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Quantum criticality in the infinite-range transverse field Ising model
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We study quantum criticality in the infinite range transverse-field Ising model. We find subtle differences with
respect to the well-known single-site mean-field theory, especially in terms of gap, entanglement and quantum
criticality. The calculations are based on numerical diagonalization of Hamiltonians with up to a few thousand
spins. This is made possible by the enhanced symmetries of the model, which divide the Hamiltonian into
many block-diagonal sectors. The finite temperature phase diagram and the characteristic jump in heat capacity
closely resemble the behavior in mean-field theory. However, unlike mean-field theory where excitations are
always gapped, the excitation gap in the infinite range model goes to zero from both the paramagnetic side
and from the ferromagnetic side on approach to the quantum critical point. Also, contrary to mean-field theory,
at the quantum critical point the quantum Fisher information becomes large, implying long-range multipartite
entanglement. We find that the main role of temperature is to shift statistical weights from one conserved sector
to another. However, low energy excitations in each sector arise only near the quantum critical point implying
that low energy quantum fluctuations can arise only in the vicinity of the quantum critical field where they can
persist up to temperatures of order the exchange constant.
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I. INTRODUCTION

Recent studies of quadrupolar transverse-field Ising be-
havior in thulium vanadate materials have raised important
questions about quantum criticality in such systems [1-3].
The finite temperature thermodynamic behavior shows a jump
in the heat-capacity characteristic of mean-field behavior that
is expected for phonon-mediated systems with long-range
interactions [1,4]. Yet, surprisingly, NMR spin-echo experi-
ments show a dramatic wipe-out phenomena extending over
a fanlike region in the temperature-transverse field plane near
the quantum critical field, signifying persistent quantum crit-
ical fluctuations [5]. The well known single-site mean-field
theory captures the phase diagram and the jump in the heat
capacity quite well. However, the mean-field theory always
has a large energy gap and hence no low energy fluctuations
that can cause rapid decoherence of NMR signals [6]. The
purpose of this work is to study a concrete model that has
mean-field thermodynamic behavior and yet may support per-
sistent quantum critical fluctuations.

We consider a system of N half-integer spins. The in-
finite range transverse-field Ising model Hamiltonian can
be expressed in terms of Pauli spin matrices for the ith
spin o/ as

2
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We will set J = 1, which sets all energy scales.
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II. MEAN-FIELD THEORY

The standard mean-field theory replaces the Hamiltonian
by a single site effective Hamiltonian [7,8]

Her = —m,o° — hyo, (2)

where the magnetization m, needs to be determined self-
consistently

m; = (07). 3

Various physical properties are easy to calculate in this ap-
proximation. It leads to a transition temperature as a function
of transverse-field given by

T.(hy) = hy/ tanh™" (hy). “

In our units the zero field transition temperature 7,(0) and the
critical field at zero temperature 4. are both unity.

The mean-field approximation is known to be exact in the
thermodynamic limit for the classical model (4, = 0). In this
study we explore deviations from the mean-field behavior for
the infinite-range model for non-zero 4, and the implications
for quantum critical phenomena. We note that the infinite
range model has been derived as a zeroth order model for
the thulium vanadate and other quadrupolar transverse-field
Ising materials where gapless phonons mediate long-range
interactions between the Ising degrees of freedom [1,4,9,10].

III. INFINITE-RANGE MODEL

The infinite range model has a large number of symmetries.
Because the Hamiltonian depends only on two operators
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FIG. 1. Energy difference between the lowest two states. Note
that for 4 < h, = 1, there are two degenerate states in the thermody-
namic limit and hence this energy difference goes to zero. Mean-field
theory results are shown by dashed lines.

and
Se= )55, (©)
both of which commute with the total spin operator

St=)_5, @)

the Hamiltonian becomes block diagonal into many relatively
small (O(N)) Hilbert-space sectors [11,12]. The energy levels
and properties in each sector depend on the total spin s;, which
can take values from 0 to N/2 (we will assume N is even). The
spin sector has Hilbert space dimension 2s; 4+ 1. The number
of copies of the spin s, sector is the number of ways N spin-
half objects can be combined into total spin s,. This number
d(s;) is one for s, = N/2 and for s, < N/2 can be expressed
in terms of the combinatoric factors C;" as

d(s) = Cyjaiy, = Chiprs 41 ®)

In each s; sector the Hamiltonian matrix can be written out in
terms of the matrix elements of spin operators and diagonal-
ized numerically. Thus, given the symmetries it is possible to
numerically calculate energy eigenlevels of the system with
up to a few thousand spins rather than few tens of spins for
most lattice models.

A. Energy gap

The ground state always lies in the largest s; sector. Energy
gap between the lowest excited states and the ground state are
shown in Figs. 1 and 2 as a function of the transverse-field A,.
In the N — oo limit, there are two degenerate ground states
in the ordered phase at s, < 1. One can see the difference
between the energies of the first two states in Fig. 1. With
increasing system size this is rapidly going to zero for & < h,.
To measure the excitation energy below 4. one needs to look
at the next excited state in the ordered phase. This excitation
energy is shown in Fig. 2.
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FIG. 2. Energy difference between the third lowest energy state
and the ground state showing that excitation energy goes to zero from
both sides as one approaches the quantum critical point. Mean-field
theory results are shown by dashed lines.

From the two figures, a key difference from the single site
mean-field theory becomes clear. In mean-field theory the gap
does not go below 2J. It goes to zero at k. in the infinite-
range model as expected at the quantum critical point. The
gap vanishes as one approaches the quantum critical point A,
from either side. Further more, at the quantum critical point,
one expects a whole cascade of states to come down to zero
energy in the thermodynamic limit.

To see how the gap vanishes with system size N at the
quantum critical point, we show a log-log plot of several
energy gaps as a function of system size in Fig. 3. All the
states shown exhibit gaps vanishing as N~'/3 as N — oo (See
also Ref. [13]).

The two lowest excitations in the paramagnetic phase,
within a sector, can be identified with one and two spin-
flip excitations. Even for large h, the gap stays below the
mean-field value by an amount J =1 and 2J = 2 within
a given s; sector. As shown in the Appendix, this result
can be obtained from perturbation theory around the large
field limit and shows that deviations from mean-field the-
ory are present for all fields and not just near the critical
field.
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FIG. 3. Log-log plot of energy gaps vs N at the quantum critical
point for several low lying states showing the gap scaling as N~!/3.
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FIG. 4. A plot of the quantum Fisher information further con-
firms the quantum critical nature by showing the build up of quantum
entanglement in the thermodynamic state at low temperatures near
the quantum critical point.

B. Quantum Fisher information

In mean-field theory, the quantum state factorizes and does
not have any quantum entanglement between different sites,
even at the quantum critical point. One can consider mul-
tiparticle entanglement as one of the defining properties of
quantum criticality. To look for multipartite entanglement in
the infinite-range model, we turn to quantum Fisherinforma-
tion QFI [11]. QFI is the generalization of Fisher information
from classical statistics to a quantum mechanical system. For
a pure state, the QFI associated with a variable O is simply
proportional to its variance. In a mixed state, such as at finite
temperatures, let the ith eigenstate of the system have proba-
bility p;. Then the QFI Fy, for the observable O is given by the
expression [11]

)2

Fy =
pi +pj

iJ
The QFI is a witness of multiparticle entanglement. For

a system of N spin-half objects, if the QFI per site for any
extensive variable O defined as

fo =Fp/N, (10)

exceeds some integer m (for sufficiently large N), then there
is at least m 4 1-particle entanglement in the system.
The operator with the largest QFI for our model is

0=S5., (11)

where §; is the total z component of the spin-operator defined
in Eq. (5). All QFI calculations will be shown for this operator.
Figure 4 shows fp for several system sizes. Note that for a
proper calculation at finite temperatures one must sum over
all states of the system and not just consider one spin sector
of the Hilbert space [11]. It is clear that near the quantum
critical point at low temperatures fp becomes large and this
means that the system becomes highly entangled. Note also

Derivative of Fisher Quantum Information
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FIG. 5. Derivative of the QFI with respect to temperature shows
that fj inherits the energy singularity and hence its derivative has a
discontinuity like the heat capacity at the finite temperature transi-
tion. Note that the thinner lines correspond to the same parameter as
the solid line but for smaller system sizes (N = 768, 512 and 256)to
indicate how the curves move with size of the system.

that the QFI decreases more rapidly at 7 = 0 in the ordered
phase than in the disordered phase. This is consistent with the
behavior of other measures of quantum entanglement such as
Renyi entanglement entropy (See, e.g., Ref. [14]).

Figure 5 shows the derivative of f, with respect to tem-
perature for different transverse field values. One finds a
characteristic behavior of a sharp maxima followed by a
minima, which presumably becomes a discontinuity in the
thermodynamic limit. This feature tracks the critical tempera-
tures at different fields which are shown by dashed lines. This
is not surprising as measures of quantum entanglement can
inherit an energylike singularity even at a finite temperature
phase transition, just from the singular changes in the density
of states at the finite temperature critical point [15-17]. Note
however that this finite temperature singularity does not mean
there is any enhanced multiparticle quantum entanglement at
the classical phase transition, as the magnitude of f; remains
small away from the quantum critical region.

C. Quantum critical properties of the quantum Fisher
information

At T = 0, QFI reduces to the variance of the operator S,
in the ground state of the system, up to an overall factor.
Near the quantum critical point N — oo, T — 0, h — h,,

homogeneity [18] implies, we can write the singular piece of
QFI as

fo(N. T, h)y = N°X(T N, (h — h.) N°), (12)

where X (x, y) is a scaling function of two variables. Figure 6
shows the scaling plots for (a) & = h. and (b) T = 0 with
exponents a = 1/3,b = 1/3, ¢ = 2/3. Note that the exponent
b is consistent with the expected 7'/ A scaling with the gap A
vanishing with power N~!/3,
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FIG. 6. Scaling plots of QFI f, at critical field A, versus T (left) and at T = 0 versus transverse-field (right) for different system sizes N.

We have scaled N by a fixed reference size Ny = 128.

Our scaling relations imply that in the thermodynamic
limit, at h = h,, fp diverges as 1/T as T — 0 and fur-
thermore, at T = 0, fp diverges as (h — h.)~'/%. The latter
exponent is consistent with the expected divergence in the
mean-field universality class with a critical exponent y —
2w=1/2,withy =1,z=1andv =1/2.

D. Ground-state magnetization and susceptibilities

The transverse magnetization M, and susceptibility x., in
the ground state can be obtained by taking derivatives of the
ground state energy with h,. To calculate the longitudinal
magnetization or order parameter M, and the order parameter
susceptibility x,, one needs to add a small symmetry-breaking
field. These quantities are shown in Figs. 7 and 8. Deviations
from mean-field theory is most pronounced in the transverse
susceptibility near the quantum critical point A, = k.. In the
mean-field theory the transverse susceptibility is a constant
below %, and the magnetization M, increases linearly with
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the field. In the infinite range model there is very little de-
viation from mean-field results in the thermodynamic limit
(N — 00) away from the critical point. However, an enhanced
susceptibility very near the critical point with a sharp peak
at the transition seems to persist with increasing N as seen
in Fig. 7. Note that the jump in the transverse susceptibility
reflects the mean-field critical behavior and is not special to
the infinite-range model. Singularities in longitudinal mag-
netization and susceptibility are consistent with mean-field
critical exponents as shown by fits to mean-field behavior in
Fig 8. That is, M, ~ |h, — h.|? and x. ~ |h, — h.|”7 with
B=1/2andy = 1.

IV. FINITE TEMPERATURE THERMODYNAMIC
PROPERTIES AND THULIUM VANADATES

Thermodynamic properties such as entropy, heat capacity
and transverse susceptibilities at finite temperatures can be ob-
tained from the partition function of the system. The partition
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FIG. 7. Plot of the transverse magnetization M, (left) and transverse susceptibility x,, (right) as a function of the transverse field in the
ground state of the system. Mean-field results are shown by dashed lines.
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FIG. 8. A plot of the longitudinal magnetization (left) and longitudinal susceptibility (right) as a function of the transverse-field in the
ground state of the system obtained with a small symmetry-breaking field #, = 0.0001.

function is given by

Z(T. hy) = Trexp(—pH) = Y d(s) Y _e?H. (13)

i€s;

where d(s;) is the number of sectors with spin s, in the system.

A plot of the calculated heat capacity as a function of
temperature is shown in Fig. 9 for a range of transverse-field
values. The system studied is large enough to exhibit the char-
acteristic jump like feature of mean-field theory as observed
in the TmVO, materials [1].

Transverse-susceptibility as a function of field for var-
ious temperatures is shown in Fig. 10, and as a function
of temperature for various fields in Fig. 11. In mean-field
theory the susceptibility is constant in the ordered phase
and jumps at the transition as a function of field and then
rapidly decreases in the paramagnetic phase. The most vis-
ible difference from mean-field theory is the rise of the
transverse susceptibility in the ordered phase above the mean-
field value and a small but distinct peak near the quantum
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FIG. 9. Heat capacity as a function of temperature for various
values of the transverse field for N = 1024 spins. The solid lines are
for N = 1024 and the dotted lines for N = 2048.

critical point. At low temperatures, this peak increases with
increase in temperature. Such a peak may be observable in the
materials.

A. The TmVQO, materials

Our study provides a resolution of the different behav-
iors observed in the thermodynamic and NMR spin- echo
measurements in the thulium vanadate materials. The phase
diagram and heat capacity jump of the model closely fol-
low mean-field theory. These are well reproduced by the
infinite-range model. However, unlike mean-field theory,
NMR spin-echo measurements show persistent low energy
quantum critical fluctuations near the critical field. As an
example, the divergent spin-spin relaxation rate is shown in
Fig. 12. The infinite range transverse-field Ising model shows
that both the mean-field thermodynamic and low energy spec-
tral behaviors can be simultaneously present in a long-ranged
system.

Xz

FIG. 10. Transverse susceptibility as a function of transverse-
field for fields for various temperatures for the infinite-range model.
Solid lines are for N = 1024 and dotted lines for N = 2048.
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FIG. 11. Transverse susceptibility as a function of temperature

for various transverse fields for the infinite-range model. Solid lines
are for N = 1024 and dotted lines for N = 2048.

In Fig. 13, we show the spectral function associated with
the total transverse spin operator. In these finite systems, the
spectral weights consist of a series of delta-function peaks
that have been broadened by a Lorentzian with a broadening
parameter n = 107>, The spectral functions are shown on a
logarithmic scale. One can see that away from the quantum
critical point at h. = 1, there is a gap in the spectra of order
J which is almost size independent. This gap is too large to
cause any low frequency NMR relaxation. In contrast, at the
critical point . = 1 a whole series of states are converging
towards zero energy. It is these states at low energies, char-
acteristic of a quantum critical point, that can cause a rapid
decoherence of the nuclear spins.

The main effect of temperature in the model is that the
probability of finding the system in a spin sector s, changes as

(11T
N
T

hihe

FIG. 12. Normalized spin decoherence rate, Ty/T> =
—log(I(h)/1(0)) measured in TmVO, at T =0.77 [5]. Here
I is the integrated spectral intensity measured by spin echoes,
normalized such that /(0) is unity, and the constant 7, ~ 6 x 107>
Sec. The sharp rise at the quantum critical field is indicative of
quantum criticality.
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FIG. 13. Spectral functions associated with the total transverse
spin with delta functions broadened by a Lorentzian of width n =
103 for transverse-field values of 0.5, 1.0, 1.5 and 2.0. Away from
the quantum critical point at i, = h. = 1, the system has a large gap.
At the quantum critical point, a number of states converge towards
zero energy with increase in system size.

a function of temperature. Probability distribution for finding
the system in different spin sectors, for two different values of
the transverse field, for a system of N = 1024 spins are shown
in Fig. 14 for temperatures up to twice the zero-field transition
temperature. At low temperatures (up to about 7 = 0.2) this
probability is very sharply peaked near the highest spin sector,
where the ground state resides. Even at twice the ordering
temperature the probability is still peaked in a spin sector that
is a fraction of the maximum spin, hence extensive in number
of spins. It would take an unphysically large temperature for
the probability to finally shift to sectors with spin of order
one. One can also see in the plot that the largest change in
the probability distribution occurs as one crosses the phase
transition.

In each such sector with an extensive spin value, the system
supports low energy quantum dynamics near the critical field.
That is, the gaps go to zero in every large spin sector at A,.
As the main role of temperature is to shift the probability
distribution to reduced s, values, low energy weight remain
at the critical field even as temperature increases. This tells
us that for a sufficiently large system the quantum critical
fluctuations can persist at the quantum critical point to temper-
atures of order the exchange constant. We note that it has been
shown in literature that in a one-dimensional transverse-field
Ising model, quantum critical fluctuations persist up to infinite
temperature [6,19].

V. SUMMARY

In summary, we have shown that the infinite range
transverse-field Ising model exhibits quantum criticality. The
energy gap goes to zero as the quantum critical field is ap-
proached from either side of the transition. The study of
QFI shows that the system becomes highly entangled as the
quantum critical point is approached in the temperature-field
plane. While the QFI appears to be singular at the finite
temperature phase transition, it does not serve as a witness for
enhanced quantum entanglement along the finite temperature
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FIG. 14. Probability distribution for finding the system in spin-sector S at the critical field 4. = 1 (left) and deep inside the ordered phase
h. = 0.4 (right) at several temperatures for a system of N = 1024 spins with maximum spin of s, = 516. For & < h,, such as h. = 0.4, there
is a finite temperature phase transition and the largest shift in the probability distribution happens as one crosses the phase transition.

phase boundary away from the quantum critical region. In
other words, the enhanced multipartite quantum entanglement
is observed only in the quantum critical region.

Various thermodynamic quantities show deviations from
mean-field behavior especially near the quantum critical field.
Heat capacity has a jump at the transition which closely
resembles the mean-field behavior. However, the transverse
susceptibility shows a peak at T = 0 near the quantum crit-
ical point, unlike mean-field theory. At finite temperatures
also a small but distinct peak in the transverse suscepti-
bility remains. The spectral function associated with the
transverse-susceptibility shows low energy weights only near
the quantum critical point, which persists over a range of
temperatures.

This study points to a possible consistent explanation of the
various observed properties in the thulium vanadate materials.
While the heat capacity in the material shows a jump quite
similar to mean-field theory, NMR studies find quantum criti-
cal features with a vanishing spin-gap and a rapid decoherence
of nuclear spin states in the vicinity of the quantum critical
field consistent with the results of our model study. We also
find peaks in the transverse susceptibility at low temperatures
in the quantum critical region and speculate that such peaks
should be present for phonon mediated transverse-field Ising
systems that can be modeled with long-range interactions.
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APPENDIX: PERTURBATION THEORY
FOR ENERGY GAPS

In this Appendix we develop high-field perturbation theory
for the infinite-range model to show that the gaps in excitation

energy have finite corrections to the mean-field results even
in the limit that the transverse-field &, goes to infinity. In
mean-field theory, the entire paramagnetic phase is described
by decoupled spins in a transverse field, for which the excita-
tion gap corresponding to flipping a spin has energy 2h,. We
consider the maximum S; sector of our infinite-range model in
which the ground state lies for all /. In this sector, all states
correspond to a uniform state analogous to a ¢ = 0 state in
finite dimensional system. In the ground state for £, going to
infinity, all spins are pointing in the x direction. Its energy can
be calculated perturbatively and gives

J2

Ey = _th YT
16h,

(AD)

as h, — oo corrections to mean-field result goes to zero. The
one-particle state or single spin-flip state is an equal superpo-
sition of spin-flip states at each site. Its energy already changes
in first-order perturbation theory due to matrix elements con-
necting flipped spins at different sites leading to

Ei=—(N —2)h, —J. (A2)
Similarly, the energy of two-spin flip state has energy
Ey=—(N —4)h, —2J. (A3)

This shows that as h, goes to infinity, there remains a
correction to energy gaps from the mean-field result. The
one-particle excitation has a gap of 2k, — J and two-particle
gap has excitation gap 4h, — 2J.
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