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The Bose-Hubbard model (BHM) has been widely explored to develop a profound understanding of the
strongly correlated behavior of interacting bosons. Quantum simulators not only allow the exploration of the
BHM but also extend it to models with interesting phenomena such as gapped phases with multiple orders
and topological phases. In this work, an extended Bose-Hubbard model involving a dimerized one-dimensional
model of long-range interacting hard-core bosons is studied. Bond-order density wave phases (BODW) are
characterized in terms of their symmetry breaking and topological properties. At certain fillings, interactions
combined with dimerized hoppings give rise to an emergent symmetry-breaking leading to BODW phases,
which differs from the case of non-interacting models that require an explicit breaking of the symmetry.
Specifically, the BODW phase at filling ρ = 1/3 possesses no analog in the noninteracting model in terms
of its symmetry-breaking properties and the unit cell structure. Upon changing the dimerization pattern, the
system realizes topologically trivial BODW phases. At filling ρ = 1/4, on-site density modulations are shown
to stabilize the topological BODW phase. Our work provides the bridge between interacting and noninteracting
BODW phases and highlights the significance of long-range interactions in a dimerized lattice by showing unique
BODW phases that do not exist in the noninteracting model.
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I. INTRODUCTION

The Bose-Hubbard model (BHM) is a paradigmatic model
for understanding strongly correlated materials [1–4] and has
been intensively studied from a theoretical point of view
[5–10]. With the advent of ultracold-atom-based quantum
simulators [11–13] including Rydberg atoms [14,15], the ex-
ploration of the BHM has provided valuable insights into
complex phenomena arising in many-body physics [16–21].
The precise control achieved in these platforms over the sys-
tem parameters has facilitated probing physical scenarios that
are impossible if not difficult to achieve in conventional solid-
state systems. This has sparked interest in different variants of
the BHM such as the extended Bose-Hubbard model (EBHM)
[22,23]. Whereas the standard BHM only comprises on-site
interactions between particles, certain examples of EBHM
[24–26] include off-site interactions which enrich the phase
diagram of the BHM by hosting supersolid phases and the
Haldane insulator [27–30].

In a dimerized lattice, the EBHM has been shown to reveal
a wealth of physical phenomena such as density-wave phases
at fractional densities and symmetry-protected topological
(SPT) phases [31–33]. In particular, EBHM with dimer-
ized hoppings and nearest-neighbor interactions has recently
been shown to host phases with both the density wave and
bond orders referred to as bond-order density wave (BODW)
[34,35]. In our recent work, we studied a system of Rydberg
atoms with both dipolar and van der Waals interactions on a
dimerized lattice where we explored the combined effects of
dimerized hopping and long-range interactions [35]. We iden-
tified BODW phases at different fillings, and in particular, we
found it for ρ = 1/3 with no counterpart in nearest-neighbor

interacting models thereby highlighting the importance of
beyond nearest-neighbor processes. Thus, we have shown
that having a nontrivial unit cell structure with long-range
interactions can stabilize insulating states with multiple co-
existing orders. These phases were previously explored in
noninteracting spinless fermionic models in one-dimensional
(1D) superlattices with periodically modulated hopping am-
plitudes with an emphasis on studying SPT phases rather
than their symmetry-breaking properties [36]. Understanding
topological phenomena in interacting systems has become
very important [37–40] since the underlying concepts have
led among others to quantized transport coefficients [41,42],
degeneracies in Bloch bands [43], and the presence of unusual
edge modes [37,44]. Topological band theory has been very
successful in explaining the topological character of states
in the non-interacting case [43,45]. Since topological band
theory depends on single-particle properties, this descrip-
tion cannot be directly extended to systems with interactions
[46–50]. However, a thorough characterization of the BODW
phases of interacting systems in terms of both the symmetry-
breaking and topological properties is lacking although BO
phases were studied extensively [33,39,40,51]. In particular,
the relationship between interactions, lattice dimerization, and
topological features has not been explored extensively, and is
carried out in this work by characterizing topological and
symmetry-breaking properties of BODW phases in 1D at var-
ious fillings.

Our results indicate that dimerized hoppings combined
with long-range interactions lead to BODW phases with emer-
gent symmetry-breaking properties. This differs from their
noninteracting counterparts where the symmetry-breaking
pattern is provided by a superlattice with multiple hopping
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FIG. 1. Superlattice structure in (a) with period l = 4 where
t1, t2, t3, t4 correspond to (periodic) hopping amplitudes in the
non-interacting case can emerge from (b) combining repulsive
nearest-neighbor interactions VNN in a dimerized lattice with alter-
nating hoppings t1 and t2.

amplitudes [Fig. 1(a)]. For example, at the filling ρ = 1/4,
combining NN interactions with dimerized hopping realizes
an emergent BODW1/4 phase [Fig. 1(b)] whose noninteract-
ing analog requires a tetramerized lattice with four hopping
amplitudes [Fig. 1(a)]. By tuning dimerized hopping ampli-
tudes, topologically trivial BODW phases can be realized.
We demonstrate that a nontrivial BODW1/4 configuration can
be obtained by applying repulsive on-site pinning potentials.
At filling ρ = 1/3, a BODW1/3 phase exhibits symmetry-
breaking properties with no analog in the noninteracting case.

II. HAMILTONIAN, METHODOLOGY, AND PHASES

In the following, we introduce the model Hamiltonian and
discuss its ground-state properties for certain limiting cases.
We provide details about the employed numerical method and
the observables used for characterizing the ground states and
extracting corresponding topological properties.

A. Hamiltonian and specific phases

We consider a 1D lattice of hardcore bosons with nearest-
neighbor hopping and long-range repulsive density-density
interactions. The EBHM with hardcore bosons in this config-
uration is described by

Ĥ = −
∑

i

(ti,i+1b̂†
i b̂i+1 + H.c.) +

∑
i< j

Vi, j n̂in̂ j

+ μ
∑

i

n̂i, (1)

where b̂i (b̂†
i ) annihilates (creates) a boson at site i and

n̂i = b̂†
i b̂i is the number operator. The tunneling amplitude

ti,i+1 is the nearest-neighbor hopping amplitude between site
i and i + 1. In Rydberg atom platforms, it can be encoded by
dipolar exchange interactions between highly excited atoms.
The off-site interaction terms n̂in̂ j give an energy penalty
for nearby bosons and can be implemented in Rydberg
atom quantum simulators through van der Waals interactions
[14,15]. Due to the scaling with the interparticle distance as
1/|i − j|6, the range is restricted up to next-nearest-neighbor
with |i − j| = 2 in Eq. (1) above and the interaction strength

is tuned by Vi, j . For any given site i, nearest-neighbor (NN),
and next-nearest-neighbor (NNN) interaction strengths are
denoted by Vi,i+1, Vi,i+2, respectively. For notational conve-
nience, we also denote hopping and interaction strengths as
ti,i+1 = ti and Vi,i+1 = VNN , Vi,i+2 = VNNN . The third term is
the on-site potential with strength μ and can be controlled
by the detuning of the Rydberg lasers [15]. It is set to μ = 0
unless otherwise stated.

In the case of noninteracting bosons (VNN ,VNNN = 0) with
ti = ti+l and l = 2, Eq. (1) reduces to the bosonic version
of the Su-Schrieffer-Heeger (SSH) model [52] which was
originally formulated to describe non-interacting fermionic
particles hopping on a dimerized lattice with alternating
hopping amplitudes. It can be mapped to the free fermion
model via the Jordan-Wigner transformation [53]. Similarly,
in the presence of periodic modulations ti = ti+l with pe-
riod l , the unit cell size is enlarged by l and gapped phases
can be found at the filling n/l with n = 1, . . . l − 1 [36].
Therefore, combining periodic modulations with appropriate
fillings gives rise to translational symmetry breaking in the
ground state. The ground state then possesses topological
properties depending on the ratios of the hopping amplitudes
in the modulation pattern.

To introduce certain concepts discussed above, we start the
discussion with the noninteracting model at the half-filling
with dimerized hopping amplitudes t1/t2 �= 1. In this case, the
unit cell is doubled, and a symmetry-broken phase with bond
order (BO) is realized [51]. The BO phase is identified as
having independent dimers formed along the lattice. Dimers
are given by (|◦•〉 + |•◦〉)/

√
2, where ◦ and • denote empty

and boson occupied site respectively. There are two possible
symmetry-broken configurations depending on whether the
first link has a large (|t1| > |t2|) or small (|t1| < |t2|) hopping
amplitude in the modulation pattern. |t1| > |t2| admits a trivial
phase with bond order in which dimers are formed inside the
unit cell as shown in Fig. 2(a). The ground state is expressed

as a product of dimers in the form
∏L−2

i=0 (
b̂†

2i+b̂†
2i+1√

2
)|◦ ◦ · · · ◦〉.

|t1| < |t2| yields a SPT phase with BO with topologically
protected edge states. In this topological sector, the dimers
are of intercell character as depicted in Fig. 2(b), and the local
Berry phase is quantized to π at each of the intercell links
[39,40]. Including NN interactions (VNN �= 0) at half-filling
results in transitioning from the BO phase to the density-wave
(DW) phase [34,35]. Due to a finite VNN , the system puts
an energy penalty to having NN particle occupations, and
dimer formation is prohibited. This leads to a DW phase
described by the state |• ◦ • · · · • ◦〉 with alternating particle
occupations.

The system at filling ρ = 1/4 without interactions and
ti = ti+l with l = 4 gives rise to the BODW1/4 phase as
shown in Figs. 2(c) and 2(d). Differing from the individual
BO and DW phases, BODW phases exhibit breaking of the
translational invariance for both the bond and site densities.
By explicitly modulating the hoppings with a period of four,
the unit cell is enlarged to l = 4 and particles localize to
form dimers at every fourth bond [Fig. 2(c)] and the state is

described by
∏L−4

i=0 (
b̂†

4i+b̂†
4i+1√

2
)|◦ ◦ · · · ◦〉. Different symmetry-

broken sectors of the BODW1/4 can be obtained depending
on the modulation pattern similar to the ρ = 1/2 case.
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FIG. 2. Schematic depictions of the BODW phases are displayed. At ρ = 1/2, the BO phase in the (a) trivial and (b) topological sectors
is shown. Unit cells are denoted by rectangles. In (a) intracell and (b) intercell dimers are formed when |t1| > |t2| and |t1| < |t2|, respectively.
Dimers are expressed by (|◦•〉 + |•◦〉)/

√
2, where ◦ and • denote empty and boson occupied site. (c) Topologically trivial BODW1/4 phase is

shown. This phase can be found (i) in the noninteracting model with hopping amplitudes [t1, t2, t3, t4] and (ii) in the model with NN interactions
and dimerized hopping amplitudes |t1| > |t2|. (d) Topologically nontrivial BODW1/4 with intercell dimers connecting two unit cells is shown.
This phase can be obtained from (i) the noninteracting model with hopping constraints |t1| = |t3| and |t2| < |t4| and (ii) the NN interacting setup
with repulsive on-site potentials μ at every second and third site inside the unit cell. (e) Trivial BODW1/3 phase in the noninteracting system
with hopping amplitudes [t1, t2, t3] is shown. (f) BODW1/3 in the model with NN and NNN interactions with dimerized hopping |t1| > |t2| is
depicted. (g) is the topological BODW1/3 with intercell dimers and can be obtained in the noninteracting model with |t1| = |t2| and |t1| < |t3|.

Specifically, having hoppings in the form |t1| = |t3| and
|t2| < |t4| stabilizes a topological BODW1/4 phase protected
by inversion symmetry [Fig. 2(d)]. The same phase as dis-
cussed above can be obtained in the presence of interactions
with only dimerized hoppings [35]. Interactions effectively in-
duce superlattice structures with higher periods despite having
a dimerized lattice as shown in Figs. 1(a) and 1(b). The model
in Eq. (1) at the filling ρ = 1/4 with only nearest-neighbor
interactions (VNNN = 0) and dimerized hoppings ti = ti+l with
l = 2 and |t1| > |t2| hosts the BODW1/4 phase [Fig. 2(c)]. A
dimerized lattice at ρ = 1/4 without interactions leads to a
vanishing energy costs for particle-hole excitations since the
particle density ρ = 1/4 is too dilute for such a setup. This
leads to a vanishing particle-hole excitation gap where the
Luttinger liquid phase is realized. Turning on NN interac-
tions causes particle-hole excitations to come with an energy
penalty due to the suppression of NN boson occupation. The
ground state then energetically favors a configuration consist-
ing of a single dimer in every unit cell with four sites. This
leads to the translational symmetry breaking with an enlarged
unit cell of l = 4, thus, giving rise to the emergence of an
effective superlattice structure with a higher period despite the
dimerized lattice. As the system exhibits a gap, a topological
phase transition can take place upon changing the hopping
dimerization from |t1| > |t2| to |t1| < |t2| in the framework
of SSH physics. However, changing the dimerization pattern
gives rise to another trivial sector of the BODW1/4 phase
which differs from [Fig. 2(c)] by one lattice translation where
the dimer is located at the second link instead of the first.
To favor the topological BODW1/4, repulsive on-site modu-
lation at every second and third site inside the unit cell can

be applied as shown in Fig. 2(d). As in the ρ = 1/2 case,
including beyond NN interactions leads to the DW phase
described by the state of the form |• ◦ ◦ ◦ • · · · • ◦ ◦ ◦〉. Anal-
ogously to the BODW1/4 phase, dimerized hoppings with
long-range interactions (beyond NNN) can effectively realize
the superlattice structure with period l = 6, which in the non-
interacting case requires ti = ti+6. The state is described by∏L−6

i=0 (
b̂†

6i+b̂†
6i+1√

2
)|◦ ◦ · · · ◦〉.

The system at filling ρ = 1/3 without interactions and
ti = ti+l with l = 3 hosts the BODW1/3 phase. The combined
effect of a periodic hopping amplitude with the filling ρ = 1/3
enlarges the unit cell by l = 3. Particles localize to form
dimers at every third bond [Fig. 2(e)] and a state in the form

is
∏L−3

i=0 (
b̂†

3i+b̂†
3i+1√

2
)|◦ ◦ · · · ◦〉 obtained. Having a modulation

pattern in the form |t1| = |t2| and |t1| < |t3| stabilizes a topo-
logical configuration of the BODW1/3 phase [Fig. 2(g)]. Both
non-interacting and interacting models at ρ = 1/4, 1/6 real-
ize the same BODW phases, but the interacting model exhibits
a unique BODW phase at ρ = 1/3 which differs from the
noninteracting one by (i) a symmetry-breaking with unit cell
enlargement emerges which is not imposed at the Hamiltonian
level (ii) bond densities in the unit cell do not correspond to
dimers and have different numbers of sites [Figs. 2(e) and
2(f)]. The model in Eq. (1) with second nearest-neighbor in-
teractions (VNN ,VNNN �= 0) and dimerized hoppings ti = ti+l

with l = 2 hosts the BODW1/3 phase at ρ = 1/3 filling as
shown in Fig. 2(f). Having NN and NNN interactions favor
suppression of a boson occupation up to the next NN sites.
This leads to a symmetry-breaking with a unit cell enlarge-
ment by l = 3 where on-site particle densities oscillate with
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period-3. Due to dimerized hoppings, this enlargement further
goes up to l = 6 where finite bond densities occur at certain
links between sites. As it can be seen from comparing the
Figs. 2(e) and 2(g) with 2(f), the interacting BODW1/3 has a
unit cell of size l = 6 and the bond densities do not correspond
to dimers in the form (|◦•〉 + |•◦〉)/

√
2. Therefore, the state

cannot be described by a product state of independent dimers
as they are in the previous BODW phases.

B. Numerical method and observables

As described in the previous section, BODW phases ex-
hibit both bond and density wave order, which is characterized
by the breaking of translational invariance concerning both
bond and site density. This is manifested in the modulation
of both site 〈n̂i〉 and bond 〈B̂i〉 density, where B̂i = b̂†

i b̂i+1 +
H.c. is the bond operator. The unit cell of the system is en-
larged after the symmetry breaking. This ordering in gapped
phases can be characterized by computing appropriate struc-
ture factors. To identify BO and DW characteristics in the
ground state, we compute the following structure factors de-
fined as the following:

SDW = 1

L2

∑
i, j

eikr〈n̂in̂ j〉, (2)

SBO = 1

L2

∑
i, j

eikr〈B̂iB̂ j〉, (3)

where SDW and SBO correspond to the DW and BO structure
factors where 〈n̂in̂ j〉 and 〈B̂iB̂ j〉 probe site and bond den-
sity correlations, respectively. k is the crystal momentum and
r = |i − j| denotes the distance between the sites i and j in the
lattice. BO and DW orders translate into pronounced peaks at
certain crystal momenta. This helps figure out the unit cell
of the ordered phases, which provides information about the
translational symmetry-breaking nature of the phase. Anal-
ogous to SSH physics, there are multiple symmetry-broken
sectors of the BODW phases and they can be connected by
an appropriate lattice translation. In finite-size systems, this
translates into having symmetry-broken sectors of the BODW
phases with identical bulk properties but different edges.
Therefore, the previously introduced local order parameters
cannot probe all the properties of the BODW phases such as
topological properties that make the various symmetry-broken
sectors different from each other.

To gain insight into the global properties of the ground
state, we calculate the entanglement spectrum, local Berry
phase, and density distribution of the edge modes. The entan-
glement entropy is computed by partitioning the system and
writing the ground state as

|ψGS〉 =
∑

n

ξn|ψn〉L ⊗ |ψn〉R, εn = −2 log (ξn), (4)

where L and R are the two subsystems, and ξn are the corre-
sponding Schmidt eigenvalues. The entanglement spectrum is
defined as the set of all the Schmidt eigenvalues in the loga-
rithmic scale εn = −2 log(ξn). In 1D, it has been shown that
under the preservation of their protecting symmetries, SPT
phases exhibit degeneracies in their entanglement spectrum
[54,55]. In this way, the entanglement spectrum only consists
of a group of degenerate Schmidt eigenvalues.

We determine the local Berry phase [56,57], which is a
robust topological invariant that unequivocally identifies SPT
phases in interacting models [39,40,58]. For a Hamiltonian
H (λ) that depends on an external parameter λ ∈ [λi, λ f ], an
adiabatic cyclic evolution with H (λi ) = H (λ f ) can be consid-
ered. It was shown in Ref. [56] that as long as H (λ) commutes
with the antiunitary operator of the form �̂ = KÛ where K is
complex conjugation and Û is a unitary operator, the Berry
phase [59] of the ground state |ψλ〉 as defined below,

γC = i
∮

C
dλ

〈
ψλ

∣∣∣∣∂ψλ

∂λ

〉
, mod 2π (5)

is quantized to discrete values 0 and π upon performing a
parallel transport on a closed path C with λ f = λi. We use the
quantization of the Berry phase to define a topological order
parameter as shown in Ref. [56]. A local perturbation that re-
spects the symmetry of the SPT is introduced without closing
the gap at one of the hopping strengths on a link 〈i j〉 con-
necting sites i and j as ti j → eiθ ti j [57]. A closed path C〈i j〉 of
parameters θ for the link 〈i j〉 is considered and the quantized
Berry phase γC in Eq. (5) is identified as the local order pa-
rameter at 〈i j〉. As long as the protecting symmetry is present
in the system, this topological property cannot change unless
the gap is closed. For the numerical calculation, the closed
path C is discretized into N points λ0, . . . , λk, . . . , λN with
λk = tei2πk/N , λN = λ0. Then, the discretized Berry phase is
used for a given link (i, i + 1) defined by the lattice Berry
connection [60,61] as γ N

C (i, i + 1) = Arg
∏N−1

k=0 〈ψU
λk

|ψU
λk+1

〉,
|ψU

λk
〉 = |ψλk 〉〈ψλk |φ〉, where |ψλk 〉 is the ground state and |φ〉

is a reference state. In the limit of large N , γ N
C (i, i + 1) quickly

approaches the local Berry phase γC in Eq. (5). The quantity
γ N

C (i, i + 1) is independent of the |φ〉 as long as the overlap
〈ψλk |φ〉 is nonvanishing, but depends on N and how the closed
path is discretized. In this work, N = 10 was enough to obtain
converged results, and the ground state obtained without per-
turbation is used as the reference state |φ〉.

Another signature of SPT phases is the existence of
localized edge states in systems with boundaries. Their pres-
ence can be signaled from the real-space density distribution
〈n̂i(N )〉 of N bosons along the lattice. As mentioned previ-
ously, Eq. (1) at ρ = 1/2 with dimerized hoppings |t1| < |t2|
and vanishing interactions yields a topological BO phase. This
SPT phase exhibits a polarized edge population where one of
the edge sites is entirely occupied (〈n̂i(N )〉 ∼ 1) and the other
vanishes (〈n̂i(N )〉 ∼ 0) while possessing uniform distribution
(〈n̂i(N )〉 ∼ 0.5) in the bulk. In the trivial sector (|t1| > |t2|),
the occupations would be uniform for all sites. Therefore, the
polarized edge population hints at the topological character of
the BO phase [62,63]. Another way of probing the edge prop-
erties is to check the presence of many-body edge states by
obtaining localized peaks or drops in the density distribution
when adding one extra particle (N + 1) above or one extra
hole (N − 1) below the filling of interest, respectively. In the
topological sector at ρ = 1/2, the density is uniform in the
bulk for the two states (〈n̂i(N + 1)〉, 〈n̂i(N − 1)〉 ∼ 0.5) while
it displays localized peaks at both the edges as 〈n̂i(N + 1)〉∼ 1
and drops as 〈n̂i(N − 1)〉 ∼ 0. Therefore, as mentioned in
previous works [39,64], these many-body edge states acquire
a fractional particle number of ±1/2, which can be regarded
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as a bosonic analog of charge fractionalization [65]. In our
study, we check for localized peaks under open boundary
conditions when we add one extra particle above the filling
of interest. To do that we compute the following quantity:


p
i = 〈n̂i(N + 1)〉 − 〈n̂i(N )〉 (6)

for all sites i on the lattice. p
i probes the existence of a many-

body edge state through one extra particle [66]. For example,
in the topological sector of ρ = 1/2, 

p
i displays a localized

peak at one of the edges as 
p
i ∼ 1 while it vanishes 

p
i ∼ 0

for the rest, which is due to having polarized edge occupations
for the N boson case at the edges with 〈n̂(N )〉 = 0, 1 and
〈n̂(N + 1)〉 ∼ 1 at both the edges for the N + 1 case. Similar
results are obtained at the ρ = 1/4 filling for the interacting
case in the topological sector, which will be shown in the
results. Analogously, h

i = 〈n̂i(N )〉 − 〈n̂i(N − 1)〉 can be de-
fined to probe the existence of a many-body edge state through
one extra hole.

We perform density-matrix-renormalization-group
(DMRG) [67–70] simulations to study the ground state
properties of the model in Eq. (1). All DMRG simulations
are performed by using the TeNPy library [71]. In this
work, both finite and infinite matrix product states (MPS)
are used. Symmetry-breaking properties are probed in
the thermodynamic limit by performing infinite DMRG
(iDMRG) simulations. For the topological characterization,
finite system sizes with open boundary conditions (OBC) are
employed. A maximum MPS bond dimension of χ = 150 is
considered. We set the relative energy error to be smaller than
10−9 to ensure convergence. During the truncation, Schmidt
values smaller than 10−10 are discarded.

III. RESULTS

In the following, we present an extensive analysis of the
BODW phases in terms of their symmetry-breaking and topo-
logical characteristics. We carry out a comparative analysis
where noninteracting and interacting BODW phases are con-
trasted to help us understand the role of interactions in giving
the symmetry-breaking character. In this way, we figure out
whether BODW phases in the interacting model can favor SPT
configurations upon changing the dimerization pattern.

A. BODW1/4

Figure 3 shows the symmetry-breaking and the lack of
topological properties of the BODW1/4 phase in the inter-
acting model with |t1| < |t2| and without on-site potentials
(μ = 0). Figs. 3(a) and 3(b) depict the site and bond den-
sities while the corresponding structure factors are provided
in Figs. 3(c) and 3(d). The fact that the system admits
a trivial phase independent of whether |t1| > |t2| or |t1| <

|t2| is shown by plotting the entanglement spectrum, local
Berry phase, effective hoppings, and edge state population in
Figs. 3(e)–3(h), respectively. The enlarged unit cell with four
sites can be seen from the site and bond density profile in Figs.
3(a) and 3(b). In Fig. 3(a), modulated density oscillations 〈n̂i〉
imply that a single boson is delocalized over two sites at every
unit cell, thus forming a single dimer at each unit cell and
giving the DW character of the phase. This differs from the

(a) (c)

(d)(b)

(e)

(f) (g)

(h)

FIG. 3. BODW1/4 phase from the interacting model without on-
site potential (μ = 0) at ρ = 1/4 in terms of symmetry-breaking
(a)–(d) with iDMRG and topological observables (e)–(h) from finite
DMRG simulations of the lattice size L = 120 and OBC. Cut-out
slanted lines in (a) and (b) stand for axis breaks. For the system
with t1 = 0.1, t2 = 1,VNN = 10 [Fig. 2(c)], expectation values of
the (a) site n̂i and (b) bond B̂i density operators are displayed. The
corresponding structure factors in (c) SDW and in (d) SBO are shown.
The entanglement spectrum εn, local Berry phase |γ N

C |, and effective
hopping amplitudes χm for each link m between two sites are shown
respectively in (e), (f ), (g), and (h) depicts 

p
i (see main text).

noninteracting case where the particles with filling ρ = 1/4
are loaded to the corresponding superlattice with period-4.
The position of the dimer in each unit cell can be inferred from
the bond densities at the links as shown in Fig. 3(b) where a
finite bond density is shown at every second link in each unit
cell forming intra-cell dimers. Changing the dimerization pat-
tern from |t1| < |t2| to |t1| > |t2| realizes another trivial sector
of the BODW1/4 phase with a dimer at every first link in each
unit cell [Fig. 2(c)], differing from the |t1| < |t2| case by a
lattice translation. These findings also translate into the peaks
of the structure factors SDW (k) at k = π/2 and SBO(k) at
k = π/2, π as shown in Figs. 3(c) and 3(d). Since topological
features are absent in this trivial phase, the entanglement
spectrum does not consist of groups of degenerate Schmidt
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coefficients as shown in Fig. 3(e). As mentioned in Sec. II A,
the system in the non-interacting limit at ρ = 1/4 with pe-
riodic modulation of the hopping amplitudes [t1, t2, t3, t4] as
ti = ti+4 hosts the SPT phase as long as the constraints |t1| =
|t3| and |t2| < |t4| are satisfied. However, in the case of Fig. 3,
the combination of the hopping dimerization |t1| < |t2| and
NN interactions (VNN �= 0) leads to realizing effective hopping
amplitudes that violate such constraints. This can be inferred
from the effective hopping amplitudes defined over the link m
by χm = |〈b̂†

mb̂m+1〉| [36]. In particular, the effective hopping
amplitudes (χ2, χ4) shown in Fig. 3(g) imply that |t2| > |t4|,
which violates one of the constraints mentioned. Another
signature for the absence of topological features is given in
Fig. 3(f) where the local Berry phase is quantized to 0 at the
intercell links. This implies that the dimers are formed intra-
cell and the configuration is trivial. Edge mode localization
is also absent as can be seen in Fig. 3(h) where the density
distribution does not exhibit localization at the boundaries.
The profile in Fig. 3(h) signals that the system with one extra
particle (N + 1) above the filling ρ = 1/4 displays a solitonic
behavior in the density 〈n̂i(N + 1)〉, which is akin to the cases
with one particle above the commensurate fillings ρ yielding
DW phases [27]. The results for the BODW1/6 phase also
directly follows from the BODW1/4 phase [Figs. 3(a)–3(d)] by
changing the period l = 4 pattern to l = 6 for which the peaks
of the structure factors are SDW (k) at k = π/3, 2π/3 and
SBO(k) at k = π/3, 2π/3, π . Analogously, both dimerization
patterns |t1| > |t2| and |t1| < |t2| lead to the trivial sector of
the BODW1/6.

Figure 4 shows the symmetry breaking and the presence
of topological properties of the BODW1/4 phase in the inter-
acting model with |t1| < |t2| and with on-site potentials (μ �=
0). The nontrivial symmetry-broken sector of the BODW1/4

phase with SPT is favored by adding a repulsive pinning term
of the form μn̂i at every second and third site in each unit
cell to satisfy the hopping constraints [Fig. 2(d)]. As expected,
the symmetry-breaking properties shown in Figs. 4(a)–4(d)
are identical to the previous case without the on-site potential
[Figs. 3(a)–3(d)]. However, the polarized site densities at the
left edge (〈n̂L〉 = 1) and the right edge (〈n̂R〉 = 0) as shown in
Fig. 4(a) signals the existence of edge states, thus providing a
signature for the existence of SPT. The entanglement spec-
trum exhibits twofold degeneracy with pairs of degenerate
Schmidt eigenvalues as can be seen in Fig. 4(e). This time
the effective amplitudes (χ2, χ4) obey the constraints where
|t2| < |t4| as shown in Fig. 4(g). This is due to having repul-
sive on-site density which does not favor boson occupation.
This leads to the breaking of dimers at every second link in
a given unit cell while promoting dimer formation at every
fourth bond connecting the unit cells. This is also reflected
in Fig. 4(f) where the local Berry phase is quantized to π

at every inter-cell link. The presence of localized density of
the edge mode is also shown in Fig. 4(h), which is similar to
the noninteracting topological BO phase at the filling ρ = 1/2
mentioned in Sec. II B.

B. BODW1/3

Symmetry-breaking, absence and presence of topological
properties in the interacting and non-interacting BODW1/3

(a) (c)

(b) (d)

(e)

(f) (g)

(h)

FIG. 4. BODW1/4 phase from the interacting model with on-
site potential (μ �= 0) at ρ = 1/4 in terms of symmetry-breaking
(a), (b) with finite DMRG (c), (d) with iDMRG, and topological
observables (e), (h) from finite DMRG simulations of the lattice
size L = 120 and OBC. Cut-out slanted lines in (a), (b), and (h)
stand for axis breaks. For the system with t1 = 0.1, t2 = 1,VNN = 10
with on-site density modulation μ = 1 at every second and third
site [Fig. 2(d)], expectation values of the (a) site n̂i and (b) bond B̂i

density operators are displayed. The corresponding structure factors
in (c) SDW and in (d) SBO are shown. The entanglement spectrum εn,
local Berry phase |γ N

C |, and effective hopping amplitudes χm for each
link m between two sites are shown, respectively, in (e), (f), (g) and
(h) depicts 

p
i .

phases are given in Figs. 5 and 6 respectively. Figs. 5(a) and
5(b) depict the site and bond densities and the corresponding
structure factors are plotted in Figs. 5(c) and 5(d). Due to
NN and NNN interactions, the interacting BODW1/3 phase
possesses an enlarged unit cell with six sites. This differs from
the interacting BODW1/4 phase where only the presence of
NN interactions is required. The unit cell structure can be
seen from Fig. 5(a) where the site density profile exhibits
oscillations with period-6, which differs from the noninter-
acting BODW1/3 with a unit cell of three sites exhibiting site
density oscillations with period-3 given in Fig. 6(a). Due to
the finite particle occupation in certain nearby sites, dimerized
hopping gives rise to finite bond density at certain links. This
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(a)

(b)

(e)

(f) (g)

(h)

(c)

(d)

FIG. 5. BODW1/3 phase from the interacting model at ρ = 1/3
in terms of symmetry-breaking (a)–(d) with iDMRG and topological
observables (e)–(h) from finite DMRG simulations of the lattice size
L = 120 and OBC. Cut-out slanted lines in (a) and (b) stand for axis
breaks. For the system with t1 = 1, t2 = 0.1,VNN = 20,VNNN = 1.2
[Fig. 2(f)], expectation values of the (a) site n̂i and (b) bond B̂i

density operators are displayed. The corresponding structure factors
in (c) SDW and in (d) SBO are shown. The entanglement spectrum εn,
local Berry phase |γ N

C |, and effective hopping amplitudes χm for each
link m between two sites are shown, respectively, in (e), (f), (g), and
(h) depicts 

p
i .

can be seen from Fig. 5(b) where 〈B̂i〉 makes a peak at the
first and the third link in the unit cell. This differs from the
noninteracting BODW1/3 where there is a single dimer inside
each unit cell as can be seen from Fig. 6(b) with a single peak
for every three sites. The symmetry-breaking with a unit cell
of six sites translates into the peaks of the structure factors
SDW (k) at k = π/3, 2π/3 and SBO(k) at k = π/3, 2π/3, π

as shown in Figs. 5(c) and 5(d), which is different than the
noninteracting BODW1/3 with a unit cell of three sites as
displayed in Figs. 6(c) and 6(d).

The fact that the interacting model admits a trivial phase
independent of whether |t1| > |t2| or |t1| < |t2| is shown
by plotting the entanglement spectrum, local Berry phase,

(a)

(b)
(d)

(e)

(f) (g)

(h)

(c)

FIG. 6. BODW1/3 phase from the noninteracting model at ρ =
1/3 in terms of symmetry-breaking (a)–(d) for the system with
t1 = 1, t2 = 0.1, t3 = 0.1 [Fig. 2(e)] with iDMRG is shown. Cut-out
slanted lines in (a), (b), and (h) stand for axis breaks. Expectation val-
ues of the (a) site n̂i and (b) bond B̂i density operators are displayed.
and the corresponding structure factors in (c) SDW and in (d) SBO

are shown. For the system with t1 = 0.1, t2 = 0.1, t3 = 1 [Fig. 2(g)],
topological observables (e)–(h) from finite DMRG simulations of the
lattice size L = 120 and OBC are obtained. The entanglement spec-
trum εn, local Berry phase |γ N

C |, and effective hopping amplitudes χm

for each link m between two sites are shown, respectively, in (e), (f),
(g), and (h) depicts 

p
i .

effective hoppings, and edge state population in Figs. 5(e)–
5(h), respectively. Topological features are absent in the
interacting BODW1/3, therefore, the entanglement spectrum
does not consist of groups of degenerate Schmidt coefficients
as shown in Fig. 5(e). As mentioned in Sec. II A, the system in
the non-interacting limit at ρ = 1/3 with periodic modulation
of the hopping amplitudes [t1, t2, t3] as ti = ti+3 hosts the SPT
phase as long as the constraints |t1| = |t2| and |t1| < |t3| are
satisfied. This is reflected in the entanglement spectrum with
degeneracy for the noninteracting BODW1/3 in Fig. 6(e). We
also realize that the entanglement spectrum degeneracy is
not entirely twofold differing from the nontrivial BODW1/4
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phase. It consists of groups of degenerate Schmidt coeffi-
cients with multiplicities two and four. The effective hopping
amplitudes in the long-range interacting model do not obey
the hopping constraints as shown in Fig. 5(g). Figure 5(f)
shows that the local Berry phase in the interacting BODW1/3

does not signal for topological features whereas in the non-
interacting case, it is quantized to π at every inter-cell link as
shown in Fig. 6(f). Similar to the trivial BODW1/4, the edge
state localization in the interacting BODW1/3 is also absent as
can be seen from Fig. 5(h). In contrast to nontrivial BODW1/4

[Fig. 4(h)], noninteracting topological BODW1/3 makes two
peaks at the value 0.5 at the end of the lattice as shown in
Fig. 6(h). This can be attributed to having no interactions
in the system. Including NN interactions to the system with
hoppings with period-3 at the filling ρ = 1/3 yields similar
results with the nontrivial interacting BODW1/4 at the filling
ρ = 1/4 and nontrivial BO phase at the filling ρ = 1/2.

IV. DISCUSSION AND CONCLUSION

This study was initiated in our recent work [35] where
a Rydberg quantum simulator was utilized to probe the
interplay between short- and long-range interactions. Such
competing processes were shown to host BODW phases with
both density wave and bond orders. The BODW phases
can be realized with a Rydberg simulator consisting of
atoms modeled as two-level systems encompassing the states
{|90S1/2〉, |91P1/2〉} as an example with alternating lattice dis-
tances a1 = 9 µm and a2 = 13 µm, which yields t1 > t2 and
VNN/t1(2) � 10. A wide range of n and a1, a2 values can be
achieved to study different coupling regimes. The system’s
lifetime for a chain of 10–30 atoms is of the order of a
few tens of microseconds, which should be reasonable for

probing the phases [72,73]. Although the BODW1/3 phase re-
quires additional consideration ensuring non-negligible NNN
interactions along with dimerized hopping, it should also be
feasible on such platforms. In this work, we expanded that by
contrasting interacting and noninteracting BODW phases. We
then have shown that long-range interactions induce the emer-
gence of superlattice structures with higher periods despite
having a dimerized lattice. This was illustrated by showing
that the BODW phases with emergent symmetry-breaking
properties can be stabilized without the explicit superlat-
tice structure of the noninteracting counterpart. Beyond NN
interactions are shown to realize a fundamentally different
BODW phase at the filling ρ = 1/3, in particular, with a
different symmetry-breaking pattern where the unit cell size
and structure differs from the noninteracting case. Changing
the dimerization pattern in the hopping amplitudes is found to
realize trivial symmetry-broken sectors of the BODW phases.
Including on-site modulations are used to help stabilize the
topological BODW1/4 phase. Our work provides insights into
the interaction-induced emergent ground state properties of
long-range interacting hardcore bosons and motivates inves-
tigating higher dimensional lattices with more connectivity.
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