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Two-band Chern insulators are topologically classified by the Chern number, c, which is given by the integral
of the Berry curvature of the occupied band over the Brillouin torus. The curvature itself comes from the
imaginary part of a more basic object, the quantum geometric tensor, Q. On the other hand, the integral over the
Brillouin torus of the real part of Q gives rise to another magnitude, the quantum volume, vg, that like c, jumps
when the system undergoes a topological phase transition and satisfies the inequality vg � 2|c|. The information
contained in vg about the topology of the system has been investigated recently. In this paper we present new
results regarding the underlying geometric structure of two-dimensional two-band topological insulators. Since
a generic model describing the system can be characterized by a map, the classifying map, from the Brillouin
torus to the two-sphere, we study its properties at the geometric level. We present a procedure for splitting the
Brillouin torus into different sectors in such a way that the classifying map when restricted to each of them is
a local diffeomorphism. By doing so, in the topological phases we are able to isolate a region contained in the
Brillouin torus whose volume is the minimal one, vmin = 2|c|, and the integral of the Berry curvature on it is
c. For cases in which vg > 2|c|, the regions contributing to the excess of volume, vex = vg − 2|c|, are found
and characterized. In addition, the present work makes contact with, and clarifies, some interpretations of the
quantum volume in terms of the Euler characteristic number that were done in the recent literature. We illustrate
our findings with a careful analysis of some selected models for Chern insulators corresponding to tight-binding
Hamiltonians.
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I. INTRODUCTION

Topological phases of matter constitute a wide area of re-
search in modern condensed-matter physics [1,2]. Among its
different topics, Chern insulators describe phases correspond-
ing to two spacial dimensional quantum systems with broken
time-reversal symmetry, with the integer quantum Hall effect
as the canonical example [3]. Each phase of a Chern insulator
is characterized by a topological invariant, c, called the Chern
number [4]. It is often the case that c = 0 for trivial phases
while c = ±1 for nontrivial ones but phases with higher Chern
numbers are also commonly studied [5]. It can be computed
by integrating the antisymmetric 2-tensor �, called the Berry
curvature, over the two-dimensional torus T 2, the Brillouin
torus [6,7]. � can be obtained as the imaginary part of a
more fundamental tensor, the quantum geometric tensor Q [8].
Interestingly, the real part of Q defines a symmetric tensor
that serves as a positive semidefinite metric over T 2, called
the quantum metric g. The quantum metric has become a
relevant tool in applications such as measurement of distances
in quantum information [9,10], evolution in quantum mechan-
ics [11,12], thermodynamic metric and thermodynamic length
[13–15], and quantum thermal machines [16] to name only
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a few. Remarkably, Q and g independently have been lately
measured in different experiments [17–22]. In particular, g
may be used to define a volume of the parameter space called
the quantum volume vg and it is not quantized in general.

Since c vanishes in time-reversal topological insulators,
recent attempts to use vg as an index for different phases were
made. This is indeed the case of the time-reversal topological
system of the experiment in Refs. [17,23,24]. In these works,
Tan et al. obtained a constant value vg = 4 along one of the
phases of the material. Moreover, since the analytic expression
of vg [Eq. (2) of Sec. II] agrees with the one of the bulk con-
tribution to the Euler characteristic number coming from the
Gauss-Bonnet theorem, these two magnitudes were identified.

On the other hand, the relation vg � 2|c| found by Roy
[25] has been recently a topic of intense research in the work
of Mera and Ozawa [26,27]. In particular, these authors ana-
lyzed the conditions required to achieve the minimal quantum
volume vmin = 2|c| in the Brillouin zone from the Kähler
geometry viewpoint. The ideal condition, vg = vmin, plays an
important role in the engineering of fractional topological
insulators [28] as well as in the recent Euler band topology
[29].

Two-band two-dimensional topological insulators are de-
termined by a map f̄ from the Brillouin torus to the
two-sphere S2, the classifying map in the mathematical
literature, that parameterizes the eigenspaces of the corre-
sponding Bloch Hamiltonian. Usually, the image of this map,
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f̄ (T 2) = M, the Bloch state manifold, is not a submanifold of
S2 forcing one to be careful in the study of its properties. For
instance, f̄ is not an embedding since it is not an immersion,
as was shown by Mera and Ozawa.[26]

In this paper we describe a procedure for splitting the
Brillouin torus into different open sets such that f̄ is a local
diffeomorphism between each one of these regions and open
submanifolds of S2. The starting point of the procedure is a
decomposition of T 2 based on the singular points where the
Berry curvature vanishes. In a second step, the decomposition
is refined by looking for points on the torus that map on the
same values as the singular ones.

The main applications of this procedure are as follows.
(1) Since the division of T 2 starts with sectors where �

has constant sign, the ideal condition is locally satisfied in
each region. However, once the decomposition is completed
within the topological phase of a given model, we are able to
isolate a region of the parameter space whose volume with
respect to g is vmin. Moreover, the integral of � over the
region contributing to the minimal volume is c. An outline
of the steps needed to do it is given at the end of Sec. III.
(2) The Bloch state manifold, M, as a set of points is a
compact subset of the Bloch sphere. In the particular case
where each one of the regions (closed by their boundaries)
into which T 2 is divided is mapped onto the Bloch sphere,
then vg is proportional to the Euler characteristic number of
M, with χ (M) being the proportionality constant the number
of regions. We discuss the relation between both magnitudes
in the context of the results reported in the experiment in Ref.
[17] from our perspective. (3) We applied the decomposition
procedure to two two-dimensional two-band Chern insulators
in which the ideal condition is not satisfied. We show that the
excess of volume vex = vg − 2|c| can be understood using the
simplest decomposition of T 2 arising from the points where �

vanishes. However, when the complete decomposition scheme
is applied, in addition to isolating a region of minimal volume,
we find the other regions contributing to vex and show the
mechanism that explains why the integral of � vanishes on
them, in other words, why their contributions to c cancel out.
An outline of the steps needed to do it is given at the end of
Sec. III.

The structure of the paper is the following. In Sec. II we
discuss some general aspects of two-dimensional two-band
models and in Sec. III we describe a procedure for splitting the
Brillouin torus in such a way that the map f̄ is well behaved
on each region. After that, in Sec. IV, we apply that method
to three different models. The first one corresponds to the
model in the work of Tan et al. [17]. The other two are stan-
dard examples of Chern insulators, the simplest model with
nearest-neighbor hopping on a square lattice and the Haldane
model, once again clarifying results presented in Refs. [30]
and [31], respectively.

II. TWO-DIMENSIONAL TWO-BAND
MODELS AND DEFINITIONS

In this section we briefly introduce the quantum geometric
tensor and discuss the description of a generic model Hamilto-
nian corresponding to two-dimensional two-band insulators.
After that, we give the definitions and concepts needed for

the geometric analysis of the Chern number and the quantum
volume.

A. Quantum geometric tensor and related structures

We start by considering a family of Bloch Hamiltonians
over the Brillouin torus defined by an L × L Hermitian matrix
H (k), k ∈ T 2. Furthermore, we consider that the Fermi energy
of the system lies in a gap of the discrete energy spectrum.
Therefore, it makes sense to define a projector P̂(k) onto the
l � L occupied energy bands. It can be written in a local
orthonormal frame of Bloch eigenstates {|ψn(k)〉}1�n�L as
P̂(k) = ∑l

n=1 |ψn(k)〉〈ψn(k)|.
With the previous setting, the quantum geometric tensor

Q is a Hermitian tensor whose components are given by
[8,32,33]

Qμν (k) =
l∑

n=1

〈∂μψn(k)|[1̂ − P̂(k)]|∂νψn(k)〉

= gμν (k) + i �μν (k)/2, (1)

where 1̂ is the identity operator and ∂μ = ∂
∂kμ . Here

�μν (k) = −�νμ(k) = −2Im[Qμν (k)] and gμν (k) =
gνμ(k) = Re[Qμν (k)] are the components of the Berry
curvature and the quantum metric, respectively. Focusing on
two-dimensional systems, the Berry curvature has a single
independent component defining the curvature two-form
�12(k)dk1 ∧ dk2, while the quantum metric is a positive
semidefinite metric g = ∑

μν gμν (k)dkμ ⊗ dkν [27].
The Chern number and the quantum volume can be ob-

tained as the integrals over the Brillouin torus,

c = 1

2π

∫
T 2

�12 dk1 ∧ dk2

vg = 2

π

∫
T 2

√
det(g) dk1 ∧ dk2. (2)

In what follows, we think of T 2 with the orientation induced
by the canonical one in R2. Furthermore, here we have used
the factor 2/π in vg in order to make contact with previous
uses in the literature. An important inequality between the
Chern number and the quantum volume, vg � 2|c|, was es-
tablished by Roy [25] and also studied by Lee et al. [28], and
more recently revisited by Ozawa and Mera [27].

B. Two-band models

A generic two-band system, L = 2, can be described by
a 2 × 2 Bloch Hamiltonian, H (k), defined on the Brillouin
torus. Concretely, H is determined by real functions h0, hi :
T 2 → R with i ∈ {1, 2, 3} such that for k ∈ T 2

H (k) = h0(k)σ0 +
∑

i

hi(k)σi, (3)

where σ0 is the identity matrix and σi are the Pauli matrices,

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

The two energy bands are given by ε±(k) = h0(k) ±
||h(k)||, with ||h(k)||2 = ∑

i[h
i(k)]2. In an insulator config-

uration, the valence [ε−(k)] and conduction [ε+(k)] bands are
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separated by the energy gap 
(k) = 2‖h(k)‖ that is nonzero
on the whole Brillouin torus. The shift in energy given by
h0(k) does not affect the topological properties of the model
and for simplicity we will fix it to zero. Without loss of
generality we will focus on the valence band. In this case, the
component �12 of the Berry curvature in terms of hi(k) is

�12(k) = 1

2||h(k)||3
∑
i jk

εi jkhi(k)
∂h j

∂k1
(k)

∂hk

∂k2
(k). (4)

Furthermore, for two band models we have the relation (see
Refs. [25,27,28,30,31], and Appendix B)√

det(g)(k) = |�12(k)|
2

. (5)

As a consequence, if �12 does not change its sign in T 2, then
vg = 2|c|.

C. The classifying map f

From a geometric viewpoint, the set of eigenspaces as-
sociated with the valence band at each point of T 2 is a
C-vector bundle of rank 1, V → T 2, usually called the Bloch
valence bundle. This bundle sits inside the trivial one of
rank 2, p1 : T 2 × C2 → T 2, which we consider together with
its canonical Hermitian metric. On the other hand, we have
the complex projective line, CP 1, whose points correspond
to the one-dimensional complex subspaces of C2. There is
a canonical complex line bundle � → CP 1 known as the
tautological bundle, whose fiber over the point representing
a certain vector space is that vector space. Using the Bloch
valence bundle V , we define a map f̃ : T 2 → CP 1, where
f̃ (k) is the point that represents the fiber Vk in CP 1; the map f̃
is usually known as the classifying map of V . It is easy to see
that V 	 f̃ ∗�, that is, the Bloch valence bundle is isomorphic
to the pullback of the tautological bundle over CP 1 [34].

Furthermore, if the diffeomorphism σ between CP 1 and
S2 induced by the stereographic projection is considered, then
we arrive at the classifying map f = σ ◦ f̃ associated to the
Bloch valence bundle with image in S2, f : T 2 → S2. In this
context S2 is known as the Bloch sphere.

In summary, we have the following commutative diagram:

For the Hamiltonian in Eq. (3) the classifying map f is
given by

f = F2 ◦ F1 : T 2 → S2, (6)

where the functions F1 and F2 are defined as follows:

F1 : T 2 → X by F1(k) = (h1(k), h2(k), h3(k)),

F2 : X → S2 by F2(x1, x2, x3) = (−x1, x2,−x3)

‖(−x1, x2,−x3)‖ ,

with X = R3 \ {0}. We refer the reader to Appendix A for the
proof. It is easy to check that f is homotopic to f̄ = F̄2 ◦ F1

with F̄2(x) = x/‖x‖ as it has been used in the literature before.
Because of this fact, V 	 f̄ ∗� so that they have the same
Chern class. Also it is easy to verify that formula (4) remains
unchanged if f is replaced by f̄ . In what follows we will use
this second description in terms of f̄ and the (standard) F̄2.

Furthermore, we denote N = F1(T 2) ⊂ X and M =
f̄ (T 2) = F̄2(N ) ⊂ S2. M is the Bloch state manifold. In Ap-
pendix B we prove that the quantum geometric tensor Q is
the pullback via the classifying map f̄ of the Fubini-Study
Hermitian metric over CP 1.

III. SPLITTING PROCEDURE
FOR THE BRILLOUIN TORUS

Consider a two-band insulator and let f̄ be the classifying
map. In this section we describe a procedure to determine the
regions in which the Brillouin torus can be divided so that the
restriction of f̄ to the interior of each one of them becomes an
immersion into S2. Let F1∗ be the differential of F1 and

Xν (k) = F1∗

(
∂

∂kν

)∣∣∣
k

=
∑

i

∂hi

∂kν

∂

∂xi

∣∣∣
F1(k)

, (7)

where ν = {1, 2}, i = {1, 2, 3}, and the set { ∂
∂xi } is the canon-

ical basis of R3.
For each k ∈ T 2 we can form the matrix A whose rows

are the vectors F1(k), X1(k), and X2(k) and consider the real
function dN defined on T 2 by

dN (k) = det[A(k)] =
∑
i jk

εi jkhi(k)
∂h j

∂k1
(k)

∂hk

∂k2
(k). (8)

Let γ be the solution set of the equation dN (k) = 0 in T 2. It is
given by points where F1∗|k does not have maximal rank, two
in this case, or by points where F1(k) lies in the plane spanned
by {X1(k), X2(k)}. Similarly, γ consists of points where the
rank of f̄∗ is less than 2 (hence f̄ is not an immersion).
The latter case can be represented by the point h1 in Fig. 1
where x = F̄2(h1) ∈ S2. In this way, different subsets of N
that are mapped to the same portion of S2 can be individual-
ized.

Note that from Eq. (4) and Eq. (8) we have �12(k) =
1

2||h(k)||3 dN (k) and, therefore, the Berry curvature vanishes
along γ . In addition, from Eq. (5) we see that the metric g
becomes singular when restricted to γ . The nonemptiness of γ

for two-band models when the parameter space is a two-torus
has recently been demonstrated by Mera and Ozawa [26].
Here we go further exploiting this result.

Let γ̃ = f̄ (γ ) and

γ ′ = f̄ −1(γ̃ ), (9)

where f̄ −1(γ̃ ) is the inverse image of γ̃ , that is, the set of
points whose image under f̄ lies in γ̃ . Notice that γ ⊂ γ ′, but
the inclusion may be strict. That is, there may be points in
γ ′ that are not in γ as we will see in the last two examples in
Sec. IV but not in the first example, where γ ′ = γ . Notice that
the quantum metric does not become singular at the points in
γ ′ that are not in γ .
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S2
x

h1

h2

N

h3

FIG. 1. Schematic representation of different points h(k) ∈ N
that are mapped to the same point x ∈ S2. Note that while h1 ∈ F1(γ )
(hence, the ray is tangent to N ) h2 and h3 are in F1(γ ′) but not in
F1(γ ) (hence, the ray is secant to N ).

Graphically, this means that the ray coming from the origin
and passing through x ∈ γ̃ may be tangent to N at points
h1 ∈ F1(γ ) or may be secant to N at points like h2 and h3
as sketched in Fig. 1. We assume that γ ′ is a set of curves and
that T 2 \ γ ′ = R1 ∪ · · · ∪ RN , where the Rj are disjoint, open
and connected sets. These Rs are the connected components of
T 2 \ γ ′. This assumption is satisfied in the examples analyzed
in Sec. IV.

As a consequence, the restriction of f̄ to each Rs, f̄ |Rs , is a
local diffeomorphism from the later into S2. If f̄ |Rs is injective,
as we will assume from now on, then Ms = f̄ (Rs) is a regular
submanifold of S2. In all the examples we will consider in
Sec. IV this last condition is satisfied.

In addition, for each s ∈ {1, . . . , N} the restriction of g to
Rs provides a true Riemannian metric on Rs. In this way, the
concept of a distance between points is well defined within
Rs. The notion of a distance turns out to be very important in
different areas involving quantum geometry, such as quantum
circuits [15].

A. Integration over Rs

There is a well-defined notion of integral over n-
dimensional manifolds for compactly supported n-forms. As
we have mentioned in Sec. I, we want to study the contribu-
tions to Eq. (2) coming from each region R1, . . . , RN ; in gen-
eral, neither of these regions fully contains the support of the
corresponding 2-form. In Appendix D, we summarize a possi-
ble procedure for obtaining a well-defined integral over any Rs

in such a way that, for a given two-form ω on T 2, we obtain:∫
T 2

ω =
N∑

s=1

Is, where

Is =
∫

Rs

i∗s ω, (10)

where I∗
s ω is the pullback of ω by the inclusion map

is : Rs → T 2.

Regarding the integrals in Eq. (2) we will use the notation
Ics and Ivs to indicate the contribution of Rs to c and vg,
respectively,

Ics = 1

2π

∫
Rs

�12(k) dk1 ∧ dk2,

Ivs = 2

π

∫
Rs

√
det(g)(k) dk1 ∧ dk2. (11)

We have oriented T 2 in such a way that the two-form
ωT 2 = dk1 ∧ dk2 determines its orientation and as a conse-
quence the corresponding one of Rs. Because Rs does not
intersect γ , �12(k) of Eq. (4) does not vanish in this region.
Therefore, � = �12(k) dk1 ∧ dk2 = �12(k) ωT 2 is a nonzero
two-form when restricted to Rs. Hence �12(k) is nonzero and
being continuous on the connected set Rs, it has a definite sign
on Rs. As a consequence � and ωT 2 define the same (opposite)
orientation in Rs if �12(k) > 0 [�12(k) < 0].

On the other hand, since S2 is orientable, there are two-
forms on S2 which do not vanish at any point. In particular,
since the Berry curvature of the tautological line bundle � is
given by a nonzero two-form, �̃, on the base CP 1 	 S2, it
can be chosen to define the orientation. In Appendix B we
show that it defines an orientation of S2 equivalent to the
one given by its exterior normal when it is embedded in R3.
Also Appendix B shows that � = f̄ ∗�̃, that is, the former
is a pullback construction from the latter. That is, the Berry
curvature on the torus is the pullback of the Berry curvature
on the tautological line bundle. By definition, the diffeomor-
phism f̄ : Rs → Ms = f̄ (Rs) is orientation preserving if � =
f̄ ∗�̃ = λωT 2 , where λ is a positive real function. As a con-
sequence, our procedure for splitting T 2 provides a relation
between the positive (negative) sign of the Berry component
�12 in Rs with the orientation-preserving (reversing) behavior
of the classifying map f̄ . We will exploit this relation when
analyzing the examples in the following section.

In addition, by virtue of Eq. (5), ±√
det(g) = �12/2, and

Eq. (11) we obtain the following remarkable first result:

Ivs = ±2Ics, (12)

where the positive (negative) sign can now be traced back to
the orientation-preserving (reversing) character of the diffeo-
morphism f̄ |Rs . Furthermore, if Rs and Rs′ are two of the open
sets such that

f̄ (Rs) = f̄ (Rs′ ), then

{
Ics = ±Ics′ ,

Ivs = Ivs′ ,
(13)

where the sign is determined by the preserving/reversing ori-
entation behavior of f̄ on both Rs and Rs′ .

Note that Eq. (12) is the local (always saturated) version
of the relation vg � 2|c| found by Roy in Ref. [25] and by
Mera and Ozawa in Ref. [26]. Note, in addition, that while the
Chern number, c = ∑N

s=1 Ics is guaranteed to be an integer,
this is not in general the case for each contribution Ics.

As an application of the previous construction, we can find
subsets of T 2 whose volume according to g is vmin. We may
procceed as follows. If c = 1 (c = −1), then we select all the
individual regions where �12 > 0 (�12 < 0). Next, within this
subset, we classify the regions according to the multiplicity of
their image under f̄ . This means that if there are n regions
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that are mapped onto the same subset Ms ⊂ S2, then the
multiplicity is n. Now, for those with n > 1, then we select
one of them and group these with all the other regions with
n = 1. The result is a subset of T 2 with volume vmin and where
the integral of �12/2π is c. The same process can be straight-
forwardly generalized to the case where |c| � 2. Regarding
the excess of volume, vex, note that the regions that were not
used to form a minimal volume region, do not contribute to c.
Moreover, those regions arising from multiplicity n > 1 that
were not included in the region of minimal volume should be
mapped by f̄ onto the same subset of S2, but with opposite
orientation compared to the ones with �12 < 0 (�12 > 0). In
this way, they contribute to vex but not to c.

As a final remark of this section, we want to comment on
another important concept related to the Chern number, that is,
the degree of a smooth map. Let M and N be compact, con-
nected, oriented, and smooth manifolds of the same dimension
n and let F : M → N be a smooth map. Then the degree of F
is the unique number δ that satisfies∫

M
F ∗ω = δ

∫
N

ω, (14)

for every smooth n-form on N ; it happens to be an integer
(Sec. 17 in Ref. [35]). In the case of N = S2, M = T 2, ω = �̃,
and F = f̄ from Eq. (2) the left-hand side of Eq. (14) is equal
to 2πc, while the right-hand side of Eq. (14) is equal to 2πδ;
therefore, c = δ. It is known that homotopic maps have the
same degree, so we obtain the same result for both classify-
ing maps, f̄ and f . The degree δ has a simple geometrical
meaning, that is, how many times and with which orientation
S2 is fully covered by T 2 via the map f̄ . There is also a
characterization of the degree of a map counting (with a sign
related to orientation preservation or not) the elements in the
preimage of a regular value of the map. This notion will help
with the interpretation of the following examples.

IV. RESULTS

Here we analyze three examples of topological insulators
in two dimensions by using the definitions and results of
Secs. II and III. The first one corresponds to a time-reversal
Hamiltonian modeling the experiment of Ref. [17]. Following
that, we will focus on two different models for Chern insula-
tors, the simplest model with nearest-neighbor hopping on a
square lattice and the Haldane model defined on a honeycomb
lattice.

A. A time-reversal model

As mentioned in the Introduction, the recent experiment
by Tan et al. [17], reported different methods to directly
measure the quantum metric tensor and explored a topological
phase transition in a simulated time-reversal two-band system.
Since the Chern number vanishes because of time-reversal
symmetry, the phases were classified by the so-called Euler
characteristic number of the occupied band.

Here we study the corresponding model making use of
the procedure presented in the previous section. To be-
gin with, the model is given by F1 : T 2 → R3 such that

F1(k) = (h1(k), h2(k), h3(k)) for

h1(k) = sin(k1)sin(k2)

h2(k) = sin(k1)cos(k2)

h3(k) = m + cos(k1). (15)

The model describes spinless free fermions derived from
the many-body Hamiltonian of the XY spin chain after the
Jordan-Wigner transformation [36].

Using Eq. (15) and then Eqs. (8), (4), and (5), then the
expressions for dN (k), the Berry curvature and the quantum
volume for this model are given by

dN (k) = sin(k1)[m cos(k1) + 1]

�12(k) = sin(k1)[m cos(k1) + 1]

2[1 + m2 + 2m cos(k1)]3/2

√
detg(k) = |sin(k1)[m cos(k1) + 1]|

4[1 + m2 + 2m cos(k1)]3/2
. (16)

Note that the set N = F1(T 2) is a radius one two sphere,
S2, centered at (0, 0, m). For |m| > 1, the origin of coordinates
is outside N and then M = F̄2(N ) is not all of S2. Thinking
of c as the degree of the map f̄ , which is not onto, this means
c = 0, suggesting a trivial phase of the model. On the other
hand, as soon as |m| < 1 the origin is contained within the vol-
ume enclosed by N and M = S2, opening the possibility for
a nontrivial phase and, therefore, a TPT at |m| = 1. However,
due to the constraint imposed by the time-reversal symmetry,
�12(−k) = −�12(k), the Chern number remains c = 0 so
we cannot classify the phases as trivial and nontrivial in the
topological sense. As a consequence, there is no obstruction
to globally defining the eigenstates of the Bloch Hamiltonian
over the Brillouin torus, i.e., the Bloch valence bundle V is
trivial. Taking the case m = 0 as an example, although not
physically relevant, |ψ (k)〉 = (i sin(k1/2)eik2

, cos(k1/2))
T

is
a globally defined and nowhere vanishing section of the va-
lence eigenspace.

Note that as k1 ∈ [−π, π ], the angle defined between F1(k)
and the h3 axis runs twice the usual polar angle of the spherical
parametrization of S2 centered at (0, 0, m). Therefore when
|m| < 1, N covers twice the unit sphere centered at the origin
independently of m. Here we will show that the coverings have
opposite orientations leading to c = 0. Note that these “cov-
erings” are not covering spaces in the mathematical sense.

The solution of the equation dN (k) = 0 is given by the set
of curves k1 = 0,±π (where k1 = −π and k1 = π are the
same curves in T 2) when |m| < 1 with the additional curves
k1 = ±Arccos(−1/m) when |m| > 1. There are no other so-
lutions coming from Eq. (9). The curves as well as the regions
in which T 2 is divided are shown in Fig. 2 for two selected
values of m.

We obtain that the total number of regions NT 2 = ∑N
s=1 1

remains constant at the value NT 2 = 2 (NT 2 = 4) for all |m| <

1 (|m| > 1). So NT 2 is a topological invariant for the family of
Hamiltonians defined by F1(k) and smoothly deformed by m.
Then we are able to distinguish two different regimes of the
model. Equivalently, they can be distinguished by the location
of the origin of R3, inside or outside the set N , and also by
the surjectivity of the map f̄ .
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FIG. 2. Different regions in which the torus is divided by the
curves γα for the selected values |m| < 1 (left) and m = 2 (right).

Now we discuss some features of the |m| < 1 regime. To
begin with the splitting procedure of Sec. III, removing γ1

and γ3 in the left panel of Fig. 2 splits T 2 into two different
regions, R1 and R2. The restriction of f̄ to each one of them be-
ing a parametrization of the two-sphere (up to the poles). Note
that the fact that Eq. (9) does not have other solutions than the
ones in which dN (k) = �12(k) = 0 becomes relevant for con-
sidering R1 and R2 parametrizations of S2 (that is, f̄ restricted
to them is a diffeomorphism); otherwise injectivity of f̄ is not
guaranteed. This means that f̄ maps diffeomorphically each
one of R1 and R2 onto S2 \ L with L a single meridian from
the north to the south pole. However, while �12(k) < 0 for
all k ∈ R1, �12(k) > 0 for all k ∈ R2, so the diffeomorphism
is orientation reversing in R1 and orientation preserving in
R2 [37]. As a consequence, from Eq. (11) we obtain −Ic1 =
Ic2 = 1, with this behavior being independent of the value of
m. Therefore, in this regime c = Ic1 + Ic2 = 0, as is shown
in the top panel of Fig. 3. Regarding the contributions to the
quantum volume, from Eq. (12) we obtain Iv1 = Iv2 = 2. We
have also verified this result by direct computation of Eq. (11);
see bottom panel of Fig. 3.

On the other hand, when |m| > 1, the four regions in the
right panel of Fig. 2 are mapped onto the same subset of S2,
a beanie centered at the north pole, and it is topologically
equivalent to an open disk. That is, as a set of points we obtain
M1 = M2 = M3 = M4 = M � S2. We want to emphasize
that M is not S2 while in the case |m| < 1, M = S2. Notice
that f̄ , while injective, behaves differently on each M j : It
is an orientation-preserving diffeomorphism with its image
when restricted to R2 and R3, and it is orientation reversing
on R1 and R4. Accordingly we obtain Ic2 = Ic3 = −Ic1 =
−Ic4 > 0. The top panel of Fig. 3 shows the numerical eval-
uations of Ics for s = 1, 2, 3, and 4 as a function of m > 0.
Reversing the sign of m does not introduce any significant
change (when m < 0, letting m → 0, makes the center of N
approach the origin from below). Note that c = ∑N

s=1 Ics = 0
as expected. However, the contributions to vg are such that
Iv1 = Iv2 = Iv3 = Iv4. The bottom panel of Fig. 3 shows the
results for vg as well as Ivs. For m > 1 only one representative
of the equal Ivs for s = 1, 2, 3, and 4 is shown.

Our final comment of this section is regarding the in-
terpretation of vg as the surface contribution to the Euler
characteristic number, χ , of M that has been provided in
Refs. [17,23,24]. From topology χ (T 2) = 0 and χ (M) = 2
when M = S2 (|m| < 1) or χ (M) = 1 when M � S2 (|m| >

1). There is no other relevant set of points underlying this

FIG. 3. Top panel: Chern number, c (dashed-dashed-dot line),
and its contributions coming from the integrals Ics as functions of the
parameter m for the time-reversal system. Bottom panel: Quantum
volume, vg, and its contributions coming from the integrals Iv s. For
m > 1 only Iv1 is displayed and Iv1 = Iv2 = Iv3 = Iv4.

model. We recall that for a closed, oriented two-dimensional
manifold X endowed with a Riemannian metric, the Gauss-
Bonnet theorem relates χ to the Gaussian curvature, K,

χ (X ) = 1

2π

∫
X
K dA, (17)

where dA is the area element. For instance, if X = S2(1/2)
(the sphere of radius 1/2), then K = 4 and the right-hand side
of Eq. (17) is 2. Alternatively, the two-sphere can be locally
parameterized, in the sense of Appendix D, by the open sets
Rs ⊂ T 2 (s = {1, 2}; see the left panel of Fig. 2) by using f̄
and Eq. (17) can be rewritten as

χ (S2) = (−1) fs

2π

∫
Rs

( f̄ |Rs )
∗(K dA)

= (−1) fs

2π

∫
Rs

[( f̄ |Rs )
∗K][( f̄ |Rs )

∗dA]

= (−1) fs

2π
[( f̄ |Rs )

∗K]
∫

Rs

( f̄ |Rs )
∗dA
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= (−1) fs

2π
4

∫
Rs

(−1) fs
√

det(g)(k) dk1dk2

= 2

π

∫
Rs

√
det(g)(k) dk1dk2

= vg/2, (18)

where we have used the definition of vg introduced in Eq. (2)
and the fact that (−1) fs = +1(−1) if the diffeomorphism
f̄ |Rs preserves(reverses) the orientation between Rs and S2.
Furthermore, the pullback of a constant results in the same
constant ( f̄ |Rs )

∗K = 4 and the pullback of dA is, up to the
sign (−1) fs , the volume element associated to the quantum
metric.

This example shows why vg = 2χ (S2) = 4 when |m| < 1.
We want to stress that the use of Eq. (9) together with the
fact that f̄ |Rs being injective as well as f̄ (Rs) = S2 (up to zero
measure subset) are key for the appearance of the multiplicity
factor 2 in the previous relation. Similarly, when |m| > 1
the beanie X = M is a manifold with smooth boundary and
it can be locally parameterized by Rs ⊂ T 2 (s ∈ {1, 2, 3, 4};
see the right panel of Fig. 2). The analog of Eq. (17) valid
for manifolds with a smooth boundary adds to its right-hand
side a contribution coming from the boundary of X , I∂X . A
computation similar to Eq. (18) gives vg/4 + I∂M.

From the two cases discussed above, it is clear that vg

does not match with the surface contribution to χ (M) since it
carries the multiplicity of f̄ , that is, the number of regions in
T 2 that are mapped to the same portion of S2. Therefore, we
do not find an appropriate framework in which the concept
of the Euler characteristic number can be used. Instead, we
agree with Mera and Ozawa [26,27] where vg is treated as
the volume of T 2 when the quantum metric is a Riemannian
metric and as a simple notation for the integral in Eq. (2) when
it is not.

B. Square model

The simplest model for a Chern insulator is given by the
following real functions:

h1(k) = sin(k1)

h2(k) = sin(k2)

h3(k) = m + cos(k1) + cos(k2), (19)

where k ∈ [−π, π ]2. The model can be seen as a part of
a larger one considered by Qi et al. [38] and realized in
Hg1−xMnxTe/Cd1−xMnxTe quantum wells by Liu et al. [22].
The parameter m in the model is responsible for displacements
of N in the x3 direction of R3 and therefore can be used to
drive the system into a TPT. In Fig. 4 we show N for m = 4
together with S2 and the set of points F̄−1

2 (p) ⊂ N where
p ∈ S2 is a point near the north pole.

From Eq. (19) we derive the following expressions:

dN (k) = m cos(k1)cos(k2) + cos(k1) + cos(k2)

�12(k) = dN (k)

2||h(k)||3√
det[g(k)] = |�12(k)|

2
. (20)

FIG. 4. Subset N for the square model of Sec. IV B for m = 4,
S2 and an example of a ray showing the set of different points in N
that are mapped to the same point near the north pole in S2.

The Chern number, c, and the quantum volume, vg, as
functions of m are shown in Fig. 5. Both magnitudes were first
calculated in Ref. [30]. According to the value of c, topolog-
ically trivial and nontrivial phases correspond to |m| > 2 and
|m| < 2, respectively.

Regarding the division of T 2 using the splitting procedure
of Sec. III, here we discuss the solution of dN (k) = 0 in both
phases. In the case |m| < 2 the solution is given by the closed
curve γ1, k2 = ±Arccos[ −cos(k1 )

m cos(k1 )+1 ], centered at the origin
and plotted as a solid line in the top panel of Fig. 6. The

FIG. 5. Chern number, c, and the quantum volume, vg, as func-
tions of m for the square model. A topologically trivial (nontrivial)
phase corresponds to |m| > 2 (|m| < 2).
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FIG. 6. Different regions in which the torus is divided by the
curves γα for the selected values m = 1 and m = 4 representing a
topologically nontrivial (top) and trivial (bottom) phase of the square
model, respectively.

solution of Eq. (9) for γ̃1 = f̄ (γ1) has two components: γ1

and another closed curve, which we call γ3, centered at the
corner (π, π ) (identified with the other three corners of T 2 in
Fig. 6) and it is represented by the black dotted line in Fig. 6.

When |m| > 2, the solution of dN (k) = 0 is composed of
γ1 and an additional closed curve γ2 centered at the corner
(π, π ) and plotted for m = 4 as a dot-dashed red line in the
bottom panel of Fig. 6. Regarding Eq. (9) for γ1, in this case
the solution contains an additional component γ4 centered
at the corner (π, π ) shown for m = 4 in the lower panel
of Fig. 6. On the other hand, the solution of Eq. (9) for
γ̃2 = f̄ (γ2) is the curve γ2 itself. The name we choose for each
open set in which the curves divide T 2 is indicated in Fig. 6.

Now we turn the discussion to the analysis of Ivs and
Ics. Their values as functions of m are shown in the top and
bottom panels of Fig. 7, respectively. Note that vg = ∑

s Ivs

and c = ∑
s Ics. The sign of the integrals Ics reflects the

orientation-preserving (positive sign) or orientation-reversing
(negative sign) character of the classifying map f̄ when re-
stricted to each region Rs.

FIG. 7. Partial contributions to the quantum volume, Iv s (top
panel), and Chern number, Ics (bottom panel), as functions of m for
the square model.

Starting with the trivial phase, |m| > 2, the regions R1, R2a,
R2b, and R5 are mapped onto the same square-shaped subset
M1 ⊂ M ⊂ S2 (which is contractible) centered at the north
pole of S2 (see Fig. 9). The right panel of Fig. 8 shows the
projection of M1 (gray pattern) into the plane perpendicular

FIG. 8. Left: Evolution of the curves γ2 and γ4 as m decreases
from m = 4 to m = 2.1. The arrows indicate the decreasing direction
of m. Right: Projection of M1( inner cyan pattern) and M2 (exterior
blue pattern) into the plane x1x2 for m = 4.
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N

S2

M

FIG. 9. F1(R4) ⊂ N and f̄ (R4) = M1 ⊂ S2 in cyan. F1(R5) ⊂
N and f̄ (R5) = M2 ⊂ S2 in blue. M = M1

⋃
M2. m = 4.

to the x3 axis for m = 4. The data in the bottom panel of
Fig. 7 verifies the relation Ic1 = Ic5 = −Ic2a = −Ic2b, in
agreement with Eq. (13).

Similarly, the regions R3 and R4 are mapped onto the same
ring-shaped subset M2 ⊂ M ⊂ S2 (noncontractible) with a
hole in its center identical to the set M1. This is because
f̄ (restricted to the Rs) is a diffeomorphism and Rs has the
topology of a cylinder. As a consequence of the different
orientation behavior of f̄ when restricted to each region Ic3 =
−Ic4; see Fig. 7. The sizes of M1 and of M2 decrease as
m increases due to the displacement of N along the x3 axis
and therefore all the integrals Ivs and Ics go to zero in the
limit |m| → ∞. The previous analysis explains in detail the
underlying structure of the value c = 0 in the trivial phases.
Note that M = M1

⋃
M2.

A feature of the curves γ2 and γ4 is that they are not present
for |m| < 2, that is, in the topologically nontrivial phases. In
fact, both curves shrink to the corners (π, π ) as |m| → 2 from
above. This behavior is shown in the left panel of Fig. 8. As
a consequence, the union R4

⋃
R5 is continuously shrinking

and disappears. However, we find that while |m| decreases
Iv4 + Iv5 increases and goes to 1. From a geometrical point
of view this can be understood as follows. Recall that there
are several regions of T 2 that are mapped into M. The one
coming from R4

⋃
R5 corresponds to the lowest portion of

the set N facing towards the northern hemisphere of S2; see
Fig. 9. Its projection to S2, namely M, increases its size as |m|
decreases due to the movement of N towards the origin reach-
ing its maximum at that point. Finally, recall that Iv4 + Iv5 is
nothing but a measure of M’s volume which is equal to the
quantum volume of R4

⋃
R5. On the other hand, from a phys-

ical point of view, we note that the Berry curvature increases
its weight around the corner while |m| → 2 from above. In
fact, the shape of γ2 tends to a circle of radius r = √

2ε,
for ε = m − 2 and 0 < ε � 1 and the Berry curvature inside

M1

M2

FIG. 10. M1 and M2 for m = 1.99.

R4
⋃

R5 approaches to �12(k) ∼ ε/[2(ε2 + |k|2)3/2]. This is a
well-known result from the Dirac-like behavior of the model
near the Dirac points, the corners in the present case. By using
this fact, the integrals within the considered region are given
by Iv4 + Iv5 ∼ (1 − √

ε/2) and Ic4 + Ic5 ∼ (1/2 − √
ε/8),

in agreement with the calculated values in Fig. 7.
On the other hand, in the topologically nontrivial phase,

the regions R1, R2a, and R2b are mapped onto the same square-
shaped surface M1 as before. We obtain Ic2a = Ic2b = −Ic1
and Iv2a = Iv2b = Iv1 in accordance with Eq. (13). Note that
these integrals are continuous functions of m, that is, they do
not jump at the TPT.

Remarkably, M2 = f̄ (R3) is now a contractible subset of
S2 because the new R3 is contractible in T 2. See Fig. 10 for
an example with m = 1.99. Recall that for |m| > 2, M2 has
the shape of a ring with a hole in its center (the northern pole
of S2) identical to the set M1. Therefore, for |m| > 2 there
is one decomposition of M, M1

⋃
M2 = M = S2, and for

|m| < 2 there is another one, where one of the pieces (M1)
can be continuously deformed between the two stages, but
M2 cannot. There are two (related) topological changes: M
went from being contractible to being S2 and R3 went from
being topologically a ring to being a disk. With this setting,
we observe that the discontinuity of Iv3 and Ic3 at m = 2 (as
can be seen in Fig. 7) is due to the changes in the topology
of R3.

Note that in R2a
⋃

R3 as well as in R2b
⋃

R3, f̄ reverses
the orientation of T 2 with respect to S2. This follows from
the fact that Ic2a + Ic3 = Ic2b + Ic3 = −1. As a final remark
on this model in this regime, we observe that any one of the
open sets R2a

⋃
R3 or R2b

⋃
R3 can be seen as a parametriza-

tion of S2 with the exception of a single curve with measure
zero, the boundary of M1. Note that the quantum volume of
these regions correspond to the minimal volume, vmin = 2,
see Fig. 11. Therefore, R2a

⋃
R3 and R2b

⋃
R3 are regions

of minimal volume contained in the Brillouin torus. This is
a close analogy with the spherical parametrization of S2.

C. Haldane model

The first tight-binding model of a topological insulator was
introduced by Haldane [39]. It describes spinless fermions
on a honeycomb lattice where the time-reversal symmetry
of the Hamiltonian is broken by a nonuniform magnetic
flux per unit cell. By choosing the basis a1 = (

√
3, 0) and
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0 1 2 3 4m
-2

-1

0

1

2

3

Iv2b
+ I v3

Ic2b
+ I c3

FIG. 11. Integrals of Eq. (11) on the region R2b
⋃

R3 as functions
of m.

a2 = (
√

3/2, 3/2) for the lattice vectors in units of the bond
length, the reciprocal lattice vectors are b1 = 2π

3 (
√

3,−1) and
b2 = 4π

3 (0, 1). Let k′ = (kx, ky) be the coordinates describing
the rhomboidal Brillouin torus generated by b1 and b2. The
model is given by

h0(k′) = β{cos(k′a1) + cos(k′a2) + cos[k′(a1 − a2)]}
h1(k′) = t1[1 + cos(k′a1) + cos(k′a2)]

h2(k′) = t1[sin(k′a1) + sin(k′a2)]

h3(k′) = m + λ{sin(k′a1) − sin(k′a2) − sin[k′(a1 − a2)]},
(21)

where t1 is the nearest-neighbor hopping parameter; β =
2t2cos(φ) and λ = 2t2sin(φ) include the next-nearest-
neighbor hopping parameter t2 where φ is the phase t2
acquires, t2 → e±iφt2, due to the nonuniform magnetic field.

The change of coordinates k1 = √
3kx − π , k2 =

√
3

2 kx +
3
2 ky − π allows us to write the model over T 2 as follows:

h0(k) = β[−cos(k1) − cos(k2) + cos(k1 − k2)]

h1(k) = t1[1 − cos(k1) − cos(k2)]

h2(k) = −t1[sin(k1) + sin(k2)]

h3(k) = m − λ[sin(k1) − sin(k2) + sin(k1 − k2)]. (22)

Note that hi(k′) = hi(k′ + G) for G = n1b1 + n2b2 with ni ∈
Z. As a function of m and λ the model exhibits the well-known
phase diagram described in the original work of Haldane [39].
For the purpose at hand we fix t1 = 1, t2 = 1

3
√

3
. Accordingly,

Fig. 12 shows the Chern number and the quantum volume as
functions of m. The system is in a nontrivial (trivial) phase for
|m| < 1 (|m| > 1).

In Fig. 13 the set N for m = 3 is shown together with
S2. We show in Fig. 14 the result of dN = 0 as red dashed
lines for m = −0.5 and m = −2 in the top and bottom panels,
respectively. The additional curves coming from Eq. (9) are
shown as black lines. Furthermore, for later purposes we also

-2 -1 0 1 2m
0

1

2

vg
c

FIG. 12. Chern number, c, and quantum volume, vg, as functions
of m. Topological trivial (nontrivial) phase corresponds to |m| > 1
(|m| < 1). Other parameters are fixed to t1 = 1, t2 = 1

3
√

3
, and φ =

π/2.

show the regions where �12(k) > 0 (�12(k) < 0) as gray
(white) areas. As it can be seen from these two values of m,
the number of curves as well as of regions in T 2 generated by
the splitting procedure increases significantly in comparison
with the previous two models we have discussed. While the
integrals Ics and Ivs can be straightforwardly obtained, here
we simplify the presentation and give a broad discussion of
the underlying geometry of the model.

Notice that vg > 2 in the topological phase, see Fig. 12. In
this phase we have f̄ (T 2) = M = S2. Therefore, there must
be sectors in T 2 that are mapped onto the same portion of S2.
In fact, there is an open region of minimal volume U1 � T 2

(a single or a collection of some Rs) where f̄ is injective
and whose image is S2 (minus a zero measure set). As a

S2

N

FIG. 13. Subset N for the Haldane model for m = 3 and S2.

075121-10



BRILLOUIN TORUS DECOMPOSITION FOR … PHYSICAL REVIEW B 110, 075121 (2024)

-π 0 πk1

-π

π
k 2

-π 0 π
k1

-π

0

π

k2

0

FIG. 14. Red dashed lines stand for dN = 0. Black dotted lines
are the additional curves coming from Eq. (9). Gray (white) area is
the region in which �12(k) > 0 [�12(k) < 0]. Top and bottom panels
are for m = −0.5 and m = −2, respectively, and φ = π/2.

consequence, the excess of volume vex = vg − 2 corresponds
to the volume of T 2 \ U1 made up by other regions in T 2

with the same image in S2 and where f̄ either preserves or re-
verses the orientation in such a way that they have no influence
on the value of c = 1. Note that at least two of those regions
must be present. As in the previous model, there are different
possibilities for the choice of such regions. One possibility for
U1 where f̄ is orientation preserving and f̄ (U1) = S2 is shown
in the left panel of Fig. 15. By calculation, we have verified
that Ic(U1) = 1 and Iv (U1) = 2. Note that U1 is defined by
curves coming from Eq. (9) showing that a simple decompo-
sition based on sign changes of �12(k) is not sufficient for
isolating a region of minimal volume in T 2.

On the other hand, let U2 be the region made up by the
gray areas of the top panel of Fig. 14 which are not included
in U1. Similarly, let U3 be the white areas of the same figure.
The subset f̄ (U2) = f̄ (U3) = M2 is shown in the right panel
of Fig. 15. Note that f̄ on U2 and on U3 is not injective.
Furthermore, let R1 be the connected region containing the

-π 0 π
k1

-π

0

π

2

M1

M2

k

FIG. 15. Left: The brown area shows a possible choice for U1

where f̄ is orientation-preserving [�12(k) > 0] and f̄ (U1) = S2.
Right: In white f̄ (U2) = f̄ (U3) = M2 ⊂ S2 and its complement
f̄ (R1) = M1. m = −0.5 and φ = π/2.

origin of T 2 in the top panel of Fig. 14 and f̄ (R1) = M1.
We obtain M1 = S2 \ M2 and that f̄ is injective on R1, see
right panel of Fig. 15. By numerical calculation, Ic(U2) =
−Ic(U3) ≈ 0.044 while Iv (U2) = Iv (U3) ≈ 0.088 is the ex-
cess vex ≈ 0.176. As expected, all regions contribute to the
total value vg ≈ 2.176.

We end this section with a brief comment about the two
usual ways to describe Hamiltonians on the honeycomb lat-
tice. As explained in Refs. [40] and [41], there are different
conventions for Bloch Hamiltonians on non-Bravais lattices
where the associated Berry curvatures differs. To now we
have used a periodic Bloch matrix, H (k′) = H (k′ + G), for
k′ ∈ R2 rather than on the torus, which is obtained when
the trivialization of the Bloch bundle is given by Fourier
transform of functions localized at the lattice points. On the
other hand, if the trivialization of the Bloch bundle is per-
formed by using periodic functions in the crystal, then the
Bloch Hamiltonian, H ′(k′), may be nonperiodic, H ′(k′) �=
H ′(k′ + G). This description of the system appears when the
off diagonal component of H ′(k′) is written as H ′

12(k′) =
h′1(k′) − ih′2(k′) = t1

∑3
j=1 exp(−ik′e j ), where e1 = (0, 1),

e2 = (−√
3/2,−1/2), and e3 = (

√
3/2,−1/2) are the vec-

tors connecting a given site to its three nearest neighbors.
The diagonal components do not change, so h′0(k′) = h0(k′)
and h′3(k′) = h3(k′). In this case the set N ′ = F ′

1 (T 2), with
F ′

1 (k) = (h′1(k), h′2(k), h′3(k)), becomes the surface shown in
Fig. 16.

Let dN ′ (k) be the function analogous to the one defined in
Eq. (8) but written in terms of h′i(k). Furthermore, let �′

12(k)
be the associated Berry curvature and c′ the corresponding
first Chern number. As �12(k) and �′

12(k) are the curvature
of two connections on the same bundle—the Bloch bundle—
their integrals over T 2 compute the Chern number of the
bundle so that c′ = c. We have verified that c′ = c as functions
of m; see Fig. 17, Appendix C, and Refs. [40] and [41]. The
same figure also shows the values of the quantum volume v′

g as
a function of m. The first thing to note is that, comparing with
Fig. 12, v′

g(m) �= vg(m). This is also an expected result. Since
N ′ �= N then M′ and M do not have to agree in general. In
particular their volumes do not have to agree and this is indeed
the case. Second, from Fig. 17 it seems, at first sight, that in-
side the topological phase v′

g = 2c′. If this were the case, then
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S2

N ′

FIG. 16. Subset N ′ for the Haldane model with H ′
12(k′) =

h′1(k′) − ih′2(k′) = t1
∑3

j=1 exp(−ik′e j ) for m = 3 and S2.

v′
g acquires a topological character and also dN ′ (k) � 0 for

all k ∈ T 2. This means that the Berry curvature, �′(k), does
not change sign inside the Brillouin torus pointing to a single
region [up to a zero measure set, dN ′ (k) = �′(k) = 0] in the
torus. However, as is well known, both of these statements are
false.

FIG. 17. Top panel: Chern number, c′, and quantum volume, v′
g,

as functions of m for the Haldane model with H ′
12(k′) = h′

1(k′) −
ih′

2(k′). Other parameters are fixed to t1 = 1, t2 = 1
3
√

3
, and φ = π/2.

Bottom left panel: Red dashed lines denote dN ′ = 0 for m = −0.99.
Black dotted lines are the additional curves γ ′ coming from Eq. (9).
Brown (white) area is the region where �′

12(k) < 0 (�′
12(k) > 0).

Bottom right panel: �′
12(k) as a function of k1 with k2 = −k1. The

inset shows a region where �′
12(k) < 0.

Focusing on the topological phase, the results of dN ′ (k) =
0 and Eq. (9) are shown in the bottom left panel of Fig. 17 for
m = −0.99. The brown area in the figure is the region where
�′

12(k) < 0 while the white one corresponds to �′
12(k) > 0.

Accordingly, the same analysis that we have done in the
periodic convention using some sets U ′

1, U ′
2, and U ′

3 holds.
In particular, a nonvanishing v′

ex is expected. Remarkably,
while �′

12(k) < 0 in an macroscopic area of T 2, its intensity
over these regions is very low compared to the maximum
of |�′

12(k)|. In the bottom right panel of Fig. 17 we show
�′

12(k) as a function of k1 along the line k2 = −k1. A closer
inspection of �′

12(k) shows the changing of sign; see the
inset of the figure. Within the accuracy of numerical error
we obtain c′ ≈ 0.99999999, v′

g ≈ 2.00004314, and then v′
ex ≈

0.00004314. We stress that no matter how small the value of
v′

ex is, from the topological point of view, v′
g is, as expected,

not endowed with a topological meaning and v′
g �= 2c′. Similar

behavior is present for m in the range 0 < |m| < 1 and other
model parameters. Finally, it should be noted that Ref. [27]
states incorrectly that v′

g = 2c′ probably because of the small
negative value of �′

12(k), for the presented model parameters.

V. SUMMARY AND CONCLUSIONS

We have studied some geometric properties of two-
dimensional two-band topological insulators that complement
the topological ones. Within the topologically nontrivial phase
of a given model describing these insulators, the value of the
Chern number c = n, with n an integer, asserts that S2 is
wrapped around, at least, n times by the classifying map f̄
taking orientations into account. However, it tells us nothing
about the presence of extra, full or partial, wrappings with
opposite orientations canceling each other out and, therefore,
preserving the value of c. This information is contained in the
quantum volume vg. Such extra wrappings, if they are present,
invalidate a topological interpretation for vg leading to the
inequality vg > 2c.

In this work we have introduced a systematic procedure
of extracting this information from vg. We have presented a
procedure that splits the Brillouin torus in connected open
regions, Rs, such that f̄ restricted to each one of them is
a local diffeomorphism with an open subset of S2. A direct
consequence is that in each one of these regions the quantum
metric is positive definite. Moreover, within each open region
Rs, there is a natural relation between the integrals contribut-
ing to vg and c, Ivs = ±2Ics, where the sign is that of the
Berry curvature in the region and is a consequence of the
preserving/reversing orientation character of f̄ . The regions
Rs are bounded by the curves along which the Berry curvature
vanishes together with the ones that are mapped to the same
set of points within the two-sphere by the classifying map.

In particular, the procedure is able to isolate regions of
minimal volume in the Brillouin zone. The integrals of the
square root of the determinant of the quantum metric and the
Berry curvature over that region give vmin and c, respectively.

We have illustrated these ideas by using a time-reversal
two-dimensional two-band system, and two well-known mod-
els for Chern insulators, the simplest on a square lattice and
the Haldane model. The three examples are qualitatively sim-
ilar under the analysis. For each of them, not only the values
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of Ivs and Ics are calculated but also complete details of the
underlying geometric structures from which they emerge are
given. We provided graphs of each region Rs in the Brillouin
torus as well as of its image under the classifying map in S2

and R3, including its shape, volume, and the sign of the Berry
curvature.

Although the examples that we have considered have an
absolute value of the Chern number equal to 1, in the topo-
logical phase, the procedure can be applied to more general
Chern insulators.

Finally, we have discussed and clarified an incorrect inter-
pretation of vg as an Euler characteristic number that appears
in the literature.
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APPENDIX A: EXPRESSION
FOR THE CLASSIFYING MAP

In this Appendix we prove the expression that appears in
Eq. (6) for the classifying map f̄ .

1. Bloch valence bundle

As in the main text we consider the trivial C-vector bundle
of rank 2 over T 2 (p1 : T 2 × C2 → T 2), with its canonical
Hermitian metric. From Eq. (3) with h0(k) = 0, the Bloch
Hamiltonian H (k) can be seen as a Hermitian endomorphism
of this bundle. For each k ∈ T 2, the eigenvalues of H (k) are

λ±(k) = ±‖h(k)‖ = ±
√

[h1(k)]2 + [h2(k)]2 + [h3(k)]2.

We assume, in what follows, that ‖h(h)‖ �= 0, so that the
two eigenvalues of H (k) are different. The corresponding
eigenspace for the lowest eigenvalue is

Vk =

⎧⎪⎪⎨
⎪⎪⎩

〈[
h1(k) − ih2(k),
λ−(k) − h3(k)

]〉
, if h3(k) �= λ−(k),〈[

h3(k) + λ−(k),
h1(k) + ih2(k),

]〉
, if h3(k) �= −λ−(k).

Notice that, as λ−(k) �= 0, the two cases cover all of T 2. Fur-
thermore, it is easy to check that the two descriptions match
on the overlapping region, so that the definition is consistent.
Hence V → T 2 is a C-vector bundle of rank 1. Thus we have

f̃ : T 2 → CP 1 defined by f̃ (k) = Vk ⊂ C2.

It follows that V 	 f̃ ∗� with � the tautological line bundle
over CP 1. Schematically:

2. CP 1 and S2

There is a well-known identification of CP 1 and C = C ∪
{∞} (the extended complex plane). The mapping is

η : CP 1 → C for η

[〈(
z0

z1

)〉]
=

{
z0/z1 if z1 �= 0,

∞, if z1 = 0.

Last, consider S2 = {u ∈ R3 : ‖u‖ = 1}. Fixing a point p ∈
S2, we have the stereographic projection from p: Stp : S2 \
{p} → C so that Stp(u) is the point of intersection between the
real line that runs through p and u with the plane containing
0 ∈ R3 perpendicular to 〈p〉, that we identify with C. It is
easy to check that Stp is a diffeomorphism; furthermore, by
choosing two different points of projection it happens that the
two maps define compatible charts identifying S2 with C. In
particular, when p = (0, 0, 1), the north pole of S2, we have

StN (u1, u2, u3) = u1 + iu2

1 − u3
.

Putting these two constructions together with the classify-
ing map one has the following diagram:

All together, we can show a big diagram together with the
Bloch valence bundle:

where f = St−1 ◦ η ◦ f̃ . Thus, if h3(k) �= λ−(k), then we have

f (k) = St−1(η( f̃ (k)))

= St−1

(
η

{〈[
h1(k) − ih2(k)
λ−(k) − h3(k)

]〉})

= St−1

[
h1(k) − ih2(k)

λ−(k) − h3(k)

]
= St−1

⎡
⎣ h1(k)

λ−(k) + i −h2(k)
λ−(k)

1 − h3(k)
λ−(k)

⎤
⎦

= St−1

{
St

[
(h1(k),−h2(k), h3(k))

λ−(k)

]}

= (h1(k),−h2(k), h3(k))

λ−(k)
.
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If we define

F1 : T 2 → X by F1(k) = (h1(k), h2(k), h3(k)),

F2 : X → S2 by F2(x1, x2, x3) = (−x1, x2,−x3)

‖(−x1, x2,−x3)‖ ,

then we see that f (k) = (F2 ◦ F1)(k).

APPENDIX B: PULLBACKS OF THE BERRY CURVATURE
AND METRIC TENSOR FROM S2

TO THE BRILLOUIN TORUS

1. Berry curvature

Let S2 ⊂ R3 oriented by the exterior normal. The coordi-
nate chart given by the spherical coordinates (θ, φ), with 0 <

θ < π and 0 < φ < 2π , is positively oriented with respect to
this orientation. Accordingly, ωS2 = dθ ∧ dφ is an orientation
form for the chosen orientation. The Berry curvature on the
tautological line bundle � over CP 1 	 S2 is a two-form �̃ on
the base and in the spherical coordinate chart it is given by [2]

�̃ = 1
2 sinθ dθ ∧ dφ, (B1)

where the factor 1/2 comes from the isometry between CP 1

with its Fubini-Study metric and the sphere of radius 1/2 in
R3 with its round metric [42]. In what follows we will denote
the sphere of radius 1/2 by S2. Therefore �̃ = λωS2 , with
λ = 1

2 sinθ > 0 in θ ∈ (0, π ), provides an equivalent orienta-
tion form on S2.

On the other hand, the following two-form in R3 is
nowhere zero when restricted to S2,

�̃′ = 1

2
[x1dx2 ∧ dx3 + x2dx3 ∧ dx1 + x3dx1 ∧ dx2]

= 1

4

∑
i jk

εi jkxidx j ∧ dxk . (B2)

Moreover, �̃ = i∗S2�̃
′, where iS2 is the inclusion of S2 in R3.

When pulled back by f̄ : T 2 → S2 to T 2, it gives rise to
the following two-form:

�′ = f̄ ∗�̃′ = �′
12(k) dk1 ∧ dk2, (B3)

where �′
12(k) is

�′
12(k) = 1

4

∑
i jk

εi jk xi(k)
∑
μν

εμν ∂x j (k)

∂kμ

∂xk (k)

∂kν

= 1

4

∑
i jk

εi jk xi(k)

[
∂x j (k)

∂k1

∂xk (k)

∂k2
− ∂xk (k)

∂k1

∂x j (k)

∂k2

]

= 1

2

∑
i jk

εi jk xi(k)
∂x j (k)

∂k1

∂xk (k)

∂k2
, (B4)

where xi(k) = F̄ i(k) = hi(k)/‖h(k)‖. Finally,

�′
12(k) = 1

2‖h(k)‖3

∑
i jk

εi jk hi(k)
∂h j (k)

∂k1

∂hk (k)

∂k2
. (B5)

Note that �′
12(k) = �12(k) [see Eq. (4)] and then �′ = �,

so the Berry curvature defined from the quantum geometric
tensor as 2ImQ is nothing but the pullback of �̃ to T 2.

2. Riemannian metric

The metric tensor g̃ for the sphere S2 of radius 1/2 embed-
ded in R3 in the same spherical coordinate chart is given by

g̃ = 1
4 dθ ⊗ dθ + 1

4 sin2(θ )dφ ⊗ dφ. (B6)

Similarly to the Berry curvature, g̃ can be seen as the restric-
tion to S2 of the following tensor in the ambient space R3:

g̃′ =
∑

i

1 − (xi )2

4
dxi ⊗ dxi −

∑
i< j

xix j

2
dxi ⊗ dx j . (B7)

When it is pulled back to the Brillouin torus by f̄ , it gives rise
to the symmetric tensor

g′ =
∑
μν

g′
μν (k) dkμ ⊗ dkν,

where the components as functions of the momentum coordi-
nates in the torus are given by

g′
μν (k) =

∑
i

ai(k)
∂xi(k)

∂kμ

∂xi(k)

∂kν

−
∑
i< j

bi j (k)

[
∂xi(k)

∂kμ

∂x j (k)

∂kν
+ ∂xi(k)

∂kν

∂x j (k)

∂kμ

]

(B8)

with ai(k) = 1−[xi (k)]2

4 and bi j (k) = xi (k)x j (k)
4 .

Similarly to the Berry curvature, it can be seen that g = g′,
that is, g = ReQ is the pullback of the Fubini-Study met-
ric of CP 1 to T 2. The functions �12(k) and the value of√

det[g(k)], with det[g(k)] = g′
11(k)g′

22(k) − g′
12(k)g′

21(k) are
the integrands that appear when computing c and vg and their
different contributions.

APPENDIX C: TWO DIFFERENT CONVENTIONS
FOR BLOCH HAMILTONIANS

In this Appendix we show that the change in the Berry
curvature for the Haldane model when it is written in two
different conventions describing the same honeycomb lat-
tice is given by a smooth function whose integral over T 2

vanishes. Furthermore, since the Berry curvature is gauge
independent we can work with the element |u′

−(k′)〉 =
N′−1(k′)|h

′1(k′) − ih′2(k′)
−h(k′) − h′3(k′)〉 of the eigenspace Vk′ , where k′ =

(kx, ky) are coordinates for the rhombohedrical Brillouin torus
and N′(k′) = {2h(k′)[h(k′) + h′3(k′)]}1/2 is a normalization
factor.

The nonperiodical, H ′(k′), and the periodical, H (k′),
descriptions of the model are related by H ′

12(k′) =
exp(−ik′e2)H12(k′). Therefore, in the coordinates k =
(k1, k2) ∈ [−π, π ]2, we obtain |u′

−(k)〉 = Û (k)|u−(k)〉,
where Û (k) = {exp[−iα(k)] 0

0 1} is a unitary matrix and

α(k) = (k1 + k2 + 2π )/3 and |u−(k)〉 was defined in
Appendix A. As a consequence,

∂ j |u′
−(k)〉 ≡ |∂ ju

′
−(k)〉

= [∂ jÛ (k)]|u−(k)〉 + Û (k)|∂ ju−(k)〉 (C1)
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From the definition in Eq. (1) the Berry curvature is given
by

�′
12(k) ≡ −2Im{〈∂1u′

−(k)|[1̂ − |u′
−(k)〉〈u′

−(k)|]|∂2u′
−(k)〉}

= −2Im[〈∂1u′
−(k)|∂2u′

−(k)〉]
= i[〈∂1u′

−(k)|∂2u′
−(k)〉 − 〈∂2u′

−(k)|∂1u′
−(k)〉], (C2)

where the first step after the definition is a consequence
of Re〈∂ ju′

−(k)|u′
−(k)〉 = Re〈u′

−(k)|∂ ju′
−(k)〉 = 0 and the last

step follows from the fact that if W ∈ C, then Im(W ) =
(W − W )/2i. By using Eq. (C1) the relation between �′

12(k)
and �12(k) can be written as

�′
12(k) = �12(k) + i[〈u−(k)|Ô12(k)|u−(k)〉

+ 〈u−(k)|v12(k)〉 + 〈v12(k)|u−(k)〉], (C3)

where

Ô12(k) = [∂1Û (k)]†[∂2Û (k)] − [∂2Û (k)]†[∂1Û (k)]

|v12(k)〉 = (∂1Û )†Û |∂2u−(k)〉 − (∂2Û )†Û |∂1u−(k)〉.

The following step uses ∂1α(k) = ∂2α(k) = 1/3 and
〈v12(k)|u−(k)〉 = i

3N(k)
[h1(k) + ih2(k)](∂2 − ∂1){[h1(k) +

ih2(k)]/N(k)},

�′
12(k) = �12(k) + (1/6)(∂2 − ∂1)x3(k). (C4)

Finally, the integral over the Brillouin torus of the last term
in Eq. (C4) vanishes because x3(k) is a continuous function
over T 2 (periodic in R2). Therefore, c′ = c. More details can
be found in Refs. [40] and [41].

APPENDIX D: INTEGRATION OVER Rs

In this Appendix we describe a procedure for the numerical
evaluation of the integrals in Eq. (11).

Regard T 2 as the square [−π, π ]2 ⊂ R2 where the op-
posite edges are identified. Let β be the set of points in
T 2 coming from the boundary of that square. Removing β

from T 2 \ γ ′ could result in the splitting of Rs into different
connected components (assumed finite), Rs,α , that now can
be seen as open sets in R2 and in T 2 simultaneously. In what
follows we will omit this difference. Let is,α : Rs,α → T 2 be
the inclusion of Rs,α into T 2. If γ ∪ β is a union of finitely
many curves, then it has zero measure in T 2. Furthermore,
since [−π, π ]2 = cupRs,α , where A stands for the closure of
the set A, we obtain for a given two-form ω on T 2:∫

T 2
ω =

N∑
s=1

Is, where

Is =
Nα∑

α=1

Is,α =
Nα∑

α=1

∫
Rs,α

i∗s,αω. (D1)

Notice that this elementary procedure does not involve the
use of partition of unity. See also Sec. 16 in Ref. [35] for
further details.
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