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Results are presented for the dynamics of edge modes in interacting Floquet Ising chains. It is shown that in
addition to the quasistable 0 and π edge modes, a third long lived edge mode arising from the operator product of
the 0 and π edge modes exists. Depending on the microscopic parameters, this Floquet product mode is shown to
have a substantially longer lifetime than the individual 0 and π modes. This is triggered by a scattering process
which converts a 0 mode into a π mode while scattering two bulk excitations. This process can lead to a rapid
decay of both 0 and π mode without affecting the product mode.
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I. INTRODUCTION

Floquet Ising chains with open boundary conditions, and
weak integrability breaking, host operators localized at the
edges known as almost strong modes [1–12]. These opera-
tors have the property that they are quasiconserved, i.e., their
infinite temperature autocorrelations functions are long lived
in the thermodynamic limit, with the lifetime approaching
infinity as the size of the integrability breaking perturbations
are reduced. In addition, one can have two flavors of almost
strong modes [13–27], those that almost commute with the
Floquet unitary, also known as almost strong zero modes, and
those that almost anticommute with the Floquet unitary, also
known as almost strong π modes [3,7–9].

While dynamics of 0 and π modes are well studied, here
we report on a very general observation. When two or more
conserved quantities exist, additional conserved quantities can
be constructed from the operator product of the individual
conserved quantities. For the Floquet Ising model, in the phase
where both 0 and π modes exist, we construct the Floquet
product mode from the operator product of the strong zero
and π modes. We show that this is not a trivial object as it
can have dynamics which is qualitatively different from the
dynamics of the constituent objects. Surprisingly, it is possible
for the Floquet product mode to be more stable than the 0 and
π modes.

We also show that even when the decay of the 0, π

edge modes is given by the same functional power of the
integrability breaking term, the existence of one mode can
strongly modify the scattering matrix elements and therefore
the magnitude of the decay rate of the other mode.

The paper is organized as follows. In Sec. II, the model
is presented and its properties in the absence of integrabil-
ity breaking perturbations are described. In particular, the
topological phase diagram is summarized, the expressions for
the 0, π strong modes are given, and the product mode is
defined. In Sec. III theoretical predictions for the decay rates
of the modes are presented. The regime of parameter space
where the Fermi golden rule (FGR) is valid is identified, with
expressions for the FGR decay rates presented. In addition,

the leading power of the decay rates in the regime where FGR
does not hold are given. In Sec. IV, numerical results are pre-
sented and compared with the analytic predictions of Sec. III.
Finally, we conclude in Sec. V and give more technical details
in the three Appendixes.

II. MODEL

We study stroboscopic time evolution of an open chain of
length L according to the Floquet unitary

U = e−i T
2 JzHzz e−i T

2 gHz e−i T
2 JxHxx , (1)

where

Hxx =
L−1∑
i=1

σ x
i σ x

i+1, Hz =
L∑

i=1

σ z
i , Hzz =

L−1∑
i=1

σ z
i σ z

i+1.

(2)

Above σ
x,y,z
i are Pauli matrices on site i, g is the strength

of the transverse field, and Jx,z is the strength of the Ising
interaction in the x, z direction. T denotes the period where as
T → 0, one recovers Hamiltonian dynamics. The model has
a Z2 symmetry D = σ z

1 . . . σ z
L . For Jz = 0, the Floquet unitary

U0 = U |Jz=0 becomes noninteracting, i.e., it can be expressed
entirely in terms of Majorana fermion bilinears [3,7,9,23]. In
addition, two types of Majorana edge modes, 0 and π modes
(ψ0 and ψπ ), are allowed, with the phase diagram [26,28]
shown in Fig. 1. These edge modes anticommute with the Z2

symmetry, and in the thermodynamic limit obey [U0, ψ0] = 0
and {U0, ψπ } = 0, and hence have an infinite lifetime. Their
analytic expressions are [9]

ψ0 = N0

L∑
l=1

αlξ
l−1
0 , ψπ = Nπ

L∑
l=1

βlξ
l−1
π , (3)

where N0 and Nπ are normalization prefactors.
αl = cos(gT/2)al + sin(gT/2)bl and βl = sin(gT/2)al −
cos(gT/2)bl , which are linear combinations of Majoranas
on the odd (al ) and even (bl ) sites; see Appendix A.
The localization length of the edge modes are given by
ξ0 = tan (gT/2) cot (JxT/2) and ξπ = − cot (gT/2) cot
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FIG. 1. Phase diagram of the unperturbed Floquet system. In
the presence of perturbations, both 0 mode (ψ0) and π mode (ψπ )
have finite lifetimes in the thermodynamic limit. When both 0 and
π modes exist, they can scatter with bulk modes and also with
each other. The two different colors in the 0-π phase represent two
different decay rates for 0-π scattering. In addition, when both modes
are present, a product mode � = iψ0ψπ also exists, whose lifetime,
depending on the location in the phase diagram, can be much longer
than that of the 0 and π modes (for example, the blue cross). The
four dashed curves are chosen such that the localization length of
the 0 mode (left curves, cyan) or the π mode (right curves, green) is
fixed, but all three modes, 0, π , and the product mode, show a strong
variation in their decay rates along the curves.

(JxT/2). The phase boundaries in Fig. 1 correspond to
|ξ0/π | = 1, when the modes cannot be normalized.

When both 0 and π Majorana edge modes are present,
there is another mode with an infinite lifetime. We dub this
mode the Floquet product mode because it is a product of the
two Majorana edge modes, � = iψ0ψπ . However, the product
mode is not a Majorana mode since it does not obey Majorana
anticommutation relations. As the perturbation is turned on,
Jz �= 0, all these three modes now have finite lifetime. How-
ever, these are still long-lived quasistable modes, where the
0, π modes are known as almost strong modes. To probe this
phenomena, we use that 0 and π modes are localized on the
edge with O(1) overlap with σ x

1 = a1 according to (3) and the
Jordan Wigner transformation (see details in Appendix A). As
for the product mode, since iα1β1 = −ia1b1 = −iσ x

1 σ
y
1 = σ z

1 ,
the product mode is also localized on the edge, but with O(1)
overlap with σ z

1 . Thus these modes can be detected by the
following infinite temperature autocorrelation function of σ x

1
[1,3,4,6,9,10,29] and σ z

1 :

Ax
∞(n) = 1

2L
Tr

[
σ x

1 (n)σ x
1

]
, Az

∞(n) = 1

2L
Tr

[
σ z

1 (n)σ z
1

]
, (4)

where n is the stroboscopic time period.

III. FERMI GOLDEN RULE AND BEYOND

Denoting the perturbation as

V = −Jz

2
Hzz = −Jz

2

L∑
l

αlβlαl+1βl+1, (5)

the lifetime of edge modes can be calculated from perturbation
theory in V . The FGR decay rate 	0(π ) of the 0(π ) mode is
second order in the perturbation and given by [9]

	0 = T

2L

(
1

2
Tr[ψ̇0ψ̇0] +

∞∑
n=1

Tr[ψ̇0(n)ψ̇0]

)

= 1

2L

∑
i, j

|〈i|ψ̇0| j〉|2πδF (εi − ε j ), (6)

	π = T

2L

(
1

2
Tr[ψ̇π ψ̇π ] +

∞∑
n=1

(−1)nTr[ψ̇π (n)ψ̇π ]

)

= 1

2L

∑
i, j

|〈i|ψ̇π | j〉|2πδF

(
εi − ε j + π

T

)
, (7)

where ψ̇0/π = i[V, ψ0/π ]. We define ψ̇0/π (n) =
(U †

0 )nψ̇0/πU n
0 , |i〉 are the many-particle eigenstates of

the unperturbed Floquet unitary U0 with eigenvalues e−iεiT ,
and the δF function encodes energy conservation modulo
2π/T , with δF (ε) = ∑

m δ(ε + m2π/T ). The matrix element
is determined by the norm square of the commutator between
the edge mode and the perturbation V . The Majoranas
{al} and {bl} are superpositions of Majorana edge modes
and bulk degrees of freedom: αl = (ψ0|αl )ψ0 + α̃l and
βl = (ψπ |βl )ψπ + β̃l , where α̃l and β̃l denote bulk degrees of
freedom. The inner product between two operators is defined
as (A|B) = Tr[A†B]/2L. For a nonzero commutation of the
0 mode (π mode), [V, ψ0] �= 0 ([V, ψπ ] �= 0), one requires
one of the four Majoranas in (5) to be a 0 mode (π mode)
and the others could be a π mode (0 mode) or bulk degrees
of freedom. Therefore, one can further separate the FGR
decay into different channels. For example, the perturbing
term ψ0β̃α̃β̃ corresponds to 0 mode scattering with three
bulk modes, while the term ψ0ψπα̃β̃ corresponds to the
0 mode scattering with the π mode and two bulk modes.
Thus the FGR decay rate of the 0, π modes can be split
into the following scattering channels: ψ0-bulk, ψπ -bulk and
ψ0-ψπ channel. However, the FGR decay of the product
mode only involves the ψ0-bulk and ψπ -bulk channel since
[�,ψ0ψπα̃β̃] = 0. Thus, in second order, the product mode
decays when the 0 and π modes decay independently by bulk
channels.

In summary, the FGR decay rates for 0, π , and product
modes are the sum of the following different channels; see
details in Appendix A:

	0 = 	0,B + 	0,π , 	π = 	π,B + 	π,0, 	� = 	0,B + 	π,B.

(8)

Above 	0(π ),B is the FGR decay of the 0(π ) mode through
three bulk quasiparticles, while 	0,π (	π,0) is the decay of the
0(π ) mode due to scattering with the π (0) edge mode and two
bulk quasiparticles. The FGR decay of the 0 mode (π mode)
consists of ψ0-bulk (ψπ -bulk) and ψ0-ψπ scattering, while the
FGR decay of the product mode consists of ψ0-bulk and ψπ -
bulk scattering only. Interestingly, within FGR 	0,π = 	π,0;
see Appendix A.

There are parameters where FGR is no longer valid, need-
ing one to perform higher order perturbation theory. Here we
simply provide a simple counting argument for quasienergy
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FIG. 2. Plot of the exponent m characterizing the decay via three different channels: 0 mode scatters with bulk excitations (left panel),
π mode scatters with bulk excitations (middle panel), and the 0 mode and π mode scatter with each other via bulk excitations (right panel).
The decay rate is predicted to be proportional to Jm

z for Jz → 0, where the exponent m is encoded in the color of the plot. The exponent
m = 2n is determined from the smallest n satisfying the quasienergy conservation (10) for each panel separately. The blue cross highlights the
case where the dominant scattering channel is the scattering between the 0 and π modes and is investigated in Fig. 3. The four dashed curves
(identical to Fig. 1) correspond to the case where the scattering between the edge mode and bulk excitations is second order, while the scattering
between the edge modes (ψ0-ψπ channel) is second order for the inner curves and fourth order for the outer curves. The corresponding FGR
calculations are presented in Fig. 4 (left dashed curves) and in Fig. 5 of Appendix B (right dashed curves).

conservation that allows us to determine the leading power of
V controlling the decay. For this we need the bulk dispersion
of the unperturbed Floquet unitary U0 with periodic boundary
conditions [9]

cos(εkT ) = cos(gT ) cos(JxT ) + sin(gT ) sin(JxT ) cos k. (9)

Since the perturbation V is a four-Majorana interaction, there
are 4n Majoranas in 2nth order perturbation. Note that the
decay rate should stay positive when the perturbation coupling
flips sign and therefore only even order of the perturbation
contributes to the decay rate. We consider three cases: (i)
0 mode scatters with 4n − 1 bulk excitations corresponding
to the ψ0-bulk channel, (ii) π mode scatters with 4n − 1
bulk excitations corresponding to the ψπ -bulk channel, and
(iii) 0 and π modes scatter with each other and 4n − 2 bulk
excitations, corresponding to the ψ0-ψπ channel. These corre-
spond respectively to the following quasienergy conservation
conditions (modulo 2π/T ):

0 =
4n−1∑
i=1

(±εki ), π/T =
4n−1∑
i=1

(±εki ), π/T =
4n−2∑
i=1

(±εki ),

(10)

where εki is the single particle bulk dispersion (9) and ±
signs reflect that the scattering can involve either creation or
annihilation of a bulk excitation. In Fig. 2, the colors show
the lowest power of the perturbation controlling the decay
rate, as determined by quasienergy conservation (10). There
exists a region where the product mode survives much longer
than 0 and π modes, e.g., the blue cross in Fig. 2, where
the ψ0-ψπ channel is second order while the other channels
are fourth order. This suggests the higher order decay rate of
the product mode due to (8). In addition, even in the region
where all channels are second order, the product mode might
have a longer lifetime compared to 0 and π modes since the

decay rate also depends on the localization lengths ξ0 and ξπ .
Therefore, below we also study the dynamics keeping ξ0 or ξπ

fixed, which are the four dashed curves with arrows in Fig. 2.

IV. RESULTS AND DISCUSSION

The autocorrelation of σ x
1 detects the decay of 0 and

π mode at the same time. In the nonperturbed case, the auto-
correlation obeys Ax

∞(n) ∼ c1 + c2(−1)n, where c1 and c2 are
constants. The 0 (π ) -mode contributes to c1(c2). Even in the
presence of perturbations, this leads to two pronounced peaks
in the spectral function Ãx

∞(ω) = ∑
n Ax

∞(n)e−iωnT at ω = 0
and ω = π/T ; see discussion in Appendix C. The decay of
the 0 and π modes in n can be studied directly through the
following decomposition:

Ax+
∞ (n + 1/2) = Ax

∞(n + 1) + Ax
∞(n)

2
, (11)

Ax−
∞ (n + 1/2) = Ax

∞(n + 1) − Ax
∞(n)

2
. (12)

We utilize the data points where n is odd in (11) and (12)
ensuring a positive sign for Ax−

∞ . The parameters are chosen to
be JxT = 2.8 and gT = 1.6, corresponding to the blue cross in
Figs. 1 and 2. The results A±

∞ are shown in the left and middle
panels of Fig. 3. The right panels show the autocorrelation
(−1)nAz

∞. The bottom left and middle panels are rescaled
plots that highlight the agreement with FGR for small Jz. Due
to strong finite size effects, we cannot probe small Jz/Jx � 1
for the decay of the product mode. However, the plots already
show a much longer lifetime for the product mode, even for
the larger values of Jz, as compared to the 0, π modes in
Fig. 3. This is consistent with the quasienergy conservation
calculation in Fig. 2.

We also perform the FGR calculation along the four curves
in Figs. 1 and 2. The FGR results of the left curves (fixed
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FIG. 3. Autocorrelations for different strengths of the integrability breaking term Jz, and for JxT = 2.8, gT = 1.6 (blue cross in Figs. 1,
2). Top panels: the autocorrelation for system sizes L = 12, 14 for almost strong 0 mode (left), almost strong π mode (middle), and the product
mode (right). The lifetime increases as Jz decreases. For Jz = 0.1Jx , the lifetime of the product mode is more than four orders of magnitude
larger than the lifetime of the 0 or π modes. Bottom panels: the autocorrelation function is rescaled to be 1 in the quasistable region. The time
is rescaled to (JzT )2n (all panels) and the autocorrelations are compared with the FGR result 	 = 0.109J2

z T (left and middle panels) because
the scattering is dominated by the ψ0-ψπ channel. The lifetime of the product mode (right) is much longer than almost strong 0 and π modes
and the rescaled autocorrelation suggests a decay rate beyond FGR. Due to strong system size effects, the numerical results only probe up to
Jz = 0.1Jx and therefore we cannot conclude the scaling of the autocorrelations for small Jz/Jx � 1.

ξ0) are shown in Fig. 4. The top panels in Fig. 4 explore
the decay rate when it is dominated by bulk channels such
that 	� = 	0 + 	π . From (9), the bulk dispersion is invariant
under reflection about gT + JxT = π and gT = JxT and the
x axes reflect this. The asymmetry in the decay rate of the
0 mode in the top panel of Fig. 4 indicates that the existence
of the π mode suppresses the ψ0-bulk channel. This can
be understood in the limiting case of completely localized
edge modes, ψ0 = α1 and ψπ = β1. The perturbation now is
purely in the ψ0-ψπ channel, ψ0ψπα̃2β̃2, and bulk channels
are fully suppressed. In general, although the bulk channels
are the leading contributions in the top panels of Fig. 4, it
is suppressed for the right data points, because of the localized
edge modes. This effect also appears in the bottom panels of
Fig. 4, where all three channels obey FGR and yet the product
model is more robust than both 0 and π modes since it only
senses the bulk channels.

The results for the right curves in Figs. 1 and 2 (fixed
ξπ ) share the same features as Fig. 4 and are presented in
Appendix B, where the details of the numerical computation
are also discussed. Due to oscillations in time, decay rates of
O(10−6) and smaller are not accurate, yet these data points are
presented in order to indicate a slow decay channel.

V. CONCLUSIONS

We have presented a mode, dubbed the Floquet product
mode, that arises from the product of two existing modes, but
nevertheless has dynamics which is independent of the modes
from which it is constructed. We have shown that the prod-
uct mode can have parametrically longer lifetimes than the
constituent modes. This result can be interpreted as a Majo-
rana analog of an approximate decoherence free subspace, but
generalized to an interacting and infinite temperature system.
From the viewpoint of diagrammatic perturbation theory, the

lifetime of the constituent Majorana states is encoded in the
imaginary part of the Green’s function, with the long lifetime
of the product mode reflecting a subtle cancellation between
vertex- and self-energy corrections.

While we presented this model for a nonintegrable Floquet
Ising chain, we expect that similar effects occur in periodically
driven topological superconductors [30]. The model inves-
tigated by us can be realized in a straightforward way on
present-day quantum computers; however, additional decay
channels arising from noise and dephasing effects will play
a role in this case.
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APPENDIX A: DECAY CHANNELS IN FGR

Here we provide a detailed derivation of the different decay
channels of the edge modes within a Fermi golden rule (FGR)
approximation. In Ref. [9], the FGR decay rate when only a 0
or π mode is present was derived. These were shown to be

	0 = T

2L

(
1

2
Tr[ψ̇0ψ̇0] +

∞∑
n=1

Tr[ψ̇0(n)ψ̇0]

)

= 1

2L

∑
i, j

|〈i|ψ̇0| j〉|2πδF (εi − ε j ), (A1)
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FIG. 4. FGR results for fixed localization length of the 0 mode,
ξ0 = 0.1 (top) and ξ0 = 0.2 (bottom) for L = 50, and corresponding
respectively to the upper and lower left curves in Fig. 2. Due to
rapid oscillations at long times, the numerical accuracy of the FGR
result is ≈10−6. For ξ0 = 0.1 (top), the FGR decay only arises from
ψ0-bulk and ψπ -bulk channels, with the decay rate of the product
mode being the sum of 0 and π mode decay rate according to (8).
The asymmetry of the 0 mode decay rate indicates the suppression
of the matrix element due to the presence of the π mode. The decay
rate of the π mode is suppressed faster, reflecting the approach to
the higher order region in Fig. 2. For ξ0 = 0.2 (lower panel), all
scattering channels contribute in FGR. However, the matrix element
is dominated by the ψ0-ψπ channel as the π mode is localized.
Therefore, the decay rates of 0 and π mode are the same for the
data points on the right. The product mode has a much smaller decay
rate on the right because it only decays via scattering with bulk
excitations; see (8).

	π = T

2L

(
1

2
Tr[ψ̇π ψ̇π ] +

∞∑
n=1

(−1)nTr[ψ̇π (n)ψ̇π ]

)

= 1

2L

∑
i, j

|〈i|ψ̇π | j〉|2πδF

(
εi − ε j + π

T

)
, (A2)

where ψ̇0/π = i[V, ψ0/π ] and V = JzHzz/2. We define
ψ̇0/π (n) = (U †

0 )nψ̇0/πU n
0 with the unperturbed Floquet uni-

tary U0. |i〉 are the many-particle eigenstates of U0 with
eigenvalue e−iεiT and the δF function encodes energy conser-
vation modulo 2π/T , with δF (ε) = ∑

m∈int δ(ε + m2π/T ).
The analytic expressions of edge modes are [9]

ψ0 = N0

∞∑
l=1

[
cos

(
gT

2

)
al + sin

(
gT

2

)
bl

]
ξ l−1

0 ,

ψπ = Nπ

∞∑
l=1

[
sin

(
gT

2

)
al − cos

(
gT

2

)
bl

]
ξ l−1
π , (A3)

where N0 and Nπ are normalization prefactors and the local-
ization length of edge modes are ξ0 = tan(gT/2) cot(JxT/2)
and ξπ = − cot(gT/2) cot(JxT/2). The Majoranas are defined
according to the following convention:

al =
l−1∏
j=1

σ z
j σ

x
l , bl =

l−1∏
j=1

σ z
j σ

y
l . (A4)

By rotation of the basis, we define the Majoranas as

αl = cos

(
gT

2

)
al + sin

(
gT

2

)
bl ,

βl = sin

(
gT

2

)
al − cos

(
gT

2

)
bl . (A5)

In the new basis, the edge modes and the perturbation V have
simple expressions

ψ0 = N0

∞∑
l=1

αlξ
l−1
0 , ψπ = Nπ

∞∑
l=1

βlξ
l−1
π , V = −Jz

2

∞∑
l

αlβlαl+1βl+1. (A6)

Now, one can proceed to calculate FGR (A1) and (A2) with the above expressions.
The Majoranas {αl , βl} consist of edge and bulk degrees of freedom, i.e., αl = (ψ0|αl )ψ0 + α̃l and βl = (ψπ |βl )ψπ + β̃l

with the inner product between two operators defined as (A|B) = Tr[A†B]/2L. Let us first focus on the 0 mode. The perturbation
can be separated into terms commuting or noncommuting with the 0 mode by employing αl = (ψ0|αl )ψ0 + α̃l ,

V = −Jz

2

∞∑
l=1

[(ψ0|αl ) × ψ0βl α̃l+1βl+1 + (ψ0|αl+1) × α̃lβlψ0βl+1] + terms commuting with ψ0. (A7)

Only terms containing one ψ0 lead to [V, ψ0] �= 0. Therefore, the ψ̇0 term in the FGR decay rate is given by

ψ̇0 = i[V, ψ0] = iJz

∞∑
l=1

[(ψ0|αl ) × βl α̃l+1βl+1 + (ψ0|αl+1) × α̃lβlβl+1]. (A8)
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Moreover, using that the β Majoranas have an overlap with the π mode and the bulk modes, βl = (ψπ |βl )ψπ + β̃l , the above
expression can be further expanded into the sum of two channels ψ̇0 = ψ̇0,π + ψ̇0,B, where

ψ̇0,π = iJz

∞∑
l=1

[(ψ0|αl )(ψπ |βl ) × ψπα̃l+1β̃l+1 + (ψ0|αl )(ψπ |βl+1) × β̃l α̃l+1ψπ

+ (ψπ |βl )(ψ0|αl+1) × α̃lψπβ̃l+1 + (ψ0|αl+1)(ψπ |βl+1) × α̃l β̃lψπ ], (A9)

ψ̇0,B = iJz

∞∑
l=1

[(ψ0|αl ) × β̃l α̃l+1β̃l+1 + (ψ0|αl+1) × α̃l β̃l β̃l+1

− (ψ0|αl )(ψπ |βl )(ψπ |βl+1) × α̃l+1 + (ψπ |βl )(ψ0|αl+1)(ψπ |βl+1) × α̃l ]. (A10)

Above, ψ̇0,π describes scattering between the 0 and π modes and ψ̇0,B accounts for scattering of the 0 mode with the bulk
modes. Substituting the above expressions in (A1) and (A2), the FGR decay rate of the zero mode now consists of two parts,
	0 = 	0,π + 	0,B,

	0,π = T

2L

(
1

2
Tr[ψ̇0,π ψ̇0,π ] +

∞∑
n=1

Tr[ψ̇0,π (n)ψ̇0,π ]

)
= 1

2L

∑
i, j

|〈i|ψ̇0,π | j〉|2πδF (εi − ε j ), (A11)

	0,B = T

2L

(
1

2
Tr[ψ̇0,Bψ̇0,B] +

∞∑
n=1

Tr[ψ̇0,B(n)ψ̇0,B]

)
= 1

2L

∑
i, j

|〈i|ψ̇0,B| j〉|2πδF (εi − ε j ). (A12)

Note that the cross term Tr[ψ̇0,π ψ̇0,B] = 0, since Tr[ψπ ] = 0 and only a single ψπ enters inside the trace of the cross term.
Similarly, for the case of the π mode, one expands the perturbation with βl = (ψπ |βl )ψπ + β̃l and derives ψ̇π as

ψ̇π = i[V, ψπ ] = −iJz

∞∑
l=1

[(ψπ |βl ) × αlαl+1β̃l+1 + (ψπ |βl+1) × αl β̃lαl+1]. (A13)

The above can be further separated into two channels by using αl = (ψ0|αl )ψ0 + α̃l ,

ψ̇π ,0 = −iJz

∞∑
l=1

[(ψπ |βl )(ψ0|αl ) × ψ0α̃l+1β̃l+1 + (ψπ |βl )(ψ0|αl+1) × α̃lψ0β̃l+1 + (ψπ |βl+1)(ψ0|αl )

× ψ0β̃l α̃l+1 + (ψπ |βl+1)(ψ0|αl+1) × α̃l β̃lψ0], (A14)

ψ̇π ,B = −iJz

∞∑
l=1

[(ψπ |βl ) × α̃l α̃l+1β̃l+1 + (ψπ |βl+1) × α̃l β̃l α̃l+1 + (ψπ |βl )(ψ0|αl )(ψ0|αl+1)

× β̃l+1 − (ψπ |βl+1)(ψ0|αl )(ψ0|αl+1) × β̃l ]. (A15)

Hence the FGR is the sum of two channels, 	π = 	π,0 + 	π,B,

	π,0 = T

2L

(
1

2
Tr[ψ̇π ,0ψ̇π ,0] +

∞∑
n=1

(−1)nTr[ψ̇π ,0(n)ψ̇π ,0]

)
= 1

2L

∑
i, j

|〈i|ψ̇π ,0| j〉|2πδF

(
εi − ε j + π

T

)
, (A16)

	π,B = T

2L

(
1

2
Tr[ψ̇π ,Bψ̇π ,B] +

∞∑
n=1

(−1)nTr[ψ̇π ,B(n)ψ̇π ,B]

)
= 1

2L

∑
i, j

|〈i|ψ̇π ,B| j〉|2πδF

(
εi − ε j + π

T

)
. (A17)

Finally, we consider the FGR of the product mode, � = iψ0ψπ . Since � behaves like a π mode, U †
0 �U0 = −�, the FGR of

� obeys

	� = T

2L

(
1

2
Tr[�̇�̇] +

∞∑
n=1

(−1)nTr[�̇(n)�̇]

)
= 1

2L

∑
i, j

|〈i|�̇| j〉|2πδF

(
εi − ε j + π

T

)
. (A18)

Using chain rule, �̇ can be expressed as

�̇ = iψ̇0ψπ + iψ0ψ̇π = iψ̇0,Bψπ + iψ0ψ̇π ,B + i(ψ̇0,πψπ + ψ0ψ̇π ,0). (A19)

Note that

ψ̇0,πψπ + ψ0ψ̇π ,0 = 0, (A20)
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FIG. 5. FGR results for fixed localization length of the π mode, ξπ = 0.1 (left) and ξπ = 0.2 (right) for L = 50. Due to rapid oscillations
at long times, the numerical accuracy of the FGR result is ≈10−6. Similar to the examples of fixed ξ0 in Fig. 4, FGR arises from ψ0-bulk and
ψπ -bulk scattering channels for ξπ = 0.1 (left), while all channels are allowed in FGR for ξπ = 0.2 (right).

which can be checked directly from (A9) and (A14). Here we provide a simple argument. Since the commutator
[ψ0ψπ,ψ0ψπα̃β̃] = 0 forbidding the scattering between 0 and π modes, it implies that nonzero commutations only come from
the bulk channels. Therefore, the FGR of the product mode can be expressed as

	� = T

2L

{
1

2
(Tr[ψ̇0,Bψ̇0,B] + Tr[ψ̇π ,Bψ̇π ,B]) +

∞∑
n=1

(Tr[ψ̇0,B(n)ψ̇0,B] + (−1)nTr[ψ̇π ,B(n)ψ̇π ,B])

}

= 	0,B + 	π,B. (A21)

Note that the cross terms are not allowed since trace of odd numbers of ψ0 or ψπ is zero. In summary, the FGR decay rates for
the 0, π and product modes are given by

	0 = 	0,B + 	0,π , 	π = 	π,B + 	π,0, 	� = 	0,B + 	π,B. (A22)

We now show that 	0,π = 	π,0 at second order in the perturbation. We use the identity (A20) in the FGR formula,

	π,0 = 1

2L

∑
i, j

|〈i|ψ̇π ,0| j〉|2πδF

(
εi − ε j + π

T

)

= 1

2L

∑
i, j

|〈i|ψ0ψ̇0,πψπ | j〉|2πδF

(
εi − ε j + π

T

)
, by ψ̇0,πψπ + ψ0ψ̇π ,0 = 0,

= 1

2L

∑
k,l

|〈k|ψ̇0,π |l〉|2πδF (εk − εl ) = 	0,π , (A23)

where in the last line we relabel states as |k〉 = ψ0|i〉 and |l〉 =
ψπ | j〉 with quasienergy, εk = εi, and εl = ε j − π/T .

In summary, the “symmetry” 	0,π = 	π,0 in second order
is a consequence of the operator relation (A20). For decay
rates beyond second order, the meaning of 	0,π may be a little
ambiguous. For example, one may consider a higher order
process for the 0 mode self-energy bubble diagram where
some of the internal lines are π mode propagators that are not
directly connected to 0 mode propagators, i.e., 0 mode and
π mode are scattered indirectly via bulk excitations. There-
fore, establishing 	0,π = 	π,0 in higher order processes is not
well posed.

APPENDIX B: NUMERICAL COMPUTATION OF FGR

In this section, we present the numerical method to per-
form FGR calculations for large system sizes. The FGR is
related to the autocorrelation Tr[ψ̇0/π (n)ψ̇0/π ] and it leads
to products of maximally six operators in the trace, e.g.,
Tr[O6O5O4O3O2O1]/2L. Each operator is a single Majorana
evolving with the unperturbed Floquet unitary U0. The latter
is a matrix of size 2L × 2L and is much easier to compute

compared to a 2L × 2L matrix in the many-particle basis.
However, the matrix is represented in the single Majorana
basis and one cannot multiply and trace the matrices directly
since multiplication and trace is defined on the many-particle
basis. Instead, we will utilize the anticommutation property
of Majoranas to calculate the trace. First, we perform the
Gram-Schmidt orthogonalization of the six operators

O1 = c1Ō1, (B1)

Oi =
i−1∑
j=1

(Ō j |Oi )Ō j + ciŌi, for i � 2, (B2)

where we introduce coefficients {ci} such that {Ōi} are nor-
malized and {Ōi, Ō j} = 2δi j . One can show that the following
operators:

O′
1 = c1Ō′

i, (B3)

O′
i =

i−1∑
j=1

(Ō j |Oi )Ō
′
j + ciŌ

′
i, for i � 2, (B4)
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FIG. 6. FGR results of 	0 and 	0,B with gT = 1.8 and JxT = 2.65, corresponding to the rightmost data in the right panel of Fig. 5. Left
panel: numerical computation of decay rate by summing up to n∗ in (A1) and (A12). The late time oscillations are due to revivals in a finite
size system. Right panel: 	0,B shows oscillations with n∗ of order 10−6 between n∗ = 110 and n∗ = 190.

where {Ō′
i, Ō′

j} = 2δi j , lead to the same result for the trace,
Tr[O′

6O′
5O′

4O′
3O′

2O′
1]/D = Tr[O6O5O4O3O2O1]/2L, where

{O′
i} are D × D matrices and {Oi} are 2L × 2L matrices.

The precise value of D is explained below. Inside the
trace, only the algebra between {Ōi} matters and one can
replace them by any other operators {Ō′

i} as long as the
algebraic structure stays the same. Numerically, one first
performs the Gram-Schmidt to obtain the coefficient (Ō j |Oi )
and then computes the trace of the operator O′

i by setting
{Ō′

i} = {a1, b1, a2, b2, a3, b3}, the first six Majoranas. Since
the six Majoranas can be expressed as Pauli strings of a 1D
spin chain on three sites, each of them is an 8 × 8 matrix;
thus D = 8.

In Fig. 5, we perform numerical FGR calculations for ξπ =
0.1, 0.2. This corresponds respectively to the upper and lower
right curves in the phase diagram Fig. 2 and shares the same
features as the FGR computation with ξ0 = 0.1, 0.2 in Fig. 4.
Numerically, one computes the decay rate by truncating the
summation over discrete time up to some discrete time n∗ in
the FGR expressions (A1) and (A2). In Fig. 6, we show 	0

and 	0,B for different n∗ for gT = 1.8 and JxT = 2.65, corre-
sponding to the rightmost data in the right panel of Fig. 5. For
	0, it saturates at n∗ ∼ 40 and starts to fluctuate at n∗ ∼ 190.
The fluctuations at late times are from revivals in any finite
size system. Therefore, we numerically determine the decay
rate by setting n∗ to be some value before the revivals occur,
with n∗ varying for different gT and JxT . When the decay rate
is small compared to the fluctuation, e.g., for 	0,B in Fig. 6, we
estimate the decay rate by taking the average from n∗ = 100

to some n∗ before revivals occur. As shown in the right panel
of Fig. 6, the scale of the fluctuation is about 10−6 and sets
the accuracy of the numerical computation. Nevertheless, we
still present data points for these small decay rates (smaller
than 10−6) to indicate the existence of a much slower decaying
channel.

APPENDIX C: SPECTRAL FUNCTION OF THE
AUTOCORRELATION FUNCTION

Here we present the spectral function Ãx
∞(ω) defined as

Ãx
∞(ω) =

n=∞∑
n=−∞

Ax
∞(n)e−iωnT , (C1)

with Ax
∞(−n) = Ax

∞(n). We show the numerical results for the
spectral function Ãx

∞(ω) in Fig. 7 with the same parameters
as Fig. 3. The existence of almost strong 0 and π modes
are reflected in the peaks at ω = 0 and π/T of the spectral
function. The width of these peaks are in principle directly
related to the decay rate. Numerically, it is impractical to
compute the autocorrelation at every time step n. The spectral
function is numerically computed from limited ED data points
in Fig. 3, which leads to the oscillations in the numerical spec-
tral function. Therefore, it is more convenient to determine
the decay rate from rescaling the autocorrelation in the time
domain, where only a few ED data points can capture the full
decay behavior.

FIG. 7. Spectral function Ãx
∞(ω) for the same parameters as Fig. 3. The peaks at ω = 0 and π/T indicate the almost strong 0 and π modes.

The oscillations come from the limited ED data points in real time.
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