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Octupolar edge state in an eg orbital system on a square lattice
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A tight-binding model for eg orbitals on a square lattice is investigated. We consider only the nearest-neighbor
hopping and the model is characterized by two hopping parameters, t1 and t2. There are Dirac points in the
electronic band structure and the type of the Dirac points (type I or type II) depends on the ratio t2/t1. For the
case of the type-I Dirac points, edge states appear for a lattice with edges perpendicular to the [11] direction.
The edge states at a certain momentum along the edges have octupole moments with opposite signs between the
right and left edges. Thus, these edge states can be called helical octupolar edge states. This study bridges the
research fields of topological phenomena and multipole physics.
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I. INTRODUCTION

Topological semimetals, characterized by the presence of
Dirac or Weyl points (topological nodal points) in their elec-
tronic band structures, have garnered significant attention due
to their intriguing physical properties [1–4]. A topological
nodal point is defined as a point where the upper and lower
bands touch each other, possessing topological protection. A
Dirac point exhibits spin degeneracy, while a Weyl point does
not. Realizing such topological nodal points necessitates at
least two bands. In systems with two sites in a unit cell, two
bands are present. Graphene is a prime example of such a
system, exhibiting Dirac points [1,2]. Alternatively, the spin
degrees of freedom can be used to achieve two bands. For
instance, the Rashba spin-orbit coupling [5] lifts the spin
degeneracy of a band, except at certain k points where the
degeneracy is preserved by time-reversal symmetry, resulting
in Weyl points [6].

In this paper, we explore an alternative approach to achieve
two bands and Dirac points by exploiting the orbital degrees
of freedom. As a representative two-orbital system, we in-
vestigate a model for the eg orbitals of d electrons. Notably,
type-II Dirac points have been observed in eg orbital systems,
including an eg orbital model [7], a cuprate superconductor
[8], and a LaAlO2/LaNiO3/LaAlO3 quantum well [9]. A
type-II Dirac point is characterized by the touching of upper
and lower bands, with electron and hole pockets extending
from it even when the Fermi level is situated at this point [10]
[see Fig. 1(f)]. A type-I Dirac point also involves the touching
of upper and lower bands, but in this case, the Fermi surface
vanishes around it when the Fermi level is located at this
point [see Fig. 1(h)]. Traditionally, only type-I Dirac points
were referred to as Dirac points until the term “type-II Dirac
point” was introduced [10]. Despite the anticipation of sev-
eral intriguing features, phenomena arising from topological
signatures might be obscured by the presence of finite density
states at the Fermi level in type-II Dirac point cases.

Here, we consider a tight-binding model for the eg or-
bitals on a square lattice with nearest-neighbor hopping in a
general form. This model contains two hopping parameters.

Such a simple tight-binding model, such as the Kane-Mele
model for topological insulators [11], the tight-binding model
for graphene possessing Dirac points [12], and the Rashba-
Hubbard model for a Weyl semimetal [6], is invaluable for
exploring and demonstrating topological phenomena. By tun-
ing the ratio of the two parameters, we demonstrate the
emergence of type-I Dirac points in the eg orbital system.
Furthermore, we explore the emergence of edge states unique
to the type-I Dirac point cases. Specifically, we observe that
these edge states have octupolar moments, with opposite signs
between the left and right edges, at a certain momentum along
the edges.

II. MODEL

In this paper, we do not consider a magnetic field or
magnetic order. Hence, we can disregard the spin degrees
of freedom and simplify the model to a spinless one for the
eg orbitals. The model Hamiltonian on a square lattice with
nearest-neighbor hopping is represented as follows,

H =
∑
ττ ′

c†
kτ

εττ ′ (k)ckτ ′, (1)

where ckτ is the annihilation operator for an electron with
momentum k and orbital τ . Here, τ = 1 denotes the x2 − y2

orbital, and τ = 2 denotes the 3z2 − r2 orbital. The matrix
elements of the Hamiltonian are given by [13,14]

ε11(k) = 1

2
[3(ddσ ) + (ddδ)](cx + cy) + �

2
, (2)

ε22(k) = 1

2
[(ddσ ) + 3(ddδ)](cx + cy) − �

2
, (3)

ε12(k) = ε21(k) = −
√

3

2
[(ddσ ) − (ddδ)](cx − cy), (4)

where cμ = cos kμ with μ = x or y, and � represents the
difference in the on-site energy level between the two orbitals.
The lattice constant is set as unity here. The quantities (ddσ )
and (ddδ) denote the two-center integrals [15]. This model
can be regarded as a model for �8 orbitals of f electrons by
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FIG. 1. Energy dispersion for � = 0. Energy dispersion along symmetric directions: (a) for α = 0 (t2 = 0), (b) for α = 0.25π (t2 = t1),
(c) for α = tan−1 2 (=0.3524π , t2 = 2t1), and (d) for α = 0.5π (t1 = 0). Lower panels show the energy dispersion in the entire Brillouin zone:
(e) for α = 0, (f) for α = 0.25π , (g) for α = tan−1 2, and (h) for α = 0.5π . The zero-energy plane is drawn in these figures to distinguish the
types of Dirac points clearly.

replacing (ddσ ) with [3( f f σ ) + 4( f f π )]/7 and (ddδ) with
[( f f π ) + 5( f f δ) + 15( f f φ)]/21. Since it is a two-orbital
model, the matrix ε(k) can be expressed using the Pauli ma-
trices as

ε(k) = 1
2 [ε11(k) + ε22(k)]σ 0

+ 1
2 [ε11(k) − ε22(k)]σ z + ε12(k)σ x

= h0(k)σ 0 + hx(k)σ x + hz(k)σ z, (5)

where σμ represents the μ component of the Pauli matrix, and
σ 0 is defined as the unit matrix. The coefficients are given by

h0(k) = [ε11(k) + ε22(k)]/2

= [(ddσ ) + (ddδ)](cx + cy)

= 2t1(cx + cy), (6)

hx(k) = ε12(k) = ε21(k)

= −
√

3

2
[(ddσ ) − (ddδ)](cx − cy)

= −
√

3t2(cx − cy), (7)

hz(k) = [ε11(k) − ε22(k)]/2

= 1

2
[(ddσ ) − (ddδ)](cx + cy) + �

2
= t2(cx + cy) + �/2, (8)

where we have defined

t1 = [(ddσ ) + (ddδ)]/2, (9)

t2 = [(ddσ ) − (ddδ)]/2. (10)

We can assume t1 � 0 and t2 � 0 without loss of generality.
Then, we parametrize them as

t1 = t cos α, (11)

t2 = t sin α, (12)

with t > 0 and 0 � α � π/2.

This model has been investigated in various contexts with
different values of α. The model at α = π/4 [t1 = t2, (ddδ) =
0, see Fig. 1(b)] has been used as a model for perovskite
manganites [16] and as a model for �8 orbitals of f elec-
trons, considering only ( f f σ ) [17–28]. From this model, an
effective Hamiltonian in the strong-coupling limit is derived,
and frustration arising from the orbital anisotropy is discussed
[29–33]. A similar frustrated model is known as the Kitaev
model and has been intensively studied [34,35]. By using
the model at α = 0 [t2 = 0, (ddδ) = (ddσ ), see Fig. 1(a)],
the possible anisotropic superconducting pairing originating
from the orbital anisotropy of eg orbitals was discussed [36].
Such anisotropic superconductivity has been discussed for
the f -electron system PrT2X20 (where T denotes a transition
metal element and X denotes Zn or Al) [25–28]. The model
at α = π/2 [t1 = 0, (ddδ) = −(ddσ ), see Fig. 1(d)] near half
filling exhibits pocket Fermi surfaces around (±π/2,±π/2).
Suppose a superconducting pair is composed of electrons on
the same Fermi pocket. In that case, the superconducting pair
has a finite total momentum, resembling the Fulde-Ferrell-
Larkin-Ovchinnikov state [37,38], even without a magnetic
field similar to the η-pairing state [39]. This possibility has
been investigated in Refs. [13,14].

III. ENERGY BANDS

The energy dispersion of the model is given by

E (k) = h0(k) ±
√

h2
x (k) + h2

z (k) = h0(k) ± h(k). (13)

The two bands touch each other at the Dirac points, where
h(k) = 0.

In Fig. 1, we show the energy dispersion for � = 0 for
some values of α. The bandwidth W varies nonmonotonically
with α: W = 8t at α = 0 [Fig. 1(a)], W exceeds 8t , for ex-
ample, at α = 0.25π [Fig. 1(b)], and W = 4

√
3t at α = 0.5π

[Fig. 1(d)]. Note that hybridization between the x2 − y2 and
3z2 − r2 orbitals is forbidden along the kx = ky line due to
mirror symmetry [7,8]. For the half-filled case with � = 0,
the Fermi level is zero due to electron-hole symmetry and the
Dirac points are always located at the Fermi level.
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FIG. 2. Energy dispersion for � = −2t, 0, and 2t along sym-
metric directions. The upper panels show energy dispersion for α =
0.3π (a) for � = −2t , (b) for � = 0, and (c) for � = 2t . The lower
panels show energy dispersion for α = 0.4π (d) for � = −2t , (e) for
� = 0, and (f) for � = 2t .

The two bands are degenerate for α = 0 [t2 = 0, Figs. 1(a)
and 1(e)]. For α �= 0, Dirac points emerge at (±π/2,±π/2),
and the type of the Dirac points depends on α. For α < tan−1 2
[Figs. 1(b) and 1(f)], they are of type II, where the two Fermi
surfaces touch each other at the Dirac points for half filling.
For α > tan−1 2 [Figs. 1(d) and 1(h)], they are of type I, and
the Fermi surface disappears for half filling. The disappear-
ance of the Fermi surface at α = 0.5π was already pointed
out in Refs. [13,14]. At the border α = tan−1 2 (=0.3524π ,
t2 = 2t1), a flat dispersion is observed along the (0,0)-(π, π )
direction [Figs. 1(c) and 1(g)], and the Dirac points are called
type III [40,41]. For the half-filled case, the change in the type
of Dirac points is a Lifshitz transition [42].

The energy dispersions for finite � are depicted in Fig. 2
for α = 0.3π (type-II Dirac point) and for α = 0.4π (type-
I Dirac point). The Dirac point is given by kx = ky =
cos−1[−�/(4t2)]. Although the position of the Dirac point
shifts from (π/2, π/2) for finite �, the type of the Dirac
point remains unchanged. While the energy at the Dirac point
deviates from zero for � �= 0, it still resides at the Fermi level
E = −�/ tan α for half filling in the type-I Dirac point cases,
maintaining the system semimetallic. On the other hand, in the
case of type-II Dirac points, the Dirac points are not aligned
with the Fermi level for half filling when � �= 0. For a large
level splitting |�| > 4t2 (not shown), a gap opens between the
two bands, leading to the disappearance of the Dirac points.

Figure 3 shows the parameter regions of the type-I and
type-II Dirac semimetals on both the t1-t2 plane [Fig. 3(a)]
and on the (ddσ )-(ddδ) plane [Fig. 3(b)]. The type of the
Dirac points depends solely on the ratio t2/t1 or (ddδ)/(ddσ ),
making it unnecessary to specify the energy unit in these
figures. On the t1-t2 plane, the boundaries are given by t2 =
±2t1. On the (ddσ )-(ddδ) plane, the boundaries are given by
(ddδ) = −(ddσ )/3 and (ddδ) = −3(ddσ ). For perovskite
manganites, models with (ddδ) = 0 are commonly employed,
resulting in type-II Dirac points. However, it is worth noting
that the condition |(ddδ)| > |(ddσ )|/3 with opposite signs
for (ddδ) and (ddσ ) is not unrealistic, indicating the possi-
bility of type-I Dirac points emerging in eg orbital systems.

FIG. 3. Regions of the type-I and type-II Dirac semimetals:
(a) on the t1-t2 plane and (b) on the (ddσ )-(ddδ) plane. The type
of the Dirac points is independent of �. The energy unit in these
figures is arbitrary.

Figure 4 shows the normalized vector field ĥ(k) =
h(k)/h(k) = [hx(k), hz(k)]/h(k) = [ĥx(k), ĥz(k)] around the
Dirac points k = (π/2, π/2) and k = (π/2,−π/2) for � =
0. The vector ĥ(k) has vortex structures around the Dirac
points. The winding number of a normalized two-component
vector field ĥ(k) is [43,44]

w =
∮

C

dk
2π

· [ĥx(k)∇ĥz(k) − ĥz(k)∇ĥx(k)], (14)

where C is a loop enclosing a Dirac point. We obtain w = −1
for k = (π/2, π/2) and k = (−π/2,−π/2) and w = 1 for
k = (π/2,−π/2) and (−π/2, π/2).

While the topology of the model is determined solely by
h(k), h0(k) affects the existence of the gap of the band pro-
jected onto the edge momentum space. Therefore, h0(k) is
also important for the edge states, as we will see in the next
section.

IV. EDGE STATES

From the presence of topological defects such as Dirac
points, we anticipate the emergence of edge states similar to
those observed in a model of graphene [12,45,46]. We con-
sider two types of edges: those aligned along the y direction
[straight edges, Fig. 5(a)], and those perpendicular to the [11]
direction [zigzag edges, Fig. 5(b)]. We denote the momentum
along the edges as k and the momentum perpendicular to
the edges as k⊥. To examine the presence of edge states, the

(b)(a)

FIG. 4. ĥ(k) (a) around k = (π/2, π/2) and (b) around k =
(π/2,−π/2).
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(a)

i=−(N−1)/2
i=0

i=(N−1)/2

(b)

i=−(N−1)/2
i=0

i=(N−1)/2

FIG. 5. Lattices with edges. (a) Straight edges. (b) Zigzag edges.
i denotes the label representing positions perpendicular to the edges,
and N is the number of these positions.

winding number w(k) for a fixed k is crucial [45,46]:

w(k) =
∫ 2π

0

dk⊥
2π

[
ĥx(k)

∂

∂k⊥
ĥz(k) − ĥz(k)

∂

∂k⊥
ĥx(k)

]
. (15)

For the zigzag edges, hx(k) = −2
√

3t2 sin k sin k⊥ and
hz(k) = 2t2 cos k cos k⊥ + �/2, where we have set 1/

√
2

times the bond length as unity here. For simplicity, we eval-
uate the winding number w(k) for � = 0. For the straight
edges, we find w(k) = 0 and the edge states will probably be
absent. The value of w(k) can generally change at the Dirac
point projected onto the edge momentum space. However, in
this case, the Dirac points with opposite winding numbers
are projected onto the same momentum k = ±π/2. Conse-
quently, w(k) remains zero throughout the edge momentum
space. For the zigzag edges, we find w(k) = sgn[sin(2k)]
except for k = 0,±π/2, and ±π (projected Dirac points).
Hence, edge states should exist, at least without t1 and �,
except at the projected Dirac points.

To explicitly demonstrate the existence of the edge states,
we calculate the energy bands for lattices with finite widths.
Figure 6 shows the energy bands for a lattice with straight
edges with various values of α for � = 0. We notice that
all bands are bulk states; that is, no edge state isolated from
the bulk states appears. This observation is consistent with
w(k) = 0. We have also calculated the band dispersions for a
lattice with straight edges with � �= 0 (not shown) and found
no edge state. In Fig. 7, we show the energy bands for a lattice

(a) α = 0

−4

 0

 4

E
ne

rg
y

/t

(b) α = 0.25π

(c) α = 0.4π

−4

 0

 4

−π −π/2 0 π/2 π

E
ne

rg
y

/t

k

(d) α = 0.5π

−π −π/2 0 π/2 π
k

FIG. 6. Energy dispersion at � = 0 for a lattice with straight
edges with N = 71: (a) for α = 0, (b) for α = 0.25π , (c) for α =
0.4π , and (d) for α = 0.5π .
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(b) α = 0.25π

(c) α = 0.4π
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 0

 4

−π −π/2 0 π/2 π

E
ne

rg
y

/t

k

(d) α = 0.5π

−π −π/2 0 π/2 π
k

FIG. 7. Energy dispersion at � = 0 for a lattice with zigzag
edges with N = 71: (a) for α = 0, (b) for α = 0.25π , (c) for α =
0.4π , and (d) for α = 0.5π . The solid circles in (c) indicate edge
states in which the multipole density is evaluated in Figs. 9(a) and
9(c).

with zigzag edges with various values of α for � = 0. We
observe the zero-energy states isolated from the bulk states
when the Dirac points become type-I, that is, α > tan−1 2.
In particular, for α = 0.5π (t1 = 0), we find the zero-energy
edge states except for the projected Dirac points, consistent
with the non-zero values of the winding number w(k). For
an even number of N , the energy of the zero-energy states
deviates from zero when N is small. Thus, we chose N = 71
for the calculations presented above.

To examine the stability of the edge states against the
inclusion of the level splitting, we also evaluate the energy
bands for finite �. In Fig. 8, we show the energy bands for
� = ±2t at α = 0.4π and 0.5π . While the energy of the
edge states deviates from zero for � �= 0 at α �= 0.5π , the
edge states persist even for finite �. These edge states are
situated at E = −�/ tan α, corresponding to the energy at the
Dirac points and the Fermi level for the half-filled case. We
have checked that the edge states appear as long as the type-I
Dirac points exist, that is, α > tan−1 2 and |�| < 4t2.

To gain further insights into the edge states, we evaluate
the multipole density. The multipole operators at site (i, j) are

(a) α = 0.4π

−4

 0

 4

E
ne

rg
y

/t

Δ = −2 t

(b) α = 0.4π

Δ = 2 t

(c) α = 0.5π

−4

 0

 4

−π −π/2 0 π/2 π

E
ne

rg
y

/t

k

(d) α = 0.5π

−π −π/2 0 π/2 π
k

FIG. 8. Energy dispersion for a lattice with zigzag edges for
finite � with N = 71: (a) for α = 0.4π and � = −2t , (b) for
α = 0.4π and � = 2t , (c) for α = 0.5π and � = −2t , and (d) for
α = 0.5π and � = 2t . The solid circles in (b) indicate edge states in
which the multipole density is evaluated in Figs. 9(b) and 9(d).
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−0.5

 0

 0.5
(a) k = 0.1π

Q
O22

Δ = 0

O20
Txyz

(b) k = 0.1π

Δ = 2 t

−0.5

 0

 0.5

−35 −30

(c) k = −0.1π

i
 30  35 −35 −30

(d) k = −0.1π

i
 30  35

(e)

FIG. 9. Multipole density around the edges in the edge states for
a lattice with zigzag edges at α = 0.4π with N = 71: (a) for k =
0.1π and � = 0, (b) for k = 0.1π and � = 2t , (c) for k = −0.1π

and � = 0, and (d) for k = −0.1π and � = 2t . (e) Schematic view
of a pair of edge states with opposite momenta having octupole
moments. The shape of the two objects indicates the cubic symmet-
ric charge distribution in the wave functions. The red (blue) color
represents the dipole moment density parallel (antiparallel) to the z
direction.

defined as

σ̂ μ(i, j) =
∑
ττ ′

c†
i jτ σ

μ

ττ ′ci jτ ′ , (16)

where ci jτ denotes the annihilation operator of the electron at
site (i, j) with orbital τ , and μ = 0, x, y, or z. The multipole
density operator at position i is

σ̂ μ(i) =
∑

j

σ̂ μ(i, j) =
∑
kττ ′

c†
ikτ

σ
μ

ττ ′cikτ ′ =
∑

k

σ̂ μ(i, k),

(17)

where cikτ is the Fourier transform of ci jτ along the edges.
The zeroth component is the charge operator Q̂(i) = σ̂ 0(i),
the z and x components are the quadrupole operators Ô20(i) =
σ̂ z(i) and Ô22(i) = σ̂ x(i), respectively, and the y component is
the octupole operator T̂xyz(i) = σ̂ y(i) [47,48].

For a lattice with zigzag edges, we can show that the
eigenstate of σ̂ y(−N/2, π/6) with eigenvalue −1 and the
eigenstate of σ̂ y(N/2, π/6) with eigenvalue +1 do not have
matrix elements of the Hamiltonian for α = 0.5π and � = 0.

Thus, these states are the zero-energy states for α = 0.5π

and � = 0 completely localized on the left and right edges,
respectively, possessing opposite octupole moments.

For other values of k, α, and �, we need to numeri-
cally evaluate the multipole density: Q(i) = 〈Q̂(i)〉, O20(i) =
〈Ô20(i)〉, O22(i) = 〈Ô22(i)〉, and Txyz(i) = 〈T̂xyz(i)〉, where
〈· · · 〉 denotes the expectation value. In Figs. 9(a)–9(d), we
show the multipole density in the edge states for α = 0.4π

at k = ±0.1π with � = 0 and 2t . The edge states are dou-
bly degenerate, and we take the average of the two states.
From the charge density Q, we recognize these states are
well localized around the edges. We find that the quadrupole
moment O22 is always zero. The finite quadrupole moment
O20 indicates an imbalance in the orbital occupations between
x2 − y2 and 3z2 − r2. This moment has the same sign on both
edges. The octupole moment Txyz has opposite signs between
the edges. The octupole moment changes its sign when we
change the sign of the momentum k [compare Fig. 9(a) with
Fig. 9(c) and Fig. 9(b) with Fig. 9(d)]. Thus, the edge states
are helical regarding the octupole moment. In Fig. 9(e), we
show a schematic view of the helical octupolar edge states.

V. SUMMARY AND DISCUSSION

We have studied an eg orbital model on a square lattice with
nearest-neighbor hopping. This model is characterized by two
hopping parameters, t1 and t2. The type of the Dirac points
depends on their ratio. For the case of the type-I Dirac point,
edge states appear on a lattice with zigzag edges. We find that
these edge states possess helical octupolar moments.

In f electron systems, octupole order has been identi-
fied in certain materials such as NpO2 [18,20,21,49–53] and
CexLa1−xB6 [54–59]. For eg orbital systems of d electrons,
the potential for octupole ordering in the bulk perovskite
manganites was previously discussed [47,60–62], but a theory
incorporating fluctuations beyond the mean-field approxima-
tion concluded it is unlikely [33,48,63].

The present paper reveals the potential emergence of the
octupole moments on edges of eg orbital systems. If a helical
octupolar edge current appears for an insulator, it could be
designated as a quantum octupole Hall system, analogous to a
quantum spin Hall system exhibiting a helical spin edge cur-
rent. Such explorations into eg orbital systems hold promise
for fostering deeper connections between topological phe-
nomena and multipole physics.
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