fu, R.
Comin, and J. G. Checkelsky, Massive Dirac fermions in a
ferromagnetic kagome metal, Nature (London) 555, 638 (2018).

[29] J.-X. Yin, W. Ma, T. A. Cochran, X. Xu, S. S. Zhang, H.-J.
Tien, N. Shumiya, G. Cheng, K. Jiang, B. Lian, Z. Song, G.
Chang, I. Belopolski, D. Multer, M. Litskevich, Z.-J. Cheng,
X. P. Yang, B. Swidler, H. Zhou, H. Lin et al., Quantum-limit
Chern topological magnetism in TbMn6Sn6, Nature (London)
583, 533 (2020).

[30] W. Ma, X. Xu, J.-X. Yin, H. Yang, H. Zhou, Z.-J. Cheng,
Y. Huang, Z. Qu, F. Wang, M. Z. Hasan, and S. Jia, Rare
earth engineering in RMn6Sn6 (R = Gd − Tm, Lu) topological
kagome magnets, Phys. Rev. Lett. 126, 246602 (2021).

[31] Z. Lin, J.-H. Choi, Q. Zhang, W. Qin, S. Yi, P. Wang, L. Li,
Y. Wang, H. Zhang, Z. Sun, L. Wei, S. Zhang, T. Guo, Q.
Lu, J.-H. Cho, C. Zeng, and Z. Zhang, Flatbands and emergent
ferromagnetic ordering in Fe3Sn2 kagome lattices, Phys. Rev.
Lett. 121, 096401 (2018).

[32] J.-X. Yin, N. Shumiya, S. Mardanya, Q. Wang, S. S. Zhang,
H.-J. Tien, D. Multer, Y. Jiang, G. Cheng, N. Yao, S. Wu, D.
Wu, L. Deng, Z. Ye, R. He, G. Chang, Z. Liu, K. Jiang, Z.
Wang, T. Neupert et al., Fermion-boson many-body interplay
in a frustrated kagome paramagnet, Nat. Commun. 11, 4003
(2020).

[33] A. Nag, Y. Peng, J. Li, S. Agrestini, H. C. Robarts, M. García-
Fernández, A. C. Walters, Q. Wang, Q. Yin, H. Lei, Z. Yin, and
K.-J. Zhou, Correlation driven near-flat band Stoner excitations
in a kagome magnet, Nat. Commun. 13, 7317 (2022).

[34] N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P.
Ong, Anomalous Hall effect, Rev. Mod. Phys. 82, 1539 (2010).

[35] Y.-C. Lau, J. Ikeda, K. Fujiwara, A. Ozawa, J. Zheng, T. Seki,
K. Nomura, L. Du, Q. Wu, A. Tsukazaki, and K. Takanashi,
Intercorrelated anomalous Hall and spin Hall effect in kagome-
lattice Co3Sn2S2-based shandite films, Phys. Rev. B 108,
064429 (2023).

[36] Y. Yang, R. Wang, M.-Z. Shi, Z. Wang, Z. Xiang, and X.-H.
Chen, Symmetry-protected Dirac nodal lines and large spin Hall
effect in a V6Sb4 kagome bilayer, Phys. Rev. B 105, 155102
(2022).

[37] J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back, and
T. Jungwirth, Spin Hall effects, Rev. Mod. Phys. 87, 1213
(2015).

[38] E. Derunova, Y. Sun, C. Felser, S. S. P. Parkin, B. Yan, and
M. N. Ali, Giant intrinsic spin Hall effect in W3Ta and other
A15 superconductors, Sci. Adv. 5, eaav8575 (2019).

[39] V. B. Compton and B. T. Matthias, Laves phase compounds of
rare earths and hafnium with noble metals, Acta Crystallogr. 12,
651 (1959).

[40] E. Tolkunova, V. Burnashova, M. Raevskaya, and E.
Sokolovskaya, Interaction of laves phases in Y-Ru-(Fe, Co, Ni)
systems, Metallofizika 52, 109 (1974).

[41] J. Huang, C. Setty, L. Deng, J.-Y. You, H. Liu, S. Shao,
J. S. Oh, Y. Guo, Y. Zhang, Z. Yue et al., Three-dimensional
flat bands and Dirac cones in a pyrochlore superconductor,
arXiv:2304.09066.

[42] J. P. Wakefield, M. Kang, P. M. Neves, D. Oh, S. Fang, R.
McTigue, S. Y. Frank Zhao, T. N. Lamichhane, A. Chen, S. Lee,
S. Park, J.-H. Park, C. Jozwiak, A. Bostwick, E. Rotenberg, A.
Rajapitamahuni, E. Vescovo, J. L. McChesney, D. Graf, J. C.
Palmstrom et al., Three-dimensional flat bands in pyrochlore
metal CaNi2, Nature (London) 623, 301 (2023).

[43] I. Hase, T. Yanagisawa, Y. Aiura, and K. Kawashima, Pos-
sibility of flat-band ferromagnetism in hole-doped pyrochlore
oxides Sn2Nb2O7 and Sn2Ta2O7, Phys. Rev. Lett. 120, 196401
(2018).

[44] K. Essafi, L. D. C. Jaubert, and M. Udagawa, Flat bands and
Dirac cones in breathing lattices, J. Phys.: Condens. Matter 29,
315802 (2017).

[45] S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele,
and A. M. Rappe, Dirac semimetal in three dimensions, Phys.
Rev. Lett. 108, 140405 (2012).

[46] H.-M. Guo and M. Franz, Three-dimensional topological insu-
lators on the pyrochlore lattice, Phys. Rev. Lett. 103, 206805
(2009).

[47] W. Jiang, D. J. P. de Sousa, J.-P. Wang, and T. Low, Giant
anomalous Hall effect due to double-degenerate quasiflat bands,
Phys. Rev. Lett. 126, 106601 (2021).

[48] Y. Zhou, K.-H. Jin, H. Huang, Z. Wang, and F. Liu, Weyl
points created by a three-dimensional flat band, Phys. Rev. B
99, 201105(R) (2019).

[49] G. Kresse and J. Furthmüller, Efficiency of ab-initio total
energy calculations for metals and semiconductors using a
plane-wave basis set, Comput. Mater. Sci. 6, 15 (1996).

[50] G. Pizzi, V. Vitale, R. Arita, S. Blügel, F. Freimuth, G.
Géranton, M. Gibertini, D. Gresch, C. Johnson, T. Koretsune,
J. Ibañez-Azpiroz, H. Lee, J.-M. Lihm, D. Marchand, A.
Marrazzo, Y. Mokrousov, J. I. Mustafa, Y. Nohara, Y. Nomura,
L. Paulatto et al., Wannier90 as a community code: New fea-
tures and applications, J. Phys.: Condens. Matter 32, 165902
(2020).

[51] J. Qiao, J. Zhou, Z. Yuan, and W. Zhao, Calculation of intrinsic
spin Hall conductivity by Wannier interpolation, Phys. Rev. B
98, 214402 (2018).

[52] Q. Wu, S. Zhang, H.-F. Song, M. Troyer, and A. A. Soluyanov,
Wanniertools: An open-source software package for novel topo-
logical materials, Comput. Phys. Commun. 224, 405 (2018).

[53] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.110.075124 for the electronic structures of
YCo2 and YRh2, intrinsic spin Hall conductivity of YCo2 and
YRh2, the other (111) k-plane momentum resolved spin Berry
curvature at EF of YIr2, the gapped crossing and parity dis-
tribution of YIr2 with the on-site energy modulation of the
tight-binding model, and the verification of the nontrivial topo-
logical nature of Dirac-cone-type surface states in YIr2.

[54] X. Sui, C. Wang, J. Kim, J. Wang, S. H. Rhim, W. Duan,
and N. Kioussis, Giant enhancement of the intrinsic spin Hall
conductivity in β-tungsten via substitutional doping, Phys. Rev.
B 96, 241105(R) (2017).

[55] G. Y. Guo, S. Murakami, T.-W. Chen, and N. Nagaosa, Intrinsic
spin Hall effect in platinum: First-principles calculations, Phys.
Rev. Lett. 100, 096401 (2008).

[56] T. Wakamura, H. Akaike, Y. Omori, Y. Niimi, S. Takahashi, A.
Fujimaki, S. Maekawa, and Y. Otani, Quasiparticle-mediated
spin Hall effect in a superconductor, Nat. Mater. 14, 675
(2015).

075124-11

https://doi.org/10.1038/s41467-022-29828-x
https://doi.org/10.1038/nature25987
https://doi.org/10.1038/s41586-020-2482-7
https://doi.org/10.1103/PhysRevLett.126.246602
https://doi.org/10.1103/PhysRevLett.121.096401
https://doi.org/10.1038/s41467-020-17464-2
https://doi.org/10.1038/s41467-022-34933-y
https://doi.org/10.1103/RevModPhys.82.1539
https://doi.org/10.1103/PhysRevB.108.064429
https://doi.org/10.1103/PhysRevB.105.155102
https://doi.org/10.1103/RevModPhys.87.1213
https://doi.org/10.1126/sciadv.aav8575
https://doi.org/10.1107/S0365110X59001918
https://www.osti.gov/biblio/4253000
https://arxiv.org/abs/2304.09066
https://doi.org/10.1038/s41586-023-06640-1
https://doi.org/10.1103/PhysRevLett.120.196401
https://doi.org/10.1088/1361-648X/aa782f
https://doi.org/10.1103/PhysRevLett.108.140405
https://doi.org/10.1103/PhysRevLett.103.206805
https://doi.org/10.1103/PhysRevLett.126.106601
https://doi.org/10.1103/PhysRevB.99.201105
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1088/1361-648X/ab51ff
https://doi.org/10.1103/PhysRevB.98.214402
https://doi.org/10.1016/j.cpc.2017.09.033
http://link.aps.org/supplemental/10.1103/PhysRevB.110.075124
https://doi.org/10.1103/PhysRevB.96.241105
https://doi.org/10.1103/PhysRevLett.100.096401
https://doi.org/10.1038/nmat4276


ZHENG, WANG, GUO, AND YIN PHYSICAL REVIEW B 110, 075124 (2024)

[57] S. Takahashi and S. Maekawa, Spin Hall effect in superconduc-
tors, Jpn. J. Appl. Phys. 51, 010110 (2012).

[58] G. Yang, C. Ciccarelli, and J. W. A. Robinson, Boosting
spintronics with superconductivity, APL Mater. 9, 050703
(2021).

[59] W. Han, Y. Otani, and S. Maekawa, Quantum materials for spin
and charge conversion, npj Quantum Mater. 3, 27 (2018).

[60] M. Z. Hasan and C. L. Kane, Colloquium: Topological insula-
tors, Rev. Mod. Phys. 82, 3045 (2010).

[61] L. Fu, C. L. Kane, and E. J. Mele, Topological insulators in
three dimensions, Phys. Rev. Lett. 98, 106803 (2007).

[62] L. Fu and C. L. Kane, Topological insulators with inversion
symmetry, Phys. Rev. B 76, 045302 (2007).

[63] Z. Wang, P. Zhang, G. Xu, L. K. Zeng, H. Miao, X. Xu, T.
Qian, H. Weng, P. Richard, A. V. Fedorov, H. Ding, X. Dai, and
Z. Fang, Topological nature of the FeSe0.5Te0.5 superconductor,
Phys. Rev. B 92, 115119 (2015).

[64] R. Yu, X. L. Qi, A. Bernevig, Z. Fang, and X. Dai, Equivalent
expression of Z2 topological invariant for band insulators using
the non-AbelianBerry connection, Phys. Rev. B 84, 075119
(2011).

[65] A. A. Soluyanov and D. Vanderbilt, Wannier representation of
Z2 topological insulators, Phys. Rev. B 83, 035108 (2011).

[66] J. Xiao and B. Yan, First-principles calculations for topological
quantum materials, Nat. Rev. Phys. 3, 283 (2021).

[67] M. Sato and Y. Ando, Topological superconductors: A review,
Rep. Prog. Phys. 80, 076501 (2017).

[68] X.-L. Qi and S.-C. Zhang, Topological insulators and supercon-
ductors, Rev. Mod. Phys. 83, 1057 (2011).

[69] C. Beenakker, Search for Majorana fermions in superconduc-
tors, Annu. Rev. Condens. Matter Phys. 4, 113 (2013).

[70] S. Zhang, H. Sheng, Z.-D. Song, C. Liang, Y. Jiang, S. Sun, Q.
Wu, H. Weng, Z. Fang, X. Dai et al., VASP2KP: k · p models
and Landé g-factors from ab initio calculations, Chin. Phys.
Lett. 40, 127101 (2023).

[71] H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C.
Zhang, Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3

with a single Dirac cone on the surface, Nat. Phys. 5, 438
(2009).

[72] Z. Wang, Y. Sun, X.-Q. Chen, C. Franchini, G. Xu, H. Weng,
X. Dai, and Z. Fang, Dirac semimetal and topological phase
transitions in A3Bi (A = Na, K, Rb), Phys. Rev. B 85, 195320
(2012).

[73] J. Gao, Q. Wu, C. Persson, and Z. Wang, Irvsp: To obtain
irreducible representations of electronic states in the VASP,
Comput. Phys. Commun. 261, 107760 (2021).

075124-12

https://doi.org/10.1143/JJAP.51.010110
https://doi.org/10.1063/5.0048904
https://doi.org/10.1038/s41535-018-0100-9
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/PhysRevLett.98.106803
https://doi.org/10.1103/PhysRevB.76.045302
https://doi.org/10.1103/PhysRevB.92.115119
https://doi.org/10.1103/PhysRevB.84.075119
https://doi.org/10.1103/PhysRevB.83.035108
https://doi.org/10.1038/s42254-021-00292-8
https://doi.org/10.1088/1361-6633/aa6ac7
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1146/annurev-conmatphys-030212-184337
https://doi.org/10.1088/0256-307X/40/12/127101
https://doi.org/10.1038/nphys1270
https://doi.org/10.1103/PhysRevB.85.195320
https://doi.org/10.1016/j.cpc.2020.107760

