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Topological pumping in origami metamaterials
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We present a mechanism of topological pumping in origami metamaterials with spatial modulation by tuning
the rotation angles. Through coupling spatially modulated origami chains along an additional synthetic dimen-
sion, the pumping of waves from one topological edge state to another is achieved, where the Landau-Zener
transition is demonstrated by varying the number of coupled origami chains. In addition, the inherent nonlinearity
of origami metamaterials enables the excitation-dependent Landau-Zener tunneling probability. Furthermore,
with the increase of nonlinearity, the topological states tend to localize in several regions in a way reminiscent of
discrete breathers. Our findings pave the way towards interband transitions and associated topological pumping
features in origami metamaterials.
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I. INTRODUCTION

Topological metamaterials have had a remarkable recent
impact not only in condensed matter physics, but also through
wave manipulation in photonics and phononics, underpinned
by the robustness to imperfections [1–5]. A recent research
direction has focused on the higher-dimensional topological
effects in lower-dimensional systems by exploiting syn-
thetic dimensions in the parameter space [6–9]. Among
these pursuits, Thouless pumping stands out as a captivating
demonstration of topological phenomena, offering a dynamic
counterpart to the two-dimensional quantum Hall effect and
enabling transport behaviors of topological states. Thouless
pumping in photonics [10–13], acoustics [14–16], and elas-
ticity [17–22] not only illuminates the topological aspects of
dynamic evolution, but also highlights its significance in un-
raveling the higher-dimensional topological physics; see also
the recent review [23].

Meanwhile, recently, the ancient art of origami, with its
intricate paper-folding techniques, has captured the interest of
the physics and engineering communities [24–26]. Origami
metamaterials, comprising an assemblage of origami blocks,
offer a unique repertoire of static properties and the dynamic
characteristics that hold the promise of mitigating impacts
and controlling vibrations [27–30]. Notably, origami meta-
materials have been proven to demonstrate the potential for
the realization of systems of relevance to condensed matter
physics, particularly in the exploration of topological states
[31–33]. Origami metamaterials, coupled with their distinct
mechanical properties being tuned through initial configura-
tions, position them as convenient platforms for the realization
of Thouless pumping, thus opening up intriguing possibili-
ties. Additionally, while most studies on band topology are
conducted in linear systems, there is growing interest in the
investigation of properties in the presence of nonlinearities
[34–37]. Therefore, the intrinsic nonlinearity in origami offers

opportunities for investigating the interplay between non-
linearity and topological pumping in elastic systems, which
warrants further study.

In this work, we demonstrate topological Thouless pump-
ing in an origami metamaterial consisting of coupled Kresling
origami chains, each tailored with modulated geometrical pa-
rameters. By engineering the initial rotation angles of the
origami units according to the Aubry-André-Harper (AAH)
model [38,39], we find nontrivial topological edge states in a
single origami chain. Leveraging an additional parameter as
a synthetic dimension, we realize the Landau-Zener transition
[40,41] and topological pumping in the two-dimensional sys-
tem with coupled modulated origami chains. Furthermore, our
exploration reveals that the nonlinearity of origami can result
in asymmetrical Landau-Zener tunneling in a way reminiscent
of (but distinctive from) cold-atom experiments [42], and also
lead to the transition from topological pumping to discrete
breathers [43] and bulk states. Our work not only achieves
topological pumping in origami metamaterials, but also delves
into the profound influence of nonlinearity thereon.

II. DESIGN OF ORIGAMI METAMATERIALS

We consider the Kresling origami as the unit cell in the
origami metamaterials, the geometry of which is shown in
Figs. 1(a) and 1(b). The geometric and mechanical parameters
for Kresling origami are detailed in the Supplemental Mate-
rial [44]. We then design the single Kresling origami chain
following the AAH model, the prototypical form of which at
the level of a tight-binding model is expressed as

Eψn = t (ψn+1 + ψn−1) + μ cos (2πnξ + η)ψn, (1)

where ψ is the wave function, n represents the lattice site,
E denotes the energy, t is the hopping amplitude, μ is the
modulation amplitude of the on-site potential, ξ controls the
periodicity of the modulation, and η is the modulation phase.
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FIG. 1. (a) The side view of Kresling origami. a, b represent lengths of crease lines, and h and � represent the height and folding angle of
Kresling origami, respectively. (b) The top view of Kresling origami. θ0 and R denote the rotation angle between the bottom and top panels,
and the radius of Kresling origami, respectively. (c) The side view of the Kresling origami’s chain with spatial modulation. The rotation
angle of each Kresling origami follows θxn = θ0 + μθ0 sin (2πxnξ + η). The corresponding values are shown below. (d) The coupled origami
chains via torsion springs kc along a synthetic dimension η. η varies from ηi to η f . For example, the initial rotation angles of the first chain are
θxn = θ0 + μθ0 sin (2πxnξ + ηi ) and those of the last chain are θxn = θ0 + μθ0 sin (2πxnξ + η f ). The red markers represent the torsion springs.

The on-site potentials of the AAH model, specifically, for the
origami chain, the stiffness values, are spatially modulated
by the initial rotation angle of Kresling origami θxn = θ0 +
μθ0 sin(2πxnξ + η). Here, μ, ξ , and η represent the modula-
tion amplitude, modulation frequency, and modulation phason
(also the synthetic dimension of the system). In our work,
we choose 25 Kresling origami elements ({xn ∈ Z|0 � xn �
24}), with height h = 30 mm, rotation angle θ0 = 70◦, radius
R = 36 mm, and μ = 0.2. Thus, there are n = 26 separators
in the single origami chain, each of which has two degrees of
freedom (translation u and rotation ϕ) according to the truss
model by considering each crease as a linear spring and the
folding of each facet as a linear torsion spring [29,31], where
massless trusses and no bending of the chain are considered.
Under the configuration with modulation of the initial rotation
angles, the truss model indicates that the stiffness will expe-
rience a periodic variation, thereby leading to the formulation
of the AAH model. More details of the truss model are shown
in the Supplemental Material [44].

One of the properties of the AAH model is the fractal
nature of its spectrum. To explore this, we show, in the Sup-
plemental Material [44], the spectrum as a function of the
parameter ξ and observe a structure known as the Hofstadter
butterfly [46]. The Hofstadter butterfly is not only a footprint
of the spectral fractality, but also the indicator of a nontrivial
band gap whose gap Chern number is conveniently calculated
by the integrated density of states (IDS) [47] (see Supple-
mental Material [44]). In our single Kresling origami chain
displayed in Fig. 1(c), we choose ξ = 1

4 to study the topo-
logical states in the nontrivial band gap with the gap Chern
number Cg = −1, and the rotation angle of each origami in
the chain is exhibited in the bottom panel of Fig. 1(c). In this
way, this one-dimensional system satisfies the commensurate

AAH model and each unit cell contains four origamis. Note
that the choices of ξ = 1

4 and 26 separators in the origami
chain (implying 24 periodic separators and 2 additional sep-
arators in the boundary) ensure the existence of two bands
in the band gap [16,31], which enables the discussion of the
Landau-Zener transition below.

The parameter η in the AAH model as an additional de-
gree of freedom is used as a synthetic dimension to construct
the two-dimensional origami metamaterials. η linearly varies
from ηi to η f , resulting in the coupled spatially modulated
origami chains via torsion springs kc along the z direction,
which induce rotations ϕ only, as illustrated by Fig. 1(d). zn

denotes the number of coupled origami chains.
To study the dynamical properties of the single Kres-

ling origami chain and the two-dimensional coupled origami
chains, we then show the calculated spectra. The Kresling
origami has the typical nonlinear behaviors that the stiff-
ness changes under different levels of deformation (see the
governing equation and force-displacement curves in the Sup-
plemental Material [44]), which will be detailed later to show
its effect on topological pumping. Therefore, to reveal the
dispersion topology in such an origami chain, we linearize
the governing equation of Kresling origami to obtain linear
coefficients (see Supplemental Material [44]). In Fig. 2(a), the
eigenspectrum is plotted as a function of η with the clamped
boundary condition on both sides of the origami chain. To
check if the eigenmodes own features of topological states,
the localization index (LI), which is the product of the inverse
participation ratio (IPR) and the center of mode (CoM), is
used to characterize the localization of energy [31]:

LI = IPR × CoM = |(KU◦2)◦2|
(

2

n − 2
wT KU◦2

)
, (2)
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FIG. 2. (a) The calculated eigenspectrum of the single Kresling
origami chain as a function of η. (b) The wave number kz as a
function of η for a fixed frequency f = 40 Hz. The insets show
four eigenmodes (ϕ) of the origami chain along the x direction,
corresponding to ηi = 1.4π and η f = 1.6π of two colored bands,
respectively. The color in (a) and (b) represents the localization
index, indicating the localization of the energy.

where U is the eigenvector containing translation u and
rotation ϕ, K is the commutation matrix, and w is the weight-
ing vector. ◦ denotes the Hadamard product. The clamped
boundary condition leads to n − 2 effective separators. The
introduction of LI indicates that if the eigenmode is skewed to-
ward the left (right) boundary, LI is negative (positive). More
details including the definition of K and w can be found in the
Supplemental Material [44]. According to the color-encoded
spectrum in Fig. 2(a), topological edge states with the energy
localized on either boundary can be found in the band gap
when η is in a certain range.

We choose the topological states within the band gap
around 30 Hz when η is between 1.4π and 1.6π to further
explore. Therefore, for the two-dimensional origami meta-
materials, η linearly varies from ηi = 1.4π to η f = 1.6π .
Imposing plane-wave harmonic motion along the z direc-
tion, variation of wave number kz shifts the entire spectrum
[Fig. 2(a)] by considering slowly varying η along the z di-
rection, resulting in the spectrum f (η, kz ), where kz ∈ [0, π

2R ].
We then fix the excitation frequency f (η, kz ) = 40 Hz in the
following discussion and generate the relation between kz and
η shown in Fig. 2(b). Topological edge states are illustrated
with large |LI| (colored), while the bulk bands are illustrated
with small |LI| (gray). Moreover, the eigenmodes (ϕ) in the
insets clearly exhibit the topological edge states with localized
energy on either the left end or right end.

FIG. 3. (a) The close-up view of the relation between kz and
η. The black dashed lines and black dotted lines represent the
theoretical adiabatic evolution and diabatic evolution, respectively.
(b) The Landau-Zener tunneling probability as a function of number
of chains and excitation amplitude. The black solid lines indicate the
Landau-Zener transition point, P|�L 〉 = 0.5.

III. LANDAU-ZENER TUNNELING
IN ORIGAMI METAMATERIALS

Of particular interest are two bands featuring topological
edge states. As depicted in the close-up view in Fig. 3(a), there
is a band gap with a size of 	kz = 2.1 m−1. This small size of
the band gap suggests the sensitivity of topological pumping
to the condition of adiabaticity and hence offers a unique
opportunity to explore diabatic transition. In the vicinity of
η = 1.5π , these two bands can be modeled by a two-level
effective Hamiltonian near kz = 25.5 m−1 by considering the
z direction as time,

H (δη) =
(−αδη 	kz/2

	kz/2 αδη

)
, (3)

where α = 12.9 m−1 serves as a fitting parameter between the
theoretical model and simulation by minimizing the mean-
squared error. The bases of H are denoted as |�L〉 and |�R〉,
representing the topological edge states localized at the left
and right boundaries, respectively. The eigenvalues of H are
illustrated as the black dashed lines in Fig. 3(a), showcasing
the excellent agreement with the results from simulation (col-
ored dots). If the initial state is |�L〉 at η = 1.4π , residing in
the lower level, the final state |� f 〉 will be a superposition
of two topological edge states |�L〉 and |�R〉. Following the
evolution of |�L〉, the final state remains localized on the
left boundary, corresponding to the diabatic transition (black
dotted lines). Alternatively, following the lower level during
pumping, the final state will be dominated by |�R〉, leading to
the localization on the right boundary. Note that the transfer
of the topological states is also achieved in the single origami
chain mimicking the Su-Schrieffer-Heeger model with time-
dependent modulation [31]. The recent progress also shows
a system with coupled pendula with Landau-Zener transition
in its temporal dynamics [48]. The introduction of a spatial
synthetic dimension instead of modulating the origami chain
over time provides a practical approach towards transferring
topological edge states.

The composition of the final state |� f 〉 can be predicted by
the Landau-Zener model [49], given by |� f 〉 = L(z)|�L〉 +
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FIG. 4. (a) The rms of ϕ when η = 3π/2 as a function of excitation amplitude. (b) The spectrogram of the time domain simulation,
showcasing the relation between η and kz. The amplitude of the spectrogram is encoded by color. (c) The rms of ϕ under different excitation
amplitudes. (d) Phase-space representation plot (ϕ vs ϕ̇) at different sites when η = 3π/2. From left to right, the panels in (b)–(d) indicate the
cases with increasing excitation amplitudes, corresponding to the dashed lines in (a).

R(z)|�R〉, with L(z) and R(z) satisfying the following relation:

i
d

dz

(
L(z)
R(z)

)
=

( −βz 	kz/2
	kz/2 βz

)(
L(z)
R(z)

)
. (4)

Here, β = α(	η/zn) represents the degree of adiabaticity,
which depends on the rate of parameter evolution, 	η/zn,
with 	η = 0.2π being the span of η. By assuming the
initial state to be |�L〉, the proportion of the final state
can be derived as P|�L〉 = L2(zn) = e−π	k2

z /4β and P|�R〉 =
R2(zn) = 1 − e−π	k2

z /4β . In the Supplemental Material [44],
we show P|�L〉 as a function of zn. Therein, when P|�L〉 =
0.5, the Landau-Zener transition point corresponds to zn =
21. When zn is sufficiently large, the evolution is slow
enough to be adiabatic, resulting in the final state domi-
nated by |�R〉. However, when the same process occurs in
a system with a smaller zn, the variation is fast, leading to
diabatic behaviors and the final state dominated by |�L〉.
While the Landau-Zener transition has been realized in pho-
tonics and acoustics [13,16], our realization in the elastic
platform of Kresling origami fills the blank in elasticity,
while naturally posing the challenge of nonlinear extensions
thereof.

As mentioned in Sec. I, Kresling origami exhibits intrinsic
nonlinearity (see the Supplemental Material [44]). Therefore,
we investigate the Landau-Zener tunneling probability calcu-
lated by the kinetic energy of the separator as a function of the
excitation amplitude. Note that the excitation of the system
is through a torque T applied on the separator. As shown
in Fig. 3(b), when the excitation amplitude is small and the

system remains close to the linear regime with the initial state
|�L〉 in the lower band, the Landau-Zener transition point
(P|�L〉 = 0.5, black solid line) remains consistent (zn = 21),
showing agreement with theoretical results. However, as the
amplitude increases to the weakly nonlinear regime, the tran-
sition point shifts to the smaller zn. This suggests that the
tunneling probability decreases when the excitation ampli-
tude increases. While previous studies have shown that in
the presence of nonlinearity the tunneling probability will in-
crease due to the interactions between the particles [42,50,51],
our results show the opposite case, which may result from
the strain softening behaviors of Kresling origami. Note that
the discussion is only limited in the weakly nonlinear regime
because larger excitation amplitude beyond the limit as pre-
sented will eliminate topological states, which will be shown
below.

IV. TRANSITION OF TOPOLOGICAL PUMPING

To further explore the nonlinear effects of origami on the
topological pumping, we excite the system with varying am-
plitudes from the left boundary to obtain the initial state |�L〉
in the lower band. We also fix zn = 101 to ensure the adiabatic
evolution, resulting in the final state being predominantly
composed of |�R〉.

In Fig. 4(a), we show the root mean square (rms) of the
field distribution (ϕ) of the 51st origami chain (middle chain),
where η = 3π/2, as a function of excitation amplitude. Evi-
dently, when the amplitude is small (near the linear regime),
topological states can be successfully transferred from the left
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to the right boundary with the minimal involvement of the
bulk states. To illustrate the adiabatic nature of the pump,
we employ a time-frequency analysis (spectrogram) to rep-
resent the rotational displacement field in the reciprocal space
ϕ̂(η, kz, kx, f ). For visualization purposes, f = 40 Hz and the
rms along the kx dimensions is taken, which produces ϕ̂(η, kz ).
As shown in the first panel of Fig. 4(b), when the amplitude is
0.01 N m, the wave is initially distributed around wave num-
bers kz corresponding to the excited left-localized topological
state. Along the synthetic dimension η, it closely follows the
evolution of the lower band. At the end of the process, the
majority of the energy is concentrated on the right-localized
mode, with a portion scattered to neighboring bulk states. The
corresponding rms of ϕ is shown in the first panel of Fig. 4(c),
providing a clear depiction of the topological pumping. In
addition, the phase-space representation [ϕ(t ) vs ϕ̇(t )] is dis-
played in the first panel of Fig. 4(d) for several separators
along the 51st origami chain, showcasing periodic orbits in the
phase space. At small amplitude, these mainly involve such
orbits at the two boundaries.

As the excitation amplitude continues to rise, the influence
of nonlinearity becomes prominent. Gradually, the dominance
of topological pumping wanes, resulting in the lesser con-
finement on the boundary. As shown in Fig. 4(a), the excited
waves bypass the boundary-induced confinement and explore
more widely in the configuration space of the system. As an
example, indicated by the blue dashed line, when the ampli-
tude reaches 0.1 N m, ϕ̂(η, kz ) is shown in the second panel
of Fig. 4(b). In comparison to the linear case, it becomes
evident that the energy is not primarily concentrated on the
right-localized mode by the end of the evolution. The rms of
ϕ is displayed in the second panel of Fig. 4(c), revealing the
emergence of localized states reminiscent of discrete breathers
[43], principally located at certain sites (3rd, 7th, . . . , 23rd
separators). These modes have certain frequencies located at
the band gap (in line with what is expected based on their spa-
tial localization). Further analysis of the subharmonic effect
can be found in the Supplemental Material [44]. Likewise, the
phase-space representation is illustrated in the second panel
of Fig. 4(d). Compared with the linear case, the trajectories
show nonlinear features on the periodic orbits and the corre-
sponding excitation of larger amplitude orbits in the bulk of
the system. We note that similar transitions from topological
states to discrete breathers have also been observed in the one-
dimensional spatially modulated nonlinear spring chain [52].

If the excitation amplitude is increased further, the influ-
ence of nonlinearity becomes increasingly pronounced. The

bulk states will be excited, as evidenced by the large amplitude
of ϕ uniformly distributed in the bulk, shown in Fig. 4(a),
when the amplitude is 0.2 N m, marked by the orange dashed
line. The third panel of Fig. 4(b) and additional details in
the Supplemental Material [44] further confirm that a signif-
icant portion of the energy is scattered to the bulk, at 40 Hz
and other frequencies. According to the rms of ϕ in the
third panel of Fig. 4(c), the characteristic feature of discrete
breathers, where energy is localized at specific sites, becomes
less apparent. Instead, the bulk of the system experiences a
progressively more uniform excitation. In stark contrast to
the previous cases, the relation between ϕ and ϕ̇ exhibits
highly nonlinear features, exploring the full phase space and
significantly deviating from well-defined periodic orbits, as
displayed in the third panel of Fig. 4(d).

In conclusion, our study demonstrates the design of
origami metamaterials by coupling spatially modulated Kres-
ling origami chains, following the AAH model, to achieve
topological pumping. The intrinsic nonlinearity of origami
metamaterials reveals an intriguing phenomenon, character-
ized by Landau-Zener tunneling probability contingent upon
the excitation amplitude (in a way reflecting the system’s
strain softening nonlinearity). Moreover, as the nonlinearity
becomes more pronounced, the topological states gradually
transform into spatially localized, temporally periodic states
reminiscent of discrete breathers and eventually transition
into progressively more uniform bulk states. Our findings
provide valuable insights into the evolutionary path from
topological pumping to localized, breathing and bulk states
in nonlinear systems. These findings inspire experimental
explorations and potential applications in origami-based ar-
chitectures for the manipulation of elastic waves and robust
transfer of energy since the parameters used in the simulations
are from previous experimental work [31], and the exploration
of Landau-Zener-Stückelberg interferometry as well as the
corresponding nonlinear features [49,53].
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