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Density oscillations in quantum fluids can reveal their fundamental characteristic features. In this work, we
study the density oscillation of incompressible fractional quantum Hall (FQH) fluids created by flux insertion.
For the model Laughlin state, we find that the complex oscillations seen in various density profiles in real space
can be universally captured by a simple damped oscillator model in the occupation-number space. It requires
only two independent fitting parameters or characteristic length scales: the decay length and the oscillation
wave number. Realistic Coulomb quasiholes can be viewed as Laughlin quasiholes dressed by magnetorotons,
which can be modeled by a generalized damped oscillator model. Our work reveals the fundamental connections
between the oscillations seen in various aspects of FQH fluids such as in the density of quasiholes, the edge, and
the pair correlation function. The presented model is useful for the study of quasihole sizes for their control and
braiding in experiments and large-scale numerical computation of variational energies.
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I. INTRODUCTION

Characteristic density oscillations in the presence of per-
turbations are a fundamental aspect of quantum fluids. For
the Fermi liquid, the long-range Friedel oscillation in the
presence of impurity is a direct consequence of the exis-
tence of the Fermi surface and quasiparticle excitations [1].
Similarly, for the non-Fermi-liquids and strongly interacting
topological fluids which go beyond the Fermi liquid paradigm
(e.g., the Luttinger liquid [2], composite fermion liquid [3],
quantum Hall liquid [4,5], and strange metal [6]), character-
istic density oscillations manifest as spin-charge separation
[7], charge-vortex duality [8], anomalous decay laws and
exponents [9–13], and so on. Understanding and accurately
modeling such oscillations, which are of both theoretical
and experimental significance, remains an outstanding open
problem.

An important class of strongly interacting topological flu-
ids is the incompressible fractional quantum Hall (FQH)
fluids, which display characteristic oscillatory features that
encode both geometric and universal topological information.
When a quantum of flux is inserted into the uniform FQH
ground state, quasiholes carrying a fractional charge [14] and
obeying fractional statistics [15] are created. They also carry
a dipole moment to balance the Hall viscosity in the presence
of the electric field gradient, which is proportional to the FQH
topological shift [16]. The dipole moment, a characteristic
feature of incompressibility, is established from the density
oscillation at the edge [17]. Moreover, when an appropriate
number of fluxes equivalent to removing an electron is in-
serted at the same position, the density of the bound state of
the stacked quasiholes is proportional to the pair-correlation
function of the ground state [18]. In the limit of an infinite
number of fluxes inserted, a macroscopic FQH edge is cre-
ated, near which the density oscillation has been intensively

studied [17–26]. The FQH quasiholes, the ground-state pair-
correlation function, and the edge can be understood as special
cases of flux insertion (see Fig. 1) and are thus closely related.
The precise underlying connections and both the qualitative
and quantitative aspects of such oscillations, however, are not
well understood.

In this paper, we show that the real-space density oscilla-
tion from the flux insertion in the model Laughlin state can
be accurately modeled by a simple damped oscillation with
degrees of freedom within a single Landau level (LL). The
oscillation is determined by two characteristic length scales:
the decay length and the oscillation wave number, and these
serve as the only fitting parameters of the model. In contrast
to previous works that directly model the real-space density
[11,12,20–22,25,27–29], we emphasize that the model should
only focus on the guiding center degrees of freedom (within a
single LL), as those are the relevant coordinates for any FQH
phase. For the model Laughlin state, we study its quasihole,
edge, and pair-correlation function using the aforementioned
model-based approach treating them all on an equal foot-
ing. A phenomenological model for the damped oscillation
of Laughlin quasiholes is proposed at general fillings. For
the more realistic Coulomb interaction, where quasiholes are
dressed by neutral excitations, a generalized damping model
with four characteristic lengths is shown to work very well.
This general model can be useful for both numerical computa-
tions and experimental manipulation of quasiholes. Moreover,
we find this generalized model also gives an accurate de-
scription of quasiholes in some of the composite fermion and
non-Abelian topological phases.

The remainder of the paper is organized as follows. In
Sec. II, we study the density oscillation of a single Laughlin
quasihole. In Sec. III, we generalize the study to various
stacked Laughlin quasiholes. Moving forward, we examine
the density oscillation of quasiholes for realistic interactions
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FIG. 1. Schematic plot of excitations created by flux insertion at
ν = 1/3. From left to right, the Laughlin quasihole obtained by inser-
tion of a single flux (a), 3-Laughlin quasiholes obtained by insertion
of three fluxes (b), whose density is proportional to the ground-state
pair-correlation function, and the Laughlin edge obtained from the
insertion of an infinite number of fluxes (c). The top panels show
the density distribution ρ(r)/ρ̄ in the radial direction, where ρ̄ is
the uniform background density. Panels (a) and (b) show results for
Ne = 16 on the sphere while panel (c) is for Ne = 40 on the disk.

in Sec. IV, and for Jain and non-Abelian phases in Sec. V.
Thereafter, we also investigate the oscillatory behaviors for
quasielectrons in Sec. VI. Finally, we summarize our results
in Sec. VII.

II. UNIVERSAL DAMPED OSCILLATION

The model wave function of the Laughlin quasi-
hole located at the origin of the disk geometry for Ne

electrons is �
1− qh
L = (

∏Ne
i=1 zi) �L, where �L= ∏

1�i< j�Ne

(zi−z j )me− 1
4

∑Ne
i=1 |zi|2 is the Laughlin wave function at ν = 1/m

[14], zi = xi − iyi is the position of the ith electron, and the
magnetic length at magnetic field B is taken as the unit of
length, i.e., we set lB = √

h̄c/(eB) = 1. We can also stere-
ographically map this state to the spherical geometry [30].
The density distribution of a single Laughlin quasihole at
ν = 1/3 in the spherical geometry is shown in Fig. 2(a).
Directly finding a simple empirical model for the real-space
density distribution of quasiholes is challenging as the real-
space structure is a mixture of the trivial LL (cyclotron)
and the nontrivial FQH (guiding-center) contributions. A
real-space density distribution ρ(r) can be decomposed as
ρ(r)= ∑Nφ

i=0 niρi(r), where ni is the average occupation num-
ber of the ith orbital, ρi is the density computed from
single-particle wave functions, and Nφ is the number of fluxes
threading the sample. Only ni is related to the correlated FQH
physics.

The Laughlin quasihole density exhibits damped oscilla-
tions in the occupation-number space [see Fig. 2(b)]. We
take the real-space position of each orbital as the arc distance
from the north pole to the center of the ith equal-area slice of
the sphere, i.e., xi=Rθi=

√
Nφ/2 arccos[1−(1+2i)/No], where

R=√
Nφ/2 is the radius of the sphere, No=Nφ+1 is the

number of orbitals on the sphere, and we index the or-
bitals from the north to the south pole by k = 0, 1, . . . , Nφ .
We find that the occupation-number oscillation of quasihole
density δni=ni−n̄ [with n̄=(Ne+1/m)/No being the average

FIG. 2. (a) The density distribution of a Laughlin quasihole
located at the north pole of a sphere as a function of the arc
distance r. The blue line and crosses denote the exact distribu-
tion and the fitting with our damped model [Eq. (6)], respectively,
for Ne=17. The red line and crosses denote the thermodynamic
limit obtained from the polynomial expansion method [29] and
our fitting (see Appendix B for details), respectively, and the data
points are shifted down by 0.01 for clarity. (b) The occupation-
number density. Blue circles and red crosses denote the exact density
and that obtained from fitting with our model, respectively. The
fitted curve is n(r)=0.68 sin[1.43(r−2.31)] exp(−r/1.21)+n̄ with
n̄=(Ne+1/3)/No with No=50.

background occupation] can be accurately captured by the
following model:

δni = A1 sin[k1(xi − x1)] exp (−xi/λ1), (1)

where k1 and λ1 are the oscillation wave number and decay
length, respectively, A1 is the amplitude, and x1 is the zero
point. The fitted result (red crosses) agrees almost perfectly
with the exact occupations (blue circles) as shown in Fig. 2(b).
Correspondingly, the exact and fitted real-space density distri-
butions are also nearly indistinguishable from each other, as
shown in Fig. 2(a).

It is important to note that the accurate fitting is achieved
with only two independent fitting parameters k1 and λ1.
The other two parameters in Eq. (6), A1 and x1, are fixed
by the total charge

∑Nφ

i=0 νi=Ne and the total angular mo-

mentum
∑Nφ

i=0 νi(i−Nφ/2)=Ne/2. The two conditions are
equivalent to the constraints that a single quasihole has a
charge e1−qh=−1/m and a dipole moment d1−qh=(1−1/m)/2
in the thermodynamic limit. Both of these relations are topo-
logical and the focus of K-matrix Luttinger liquid theory, thus
robust against perturbations [19]. From finite-size scaling, we
find the following values of the parameters in the thermody-
namic limit (see Appendix B for details):

k(1)
1 = 1.38, λ

(1)
1 = 1.17, (2)

where the superscript denotes the number of quasiholes. In
contrast, if one works with the real-space density, which
includes the extra Landau orbit contribution, one has to intro-
duce several tens of fitting parameters using the polynomial
expansion method to capture the whole profile, as done in
Refs. [27,29]. Furthermore, the important property that the
Laughlin quasihole has a unique decay length and oscillation
period is not easy to discern from real-space studies [28].

III. STACKED LAUGHLIN QUASIHOLES

The damped oscillation model can also be applied
to n-stacked quasiholes created by inserting n fluxes
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FIG. 3. Top panels (a) and (b) show the characteristic lengths k1

and λ1 of Laughlin n-quasihole state at 1/3. Bottom panels (c) and
(d) show results for a single Laughlin quasihole at different fillings
ν=1/m. The red dashed line in (c) is the wave number of the Wigner
crystal at the corresponding filling, and the blue dashed line denotes
the intrinsic wave number k′

1=
√

k2
1+λ−2

1 (see the text).

at the same location. The real-space density of such
quasiholes gets increasingly complex with increasing
n. Even for IQH fluid, the n-stacked holes have
δρ(r)=−1/(2π ) exp(−r2/2)(

∑n−1
i=0 r2i/2ii!), which is no

longer a simple Gaussian distribution for n>1. Focusing on
the FQH system with multiple quasiholes, we again look
at its occupation-number density, which reveals interesting
physics and is no more complex even for n>1. The values of
the characteristic lengths k(n)

1 and λ
(n)
1 for different values of n

are shown in Figs. 3(a) and 3(b), where both k(n)
1 and λ

(n)
1

increase as n gets larger. Furthermore, the complicated
real-space densities can be easily restored with the
single-particle wave functions.

The m-stacked quasihole at ν=1/m deserves spe-
cial attention because its density distribution is propor-
tional to the pair-correlation function of the Laughlin
ground state. The density distribution of m-Laughlin quasi-
holes is ρ(r)=N1

∫ ∏N ′
e

i=2 dri|�m−qh
L (r, r2, . . ., rN ′

e
)|2, where

N1 is a constant, and the pair-correlation function is
g(r)=N2

∫ ∏Ne
i=3 dri|�L(0, r, r3, . . ., rNe )|2. By substituting

the explicit wave function �L and �
m−qh
L into the expression

of g(r) and ρ(r), respectively, one can show that ρ(r) is pro-
portional to g(r) when Ne=N ′

e+1. Therefore, the decay length
of the density of m-stacked Laughlin quasiholes is equal to the
correlation length λcor between electrons:

λcor = λ
(m)
1 . (3)

Our result is thus useful for the large-scale numerical
computation of ground-state variational energies. One can
use our modeled g(r) to calculate the per-particle variational
energy of the Laughlin state in terms of any general interaction
V (r) through the formula V =(ρ̄/2)

∫
d2 rV (r)[g(r)−1] [31],

where ρ̄ is the average density. For the Coulomb interaction
V (r)=1/r, the calculated energy V with our modeled g(r)
is −0.4096 for ν=1/3 and −0.3278 for ν=1/5 (see Ap-
pendixes C and E), which are very close to the conjectured
thermodynamic values −0.4098 [32,33] and −0.3275(1) [34]

obtained from the extrapolation of small-size exact diagonal-
ization results and large-scale Monte Carlo calculations. Thus
for other realistic interactions, the thermodynamic variational
energies can now be computed very efficiently with our mod-
eled g(r) (see Appendixes C and E). Besides, our method does
not suffer from the systemic error of the polynomial expansion
method at small r [29].

In the limit of n→∞, the corresponding “Laughlin quasi-
hole” also deserves special attention as it represents the edge
of the FQH fluid. Its density profile can also be well-fitted
with a damped model in the occupation-number space with
the characteristic lengths being kedge

1 =1.49 and λ
edge
1 =1.51

(see Appendix D), which are just the limiting values of n-
quasiholes as shown in Fig. 3.

Moreover, we can determine the characteristic length
scales at general Laughlin fillings ν=1/m by fitting the den-
sity profile of a single quasihole with the damped model
given in Eq. (6). The results are shown in Figs. 3(c) and
3(d). With increasing m, the oscillations become more pro-
nounced. We find that the decay length is proportional to m,
i.e., λ

(1)
1 =m/2.56. Meanwhile, the oscillation wave number

k1 gradually approaches that of the Wigner crystal [35], i.e.,
kWigner=2×3−1/4√πm=2.69

√
m. This is consistent with a re-

cent study, carried out in Ref. [25], of the density oscillations
at the edge of the Laughlin state.

Given the near-perfect fitting of such a simple model with
only two fitting parameters (see Appendixes B–F), we con-
jecture that the damped oscillation model captures the main
features of the universal oscillations in the Laughlin FQH
fluid, and in principle can be derived. While we are not able to
accomplish that here, a phenomenological model for Laugh-
lin quasiholes at general fillings can be proposed based on
these results. We view the system as a damped oscillator with
wave number k′

1=
√

k2
1+λ−2

1 serving as the intrinsic “wave
number” which is a little larger than the wave number of the
Wigner crystal kWigner for small m [see Fig. 3(c)]. The damping
results from a “frictional force” that is proportional to the
density ν=1/m. The differential equation that describes this
system is

[
∂2

r + 2λ−1
1 ∂r + k′2

1

]
δn(r) + O(δn2) = 0, (4)

where O(δn2) denote terms that can potentially arise from
nonlinear effects that we ignore here. The linear solution of
Eq. (4) is just our damped model given in Eq. (6), which is
known to model the classical two-dimensional shallow-water
wave near a specified moving boundary [36,37]. Note that the
model proposed in Eq. (4) is different from that proposed in
Eq. (23) of Ref. [21], which does not consider the damped
term and assumes a different intrinsic wave number at the
level of linear response. Deriving this simple model from the
microscopic wave function and capturing the nonlinear effects
remains an open problem [21,22].

IV. QUASIHOLES FOR REALISTIC INTERACTIONS

Going beyond the model Laughlin quasihole wave func-
tions, the density profile of quasiholes from realistic inter-
actions becomes more complicated, because such quasiholes
are dressed by neutral excitations [38,39]. Here we study the
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FIG. 4. (a) Occupations of the Coulomb quasihole at ν=1/3
for Ne=14 on the sphere. The fitted curve (red line) is the sum
of the long-range 0.23 sin[1.48r−2.82] exp(−0.42r) (black dotted
line) and the short-range 0.51 sin[0.54r−1.86] exp(−0.93r) (purple
dotted line) modes. The inset is a zoom-in on the tail of the damped
oscillations. (b) The dependence of characteristic lengths of the two
modes on α [defined in Eq. (5)] for Ne=14. The blue and red colors
denote the long-range and short-range modes, respectively.

quasihole in the presence of the following tunable interaction:

Hα = (1 − α)V1 + αVCoulomb, (5)

where VCoulomb=1/r is the Coulomb interaction and α∈[0, 1]
is a tunable parameter. By varying α, one can trace the
evolution between the Laughlin quasihole (α=0) and the
Coulomb quasihole (α=1). As α increases, the oscillations in
the density of the quasihole become more pronounced, and
multiple periods/frequencies are observed. As a result, the
single-damped model of Eq. (6) can no longer capture the
whole density profile of the Coulomb quasihole. Instead, we
need to generalize the model to include an additional damped
oscillation that has a shorter range, as shown in Fig. 4(a). The
explicit expression of the generalized model is

δni =
2∑

n=1

An sin[kn(xi − xn)] exp (−xi/λn). (6)

The dependence of the characteristic lengths of the two modes
on α is shown in Fig. 4(b). The wave number of the long-range
mode k1 is nearly unchanged, and its decay length λ1 becomes
larger as α increases. This is not hard to understand, because
the interaction becomes more long-ranged as α is increased.
For the short-range mode, its wave number k2 approaches 0
as α→0 and it provides almost no contribution to nonempty
orbitals of the Laughlin quasihole. This is consistent with the
result that the Laughlin quasihole can be well-modeled with a
single-damped oscillation.

Although the generalized model captures the density pro-
file of the Coulomb quasihole accurately, one should be
careful of issues about possible overfitting and strong finite-
size effects (see Appendix G for a discussion of these).
Nevertheless, the high accuracy of the fitting suggests that the
model captures at least two oscillation modes for the Coulomb
quasihole. Our result quantitatively characterizes the deviation
between the Coulomb and Laughlin quasiholes and reveals
the nonuniversal effects induced by realistic interactions. This
deviation arises from the dressing of the Laughlin quasi-
hole by low-energy magnetoroton states [38–40]. Since the
Coulomb quasihole and the Coulomb edge are closely related
by flux insertion, the low-energy magnetoroton mode should
also account for the deviation between the Coulomb edge and

FIG. 5. (a) The occupation numbers of the Moore-Read quasi-
hole for Ne=22 electrons and Nφ=42 fluxes in the spherical
geometry. Blue circles (red crosses) denote the exact (fitted) den-
sity generated by Jack polynomials with the root 0110011...0011.
Note that here we only consider the Abelian quasihole consisting
of two stacked elementary quasiholes, and we do not consider its
fractionalization. The inset is the corresponding real-space density.
(b) The occupation numbers of the Gaffnian quasihole for Ne=18
electrons and Nφ=42 fluxes generated by Jack polynomials with the
root 01100011...00011. (c) The occupation numbers of the Fibonacci
quasihole for Ne=24 electrons and Nφ=38 fluxes generated by Jack
polynomials with the root 011100111...00111. (d) The occupation
numbers of the Jain’s quasihole for Ne=59 electrons and Nφ=144
fluxes at ν=2/5 generated by the Monte Carlo method.

the Laughlin edge, as observed in Refs. [24,26]. Moreover,
other nonuniversal effects away from the chiral Luttinger
theory [10,41,42] can potentially be understood by studying
the microscopic bulk quasihole [43] via bulk-boundary cor-
respondence, which requires much less computational effort
because its fluctuation and related nonlinear effects are much
smaller compared to the edge effects.

V. QUASIHOLES IN JAIN AND NON-ABELIAN PHASES

The generalized damped oscillation model fails to capture
the states in higher LLs where the interaction is more long-
ranged and the finite-size effects are stronger. Interestingly,
the model continues to give a good description of Abelian
quasiholes obtained from flux insertion (but no fractional-
ization) for many model FQH fluids (see Fig. 5), including
the Moore-Read [44,45], Gaffnian [46], Fibonacci [47], and
composite fermion states at ν=2/5 [31,48]. In addition to a
very small fitting error, the modeled density profile is much
smoother than those obtained from the polynomial expansion
method. This is especially the case when the density profile
in the real space looks irregular, for example in the case of
pair correlation of the Moore-Read state (see Appendix H).
It is important to note that the finite-size scaling of the
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FIG. 6. (a) The occupation numbers of the quasielectron for
Ne=14 electrons and Nφ=38 fluxes in the spherical geometry. Blue
circles (red crosses) denote the exact (fitted) density generated by
ED with V1 interaction. The fitted curve (red line) is the sum of the
long-range 0.61 sin[1.40r−1.99] exp(−0.56r) and the short-range
−0.73 sin[0.65r−1.60] exp(−0.96r) modes. The inset is the cor-
responding real-space density. (b) Similar to (a) except that the
interaction used is the Coulomb one. The fitted curve (red line) is
the sum of the long-range 0.32 sin[1.47r−1.98] exp(−0.41r) and the
short-range −0.24 sin[0.53r+2.03] exp(−0.64r) modes.

generalized model is not good, suggesting potential overfitting
issues. This technical problem can be overcome by collecting
data for larger system sizes by employing the density matrix
renormalization group [49] and Monte Carlo method [26,50].
That would then allow for large-scale numerical computation
of states beyond the simple Laughlin phases.

VI. QUASIELECTRON

The generalized damped oscillator model also describes
quasielectron states that result from flux removal in FQH
fluids. In contrast to the charge deficiency resulting from a
quasihole, a quasielectron at the origin leads to an excess
charge. Interestingly, the density oscillations in quasielectron
states are very similar to the quasihole ones. In Figs. 6(a)
and 6(b), we plot the density distribution and fitting results
for quasielectron states at ν=1/3 with V1 and Coulomb inter-
actions, respectively. For both states, our generalized model
gives a good description. The characteristic lengths of the
long-range mode of the Coulomb quasielectron are very close
to those of the Coulomb quasihole. This indicates that their
density oscillations stem from the same mechanism.

We note here that in Ref. [25], it is proposed that the den-
sity oscillation of the Laughlin edge is due to the formation of
the Wigner crystal at the boundary at a low density. However,
a quasielectron state (which has an excess charge and higher
density than the background fluid) also exhibits density oscil-
lations. Therefore, the crystallization proposal appears unable
to explain the density oscillations observed in quasielectron
states. These results cast doubt on the crystallization argument
for the density oscillation of FQH fluids.

VII. SUMMARY

We show that the complex density oscillation of generic
Laughlin n-quasiholes state in real space can be modeled by
a simple damped oscillation in the occupation-number space.
Moreover, a generalized damped oscillation model can well-
fit the more realistic Coulomb quasihole. The generalized

model also applies to many other types of quasiholes. Our
work paves the way to reveal the underlying connections
between various oscillatory features of FQH fluids and the
structure of quasiholes in the occupation-number space. It
also provides an avenue to carry out large-scale numerical
computations of ground-state variational energies. Moreover,
determining the length scales of realistic quasiholes from our
model can be useful for designing experimental setups that
can measure their fractional charge and statistics.

ACKNOWLEDGMENTS

G.J. thanks N. Regnault, H. Q. Trung, Y. Wang, G. J.
Henderson, and Y. Hu for valuable discussions. Some of the
numerical calculations reported in this work have been carried
out with the DiagHam package [51], for which we are grateful
to its authors. Some of the numerical computations were done
on the Nandadevi supercomputer, which is maintained and
supported by the Institute of Mathematical Science’s High-
Performance Computing Center. A.C.B. thanks the Science
and Engineering Research Board (SERB) of the Department
of Science and Technology (DST) for funding support via the
Mathematical Research Impact Centric Support (MATRICS)
Grant No. MTR/2023/000002. This work is supported by
the National Research Foundation, Singapore under the NRF
fellowship award (NRF-NRFF12-2020-005).

APPENDIX A: FQH STATES AND JACK POLYNOMIALS
In this Appendix, we show the details of determining the

occupation number distribution by Jack polynomials.
Many FQH states including the Laughlin, Moore-Read,

Gaffnian, Fibonacci states, and so on, can be expressed as Jack
polynomials Jα

λ ({zi}), where λ is the root of bases, α is a factor
determined by the root configuration, and the Gaussian factor
exp(−∑

i r2
i /4) has been ignored [52]. We can determine the

occupation number distribution of these states by

ni =
∑

λs

∣∣Nλs c
α
λs

∣∣2
ηi(λs)∑

λs

∣∣Nλs c
α
λs

∣∣2 , (A1)

TABLE I. Parameters of the damped oscillator model for the
density of a single Laughlin quasihole at ν=1/3 for Ne electrons in
the spherical geometry. The statistical measure R2 is the coefficient
of determination for how well the modeled occupation predicts the
exact occupation numbers. The final row is the thermodynamic ex-
trapolation result as a function of 1/Ne.

Ne A1 k1 k1 ∗ x1 1/λ1 R2

10 0.6757 1.4734 3.3342 0.8051 0.999883
11 0.6774 1.4646 3.3305 0.8097 0.999893
12 0.6787 1.4574 3.3277 0.8133 0.999904
13 0.6799 1.4514 3.3253 0.8164 0.999910
14 0.6809 1.4462 3.3231 0.8191 0.999915
15 0.6819 1.4417 3.3211 0.8214 0.999918
16 0.6827 1.4377 3.3194 0.8234 0.999921
17 0.6835 1.4343 3.3178 0.8252 0.999923
∞ 0.6944 1.3785 3.2947 0.8538 0.999982
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FIG. 7. (a) Finite-size scaling of the wave vector k1 for the single
Laughlin quasihole (blue squares), 3-Laughlin quasiholes (red cir-
cles), and the Laughlin edge (black hexagrams) at ν=1/3. The lines
are linear fits as a function of 1/Ne. (b) Finite-size scaling of the
inverse of the decay length 1/λ1.

where λ′
ss are basis configurations squeezed from the root λ,

Nλs is a geometry-and-occupation-number-dependent normal-
ization factor for each basis denoted by λs, cα

λs
is the Jack

coefficient of the basis in Jα
λ ({zi}), and ηi(λs) is the number

of the ith orbital in the basis configuration λs. For example,
for the Laughlin state at ν = 1/3, α = −2, λ = [100...1001],
Nλs = ∏

mj

√
2mj mj!, with mj being the angular momentum

of occupied orbitals in λs on the disk. The generalization to
other states and geometries is straightforward. Since these
FQH ground states obey the highest-weight and lowest-weight
conditions simultaneously, their density distributions are uni-
form and ni=ν is a constant.

In fact, their quasihole excitations induced by flux insertion
can also be expressed as Jack polynomials with the same
Jack coefficients but different roots. For example, the root for
the Laughlin quasihole becomes λ=[00...0100...1001]. This
leads to a different normalization factor for quasihole states,
and their occupation number distributions become

nQH
i =

∑
λs

∣∣NQH
λs

cα
λs

∣∣2
ηi(λs)∑

λs

∣∣NQH
λs

cα
λs

∣∣2 , (A2)

where the normalization factor of the FQH n-quasihole
state on the disk is related to that of the ground state by
NQH

λs
=Nλs

∏
mj

∏n
l=1

√
mj+l . This change results in the den-

sity oscillation of FQH quasihole states. Even though the
change for each basis λs can be traced as shown above, the
large number of basis states (e.g., more than 2×1010 basis
states for the Laughlin quasihole with Ne=17) prevents us

TABLE II. Similar to Table I except the parameters are for 3−
Laughlin quasiholes at ν=1/3.

Ne A1 k1 k1 ∗ x1 1/λ1 R2

10 2.1345 1.5208 4.8670 0.7670 0.999885
11 2.1446 1.5109 4.8520 0.7720 0.999886
12 2.1514 1.5028 4.8402 0.7759 0.999885
13 2.1571 1.4961 4.8304 0.7792 0.999887
14 2.1625 1.4902 4.8219 0.7821 0.999888
15 2.1676 1.4851 4.8143 0.7846 0.999890
16 2.1724 1.4806 4.8076 0.7869 0.999891
∞ 2.2335 1.4138 4.7094 0.8198 0.999900

TABLE III. Parameters for the Laughlin edge with Ne electrons
at ν=1/3. R2 is the R-squared value for the real-space density
obtained by the Monte Carlo method and the modeled real-space
density in the planar disk geometry. In the thermodynamic limit,
A1=0 and x1=∞ because the edge is located at the position r=∞.
Values in the last row are the thermodynamic extrapolation results
obtained from a linear fit of the parameters as a function of 1/Ne.

Ne A1 k1 k1 ∗ x1 1/λ1 R2

20 5.2491 × 10−4 1.5436 12.5625 0.6400 0.999889
25 2.1314 × 10−4 1.5339 14.4496 0.6442 0.999894
30 9.4669 × 10−5 1.5271 16.1576 0.6474 0.999899
35 4.4788 × 10−5 1.5220 17.7294 0.6503 0.999904
40 2.2664 × 10−5 1.5181 19.1959 0.6516 0.999905
∞ 0 1.4929 ∞ 0.6635 0.999922

from deriving an analytical expression for its density distribu-
tion. Therefore, we have to calculate it numerically and try to
capture its physics by finding the best fitting for its distribution
with as few fitting parameters as possible, as done in the
main text.

APPENDIX B: 1/3 LAUGHLIN QUASIHOLE

In this Appendix and the following Appendixes, we show
the detailed numerical data of fitting parameters for the model
n-Laughlin quasiholes at ν=1/m, the Coulomb quasihole at
ν=1/3, and the pair-correlation function of the Moore-Read
state at ν=1/2.

We obtain the occupation number ni of a single Laugh-
lin quasihole for m=3 and Ne=10−17 using Jack poly-
nomials [52]. The parameters of the damped oscillatory
model δni=A1 sin[k1(xi−x1)] exp(−xi/λ1) for the occupation-
number δni=ni−n̄ are shown in Table I. The finite-size scaling
of the oscillation wave number and the decay length is shown
in Fig. 7. They have an almost perfect linear scaling in
1/Ne allowing us to do the thermodynamic extrapolation re-
liably. Once the ni are determined, the real-space density

FIG. 8. The density distribution of the 1/3 Laughlin state for
Ne = 40 in the disk (blue line). The red crosses denote the fitting
using our damped model.
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FIG. 9. The ground state pair-correlation function for the 1/5
Laughlin state for Ne=50 electrons in the spherical geometry (blue
line). The red crosses denote the results obtained using our damped
model.

of the Laughlin quasihole in the thermodynamic limit is
given by

ρ(r) =
∞∑

i=0

niρi(r), (B1)

ρi(r) = 1

2π2ii!
r2i exp

[
− r2

2

]
. (B2)

To check the accuracy of the model, we compare the density
profile of the quasihole in the thermodynamic limit produced
by our method and the polynomial expansion method pro-
posed in Ref. [29]. The two methods deviate very slightly
from each other (the root-mean-square difference is 2×10−5)
producing nearly coincident curves as shown in Fig. 2(a).
This implies that, even though our model is very simple
with only two free parameters, our result is as accurate as

TABLE IV. Similar to Table III except the parameters are for the
ground-state pair-correlation function at ν=1/5.

Ne A1 k1 k1 ∗ x1 1/λ1 R2

15 4.6540 1.1986 5.1067 0.4515 0.999970
20 4.7661 1.1839 5.0775 0.4595 0.999974
25 4.8301 1.1755 5.0613 0.4640 0.999976
30 4.8715 1.1701 5.0510 0.4669 0.999977
50 4.9478 1.1596 5.0317 0.4722 0.999979
∞ 5.0791 1.1425 4.9980 0.4815 0.999984

FIG. 10. (a) R2 value for the Laughlin n-quasihole state at ν =
1/3 and Ne = 15. The statistical measure R2 is the coefficient of
determination for how well the modeled occupation predicts the
exact occupation numbers obtained by the Jack polynomial. (b) R2

value for Laughlin single quasiholes at ν = 1/m and Ne = 12.

the polynomial expansion method that uses several tens of
parameters.

APPENDIX C: 1/3 LAUGHLIN STATE
PAIR-CORRELATION FUNCTION

We repeat the single quasihole analysis for 3-Laughlin
quasiholes at ν=1/3. The parameters are shown in Table II
and the finite-size scaling is shown in Fig. 7. The ground-
state pair-correlation function g(r) in the thermodynamic limit
can be obtained by dividing the density ρ(r) of 3-Laughlin
quasiholes by the average density ρ̄=1/(2πm). Then, one
can use the modeled g(r) to calculate the per-particle vari-
ational energy of the Laughlin state for various interactions
V (r) through V =(ρ̄/2)

∫
d2 rV (r)[g(r)−1]. For the Coulomb

interaction V (r)=1/r, the calculated energy V with our
modeled g(r) is −0.4096, which is very close to the extrapo-
lated result −0.4098 obtained from the exact diagonalization
calculation [33].

APPENDIX D: 1/3 LAUGHLIN EDGE

We create a Laughlin edge by placing the Laughlin state
on the disk geometry. Since the edge density fluctuation is
large, we need a large system size (beyond the ones accessible
to exact diagonalization) to reliably study it. Therefore, we
determine the edge density using the Monte Carlo method.
Then, we obtain the parameters of the damped model by
fitting them to the real-space density. As shown in Fig. 8, the
real-space density profile of the Laughlin edge can also be
well-represented with the damped model in the occupation-
number space. The parameters for different sizes are shown in
Table III and the finite-size scaling is shown in Fig. 7.

TABLE V. Parameters of the double-damped model for the Coulomb quasihole with Ne electrons at ν=1/3.

Ne A1 k1 k1 ∗ x1 1/λ1 A2 k2 k2 ∗ x2 1/λ2 R2

10 0.2039 1.4965 2.7515 0.3778 0.5390 0.6411 2.0603 0.9143 0.999694
11 0.2283 1.4794 2.7356 0.4078 0.4948 0.6186 2.0792 0.8994 0.999920
12 0.2317 1.5039 2.8840 0.4202 0.5449 0.4572 1.5763 0.9318 0.999933
13 0.2232 1.4982 2.8624 0.4129 0.5375 0.5095 1.7350 0.9445 0.999845
14 0.2262 1.4847 2.8172 0.4160 0.5115 0.5425 1.8643 0.9318 0.999861
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FIG. 11. The occupation numbers of the quasihole for Ne=13
electrons and Nφ=37 fluxes in the spherical geometry. Blue circles
(red crosses) denote the exact (fitted) density generated by ED with
Yukawa interaction V (r)=e−r/r. The inset is the corresponding real-
space density.

APPENDIX E: 1/5 LAUGHLIN STATE
PAIR-CORRELATION FUNCTION

We also study the ground-state pair-correlation function
for the ν=1/5 Laughlin state using the Monte Carlo method,
and we determine the parameters of the damped model by
fitting the model to the real-space profile. As shown in
Fig. 9, the pair-correlation function for the 1/5 Laughlin
state can also be well-represented by our damped model.
The parameters for different sizes and their thermodynamic
extrapolation are shown in Table IV. Then, we use the
modeled g(r) to calculate the per-particle variational energy
of the Laughlin state in terms of the Coulomb interaction
V (r)=1/r, and the result is −0.3278, which is very close
to the extrapolated result −0.3275(1) obtained from exact
diagonalization [34].

APPENDIX F: GENERAL LAUGHLIN CASES

By using the Jack polynomial method or the Monte Carlo
method, we can determine the occupation-number density or
real-space density of Laughlin quasihole for various m and n.
Then, we can determine their characteristic lengths as done
above, and the results are summarized in Fig. 3. Based on the
numerical results for various Laughlin quasiholes, we find that
the damped oscillation model can always reasonably capture
the density distribution of quasiholes, but its numerical accu-
racy (R2 value) decreases with increasing m and n as shown
in Fig. 10. For large values of m and n, there are stronger
finite-size effects that can potentially explain the lower nu-
merical accuracy of the damped model. For these large values
of m and n, it is also possible that our model is unable to
capture the physical features of the states accurately. When the
density fluctuation is very strong, especially for large m, it is
better to determine the characteristic lengths of the oscillation
tail by starting from a finite r, e.g., the first zero point of
δρ(r) = 0.

FIG. 12. (a) The occupation numbers of the Moore-Read hole
state, the density of which is proportional to the Moore-Read ground-
state pair-correlation function, for Ne=21 electrons and Nφ=41
fluxes in the spherical geometry. Blue circles (red crosses) denote
the exact (fitted) density generated by Jack polynomials with the
root 010011...0011. The inset is the corresponding real-space density.
(b) The Moore-Read ground-state pair-correlation function in the
thermodynamic limit. The blue line and red crosses denote the results
derived using the polynomial expansion method with 45 basis [29]
and our double-damped model, respectively. The inset is the zoomed
view of the oscillation tail.

APPENDIX G: COULOMB QUASIHOLE

In addition to the single-mode model of the Laughlin
quasihole, another mode with four more fitting parameters is
introduced for the Coulomb quasihole. The fitting parameters
are shown in Table V. Note that numerical results show that
there exist multiple sets of parameters that fit the density
distribution very well. Therefore, it is possible that overfitting
could be an issue for this model. We also find strong finite-
size-scaling effects that hinder an accurate extrapolation to the
thermodynamic limit.

For the correction to the Coulomb potential, we consider
the Yukawa interaction V (r)=e−λr/r. The overlap of the
quasihole state with finite decay length λ=lB and the bare
Coulomb quasihole is 0.9910. Their density profiles are very
close to each other. The double-damped model also works in
this case, as shown in Fig. 11. If we further increase λ, the
quasihole state will approach the Laughlin quasihole gradu-
ally, in which case our model also works. Thus, we expect
the double-damped model also works in the case of Yukawa
interaction in the LLL.

APPENDIX H: PAIR-CORRELATION FUNCTION OF
MOORE-READ STATE

As an example, we show how to model the pair-correlation
function of the Moore-Read ground state in the thermody-
namic limit from our double-damped model. To reduce the
finite-size-scaling effects, we first determine the parameters of
the long-range mode by fitting with the occupation numbers
at a large r (here our fitting starts from n8), and then we
determine the parameters of the short-range mode using all
occupation numbers except the first two special orbitals. In
this way, the finite-size effect is greatly reduced, and mean-
while the accuracy is still good, as shown in Table VI and
Fig. 12(a). The result obtained from an extrapolation to the
thermodynamic limit is shown in Fig. 12(b). For compari-
son, we also plot the corresponding result obtained from the
polynomial expansion method [29]. The two methods produce
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TABLE VI. Parameters of the double-damped model for the Moore-Read hole density proportional to the ground-state pair-correlation
function. The last row is the thermodynamic extrapolation result as a function of 1/Ne.

Ne A1 k1 k1 ∗ x1 1/λ1 A2 k2 k2 ∗ x2 1/λ2 R2

15 0.9540 1.5628 5.7802 0.5936 7.3000 1.4715 3.4053 1.5951 0.999434
17 0.9761 1.5274 5.6332 0.6076 7.5191 1.4616 3.3479 1.6510 0.999540
19 1.0409 1.5138 5.5905 0.6273 6.9436 1.4817 3.3604 1.6286 0.999566
21 1.0593 1.5009 5.5481 0.6354 6.6887 1.4837 3.3545 1.6288 0.999598
∞ 1.3437 1.3457 4.9646 0.7451 5.0878 1.5220 3.2328 1.7069

very similar results with a root-mean-square difference of
2×10−3. Nevertheless, the density profile obtained from our

model is smoother than that obtained using the polynomial
expansion method.

[1] G. Giuliani and G. Vignale, Quantum Theory of the Electron
Liquid (Cambridge University Press, Cambridge, 2008).

[2] F. Haldane, ‘Luttinger liquid theory’ of one-dimensional quan-
tum fluids. I. Properties of the Luttinger model and their
extension to the general 1D interacting spinless Fermi gas,
J. Phys. C 14, 2585 (1981).

[3] B. I. Halperin, P. A. Lee, and N. Read, Theory of the half-filled
Landau level, Phys. Rev. B 47, 7312 (1993).

[4] K. v. Klitzing, G. Dorda, and M. Pepper, New method for high-
accuracy determination of the fine-structure constant based on
quantized Hall resistance, Phys. Rev. Lett. 45, 494 (1980).

[5] D. C. Tsui, H. L. Stormer, and A. C. Gossard, Two-dimensional
magnetotransport in the extreme quantum limit, Phys. Rev. Lett.
48, 1559 (1982).

[6] P. W. Anderson, The ‘strange metal’ is a projected Fermi liquid
with edge singularities, Nat. Phys. 2, 626 (2006).

[7] R. Senaratne, D. Cavazos-Cavazos, S. Wang, F. He, Y.-T.
Chang, A. Kafle, H. Pu, X.-W. Guan, and R. G. Hulet, Spin-
charge separation in a one-dimensional Fermi gas with tunable
interactions, Science 376, 1305 (2022).

[8] B. I. Halperin, The half-full landau level, in Fractional Quantum
Hall Effects: New Developments, edited by B. I. Halperin and
J. K. Jain (World Scientific, Singapore, 2020), pp. 79–132.

[9] R. K. Kamilla, J. K. Jain, and S. M. Girvin, Fermi-sea-like
correlations in a partially filled Landau level, Phys. Rev. B 56,
12411 (1997).

[10] A. M. Chang, Chiral Luttinger liquids at the fractional quantum
Hall edge, Rev. Mod. Phys. 75, 1449 (2003).
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