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Displaced Drude peak from π-ton vertex corrections
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Correlated electron systems often show strong bosonic fluctuations, e.g., of antiferromagnetic nature, around
a large wave vector such as q = (π, π . . .). These fluctuations can give rise to vertex corrections to the optical
conductivity through the (transversal) particle-hole channel, coined π -ton contributions. Previous numerical
results differed qualitatively on how such vertex corrections alter the optical conductivity. Here we clarify that
π -ton vertex corrections lead to a displaced Drude peak, by studying the weakly correlated regime of a one-
dimensional single-orbital Hubbard model. The proximity and enhancement of the effect when approaching a
phase transition of, e.g., antiferromagnetic nature can be utilized for discriminating π -tons in experiments from
other physics leading to a displaced Drude peak.
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I. INTRODUCTION

Optical probes are important tools in condensed-matter
physics for studying the electronic properties of materials. The
response of an electrical current to an external dynamic elec-
tric field is described by the optical conductivity. For a generic
metallic system, it is peaked at zero frequency as predicted
in the classical Drude theory [1,2], while for semiconducting
or insulating systems an optical gap in its spectrum appears,
since a nonzero photon energy is needed to excite electrons
across the band gap. In the simplest theory, both of these
spectra can be described by the uncorrelated propagation of
an electron and a hole, corresponding in the diagrammatic
language to the bubble term. In certain cases, however, cor-
relations between the excited electron and hole lead to novel
physical phenomena, requiring a proper treatment of vertex
correction contributions. The prime examples are excitons
in semiconductors [3,4] and weak localization in disordered
systems [5–8]. In the former case, the electron and hole form
a bound state giving rise to excitonic peaks in the optical
gap, while the suppression of the dc conductivity due to the
destructive interference of the electron wave function occurs
in the latter case.

Naturally, the question arises: Do vertex corrections play
an equally important role in shaping an optical conductivity
spectrum of correlated electron systems? This long-standing
fundamental question has captured the interest of the com-
munity for several decades [9–21]. However, it was only
until quite recently that a convenient classification and an
identification of the important class of vertex corrections in
correlated electron systems was carried out [22–24]. This was
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possible due to the recent methodological advances in using
the parquet equations [25–27] within the dynamical vertex
approximation [28–30] and the parquet approximation [25].
This allows for classifying and studying the vertex correc-
tions according to the two-particle reducibility. As a result,
it was found that the dominant vertex corrections in prototyp-
ical models of strongly correlated electrons are those in the
transversal particle-hole (ph) channel. This is because the ph
channel can pick up bosonic fluctuations at an arbitrary wave
vector, even though the transfer momentum of the photon is
zero. Specifically, strong antiferromagnetic (AFM) or charge
density wave fluctuations at k − k′ ≈ (π, π, . . . ) enter the
optical conductivity via the ph channel, and have been coined
π -ton vertex corrections [23]. Excitons, on the other hand,
emerge from the particle-hole (ph) channel, and weak local-
ization corrections from the particle-particle (pp) channel.

In Refs. [22–24], π -ton vertex corrections were studied
for several correlated models both in the insulating and in
the metallic phases. In the insulating cases, they were re-
ported to shift the optical gap, while in the metallic phases, a
renormalization of the Drude peak was observed, but also the
displaced Drude peak profile of the total optical conductivity
in the case of the metallic phase of the Falicov-Kimball model
[31]. Soon after these numerical studies, simplified random
phase approximation (RPA) calculations of the π -ton vertex
corrections were performed [32–34], with the aim of studying
in more detail their characteristics in the weakly correlated
regime of the Hubbard model. While in Ref. [34] only a tem-
perature dependent sharpening and broadening of the Drude
peak was reported, in Refs. [32,33] it was argued that an
additional π -ton peak may arise next to an existing Drude
peak. Such striking differences could have originated from
several sources, such as the dimensionality of a system, i.e.,
one-dimensional (1D) in Refs. [32,33] and two-dimensional
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(2D) in Ref. [34], Hubbard bands present in Refs. [32,33],
but not in Ref. [34], or perhaps the pitfalls of the analytic
continuation of the optical spectra to real frequencies [32].

In this paper, we reconcile the previously conflicting results
by evaluating the π -ton vertex corrections in a weakly cor-
related regime of a single-orbital Hubbard model within the
RPA using two different approaches. Our main finding is that
irrespective of dimensionality, the presence of Hubbard bands,
and the use of an analytic continuation, both approaches agree
on the qualitative frequency dependence of the π -ton vertex
corrections, which may yield the displaced Drude peak in the
total optical conductivity.

A displaced Drude peak is not an uncommon phenomenon
and has been experimentally observed for decades [35–57].
As already mentioned, it naturally arises as a consequence of
the weak localization effects in disordered systems. However,
its unambiguous presence in correlated materials calls for a
better or alternative understanding of the phenomenon, with
several theories already put forth [58–61]. While in Ref. [58]
it is explained in terms of the hydrodynamics of short-range
quantum critical fluctuations of incommensurate density wave
order, it is argued that quantum localization corrections may
also arise due to the slow phononic fluctuations [59,60] or
charge fluctuations mediated by long-range Coulomb inter-
action coexisting with lattice frustration [61]. Here we show
that the strong AFM fluctuations through the π -ton vertex
corrections may as well lead to the displaced Drude peak. This
represents a microscopic theory of the displaced Drude peak
formation in a clean prototypical correlated electron system,
where the bosonic fluctuation emerges from intrinsic many-
body electron interactions.

The outline of the paper is as follows: In Sec. II, we briefly
introduce the Hubbard model and how optical conductivities
are calculated. Further details are given for the three different
parameter sets studied in Sec. II A, and the RPA calculation of
vertex corrections in Sec. II B. Section III presents our results.
Here, in Sec. III A, we demonstrate the occurrence of a dis-
placed Drude peak; in Sec. III B we employ an adaptive ν- and
k-space integration and show results in the immediate vicinity
of the antiferromagnetic phase transition; and in Sec. III C we
show the temperature dependence of the peak position and
height of the displaced Drude peak. Finally, in Sec. III D, we
discuss why previous calculations did not see the displaced
Drude peak, before summarizing our results in Sec. IV.

II. MODEL AND METHODS

We consider a single-orbital Hubbard model on a D-
dimensional hypercubic lattice

Ĥ = −t
∑
〈i j〉σ

ĉ†
iσ ĉ jσ + U

∑
i

n̂i↑n̂i↓ , (1)

where ĉ†
iσ (ĉiσ ) denotes the fermionic creation (annihilation)

operator for an electron at lattice site i with spin σ , and n̂iσ =
ĉ†

iσ ĉiσ is a number operator. We take into account hoppings
only between nearest neighbors, indicated by 〈i j〉 in the sum
over lattice sites (each pair of neighboring sites is counted
once in the sum). In all our calculations, we set hopping t ≡ 1
as the unit of energy, as well as h̄ ≡ 1, kB ≡ 1, electric charge

χjj =

F ≈

+

+ + + ...

(a)

(b)

F

FIG. 1. (a) Diagrammatic representation of the current-current
correlation function χ j j with bubble (left) and vertex contribution
(right). (b) Diagrammatic representation of the π -ton vertex correc-
tions in the ph channel within the RPA. Here, the solid lines represent
the fermion Green’s functions G, the wavy lines the Hubbard inter-
action U , F is the vertex function, while light-fermion vertices are
denoted by solid circles.

e ≡ 1, and lattice constant a ≡ 1. We keep the value of the
local interaction U � 2 and hence focus on the weakly corre-
lated metallic state. Finally, we consider the half-filled case for
which we anticipate the presence of strong antiferromagnetic
fluctuations.

We are interested in calculating the optical conductivity
σ (ω) for the model Hamiltonian Eq. (1). We obtain it from the
current-current correlation function χ j j , which we calculate
in turn using two distinct approaches. Within the first ap-
proach, here called the real-axis approach, the current-current
correlation function χ j j (ω) is calculated directly on the real-
frequency axis using the formulas derived in Ref. [34],
see Appendix A for the final expressions, Eqs. (A2)–(A6).
The optical conductivity is then simply obtained as σ (ω) =
Imχ j j (ω)/ω, while its static limit, that is the dc conduc-
tivity, σdc = limω→0 σ (ω), is handled by extrapolating finite
frequency values to the zero frequency limit. In the second
approach, here referred to as the imaginary-axis approach,
the current-current correlation function χ j j (iωn) is instead
calculated on the imaginary-frequency axis as described in
Ref. [32] and briefly summarized in Appendix A. To get the
real frequency optical conductivity spectrum, the use of ana-
lytic continuation is thus needed, which we perform using the
ana_cont package [62]. Common to both approaches is that
χ and σ are separated into the bubble (BUB) and the vertex
(VERT) contribution, Fig. 1(a). For the bubble contribution,
only the knowledge of the fermion Green’s functions G is
needed, while for the vertex contribution, the vertex function
F is additionally required. In the following, we outline the
ideas behind modeling both G and F , such that π -ton vertex
corrections are treated within the RPA.

A. Models for the self-energy

The aforementioned real-axis approach allows for any
fermion Green’s function G, as long as the self-energy �,
with or without momentum dependence, is known on the
real-frequency axis. Since neglecting the momentum and re-
taining only the frequency dependence of the self-energy in
the spirit of dynamical mean-field theory (DMFT) [63] is
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sufficient to capture the effects of Hubbard bands on the π -ton
vertex corrections, we do not consider the effects of a possible
momentum dependence of � in the following. In particular,
in order to address the influence of Hubbard bands as well
as dimensionality effects on the π -ton vertex corrections, we
define three sets of parameters SDMFT, S1D, and S2D to model
the fermion Green’s functions as follows.

1. Parameter set SDMFT

In the spirit of Ref. [33], the parameter set SDMFT re-
gards a 1D lattice with U = 2, and the DMFT self-energy
obtained with iterated perturbation theory (IPT) [64]. Such
a choice of self-energy is convenient for the calculation of
the current-current correlation function within the imaginary-
axis approach [32]. Of the several temperatures considered
in Ref. [33], we mainly focus on the case β = 12.5. For the
corresponding temperature T = β−1, it has been reported that
the π -ton vertex corrections show a distinct broad peak at
ω ≈ 0.35 [33]. We note that the DMFT phase diagram in 1D
resembles that of higher dimensional systems and does not
capture the presence of a Mott gap for any U > 0, however
small, at half-filling. Only for U of the order of the bandwidth
does a Mott gap open. Hence, our 1D results should primarily
serve as a proxy for the behavior of the π -ton vertex correc-
tions in higher dimensional systems or slightly away from the
half-filled case.

2. Parameter set S1D

Motivated by studying the effects of Hubbard bands on the
π -ton vertex corrections, we introduce the second parameter
set S1D, referring again to the 1D lattice with U = 2, but now
with the simplified frequency independent self-energy,

� = −i	(T ) , 	(T ) = 0.1547 + 1.637 T 2. (2)

This form of self-energy can be rationalized by the ever-
present impurity scattering and resembles the Fermi-liquid-
like temperature behavior [65]. The choice of parameter
values entering 	(T ) is motivated in Ref. [34].

The difference between SDMFT and S1D is that the former
involves both the quasiparticle and Hubbard bands, while the
parameter set S1D involves only the former. By comparing the
optical conductivity between both sets, we can thus single out
features that result from the presence of Hubbard bands.

3. Parameter set S2D

Our third set of parameters S2D relates to the 2D square
lattice with U = 1.9 and the same self-energy as in Eq. (2).
The point of introducing it is to study differences between
the π -ton vertex corrections in 1D and 2D cases. For both
parameter sets S1D and S2D, we calculate the current-current
correlation function using the real-axis approach.

B. Vertex function

The evaluation of the vertex contribution to the current-
current correlation function requires the knowledge of the full
density component of the two-particle vertex F kk′q

d [26,66].
Following arguments in Ref. [23], we, however, only focus on
the vertex contributions F kk′q

d,ph
coming from the ph channel:

π -ton vertex corrections, which are supposed to be domi-
nant in the Hubbard model. In order to be able to evaluate
the corresponding π -ton vertex contributions to the current-
current correlation function within the real-axis approach
of Ref. [34] and/or imaginary-axis approach of Ref. [32],
we further assume that the vertex function depends only on
one transfer momentum and energy, F kk′q

d,ph
≡ F k−k′

d,ph
. Here k =

(k, ν) denotes a combined momentum and frequency index.
Generally, such contributions may still be quite complicated,
but diagrammatically they can be represented as vertical lad-
ders in terms of the irreducible vertex 
ph. Following further
the modeling approach of the vertex function described in
Refs. [32,34], we focus on the ↑↑↓↓ ≡ ↑↓ spin compo-
nent and take for the irreducible vertex 
ph = −U . Namely,
the building blocks of our vertical ladders are the interac-
tion U and the Lindhard function χ0

q = − 1
β

∑
k GkGk+q, see

Fig. 1(b). This series of vertical ladders can be summed up
to infinite order to finally yield the RPA version of the π -ton
vertex function

F RPA
ph,k−k′ = U 2χ0

k−k′

1 − Uχ0
k−k′

= U 2χRPA
k−k′ , (3)

where χRPA
k−k′ is the RPA magnetic susceptibility, which we

use in all our calculations of the vertex contribution to the
current-current correlation function. Note that F RPA

ph,k−k′ is fully
determined by G (�), U , and T .

Let us emphasize that vertex corrections to the optical
conductivity from the crossing symmetrically related RPA
ladder in the particle-hole channel, instead of the particle-
hole transversal one in Eq. (3), exactly vanish for a local
interaction. The same is true for a local vertex, which has the
consequence that there are actually no vertex corrections in
DMFT [67,68]. One has to go beyond DMFT for studying
vertex contributions to the optical conductivity in one orbital
models.

1. Paramagnetic-antiferromagnetic transition

For a given parameter set Si, there exists a critical tempera-
ture Tc = β−1

c for which the vertex in Eq. (3) diverges. Within
our model, this divergence signals the paramagnetic-to-
antiferromagnetic phase transition. Due to the RPA treatment
of the vertex, the transition appears at nonzero temperature
even for 1D and 2D systems, violating the Mermin-Wagner
theorem [69]. Hence, our results should again serve only as
a proxy for the behavior of the π -ton vertex corrections near
the transition boundary. Once the critical temperature is deter-
mined, we place ourselves within the paramagnetic metallic
state with T � Tc. Then we lower the temperature towards the
critical one, thereby enhancing the antiferromagnetic fluctua-
tions and the overall effect of the π -ton vertex corrections.

There is no guarantee that the Tc, determined as the tem-
perature at which the RPA vertex in Eq. (3) diverges, matches
the Néel temperature TN obtained by the IPT solver. Indeed,
while the two values are quite close for U � 1 [32], for larger
values of U the discrepancies between the two become larger.
Therefore, a renormalized Ur was introduced in Ref. [32]

F RPA,r
ph,k−k′ = U 2χ0

k−k′

1 − Urχ
0
k−k′

, (4)
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FIG. 2. Bubble [(a) and (d)], RPA π -ton vertex [(b) and (e)], and total contribution [(c) and (f)] to the optical conductivity for the parameter
sets S1D [(a)–(c)] and S2D [(d)–(f)] and several temperatures T . The insets show the corresponding RPA π -ton vertex contributions to the
current-current correlation function.

to push Tc towards TN . For the parameter set SDMFT this is
achieved by taking Ur = 1.33, yielding βc ≈ βN ≈ 20 [33].

Regarding parameter sets S1D and S2D, we keep Ur = U ,
resulting in βc ≈ 23 and βc ≈ 19 for the former and the latter
parameter set, respectively. It now becomes apparent that all
parameter sets are chosen such that their Tc (βc) are roughly
similar.

2. Ornstein-Zernike form of the vertex function

Close to the phase transition boundary, in the presence
of strong antiferromagnetic fluctuations, the magnetic sus-
ceptibility and thus our π -ton vertex function can be well
approximated by the Ornstein-Zernike correlation function of
the form [70–72]

F OZ
q,ω = A

ξ−2 + (q − Q)2 − iλω
. (5)

Here ξ is the correlation length of the antiferromagnetic fluc-
tuations, while A and λ represent their effective coupling
strength to fermions and the damping rate, respectively. For
our half-filled Hubbard model Q = (π, π, . . . ). One of the
advantages of working with the Orsntein-Zernike vertex func-
tion is that it can be readily calculated on the fly for any q
and ω, which we exploit to adaptively integrate the vertex
contribution to the current-current correlation function within
the real-axis approach close to the transition boundary. For
practical purposes, in all our actual calculations involving
Eq. (5) for the vertex function, we use an empirically more
robust formula with (q − Q)2 → 4

∑
i sin2( qi−Qi

2 ) [73].

III. RESULTS

A. Displaced Drude peak from π-ton vertex corrections

Optical conductivities calculated directly on the real-
frequency axis using Eqs. (A2)–(A6) and the RPA vertex
function in Eq. (3) for the parameter sets S1D and S2D are
shown in Figs. 2(a)–2(c) and Figs. 2(d)–2(f), respectively.
The corresponding summations over the Brillouin zone are
performed on the grid sizes Nk = 200 and Nk = 40 × 40 for
the 1D and 2D cases, respectively. The remaining integrals
over frequencies are evaluated using the trapezoidal rule on
the grids with Nν = 3193 points in the range [−8, 8] in 1D and
on the grids with Nν = 1593 points in the range [−7.6, 7.6] in
the 2D cases. These choices of summation/integration grids
were thoroughly checked to produce converged results for all
the temperatures considered in Fig. 2. For lower temperatures
approaching the critical temperature Tc, the convergence of
the π -ton vertex contribution becomes numerically more and
more demanding. We discuss this issue in more detail in the
next Sec. III B.

As expected, the bubble contribution to the optical conduc-
tivity σBUB, shown in Figs. 2(a) and 2(d), gives the Drude peak
in both 1D and 2D cases. The corresponding widths and max-
ima of these peaks are governed by the fermion scattering rate,
which is, with our choice of parameter sets S1D and S2D, given
simply by τ (T ) = 1

2	(T ) . Correspondingly, the magnitudes of
σBUB in both Figs. 2(a) and 2(d) are roughly similar.

On the other hand, while the π -ton vertex contributions
to the optical conductivity, σVERT in Figs. 2(b) and 2(e),
show qualitatively similar behavior in both cases (1D and
2D), their magnitude is up to two orders of magnitude larger
in the former case, at least for the considered temperature
ranges. Taking that into account together with the peculiar
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frequency dependence of the π -ton vertex contributions, the
resulting total optical conductivity, σTOT = σBUB + σVERT, in
Figs. 2(c) and 2(f) apparently exhibits quite different struc-
tures depending on the dimension. In particular, the results
in Fig. 2 suggest that the π -ton vertex corrections suppress
the optical conductivity at low frequencies and develop a
broad maximum at some intermediate frequency, while for
larger frequencies they asymptotically decay to zero. If the
magnitude of such vertex corrections is large, as is the case
in our 1D calculations, then the sum of the bubble and the
π -ton vertex contributions results in a displaced Drude peak,
as can be seen in Fig. 2(c). In contrast, if the magnitude
of such vertex corrections is small compared to the bubble
contribution, then the sum results in a renormalized Drude
peak, as in our 2D calculations, see Fig. 2(f). Note that the
smallness of π -ton vertex corrections and the absence of a
π -ton peak in 2D was already reported in Ref. [34], with the
caveat that in Ref. [34] a sign change of the π -ton vertex
corrections in the dc limit occurred close to the transition.
Here, we see that they do not change their qualitative behavior
by lowering the temperature, at least in the regime for which
convergence of Eqs. (A3)–(A6) can be achieved. Therefore,
we see only a broadening of the Drude peak in Fig. 2(f).
In the following, we get even closer to the phase transition
boundary, enhancing thus AFM fluctuations and π -ton vertex
contributions, and present further arguments in favor of the
formation of the displaced Drude peak in the 1D case.

B. π-ton vertex corrections close to the transition boundary

Close to the paramagnetic-antiferromagnetic phase transi-
tion the π -ton vertex function resembles the Ornstein-Zernike
form of Eq. (5). As the temperature is lowered towards
the critical temperature, the correlation length ξ of the
antiferromagnetic fluctuations increases, resulting in the con-
finement of the π -ton vertex function around momentum
Q = (π, π, . . . ) and frequency ω = 0. To be specific, the
widths of the Ornstein-Zernike function around these points
read


q ∼ 1

ξ
, 
ω ∼ 1

λξ 2
, (6)

which are getting narrower as the transition boundary is
approached.

From the computational point of view, to resolve such
fine momentum and frequency features of the π -ton ver-
tex function we would need to use sufficiently dense grids,

q � N−1

k and 
ω � N−1
ν . This quickly becomes a numeri-

cal bottleneck if equidistant grids are used, especially in the
2D case, which involves four momentum and two frequency
summations/integrations in Eqs. (A2)–(A6). For that reason,
we focus on the parameter set S1D, and adjust the multidi-
mensional adaptive integration package cubature [74] to our
needs, in order to evaluate the π -ton vertex contributions to
the optical conductivity all the way down to the transition
boundary.

Adaptive integration requires computing the integrand on
the fly, which is inconvenient with the RPA π -ton vertex func-
tion since it involves momentum and frequency summations
at each call. For this reason and since the Ornstein-Zernike

FIG. 3. π -ton vertex corrections to the optical conductivity and
the current-current correlation function (inset) calculated with the
Ornstein-Zernike vertex function and an adaptive integration for tem-
peratures approaching the critical temperature, Tc, for the parameter
set S1D.

form close to the critical temperature approximates the π -ton
vertex function well, we first calculate the RPA π -ton vertex
function in Eq. (3) using dense momentum and frequency
grids, and then fit it with the Ornstein-Zernike form in Eq. (5)
to obtain A, ξ , and λ for a given temperature. In this way, we
have the vertex function F OZ

q,ω as a simple function that can be
conveniently used for adaptive integration of the π -ton vertex
corrections according to Ref. [34].

The temperature dependence of the Ornstein-Zernike pa-
rameters for the parameter set S1D obtained by fitting Eq. (5)
to the RPA π -ton vertex function is shown in Appendix B,
while the corresponding π -ton vertex contributions to the
optical conductivity obtained with the adaptive integration are
shown in Fig. 3. More details on the fitting procedure can
also be found in Appendix B. Evidently, the π -ton vertex
contributions continue to show a similar qualitative trend as
in the RPA case all the way down to the critical temperature.
In particular, they do not change the sign in the dc limit close
to the phase transition. Note also that the magnitude of the
π -ton vertex corrections is larger with the OZ vertex func-
tion than with the RPA π -ton vertex function. Nevertheless,
their magnitude keeps growing even larger as the transition
boundary is approached due to the enhanced antiferromag-
netic fluctuations, leading to an increasing suppression of the
dc conductivity and an increasingly pronounced maximum at
finite frequencies.

We note that at a certain point our approximations will fail
and one would need to revisit them both from the point of view
of the fermion Green’s function, G, and the vertex function,
F . It can be already inferred from Fig. 3 that the magnitude of
the π -ton vertex contributions at low frequencies may exceed
that of the bubble, leading to unphysical negative spectral
weight in the total optical conductivity. The intention of the
present paper is, however, to point out that the π -ton ver-
tex corrections may lead to a displaced Drude peak, not to
properly study all of their quantitative features. This requires
more sophisticated calculations beyond RPA. In particular,
fulfillment of Ward identities [75,76] can become important
for quantitative predictions. To the best of our knowledge,
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FIG. 4. [(a) and (c)] Temperature dependence of the maxima of
the current-current correlation function ( f = χ ) and the optical con-
ductivity ( f = σ ) shown separately for the vertex (VERT; blue lines)
and total contribution (TOT; green lines). [(b) and (d)] Frequencies
ωMAX associated with the maxima. The top panels (a) and (b) show
the 1D S1D and the bottom panels (c) and (d) the 2D S2D results.

more sophisticated approximations or numerical approaches
will likely not be feasible at the moment with the required
accuracy, i.e., using dense ν- and k-meshes, and eventually
real frequencies.

In the 1D case, there are numerically accurate methods that
are capable of calculating the full optical conductivity, e.g.,
the density matrix renormalization group (DMRG) [77–79].
DMRG results can in principle be decomposed into the bubble
and vertex contribution, and the influence of vertex correc-
tions and the contribution from π -ton diagrams (see Ref. [23]
supplementary material Sec. E) could thus be studied.

C. Temperature dependence of the displaced
Drude peak frequency and height

The displaced Drude peak has been experimentally ob-
served in a great variety of compounds, ranging from cuprates,
and transition metal oxides to organic conductors and Kagome
metals [35–57]. The common feature in all of these experi-
mental findings is that the displaced Drude peak position is
an increasing function of temperature, ωMAX ∼ T α , with the
coefficient α falling in the range, 0 < α < 3/2 [59]. To com-
pare our π -ton theory with this robust experimental feature,
we show in Fig. 4 the temperature dependence of the position
of the maxima in both the current-current correlation function
and optical conductivity, as well as the temperature depen-
dence of the maximum values themselves. For the parameter
set S2D, we focus only on the π -ton vertex contribution since
the displaced Drude peak is not yet present in the total optical

conductivity, while for the parameter set S1D we consider the
total, bubble plus π -ton, contribution as well.

In both the 1D and 2D systems, the position of the max-
ima of the π -ton vertex contributions, χVERT and σVERT in
Figs. 4(b) and 4(d), is clearly an increasing function of tem-
perature, with a roughly linear dependence of the maximum
position, ωMAX ∼ (T − Tc). In 1D, these vertex corrections
lead to a clearly visible displaced Drude peak in the to-
tal optical conductivity, with its position rather decreasing
with increasing temperature. In 2D, and the experiments
Refs. [35–57] are in 2D, we have qualitatively similar ver-
tex corrections, but quantitatively the corrections are much
weaker and a displacement of the Drude peak not conceivable
yet, we just see a renormalization of the Drude peak.

Finally, when it comes to the maximum values of χVERT

and σVERT and the height of the displaced Drude peak in the
total optical conductivity, from Figs. 4(a) and 4(c) it is evident
that they all increase as the phase transition is approached. In-
terestingly, in the 1D case we roughly have max

ω>0
σVERT(ω) ∼

(T − Tc)−1, while in the 2D case max
ω>0

σVERT(ω) ∼ ln[(T −
Tc)−1] [note the logarithmic scale in Fig. 4(c)]. This scal-
ing further supports our findings that the RPA π -ton vertex
corrections are smaller in 2D than in 1D for the temperature
ranges considered. Moreover, it also suggests that addressing
the regime with potentially larger π -ton vertex corrections in
2D very close to the transition boundary is very challenging
due to the required numerical accuracy.

D. Comments on the relation to previous results

The displaced Drude peak was not observed in the earlier
1D RPA treatments of the π -ton vertex corrections [32,33]. To
understand the discrepancies between those previous and the
present results, we here recalculate the bubble and the π -ton
vertex contributions to the current-current correlation function
on the imaginary axis for the parameter set SDMFT and the
temperature T = 0.08 following the approach of Ref. [32].

Motivated by the convergence challenges discussed in
Sec. III B, in Fig. 5(b) we show the π -ton vertex contributions
on the Matsubara axis for four different momentum grids. It
is apparent that χVERT for the grid Nk = 41, which roughly
equals the number of momentum points used previously in
Refs. [32,33], differs quite significantly from the results for
denser momentum grids. Not only is the magnitude of χVERT

roughly four times smaller for the first few Matsubara fre-
quencies but more importantly, the slope between zero and
the first Matsubara frequency becomes positive in the latter
cases. Those differences can be even more pronounced for
temperatures closer to the transition boundary, such as those
considered in Ref. [32].

In order to obtain the optical conductivity spectra on the
real-frequency axis from the current-current correlation func-
tions in Figs. 5(a)–5(c), we carry out an analytic continuation
using the ana_cont package [62]. We analytically continue
only χBUB and χTOT, while the π -ton vertex contributions are
obtained as the difference σVERT = σTOT − σBUB. More details
on the analytic continuation are given in Appendix C.

In Figs. 5(d)–5(f), we show the resulting optical con-
ductivity spectra for an optimal set of analytic continuation
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FIG. 5. [(a)–(c)] Bubble, RPA π -ton vertex, and total contribution to the current-current correlation function on the Matsubara axis
calculated for the parameter set SDMFT with T = 0.08 and several momentum grids Nk . [(d)–(f)] Corresponding optical conductivity spectra on
the real-frequency axis. The inset of panel (e) further shows the current-current correlation function for real frequencies.

parameters. We conclude that the overall shape of the π -ton
vertex corrections σVERT is quite robust to different analytic
continuation parameters, that σVERT is converged for Nk =
81, and that it actually shows a similar qualitative behavior
as the shape of the π -ton vertex corrections predicted in
Secs. III A and III B. Namely, the π -ton vertex corrections,
Fig. 5(e), tend to suppress the optical conductivity at low
frequencies and enhance it at higher ones, producing together
with the bubble contribution the displaced Drude peak, see
Fig. 5(f).

The enhancement of the current-current correlation func-
tion by the π -ton vertex contributions for the case with Nk =
41, see inset of Fig. 5(e), is maximal around ω ≈ 0.31, while
for low frequencies, ω < 0.06, the π -ton vertex contributions
are rather negative. For exactly the same parameters, the
π -ton vertex contributions were calculated directly on the
real-frequency axis in Ref. [33]. While a broad peak, similar
to the one in the inset of Fig. 5(e), was reported around
ω ≈ 0.35, the π -ton vertex contributions were reported to be
positive all the way down to the zero frequency. We note,
however, that in Ref. [33] a Fourier transformation with time
window 	t = 17 was used, which implies a smearing of
the low-frequency features, ω < (	t )−1. This might explain
why no negative vertex correction was observed at small
frequencies.

As a last remark, we note that the results in Fig. 5 are
obtained with DMFT Green’s functions which, apart from the
quasiparticle pole, contain the incoherent contribution cor-
responding to the Hubbard bands. Our results suggest that
for relatively weak interactions the Hubbard bands play little
to no role in shaping the qualitative behavior of the π -ton
vertex corrections. In other words, the displaced Drude peak
is obtained solely by considering vertex corrections of the
low-energy quasiparticle excitations. It is not an additional

peak but as if the Drude peak itself was shifted away from
ω = 0.

IV. CONCLUSIONS

Our main finding is that π -ton vertex contributions result
in a displaced Drude peak for, a true shift of the Drude peak
to a maximum at a nonzero frequency. The presence of a
displaced Drude peak in the 1D case is unambiguous with a
linear scaling of the maximum of the displaced Drude peak
with temperature (upon approaching the antiferromagnetic
phase-transition temperature TN ). In the 2D case, we observe
qualitatively the similar features for the π -ton vertex contribu-
tions, however, the logarithmic scaling in T − TN (instead of
linear in 1D) makes unambiguous calculations in the regime
with potentially larger π -ton vertex corrections practically
impossible.

The displaced Drude peak was confirmed using the same
two methods employed in earlier RPA studies of the π -ton
contribution. That is the direct calculation for real frequen-
cies and the analytic continuation of the Matsubara frequency
calculation. As before, we employ a constant self-energy for
the former and the IPT self-energy for the latter. Our paper
is thus able to reconcile the apparent discrepancies between
earlier results on π -ton vertex corrections in the weakly corre-
lated Hubbard model. These reported a renormalization of the
Drude peak [34], and an additional peak in the optical conduc-
tivity [32,33]. Let us emphasize the importance of a proper ν-
and k-grid convergence. This is challenging to achieve close
to the antiferromagnetic phase transition, where π -ton effects
become more pronounced and lead to the displaced Drude
peak.

Our work shows that besides localization physics
[5–8,59–61], displaced Drude peaks should also be expected
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in general close to antiferromagnetic and charge density wave
transitions. Our work hence shows an additional route to the
displaced Drude peak: π -ton vertex corrections due to strong
antiferromagnetic and charge density wave fluctuations. The
effect is expected to be larger in 1D than in 2D.

One remaining question is: How can we distinguish this
π -ton physics in the transversal particle-hole channel from
localization effects in the particle-particle channel or exter-
nal bosons such as low-energy phonons? One strategy for
unambiguously identifying π -tons in an experiment would
be to look at the change of the displaced Drude peak when
approaching, e.g., an antiferromagnetic phase transition. We
predict that if it is a π -ton peak, the overall effect will be
enhanced closer to the phase transition.

The data of this paper are available in the repository hosted
by TU Wien [80].
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APPENDIX A: DETAILS ON THE CALCULATION OF THE
CURRENT-CURRENT CORRELATION FUNCTION

We briefly outline the main ideas and formulas behind
the real-axis approach of Ref. [34] and the imaginary-axis
approach of Ref. [32] for calculating the current-current
correlation function and in particular the π -ton vertex
contributions.

The current-current correlation function can be diagram-
matically represented as a sum of the bubble and the vertex
contribution

χ
αβ
j j (q) = − 2

βN

∑
k

γ α
kqγ

β

k(−q)Gk+qGk

− 2

β2N2

∑
kk′

γ α
kqγ

β

k′(−q)Gk+qGkF kk′q
d Gk′+qGk′

= χ
αβ

BUB(q) + χ
αβ

VERT(q). (A1)

Here q = (q, iωn) denotes the four-momentum, while α, β =
x, y, . . . denote the direction in space. We consider only the
diagonal elements, α = β, of the tensor χ

αβ
j j , and since we are

dealing with an isotropic system, we further consider only the
α = β = x case and drop the indices α and β.

We are interested in the optical conductivity for which we
need the dynamic long-wavelength limit of the current-current
correlation function. Therefore, we keep the frequency finite
and set q = 0 in χ j j (q). Light-fermion vertices are then given
in the Peierls approximation [81] where γ x

k = ∂εk
∂kx

corresponds
to the electron velocity.

Within the real-axis approach of Ref. [34], it is as-
sumed that the retarded/advanced self-energy, �

R/A
k,ν , is

known on the real frequency axis. In terms of the self-
energy, the retarded/advanced Green’s function is given by
GR/A

k,ν
= 1

ν−εk−�
R/A
k,ν

, and the spectral function further as Ak,ν =
∓ImGR/A

k,ν /π . To translate the sums over Matsubara frequen-
cies iνn and iν ′

n in Eq. (A1) to real frequency integrals over
ν and ν ′, a fact that the fermionic Matsubara frequencies are
located at the poles of the Fermi-Dirac distribution nF (z) =

1
eβz+1 is used, together with the property of the Green’s func-
tion Gk,z that it is analytic everywhere expect for the real axis
[34]. After transforming all fermionic Matsubara sums into
integrals over real frequencies, the analytical continuation of
χ (iωn) can be handled by a simple substitution iωn → ω + iη.
For the bubble contribution, this procedure yields [34]

χBUB(ω)=− 2

N

∑
k

γ 2
k

∫ +∞

−∞
dν nF (ν)Ak,ν

[
GR

k,ν+ω + GA
k,ν−ω

]
.

(A2)

For the evaluation of the vertex contribution, a similar
procedure is used. It is additionally assumed that the vertex
function depends on only one transfer momentum/frequency
F kk′q

d ≡ F k−k
d , and that its complex structure is the same as

that of a physical magnetic susceptibility, i.e., it is analytic in
the whole complex plane except for the real axis where it has
a branch cut. These assumptions are readily valid for the RPA
π -ton and the Ornstein-Zernike vertex functions in Eqs. (3)
and (5), respectively. Without going into any further details,
here we just recall the final expressions for the vertex contri-
bution to the current-current correlation function in Ref. [34]

χVERT(ω) = − 2

N2

∑
kk′

γkγk′
[
ζ kk′

1 (ω) + ζ kk′
2 (ω) + ζ kk′

3 (ω)
]
,

(A3)

with

ζ kk′
1 (ω) = − 1

4π2

∫ +∞

−∞

∫ +∞

−∞
dν dν ′ nF (ν) nB(ν ′)

× [
F R

k−k′,−ν ′ − F A
k−k′,−ν ′

]
× [

GR
k,νGR

k′,ν+ν ′ − GA
k,νGA

k′,ν+ν ′
]

× [
GR

k,ν+ωGR
k′,ν+ν ′+ω + GA

k,ν−ωGA
k′,ν+ν ′−ω

]
, (A4)

ζ kk′
2 (ω) = i

2π

∫ +∞

−∞

∫ +∞

−∞
dν dν ′ nF (ν) nF (ν ′)Ak′,ν ′

× [
GR

k,νF R
k−k′,ν−ν ′ − GA

k,νF A
k−k′,ν−ν ′

]
× [

GR
k,ν+ωGR

k′,ν ′+ω + GA
k,ν−ωGA

k′,ν ′−ω

]
, (A5)

and

ζ kk′
3 (ω) =

∫ +∞

−∞

∫ +∞

−∞
dν dν ′ nF (ν) nF (ν ′)Ak,νAk′,ν ′

× [
GR

k′,ν ′+ωGA
k,ν−ωF A

k−k′,ν−ν ′−ω

− GA
k′,ν ′−ωGR

k,ν+ωF R
k−k′,ν−ν ′+ω

]
. (A6)

Contrary, in the imaginary axis approach of Ref. [32],
the DMFT self-energy �(iνn) is first obtained using the
iterated perturbation theory on the imaginary axis. From
�(iνn), the Green’s function Gk , the Lindhard function χ0

q =
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FIG. 6. Inverse temperature dependence of the Ornstein-Zernike parameters ξ , A, and λ extracted by fitting the Ornstein-Zernike form in
Eq. (5) to the RPA π -ton vertex function in Eq. (3) for the parameter set S1D.

− 1
β

∑
k GkGk+q, and the RPA π -ton vertex function F RPA

ph,k−k′

are further obtained. Finally, the current-current correlation
function on the imaginary axis is calculated by explicitly
performing the sums over Matsubara frequencies in Eq. (A1),
with F RPA

ph,k−k′ entering the corresponding expressions.

APPENDIX B: FIT OF THE ORNSTEIN-ZERNIKE FORM
TO THE RPA π-TON VERTEX FUNCTION

We extract the Ornstein-Zernike parameters A, λ, and ξ in
Eq. (5) from the RPA π -ton vertex function in Eq. (3) in three
steps. First, we calculate the real part of the static RPA π -ton
vertex function around the wave vector q = π , as well as the
low-frequency limit of the RPA π -ton vertex function at q =
π , using dense momentum and frequency grids, with Nk =
1000 and Nν = 7993 points, respectively. Then in the second
step, we consider the inverse of the static Ornstein-Zernike
function around q = π ,

[
F OZ

q≈π,ω

]−1 ≈ 1

A
q2 + ξ−2

A
, (B1)

and fit the second-order polynomial, aq2 + c, to the calculated
static RPA π -ton vertex function around q ≈ π . The inverse
of the coefficient a gives us the parameter A = a−1, while the
correlation length is obtained as ξ = √

a/c.
In the last (third) step we fit the frequency dependence.

To this end, we consider the inverse of the real part of the
Ornstein-Zernike function at q = π ,

[
F OZ

q=π,ω

]−1 ≈ λ2

Aξ−2
ω2 + A

ξ−4
, (B2)

and again fit a second-order polynomial, a′ω2 + c′, now to
the low frequency part of the RPA π -ton vertex function at
q = π . We use the coefficient a′ together with the previously
extracted A and ξ to finally obtain λ = √

a′A/ξ .
Following the above procedure, we extract from the RPA

π -ton vertex function the Ornstein-Zernike parameters for the
parameter set S1D and inverse temperatures β = 16 − 22. The
corresponding inverse temperature dependence of parameters
ξ , A, and λ are shown in Fig. 6, while in Fig. 7, we show
the RPA π -ton vertex function together with its approximate
Ornstein-Zernike form for the inverse temperature β = 17.

APPENDIX C: DETAILS ON THE ANALYTIC
CONTINUATION OF THE CURRENT-CURRENT

CORRELATION FUNCTION

The analytic continuation of the current-current correlation
functions χ j j (iωn) in Figs. 5(a)–5(c) is carried out by means
of the maximum entropy method as implemented within the
ana_cont package [62]. The solver of ana_cont directly
returns σ (ω), which is related to χ j j (iωn) with a kernel
Kb(ωn, ω) = ω2

ω2
n+ω2 as χ j j (iωn) = ∫ ∞

0 dωKb(ωn, ω)σ (ω). We
analytically continue only the bubble and the total contri-
butions, while the π -ton vertex contributions to the optical
conductivity are obtained as the difference, σVERT = σTOT −
σBUB. As input to our analytic continuation problem, we use
the values χ j j (iωn) for the first 30 positive Matsubara frequen-
cies, including the zero frequency, normalized with respect
to the value of χ j j at zero Matsubara frequency. Addition-
ally, we set the amplitude of error to 5 × 105 and 5 × 103

FIG. 7. Real part of the Ornstein-Zernike vertex function (green dashed line) fitted to the RPA π -ton vertex function (blue solid line) for
the parameter set S1D and the inverse temperature β = 17, as a function of (a) q for a fixed ω = 0 and (b) ω for a fixed q = π .
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FIG. 8. Bubble [(a) and (d)], π -ton vertex [(b) and (e)], and total contribution [(c) and (f)] to the optical conductivity obtained with
the analytic continuation using the chi2kink method and several different default models, for the parameter set SDMFT, the momentum grid
Nk = 101, and two inverse temperatures β = 12.5 [(a)–(c)] and β = 17 [(d)–(f)].

for the bubble and the total contribution, respectively. The
corresponding real frequency spectra are computed on the grid
[0, � 2π

β
× 30�] with 5000 points.

The method for determining the hyperparameter α and
the model for the prior probability of the spectrum have a
significant influence on the behavior of the resulting spectra;
see Ref. [62] for further information on these parameters,
the chi2kink method and Gaussian broadening. For exam-
ple, in Fig. 8 we show the spectra for the parameter set
SDMFT, calculated with Nk = 101 momentum points, and two
inverse temperatures β = 12 and β = 17, obtained with the
chi2kink method and employing several models. In partic-
ular, we compare the spectra obtained with the flat model
and Gaussian functions with various widths σ . Although the

displaced Drude peak is clearly visible in all cases consid-
ered, choosing a thinner Gaussian leads to a more pronounced
displaced Drude peak behavior. This is particularly evident in
the case with σ = 1, where the π -ton vertex corrections may
appear to tend to peak around ω ∼ 0.2 as the temperature is
lowered, see Figs. 8(b) and 8(e).

In the main text, we present the results obtained with the
chi2kink method and the flat model, in order to avoid any bias
towards an extremely sharp displaced Drude peak in the to-
tal optical conductivity. Although, as expected, the displaced
Drude peak is more pronounced for the inverse temperature
β = 17, in the main text we present the case with β = 12.5
to enable a direct comparison of our new results with those
obtained in Ref. [33].

[1] P. Drude, Zur elektronentheorie der metalle, Ann. Phys. 306,
566 (1900).

[2] P. Drude, Zur elektronentheorie der metalle; II. Teil. Galvano-
magnetische und thermomagnetische effecte, Ann. Phys. 308,
369 (1900).

[3] J. Frenkel, On the transformation of light into heat in solids. I,
Phys. Rev. 37, 17 (1931).

[4] G. H. Wannier, The structure of electronic excitation levels in
insulating crystals, Phys. Rev. 52, 191 (1937).

[5] E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V.
Ramakrishnan, Scaling theory of localization: Absence of quan-
tum diffusion in two dimensions, Phys. Rev. Lett. 42, 673
(1979).

[6] L. P. Gor’kov, A. I. Larkin, and D. E. Khmel’Nitskii, Par-
ticle conductivity in a two-dimensional random potential, in

30 Years of the Landau Institute - Selected Papers, edited by
I. M. Khalatnikov et al. (World Scientific, Singapore, 1996),
pp. 157–161.

[7] W. Götze, P. Prelovšek, and P. Wölfle, Localization of particles
in a two-dimensional random potential, Solid State Commun.
30, 369 (1979).

[8] B. L. Altshuler, D. Khmel’nitzkii, A. I. Larkin, and
P. A. Lee, Magnetoresistance and Hall effect in a disor-
dered two-dimensional electron gas, Phys. Rev. B 22, 5142
(1980).

[9] D. G. Clarke, Particle-hole bound states in Mott-Hubbard insu-
lators, Phys. Rev. B 48, 7520 (1993).

[10] H. Maebashi and H. Fukuyama, Electrical conductivity of inter-
acting fermions. I. General formulation, J. Phys. Soc. Jpn. 66,
3577 (1997).

075118-10

https://doi.org/10.1002/andp.19003060312
https://doi.org/10.1002/andp.19003081102
https://doi.org/10.1103/PhysRev.37.17
https://doi.org/10.1103/PhysRev.52.191
https://doi.org/10.1103/PhysRevLett.42.673
https://doi.org/10.1016/0038-1098(79)90654-9
https://doi.org/10.1103/PhysRevB.22.5142
https://doi.org/10.1103/PhysRevB.48.7520
https://doi.org/10.1143/JPSJ.66.3577


DISPLACED DRUDE PEAK FROM π -TON VERTEX … PHYSICAL REVIEW B 110, 075118 (2024)

[11] F. H. L. Essler, F. Gebhard, and E. Jeckelmann, Excitons in one-
dimensional Mott insulators, Phys. Rev. B 64, 125119 (2001).

[12] P. Wróbel and R. Eder, Excitons in Mott insulators, Phys. Rev.
B 66, 035111 (2002).

[13] E. Jeckelmann, Optical excitations in a one-dimensional Mott
insulator, Phys. Rev. B 67, 075106 (2003).

[14] H. Kontani, Optical conductivity and Hall coefficient in high-Tc
superconductors: Significant role of current vertex corrections,
J. Phys. Soc. Jpn. 75, 013703 (2006).

[15] N. Lin, E. Gull, and A. J. Millis, Optical conductivity from clus-
ter dynamical mean-field theory: Formalism and application to
high-temperature superconductors, Phys. Rev. B 80, 161105(R)
(2009).

[16] D. Bergeron, V. Hankevych, B. Kyung, and A.-M. S. Tremblay,
Optical and dc conductivity of the two-dimensional Hubbard
model in the pseudogap regime and across the antiferromag-
netic quantum critical point including vertex corrections, Phys.
Rev. B 84, 085128 (2011).

[17] A. V. Chubukov, D. L. Maslov, and V. I. Yudson, Optical
conductivity of a two-dimensional metal at the onset of spin-
density-wave order, Phys. Rev. B 89, 155126 (2014).

[18] J. Kokalj, Bad-metallic behavior of doped Mott insulators,
Phys. Rev. B 95, 041110(R) (2017).

[19] D. L. Maslov and A. V. Chubukov, Optical response of corre-
lated electron systems, Rep. Prog. Phys. 80, 026503 (2017).
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