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Dynamics of symmetry-protected topological matter on a quantum computer

Miguel Mercado ,1,* Kyle Chen,2 Parth Hemant Darekar ,3,4 Aiichiro Nakano ,5 Rosa Di Felice ,1,6 and Stephan Haas 1

1Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0484, USA
2Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA

3Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089-0484, USA
4Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742, USA

5Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, California 90089-0484, USA
6Center S3, CNR Institute of Nanoscience, Via Campi 213/A, 41125 Modena, Italy

(Received 24 March 2024; revised 11 June 2024; accepted 19 July 2024; published 8 August 2024)

Control of topological edge modes is desirable for encoding quantum information resiliently against external
noise. Their implementation on quantum hardware, however, remains a long-standing problem due to current
limitations of circuit depth and noise, which grows with the number of time steps. By utilizing recently developed
constant-depth quantum circuits in which the circuit depth is independent of time, we demonstrate successful
long-time dynamics simulation of bulk and surface modes in topological insulators on noisy intermediate-scale
quantum (NISQ) processors, which exhibits robust signatures of localized topological modes. We further identify
a class of one-dimensional topological Hamiltonians that can be readily simulated with NISQ hardware. Our
results provide a pathway towards stable long-time implementation of topological quantum spin systems on
present-day quantum processors.
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I. INTRODUCTION

Understanding topological properties of matter is a current
frontier of physics [1–7]. Chiral phenomena, in particu-
lar, have been ubiquitously sought after in recent years
for their novel emergent behaviors which have been ob-
served, for example, in acoustic and mechanical systems
[8–14], photonics [15–19], and magnetic materials [20–25].
Symmetry-protected topological (SPT) phases, the paradig-
matic models for realizing such chiral states, are characterized
by their protection via global symmetries which have become
well-studied in the space domain [26–30]. A consequence of
topological symmetry protection is the predicted robustness
of SPT phases against local noise and perturbations, open-
ing avenues for foundational research and numerous device
applications in quantum science [31–47], such as novel high-
performance transistors [48–50], quantum sensors [51,52],
and protected room-temperature transport devices [53–56].

Despite this enticing context, thorough investigation of
chiral topological modes within the time-domain curiously
remains ambiguous, especially within the context of open
system time evolution [57,58]. Understanding the role of
topology in the dynamics of quantum systems, therefore, is
a timely endeavor, which, however, has been exceptionally
challenging to realize and control due to the inherent difficulty
of accessing sensitive many-body quantum states [59–61].

As intrinsically quantum platforms, a pioneering appli-
cation of quantum computers is the physical simulation
of many-body systems [62–66], where in special-use cases
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practical quantum advantage has recently been shown to
be achievable [67]. Such is the potential of quantum sim-
ulation that topological physics is currently being explored
using photonic simulators [68–72], ultracold atoms [9,73–
77], hybrid-quantum simulation [78], and periodically driven
quantum simulators [79–81].

While these provide a promising route to investi-
gate condensed-matter systems, many-body interactions that
would otherwise be intractable for analog quantum simulators
are well suited for digital quantum simulation, which provides
universal capability to realize any finite-dimensional local
Hamiltonian using sequences of quantum circuits [66,82,83].
Although topological states have been prepared and observed
using digital quantum simulation [84–90], the analysis of
transient behavior of topological modes in the time domain
presents a particular set of challenges. A primary reason is
the effect of readout noise and gate-error rates, which have
sharply limited reliable quantum simulation of interacting
many-body systems [91].

The computational power and effectiveness of current
noisy intermediate-scale quantum (NISQ) computers is re-
stricted by the number and quality of qubits. In fact, NISQ-era
qubits have short coherence times and high gate-error rates
[92], which demand the requirement for noise mitigation and
error correction schemes. Moreover, quantum simulations for
generic Hamiltonians require that the circuit depth scales lin-
early at minimum with the number of simulation time steps,
according to the no-fast-forwarding theorem [93–95]. These
restraints make prolonged time evolution of many-body sys-
tems exceedingly challenging for conventional approaches.

To date, a reliable method to realize the long-time dy-
namics of topological phases of matter using digital quantum
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simulation is not available due to the aforementioned limita-
tions. Prior simulations are largely restricted in the number
and width of time-step intervals, making the analysis of tran-
sient dynamics, which is non-negligible when interaction with
the environment is present, unreachable.

We introduce a method to realize the long-time quantum
dynamics of topological matter using contemporary quantum
hardware, positioning NISQ computation as a favorable envi-
ronment to probe novel phases of matter. In comparison to
previous methods [84–90], which have been limited in the
total time duration or restricted entirely to the space domain,
our protocol enables the quantum simulation of topological
states in one spatial dimension nominally up to arbitrarily
long times. We call to attention a subset of Hamiltonians with
novel topological properties that are now tractable with this
result. Its ability to predict physical results does not rely on
employing readout error mitigation or postprocessing tech-
niques, though the output precision can be complemented by
such techniques. By engineering interactions between qubits,
we implement and analyze three different topologically non-
trivial states. Specifically, we construct the desired topological
phases via staggered coupling, using a topological mirror,
and introducing a topological defect. We utilize the time-step
compression of recently developed constant-depth quantum
circuits [96,97], which possess the key property that the depth
required to execute a quantum simulation is constant with
respect to the number of time steps compared to linear or ex-
ponential scaling. This inherent feature of matchgates enables
the construction of topological Hamiltonians as quantum cir-
cuits to be simulated for arbitrary time. This is achieved
because the constituents of constant-depth circuits, match-
gates, have the symmetric property that the product of two
matchgates is itself a matchgate, allowing for the decom-
position into native gates with only two CNOT gates, while
conventionally three CNOT gates are needed. This reduction
enables the Trotter error to be made negligible by breaking
the simulation down into small time steps. We point out that
while fixed-depth circuits were recently designed to map spin
and fermionic models onto quantum hardware [97,98], their
physical implementation towards topological models and rig-
orous investigation of their experimental result have not yet
been carried out. Subsequently, we provide an analysis of the
long-time dynamics of bulk and edge modes and observe that
the topological modes are coherently stabilized in each case
using our method, where transient data are clearly visible.

II. DYNAMICS OF TOPOLOGICAL INSULATORS
AS CONSTANT-DEPTH CIRCUITS

We simulate the time evolution of coupled SPT insulator
systems using quantum circuits. In this approach, the nontriv-
ial topology is introduced via locally varying nearest-neighbor
couplings between lattice sites that host magnetic dipoles.

We implement the topological states using a one-
dimensional (1D) quantum spin Hamiltonian, given by

H = −
N−1∑
i=1

Jz,iZiZi+1 − hx

N∑
i=1

Xi, (1)

FIG. 1. Schematic illustration of topological insulator models
with alternating couplings J and J ′ (> J), realized in this work on
quantum processors using five qubits. (a) Spin-1/2 chain with a
topological surface mode observed on the first qubit. (b) Spin-1/2
chain with topological surface modes on the first and fifth qubits.
(c) Spin-1/2 chain with a topological defect mode on the central
qubit.

where Zi and Xi denote the spin-1/2 Pauli z and x matrices
acting on qubit i, Jz,i denotes the z-direction coupling between
qubits i and i + 1, and hx is an external magnetic field in the x
direction. By particular choices of Jz,i, the signature bulk and
edge modes of topological insulator systems emerge and are
tunable; we extensively examine multiple cases. We note that,
while Eq. (1) presents a quantum Hamiltonian with couplings
between qubits along the z direction and the external field in
the x direction, the model generalizes to couplings and fields
along any direction, where nearest-neighbor interactions are
confined to two or less directions, and the external field acts
along one perpendicular direction.

A schematic of the topological configurations is given in
Fig. 1. In general, when the coupling J ′ is greater than J ,
the system enters a topologically nontrivial regime and ex-
hibits protected topological modes that exist on the weakly
coupled edges of the system [27,99–106]. Figure 1(a) shows
a topological edge mode, which can be created and protected
via alternating weak couplings J and strong couplings J ′ in
a chain. Figure 1(b) shows a mirror configuration, which can
be created by using weak couplings J connecting the qubits
on the edge and strong couplings J ′ connecting the “bulk”
qubits, thus creating edge modes at the two ends of the chain.
Figure 1(c) illustrates a topological defect, which can be cre-
ated in the center of the chain by choosing strong couplings J ′
at the edges and weak couplings J connecting the bulk qubits.

As a special class of quantum circuits, constant-depth
circuits have a constant scaling rate in circuit depth with
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FIG. 2. Building constant depth circuits for a five-qubit system.
(a) Matchgate symmetry is enforced on a set of matchgates outlined
in bold. (b) Pairs of matchgates are mapped to singles using the
SU(2) downfolding property of matchgates. The process is repeated
for remaining matchgates in each set as denoted by the dotted line.
(c) New circuit with number of matchgate columns reduced by 1 is
produced.

time steps, as compared to conventional circuits or low-depth
circuits which scale linearly or exponentially. This class of
Hamiltonians thus embodies a nontrivial exception to the no-
fast-forwarding theorem [95,107]. The time-step compression
of constant-depth circuits follows directly from their intrinsic
matchgate property, which utilizes symmetry to downfold the
total amount of circuits needed to construct quantum algo-
rithms on native gates.

According to this property, the product of two matchgates
is also a matchgate, constituting an SU(2) Lie algebra [96].
This allows the decomposition of a matchgate into native
gates, which conventionally requires three CNOT gates, to
be executed with only two CNOT gates with constant-depth
circuits. Therefore, N (N − 1) CNOT gates are required to sim-
ulate a system with N spins. This compression in resource
requirement allows the Trotter error, which is proportional to
the size of the time step, to be negligible, by breaking down
the simulation into miniature time steps which can be repeated
many times. We elaborate on this method in Sec. II of the
Supplemental Material [108].

In Fig. 2, we illustrate the construction of constant-depth
circuits for five-qubit spin systems. We map SPT insulators
into constant-depth circuits, splitting the total evolution into
discretized time steps �t = 0.1 in units of the inverse applied
magnetic field h̄/hx following the convention h̄ = 1. In prin-
ciple, one can continually reduce the Trotter error by breaking
down the total simulation time into increasingly smaller time-
step intervals.

In order to generate the circuits for these systems, we
employ numerical optimization to identify optimal circuit
parameters. This is accomplished by first computing the
time-evolution operator associated with each topological spin
system, which defines a target matrix. After constructing the
constant-depth circuit structure, which contains N match-
gate columns for a system with N qubits, we compute its
corresponding circuit matrix. Then, we generate optimized
constant-depth circuits by minimizing the distance between
the target matrix and the circuit matrix. This procedure is
detailed in Sec. III of the Supplemental Material [108]. We
point out that generation of constant-depth circuits can be
achieved independently of the optimization method used.

III. REALIZATION ON QUANTUM HARDWARE

We implement the time evolution of SPT insulator mod-
els using an IBM transmon-based quantum computer [109],
demonstrating that topological physics can be coherently ob-
served with ibmq_manila, a quantum processor with five
qubits. Our experiments using five-qubit chains illustrate that
the strength of topological effects in the many-body dynamics
are predominantly dictated by the contrast between J and J ′.
Because of their intrinsic gap, the equilibration time of each
topological model is only weakly dependent on system size
[110]. Moreover, we expect exponentially fast convergence
in the system length of gapped states [111]; these two ob-
servations have been checked empirically using additional
hardware calculations. As realized on NISQ processors, each
model is subjected to environmental noise that is intrinsic to
the quantum device itself [112], which exists independently
from the noise of Trotter-error type which is mitigated by
constant-depth circuits. We compare our results with classical
simulations, using exact diagonalization to numerically solve
the closed-system dynamics as ground truth (Sec. IV of the
Supplemental Material [108]).

The IBM hardware results for the topological mirror case
in Fig. 1(b) are shown in Fig. 3, where the z-direction mag-
netization is reported for each qubit as a function of time,
over the total open-system evolution. Presented in Fig. 3(a)
is the real-space data obtained from the quantum hardware
(solid blue lines), while Fig. 3(b) shows the corresponding
power spectrum in frequency space generated by performing a
Fourier transform (solid red lines). The experimental result is
plotted against its respective closed-system Fourier spectrum
in dotted red lines for reference.

For this configuration, we expect strongly localized topo-
logical surface modes on both open ends of the quantum spin
chain. Furthermore, since there is spatial mirror symmetry in
the system parameters, qubits 1 and 5 should be equivalent, as
well as qubits 2 and 4.

Indeed, the result obtained from the quantum hardware ac-
curately corroborates these expectations. A clear signature of
topological surface modes is evidenced by the strong temporal
oscillations of the magnetization in qubits 1 and 5, translating
into sharp low-energy modes in the power spectrum, indicated
by arrows in Fig. 3. Their frequency depends on the choice of
Hamiltonian parameters J , J ′, and hx, whereas their lifetime
is characterized by the damping rate γ as in a fitting formula,
m(t ) ∝ exp(−γ t ). We remark that, in the complementary
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FIG. 3. Local dynamics of a five-qubit Hamiltonian in a topologically nontrivial regime, illustrated in Fig. 1(b), obtained by NISQ
processors. J = 2, J ′ = 4, and hx = 1. (a) Real-space magnetization in the z direction for each qubit in solid blue lines. Transient dynamics
is highlighted with orange lines which are fitted according to the lifetime damping formula exp(−γ t). We report the values of the damping
constant γ as follows: qubit 1, 4.1324; qubit 2, 0.3843; qubit 3, 1.6278; qubit 4, 0.1686; qubit 5, 5.5488, in units of hx . Black stars indicate
the noisy finite-system equilibration times for each qubit (defined in Sec. III D of the Supplemental Material [108]), where the dotted green
lines indicate the value of the local average magnetization of each qubit over the entire time evolution t = 0 to t = 10 (qubit 1, 0.6488; qubit
2, 0.5772; qubit 3, 0.3348; qubit 4, 0.5641; qubit 5, 0.6080, in units of hx). Time is reported in units of the inverse magnetic field 1/hx .
(b) Fourier-transformed power spectrum in frequency space (solid red lines). Sharp surface modes are clearly visible on the first and fifth
qubits. Frequency is reported in units of the magnetic field hx . Results are overlaid with its closed-system power spectrum in dotted red lines
(see Sec. IV of the Supplemental Material [108] for complete closed-system results for each model).

closed-system calculation, this frequency is equivalent to the
energy difference between pairs of eigenstates. These topolog-
ical mode signatures are the salient feature preserved amidst
noise in the hardware results. Constant-depth circuits have
stabilized the SPT modes, producing longer-lived states at
the edge of the system, which has not been observable with
conventional quantum circuits (see Supplemental Material,
Fig. S13 [108]).

In contrast, the“bulk” qubits 2, 3, and 4 do not display
any oscillations, in analogy with the equivalent closed-
quantum-system dynamics [59] discussed in Sec. IV of
the Supplemental Material [108]. Furthermore, we observe
site-dependent transient dynamics in the time window t ∈
[0, 4], with the odd-site qubits settling into their steady state
markedly earlier than the even sites, as indicated by the black
dots in Fig. 3(a), which were obtained using the criteria
for equilibration times of noisy finite systems outlined in
Ref. [110], namely, when the expectation value of an observ-
able approaches its average A and begins fluctuating about it

with fluctuations δA =
√
A2 − A2

. Here we choose a defini-
tion based on the physical reasoning that finite-sized, gapped
quantum states produce quasiperiodic dynamics, which is vis-
ible in the local magnetization. The orange lines are obtained
by fitting the exponential damping function to the short-
time data, indicating with the black star where this transient
functional dependence does not apply anymore. The corre-
sponding value of the local average magnetization 〈σ z

i 〉 =
1
T

∫ T
0 〈σ z

i (t )〉dt is plotted as the dotted green line. We conclude
that the topological surface modes equilibrate rapidly and
fluctuate robustly upon reaching their steady state, in contrast

to the bulk qubits which undergo gradual temporal decay and
require going out to much longer times to observe their full
equilibration—underscoring the stabilizing effect of topology
in the open-quantum-system dynamics. Finally, the observed
large DC (zero energy) feature in the power spectrum is due
to the polarization of the qubit spins along the z direction.

Moving to the other topological configurations shown in
Figs. 1(a) and 1(c), we also find agreement between real-time
evolution on NISQ hardware and the equivalent closed-system
quantum dynamics. Specifically, in the staggered coupling
model of Fig. 1(a), a sharp amplitude in Fourier space is
detected on the first qubit, which is weakly coupled with the
bulk, indicating a long-lived topological surface mode. In the
topological defect case of Fig. 1(c), a strongly localized state
with temporal low-frequency oscillation is observed on the
center qubit (Supplemental Material, Sec. III B [108]). We
add that the corresponding shot noise reported is a minor
effect compared to the overall trend in the local magnetization,
which is clear by isolating the small fluctuations from the
local moving average of the magnetization of all qubits (see
Supplemental Material, Sec. III D [108]).

We emphasize that the presented results are measured data
on NISQ devices, without any noise mitigation or error cor-
rection techniques. Despite this, the constant-depth method
measurably outperforms conventional Trotterization, in which
each qubit undergoes rapid decay where noise due to large
Trotter error scrambles discernible signatures in the data (see
Supplemental Material, Fig. S13 [108]). Using this method
to isolate the Trotter error, our results show that topological
phases exhibit robust dynamics when subjected to the intrin-
sic noise of quantum devices, which is unavoidable due to
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pervasive hardware defects or ambient interactions. Our study
demonstrates that circuit compression techniques can be ef-
fectively used with available NISQ devices to study dynamics
of novel phases of matter despite the known NISQ challenges
of noise and limited system size.

IV. FAST-FORWARDABLE TOPOLOGICAL MODELS

The results reported here are general and can be utilized
to realize the long-time dynamics for a host of topological
systems. We illustrate how to apply our method to probe topo-
logical phenomena in open systems where the environmental
interaction is driven by the intrinsic noise of the gate-based
quantum device and highlight a notable subset of models,
pointing out experimentally accessible procedures to control
nontrivial states. First, one can straightforwardly realize pro-
tected modes by manufacturing corresponding symmetries of
a desired Hamiltonian H through artificial design of couplings
J , demonstrated by models depicted in Fig. 1. Particularly,
the presence or absence of chiral symmetry C determines the
existence of topological modes in SPT phases [27,106,113–
115], which can be further categorized into chiral-symmetric
Hamiltonians that maintain or break combinations of time-
reversal T symmetry and particle-hole (charge-conjugation)
P symmetry. It has been proven that quadratic Hamiltoni-
ans can be fast-forwarded [95], meaning that a system with
N spins requires only N (N − 1) CNOT gates to simulate.
This follows from the fact that matchgates for quadratic
Hamiltonians can be decomposed into native circuits re-
quiring two CNOT gates. For further technical details, see
Supplemental Material, Sec. II [108].

Therefore, one can completely tune the presence and char-
acter of topological modes through our method by modulating
interactions J on two or less axes to realize discrete sym-
metries in H of particular interest, such as chiral symmetry
C, which is then decomposed into matchgates. This can be
written generally as H = c†Hc, where

H =
(

A B
−B∗ −A∗

)
, (2)

with arbitrary matrices A and B satisfying A = A† and BT =
−B, and c†

j and c j denoting the fermionic creation and an-
nihilation operators which define the column vector operator
c = (c1 . . . cnc†

1 . . . c†
n )T , obeying U −1

C HUC = −H, where UC
is defined as the chiral symmetry operator, C = P · T .

We argue that this opens many interesting directions in
one dimension, particularly in studying open-system dynam-
ics of models in the AIII, BDI, CI, and DIII universality
classes [114]. In higher dimensions, it has been shown that
n-band topological insulator Hamiltonians can be mapped to
1D hardcore boson chains by representing their single-particle
hopping as an n-particle hopping living on distinct sublattices
of a 1D chain as shown in Ref. [88], which can be applied
to generalize our method through application of matchgate
symmetries. We point out that it has recently been shown that
certain number-conserving bosonic Hamiltonians can also be
fast-forwarded [107]. Another procedure to probe topological
modes is to induce spatial localization within the lattice by
modulating J . This is exemplified by the model in Fig. 1(c),
which realizes a topological defect which can be interpreted

as a domain wall in the center of the system between two
configurations [116,117], and we further elaborate on this
process in Sec. I C of the Supplemental Material [108].

V. DISCUSSION

We introduced a method that greatly improves dynamical
simulations of quantum systems using contemporary quan-
tum processors. By utilizing the time-step compression of
constant-depth circuits, the transient dynamics of novel many-
body systems is achievable up to arbitrary long times, which
to date has remained one of the major challenges of the NISQ
era.

Using this approach, we showed how open-system quan-
tum dynamics where the environmental interaction is driven
by the intrinsic noise of the quantum hardware itself can
be stabilized by exploiting topological properties of matter.
While conventional qubits suffer from rapid decoherence,
one can create much-longer-lived qubits through utilizing the
topologically stabilized surface states as shown in our study.
These long-lived states present a host of potential applica-
tions. For example, one may use such topologically stabilized
states to create robust and highly local quantum sensing de-
vices through tuning the magnetic field hx and couplings J
and J ′ closer relative to each other to induce a critical state
[118]. In this state, the qubits have higher sensitivity, which
combined with the advantage of being longer lived can poten-
tially be applied as a quantum sensor. Alternatively, one can
tune hx farther than J and J ′ to maximize the contrast between
J and J ′. In principle, tuning the system as such will increase
the effectiveness of using topological modes as qubits with
longer-lived coherence times.

The constant-depth quantum circuits method provides
a clear pathway towards executing long-time dynamical
simulations of topological quantum spin systems. Our one-
dimensional protocol can be extended to higher dimensions
by complementing it with larger system implementations and
mathematical developments to the regime of validity of the
matchgate algebra [119]. While in this study we demon-
strate the versatility of this approach by executing dynamics
of simple paradigmatic topological models with relatively
small resource requirements, one can also apply the method
to study long-time dynamics of more complex cases, such
as in Aubry-André-Harper models [120–125], generalized
Su-Schrieffer-Heeger models [126–128], and Kitaev chains
[31,129]. We also identify the circuit implementation of in-
tegrable interacting and open systems as a possible future
direction. We point out that, generally, while simulating sys-
tems with dissipation necessitates at minimum linear scaling,
if the system is integrable, then compression techniques can
be used to generate circuits with constant depth scaling for
this special class of interacting systems. Another promising
future direction is dynamical studies of higher-order topolog-
ical insulators [130–132], which can be made tractable with
ongoing improvements in circuit compression methods.
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