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In this work, we theoretically study the fractional Chern insulator (FCI) states in rhombohedral multilayer
graphene moiré superlattices. We start from the highest energy scale (∼2 eV) of the continuum model, and
construct a renormalized low-energy model that applies to a lower cutoff ∼0.15 eV using a renormalization
group approach. Then, we study the ground states of the renormalized low-energy model at filling 1 under
the Hartree-Fock approximation in the presence of tunable but self-consistently screened displacement field
D with several experimentally relevant background dielectric constants εr . Focusing on the pentalayer moiré
graphene system, two competing Hartree-Fock states are obtained at filling 1, which give rise to two types of
topologically distinct isolated flat bands with Chern numbers 1 and 0, respectively. By hole-doping the isolated
topological flat bands, both Laughlin-type and composite-fermion-type FCI states can be obtained through
exact-diagonalization calculations at different fractional filling factors, which exhibit quantitative consistency
with experimental measurements. We further explore the correlated topological states in generic rhombohedral
multilayer graphene moiré superlattices, and find that FCI states may also emerge in tetralayer and hexalayer
moiré graphene systems.
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I. INTRODUCTION

Recent experimental discoveries of fractional quantum
anomalous Hall effects in both twisted transition metal
dichalcogenides (TMDs) [1–4] and graphene moiré super-
lattices [5] have led to significant research interest in the
condensed matter community. The fractional quantum anoma-
lous Hall state is also known as the fractional Chern insulator
(FCI) state [6–12], which is the zero-field analog of the frac-
tional quantum Hall effect [13–18]. Different types of FCI
states have been theoretically studied in various lattice models
[19–24].

In order to realize the FCI state, an isolated topological flat
band with nonzero Chern number and desirable quantum ge-
ometric properties is required [25–30]. The two-dimensional
moiré superlattice provides an ideal platform to achieve such
topological flat bands with tunable valley Chern numbers. For
example, in “magic-angle” twisted bilayer graphene (TBG),
the lowest two bands (per spin per valley) become ultra-
flat [31], and are found to be topologically nontrivial with
Landau-level-like wave functions [32–41]. Such topological
flat bands are also proposed to exist in moiré superlattices con-
sisting of nearly aligned hexagonal boron nitride (hBN) and
rhombohedral graphene multilayers [42–46], twisted multi-
layer graphene [47–56], and moiré TMD [57–66] systems. By
virtue of the interplay between nontrivial topology and strong
e-e interaction effects in such topological flat bands, inte-
ger quantum anomalous Hall effects [67–69] and field-driven
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Chern insulators [70–74] have been realized. Nevertheless,
characteristics of FCI states from compressibility measure-
ments and optical measurements are observed only in a
few systems [75,76], including heterostructures of bilayer
graphene and hBN [75] and magic-angle TBG [76] under
magnetic fields, and twisted TMDs [3,4]. Direct transport
evidence of FCIs with fractionally quantized Hall conductiv-
ities under zero magnetic field has been observed recently in
twisted TMDs and aligned hBN–pentalayer graphene (PLG)
moiré superlattices [1,2,5].

In particular, several integer and fractionally quantized
plateaus of anomalous Hall resistances have been observed in
a moiré superlattice consisting of aligned hBN and rhombo-
hedral stacking of PLG at integer and fractional filling factors
[5], which calls for microscopic understandings. In this work,
combining renormalization group (RG), Hartree-Fock (HF),
and exact-diagonalization (ED) methods developed based on
the continuum model of hBN-aligned multilayer graphene
moiré superlattices, we study the interacting ground states
of the systems at both integer and fractional filling fac-
tors. Including effects of remote-band renormalization and
self-consistent screening of D fields, within the unrestricted
Hartree-Fock framework, we obtain a spin-valley polarized
integer Chern-insulator state with Chern number 1 at filling
1 for D � 1 V/nm for the PLG system, which competes
with another trivial, Chern-number-zero Hartree-Fock state.
The two HF states would give rise to two types of isolated
flat bands right below the chemical potential (of filling 1)
with distinct topological characters. Then, we consider hole-
doping both types of topologically distinct HF flat bands,
and study the interacting ground states at hole dopings of
1/3, 2/5, 3/5, and 2/3 (corresponding to electron fillings
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of 2/3, 3/5, 2/5, and 1/3 with respect to charge neutrality)
in the presence of self-consistently screened D fields. Both
Laughlin-type (at 2/3 filling) and composite-fermion-type (at
3/5 filling) FCI states are obtained, which exhibit quanti-
tative consistency with experimental measurements [5]. We
further explore the correlated and topological states in generic
multilayer graphene moiré systems, and find that FCI states
may also emerge in tetralayer and hexalayer moiré graphene
systems at 2/3 filling.

The remaining part of the paper is organized as follows. In
Sec. II, we first introduce the continuum model of multilayer
graphene–hBN moiré superlattices and describe the method
to take into account electrostatic screening of the external
displacement field. In Sec. III, we discuss how the low-
energy single-particle properties would be renormalized by
Coulomb interactions with remote-band electrons, and present
renormalization group equations. In Sec. IV, we present the
Hartree-Fock phase diagram at filling factor 1 of the moiré
bands, with a discussion on the integer quantum anomalous
Hall state and the properties of the isolated topological flat
band emerging from such a state. In Sec. V, we first discuss
the workflow of the ED calculations, then present the phase
diagram of many-body ground states in pentalayer graphene–
hBN moiré superlattices at 1/3, 2/3, 2/5, and 3/5 fillings
obtained from ED calculations. Finally, in Sec. VI, we present
the phase diagrams of FCI states in generic rhombohedral
multilayer graphene moiré superlattices, and conclude the
paper in Sec. VII.

II. CONTINUUM MODEL

In our theoretical study, we adopt the continuum model de-
rived by Moon and Koshino [78] to multilayer graphene–hBN
moiré superlattices. Taking PLG as an example, the effective
Hamiltonian of the system around the K or K ′ valleys can be
properly described by the following noninteracting continuum
model,

H0,μ = H0,μ
penta + VhBN, (1)

where H0,μ
penta is the noninteracting k · p Hamiltonian of rhom-

bohedral PLG of valley μ (μ = ± standing for K/K ′ valley),
and VhBN denotes the moiré potential exerted on the bottom
graphene layer closest to the aligned hBN substrate. More
specifically, H0,μ

penta is composed of the intralayer term h0,μ

intra and

the interlayer term h0,μ

inter:

H0,μ
penta

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

h0,μ
intra

(
h0,μ

inter

)†
0 0 0

h0,μ

inter h0,μ
intra

(
h0,μ

inter

)†
0 0

0 h0,μ

inter h0,μ
intra

(
h0,μ

inter

)†
0

0 0 h0,μ

inter h0,μ
intra

(
h0,μ

inter

)†

0 0 0 h0,μ

inter h0,μ
intra

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(2)

Here, the intralayer part is just the monolayer k · p model

h0,μ

intra = −h̄v0
F k · σμ, (3)

where h̄v0
F ≈ 5.253 eV Å is the noninteracting Fermi veloc-

ity of Dirac fermions in monolayer graphene derived from
the Slater-Koster tight-binding model [77,79], k is the wave
vector expanded around the Dirac point from valley μ, and
σμ = (μσx, σy) is the Pauli matrix defined in sublattice space.
The interlayer term is expressed as

h0,μ

inter =
(

h̄v⊥(μkx + iky) t⊥
h̄v⊥(μkx − iky) h̄v⊥(μkx + iky)

)
, (4)

where t⊥ = 0.34 eV, h̄v⊥ = 0.335 eV Å are extracted from
the Slater-Koster hopping parameters [77,79]. The moiré po-
tential reads [78]

VhBN(r) = V eff (r) + Meff (r)σz + evF Aeff (r) · σμ, (5)

where we classify different terms in the effective potential by
their sublattice structure. Simple algebra calculations give

V eff (r) = V0 − V1

3∑
j=1

cos α j (r), (6a)

Meff (r) =
√

3V1

3∑
j=1

sin α j (r), (6b)

evF Aeff (r) = 2μV1

3∑
j=1

(
cos[2π ( j + 1)/3]
sin[2π ( j + 1)/3]

)
cos α j (r), (6c)

α j (r) = G j · r + ψ + 2π

3
with G3 = −G1 − G2,

(6d)

where V0 = 0.0289 eV, V1 = 0.0210 eV, and ψ =
−0.29 rad.

To simulate large D (D ∼ 1 V/nm) in the experiments, we
need to take into account the electrostatic screening effect
to find the actual on-site energy differences between layers
in pentalayer graphene at various background dielectric con-
stants εr . To encounter the screening effect, we start enforcing
a fixed external electric field Eext = D/εhBN to pentalayer
graphene with the dielectric constant of hBN εhBN = 4. This
would induce a constant electrostatic potential difference be-
tween the two adjacent layers eEextd0 (e > 0), which is added
to the diagonal part in the Hamiltonian of pentalayer graphene
Eq. (2). Then, we solve the Hamiltonian and retrieve the
distribution of excess electrons in each layer. The unevenly
distributed electrons would induce an additional electric field
to counteract Eext so as to cancel out part of the electrostatic
potential difference between layers. This screening process
is treated by solving the classical Poisson equation in elec-
trostatics with a background dielectric constant εr , while
the charge density is calculated quantum mechanically using
the continuum model described above. More details can be
found in Ref. [78] and in Secs. I and II of the Supplemental
Material [77].

We first focus on the PLG system in which fractional quan-
tum anomalous Hall effects have been experimentally realized
[5]. Specifically, we consider a moiré superlattice consisting
of rhombohedral stacking of PLG encapsulated by hBN sub-
strates on both sides. Only on the bottom side, hBN is nearly
aligned with PLG with a twist angle of 0.77◦ (consistent with
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FIG. 1. (a) Schematic illustration of PLG-hBN moiré superlat-
tice with boron (nitrogen) aligned with B (A) sublattice in the
AA region. Results with other hBN alignments can be found in
the Supplemental Material [77]. (b)–(d) show continuum model
band structures with twist angle 0.77◦, D = 0.97 V/nm, and εr = 5.
(b) The bare noninteracting band structures, where the green dashed
lines mark the low-energy window E∗

C , and the green area denotes
the remote bands. (c) Low-energy band structures within E∗

C with
renormalized continuum model parameters given by Eq. (14). The
solid and dashed lines in (b) and (c) represent the bands from K and
K ′ valleys, respectively. (d) Hartree-Fock band structures at filling
ν = 1, where the gray dashed line marks the chemical potential. The
orange line marks the isolated flat band.

the experimental setup in Ref. [5]), leading to a commensu-
rate moiré superlattice with lattice constant Ls = 109 Å, as
schematically shown in Fig. 1(a). The corresponding moiré
Brillouin zone is presented in Fig. 1(a). A vertical displace-
ment field would induce an electrostatic potential drop across
PLG, which would induce the redistribution of charge den-
sity among different layers. This in turn screens the external
displacement field, which is treated self-consistently [77,80]
assuming a background dielectric constant εr (4 � εr � 8).
This background dielectric constant encompasses all other
screening effects, including the polarizability of carbon or-
bitals [81], electron-hole fluctuations, substrate effects, etc.
For the sake of consistency, the same dielectric constant εr

has been used in the following RG, HF, and ED calculations.
In Fig. 1(b) we show the noninteracting band structures

of PLG-hBN moiré superlattices with twist angle 0.77◦
under (self-consistently screened) displacement field D =
0.97 V/nm. Clearly the valence moiré bands are energeti-
cally separated from the conduction ones by a sizable gap
∼95 meV, while the conduction moiré bands are all entan-
gled, which disfavors the FCI state at electron doping at this
moment.

III. RENORMALIZED BAND STRUCTURES

Although we focus on the low-energy physics within E∗
C ∼

0.15 eV, the presence of filled high-energy valence bands
indeed plays an important role considering e-e interactions.
The electrons in the filled remote bands outside E∗

C will act
through long-ranged Coulomb potential upon the dynamics

of low-energy electrons such that an effective low-energy
Hamiltonian (within E∗

C) would have parameters in general
larger in amplitudes than the noninteracting ones. We take
into account this effect using the perturbative renormalization
group (RG) approach.

Specifically, outside E∗
C , the continuum model is ap-

proximately particle-hole symmetric, which allows for a
particle-hole symmetric form of the Coulomb interaction [82]:

V̂int(Ec) = 1

2

∫
d2rd2r′Vc(r − r′)[ρ̂(r) − ρ̄Ec (r)]

× [ρ̂(r′) − ρ̄Ec (r′)], (7)

with

ρ̄Ec (r) = 1

2

∑
σ,n,k;

|εn,k|�Ec

φ∗
σnk(r)φσnk(r), (8)

where EC is the overall energy cutoff of the continuum model,
i.e., the largest energy scale in the problem. Here φσnk(r)
is the wave function of an eigenstate of the noninteracting
continuum model Hamiltonian with energy εn,k, with σ , n,
k referring to the spin, band index, and wave vector, respec-
tively. Note that for simplicity, here the valley index has been
included in the band index n.

Now we change the cutoff Ec to a smaller one E ′
c and

see how these parameters are modified by V̂int, which can be
treated perturbatively when E ′

c is much larger than any other
energy scale in the system. To do so, we split the field operator
ψ̂ (r) = ψ̂<(r) + ψ̂>(r), where

ψ̂<(r) =
∑
σ,n,k;

|εn,k|�E ′
c

φσnk(r)ĉσn(k), (9)

ψ̂>(r) =
∑
σ,n,k;

E ′
c<|εn,k|�Ec

φσnk(r)ĉσn(k). (10)

Then, we integrate out the fast modes ψ̂>(r) in V̂int(Ec), and
the e-e interaction in the lower energy window delimited by
E ′

c is

V̂int(E
′
c) = 1

2

∫
d2rd2r′Vc(r − r′)[ρ̂<(r) − ρ̄E ′

c
(r)]

× [ρ̂<(r′) − ρ̄E ′
c
(r)]

+ 1

2

∫
d2rd2r′Vc(r − r′)ψ̂<†(r)F (r, r′)ψ̂<(r′)

(11)

with

F (r, r′) =
∑
σ,n,k;

E ′
c<|εn,k|�Ec

sgn(εn,k )φσnk(r)φ∗
σnk(r′), (12)

which can be calculated using the single-particle Green’s
function. After some sophisticated calculations, one obtains
the following RG flow equations:

dvF

d ln Ec
= − e2

16πε0εr
, (13a)

d (evF Aeff )

d ln Ec
= − e2

16πε0εrvF
, (13b)
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dt⊥
d ln Ec

= − e2

16πε0εrvF
, (13c)

dMeff

d ln Ec
= −2 × e2

16πε0εrvF
, (13d)

dV eff

d ln Ec
= 0, (13e)

dv⊥
d ln Ec

= 0. (13f)

Equation (14) follow after taking integration over EC , with
the low-energy cutoff to be E∗

C ∼ 0.15 eV, which approxi-
mately includes 3 valence bands and 3 conduction bands per
spin per valley.

The noninteracting continuum model discussed above
applies to an energy cutoff EC ∼ 2 eV. Long-range e-e inter-
action effects within this energy window have been neglected.
However, it is well known that e-e Coulomb interactions
would significantly renormalize the effective parameters of
the noninteracting model, as in the case of monolayer
graphene [83–86] and magic-angle TBG [82]. To this end, we
set up a low-energy window |E | < E∗

C ∼ ncut h̄v0
F /Ls (E∗

C ∼
150 meV for ncut = 3) as marked by the green dashed lines
in Fig. 1(b). Here 2ncut may be interpreted as the number
of moiré bands (per spin per valley) within the low-energy
window E∗

C . Outside the low-energy window marked by E∗
C ,

the effects of long-range Coulomb interactions are treated by
the perturbative RG approach [82,87], which yields a set of
renormalized continuum model parameters [77]

vF (E∗
C ) = v0

F

(
1 + α0

4εr
ln

EC

E∗
C

)
, (14a)

evF Aeff(E
∗
C ) = evF Aeff

(
1 + α0

4εr
ln

EC

E∗
C

)
, (14b)

t⊥(E∗
C ) = t⊥

(
1 + α0

4εr
ln

EC

E∗
C

)
, (14c)

Meff(E
∗
C ) = Meff

(
1 + α0

4εr
ln

EC

E∗
C

)2

, (14d)

Veff(E
∗
C ) = Veff, (14e)

v⊥(E∗
C ) = v⊥. (14f)

In Fig. 1(c) we present the renormalized band structures
within the ncut = 3 low-energy window, with RG-corrected
continuum model parameters given by Eq. (14). We see that
the lowest conduction moiré band is pushed down in energy
and becomes less entangled with other bands due to the renor-
malization effects from the remote bands. More details of the
RG calculations can be found in Sec. III of the Supplemental
Material [77].

IV. HARTREE-FOCK PHASE DIAGRAM

We continue to discuss the e-e interaction effects within
the ncut = 3 low-energy window with the renormalized con-
tinuum model. Here we consider the dominant intravalley

long-range Coulomb interactions,

H int = 1

2Ns

∑
λλ′,αα′,ll ′

×
∑
kk′q

Vll ′ (q) ĉ†
k+q,λlα ĉ†

k′−q,λ′l ′α′ ĉk′l′α′ ĉk,λlα, (15)

where Ns denotes the total number of moiré primitive cells in
the system, k, k′, and q represent wave vectors relative to the
Dirac points, λ ≡ (μ, σ ) is a composite index denoting valley
μ and spin σ , while l and α are layer and sublattice indices.
Since the PLG has a thickness of 1.34 nm, four times thicker
than TBG, the difference between intralayer and interlayer
Coulomb interactions may no longer be neglected, and thus
we keep the layer dependence of Coulomb interactions, as
manifested by the layer-index-dependent Coulomb interaction
Vll ′ (q) [77],

Vll (q) = e2

2�0εrε0

√
q2 + κ2

,

Vll ′ (q) = e2

2�0εrε0q
e−q|l−l ′ |d0 , l 
= l ′. (16)

A Thomas-Fermi-type screened Coulomb interaction is
adopted for the intralayer Coulomb interaction Vll (q), with
a fixed inverse screening length κ = 0.0025 Å−1 [77]. The
interlayer Coulomb interaction Vll ′ (q) (l 
= l ′) decays expo-
nentially in momentum space with d0 = 3.35 Å.

We then project the long-range Coulomb interactions onto
the wave functions of the 3 conduction and 3 valence moiré
bands of the renormalized continuum model [Eq. (14)], and
perform unrestricted HF calculations within this 24-band (in-
cluding valley and spin) low-energy window [77]. We have
considered 32 trial initial states characterized by the order
parameters {s0,zτaσb(a, b = x, y, z)}, where s, τ, and σ denote
Pauli matrices defined in the spin, valley, and sublattice sub-
spaces, respectively. The background dielectric constant εr

and displacement field D are treated as parameters, where
4 � εr � 8 and 0.7 V/nm � D � 1.1 V/nm. Here the only
free parameter is εr , since D can be fixed by experiments.
The screening of the displacement field has been treated self-
consistently [77,80].

After projecting the Coulomb interaction to the renormal-
ized low-energy wave functions, it can be written in the band
basis

V̂ intra = 1

2Ns

∑
k̃k̃′q̃

∑
μμ′
σσ ′
ll ′

∑
nm

n′m′

∑
Q

Vll ′ (Q + q̃) �
μl,μ′l ′
nm,n′m′ (̃k, k̃′, q̃, Q)

× ĉ†
σμ,n (̃k + q̃)ĉ†

σ ′μ′,n′ (̃k′ − q̃)ĉσ ′μ′,m′ (̃k′)ĉσμ,m (̃k),
(17)

where the form factor �
μl,μ′l ′
nm,n′m′ is expressed as

�
μl,μ′l ′
nm,n′m′ (̃k, k̃′, q̃, Q)

=
∑

αα′GG′
C∗

μlαG+Q,n (̃k + q̃)C∗
μ′l ′α′G′−Q,n′ (̃k′ − q̃)

× Cμ′l ′α′G′,m′ (̃k′)CμlαG,m (̃k). (18)
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The band indices n, m, n′, m′ run over the low-energy Hilbert
space within E∗

C including 3 valence and 3 conduction bands
(per spin per valley). {CμlαG,m (̃k)} denote the renormalized
low-energy wave functions of band m at moiré wave vector
k̃, where μ, l , α represent the valley, layer, and sublattice
indices, respectively. G, G′, and Q denote the moiré reciprocal

vectors, while k̃, k̃′, and q̃ denote wave vectors within the
moiré Brillouin zone.

We make the Hartree-Fock approximation to Eq. (17) such
that the two-particle Hamiltonian is decomposed into a su-
perposition of the Hartree and Fock effective single-particle
terms, where the Hartree term and the Fock term are ex-
pressed, respectively, as

V̂ intra
H = 1

2Ns

∑
k̃k̃′

∑
μμ′
σσ ′
ll ′

∑
nm

n′m′

⎛
⎝∑

Q

Vll ′ (Q) �
μl,μ′l ′
nm,n′m′ (̃k, k̃′, 0, Q)

⎞
⎠

× (〈ĉ†
σμ,n (̃k)ĉσμ,m (̃k)〉ĉ†

σ ′μ′,n′ (̃k′)ĉσ ′μ′,m′ (̃k′) + 〈ĉ†
σ ′μ′,n′ (̃k′)ĉσ ′μ′,m′ (̃k′)〉ĉ†

σμ,n (̃k)ĉσμ,m (̃k)), (19)

V̂ intra
F = − 1

2Ns

∑
k̃k̃′

∑
μμ′
σ
ll ′

∑
nm

n′m′

⎛
⎝∑

Q

Vll ′ (̃k′ − k̃ + Q) �
μl,μ′l ′
nm,n′m′ (̃k, k̃′, k̃′ − k̃, Q)

⎞
⎠

× (〈ĉ†
σμ,n (̃k′)ĉσμ′,m′ (̃k′)〉ĉ†

σμ′,n′ (̃k)ĉσμ,m (̃k) + 〈ĉ†
σμ′,n′ (̃k)ĉσμ,m (̃k)〉ĉ†

σμ,n (̃k′)ĉσμ′,m′ (̃k′)). (20)

In Fig. 1(d) we show the ground-state Hartree-Fock band
structures at filling 1, with D = 0.97 V/nm and εr = 5. We
see that the highest occupied band marked in orange now is
energetically separated from the other moiré bands. Moreover,
this isolated flat band has a Chern number 1, desirable to
realize FCI at fractional fillings. We also note that the HF gap
at filling 1 divides the Hilbert space within E∗

C into the occu-
pied and unoccupied subspaces, as marked in Fig. 1(d). Such
a partition would allow us to consider the electron-doping
problem with respect to charge neutrality as the hole-doping
one with respect to the gap at filling 1.

We continue to explore the HF phase diagram at filling
1 in the (D, εr ) parameter space. As shown in Fig. 2(a), the
system stays in a Chern-number-1 ground state in a large
region of parameter space, which gives rise to an isolated,
Chern-number-1 flat band [see Fig. 1(d)]. In Fig. 2(b), we
present the gap of the HF ground state at filling 1 in the (D, εr )
parameter space, which varies from 7 to 29 meV, and becomes
metallic with trivial topological properties in the upper right
corner. In Fig. 2(c) we show the bandwidth of the isolated HF
flat band, which varies from 6 meV to 34 meV. In Fig. 2(d) we
present the normalized Berry-curvature standard deviation of
the isolated flat Chern band emerging from the topologically
nontrivial HF ground state, where a smaller value implies
more resemblance with the lowest Landau level satisfying
the Girvin-MacDonald-Platzman algebra [88]. Combining the
Chern number, energy gap, bandwidth, and Berry-curvature
standard deviation obtained from HF calculations, we con-
clude that 0.8 V/nm < D < 1 V/nm and 5 � εr � 6 may be
the best regime to realize FCI at partial fillings.

V. FRACTIONAL CHERN INSULATORS

We further consider hole-doping the isolated Hartree-Fock
flat band [see Fig. 1(d)], and explore the interacting ground
states of this flat band and at hole-doping levels of 1/3, 2/5,

3/5, and 2/3 (corresponding to electron dopings of 2/3, 3/5,
2/5, and 1/3) in the parameter space of D and εr . As discussed
above, there are two types of topologically distinct isolated
flat bands which emerge from two competing HF ground
states: the Chern-number-1 isolated flat band from the topo-
logical HF ground state, and the Chern-number-0 flat band
from the topologically trivial HF ground state. We consider
hole-doping the two types of topologically distinct flat bands

FIG. 2. Hartree-Fock phase diagram of hBN-PLG moiré super-
lattice at filling factor ν = 1. (a) Chern number of the Hartree-Fock
ground state, (b) gap of the Hartree-Fock ground state, (c) bandwidth
of the isolated flat band right below the chemical potential (for
ν = 1), and (d) normalized Berry-curvature standard deviation of the
flat Chern band right below chemical potential emerging from the
topological HF ground state. The shaded regions in (b) and (c) mark
the regions with topologically trivial ground states at ν = 1.
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FIG. 3. Brillouin zone samplings for the ED calculations.

emerging from the two types of HF states, and determine the
genuine many-body ground state.

A. Workflow for the ED calculations

Practically, we project the long-range e-e interactions
[Eq. (15)] onto the wave functions of the isolated flat band
emerging from the corresponding HF ground state at filling 1
(ν = 1), and calculate the interacting ground states using ED
under different hole-doping levels. Then, we compare their
total energy to determine the genuine many-body ground state
at given sets of parameters and doping levels.

In our numerical implementations, the exact-
diagonalization (ED) calculations at 2/3 and 1/3 electron
doping are performed on a 27-site cluster generated from
three sets of 9-site clusters, and those at 3/5 and 2/5
electron doping are done on a 20-site (4 × 5) cluster. The
spectral-flow calculations of (2/3, 1/3) and (3/5, 2/5)
electron fillings are done on 24-site (4 × 6) and 20-site
(4 × 5) clusters, respectively. The Brillouin zone samplings
for the ED calculations are shown in Fig. 3. The Coulomb
interactions in the ED calculations are identical to those
adopted in the HF calculations in the previous subsection,
which are then projected to the isolated flat band right below
the chemical potential for HF states at filling 1, and the
interacting ground states under different hole-doping levels
are calculated using ED. Such an approach is justified as
follows:

(i) First, we have set up a low-energy window E∗
C above

which the effects of e-e interactions have been treated by
perturbative RG, which leads to a renormalized low-energy
effective model with its parameters given by Eq. (14). Such
a renormalized continuum model applies to the low-energy
cutoff E∗

C ∼ 150 meV including 3 valence bands and 3 con-
duction bands per spin per valley, as shown in Fig. 1(b).

(ii) Second, within E∗
C , e-e Coulomb interactions can no

longer be treated by perturbations. Instead, we first perform
HF calculations at some integer filling ν, which divides the
low-energy Hilbert space within E∗

C into the occupied and
unoccupied subspaces, as shown in Fig. 1(d). The integer
filling factor ν is made in such a way that the occupied and un-
occupied subspaces are well separated by a gap. In the present
study, we make the choice ν = 1 [see Fig. 1(d)]. The presence
of such a gap at ν = 1 is not only theoretically confirmed
by HF calculations, but also justified by the experimental
observation of robust integer quantum Hall effect at filling 1
over a large range of D field (0.75 V/nm � D � 1.1 V/nm)
in the system [5].

(iii) Third, we further consider either hole-doping the
occupied subspace with respect to the gap at ν = 1 or
electron-doping the unoccupied subspace with respect to the
gap at ν = 0. This requires the projection of the Coulomb
interactions onto either the occupied or unoccupied HF wave
functions within E∗

C . Then, in principle, one needs to perform
multiband ED calculations within either subspace. For the
case of ν = 1, there are 13 occupied bands and 11 unoccupied
bands within E∗

C as shown in Fig. 1(d). Thus, in principle one
needs to do a 13-band ED calculation if considering hole-
doping the ν = 1 HF ground state.

(iv) Performing a 13-band ED calculation is certainly
unrealistic. Nevertheless, we note that within the occupied
subspace at ν = 1, the highest occupied HF band originates
from the spin-valley polarized first moiré conduction band,
which is well separated from the valence moiré bands by a
single-particle gap ∼80–100 meV at large D fields, as shown
in Fig. 1(d), which is greater than the e-e Coulomb interaction
energy scale in the system (∼20 meV). Thus, when hole-
doping the highest occupied HF band with respect to ν = 1,
it is legitimate to freeze the 12 occupied valence moiré bands
and project Coulomb interactions only to the isolated, spin-
valley polarized conduction flat band, which is highlighted in
orange in Fig. 1(d).

(v) It is worthwhile noting that the choice of integer filling
ν is not unique. Another natural choice is ν = 0, which di-
vides the low-energy Hilbert space E∗

C into 12 occupied bands
and 12 unoccupied bands. With such a choice, one needs to
electron-dope the unoccupied subspace. However, since the
12 unoccupied bands are entangled together [see Fig. 1(c)],
one has to project Coulomb interactions onto all of the 12 un-
occupied bands and perform 12-band ED calculation, which is
barely possible. So the best choice is to hole-dope the ν = 1
HF ground state.

(vi) Nevertheless, we note that HF calculations may
overestimate the energy gap; thus in reality the occupied topo-
logical flat band emerging from the Chern-insulator state at
filling 1 may be closer in energy to the unoccupied states.
Moreover, the relevant low-energy Hilbert space may vary
with filling factors, such that the low-energy Hilbert space
for the FCI states at fractional fillings may be different from
that at filling 1. In either case, one needs to consider multiple
bands when performing the ED calculations, which is beyond
the scope of the present study.

B. Results at 1/3 and 2/3 fillings

With the workflow sketched above, in the end we only need
to perform ED calculations within an isolated moiré band
from one spin one valley which is right below the chemical
potential of HF state at filling 1. However, we need to perform
ED calculations at partial hole fillings with respect to two
types of topologically distinct HF states at ν = 1. For the
topological nontrivial HF state, an isolated flat band with
Chern number 1 is generated, while for the topological trivial
case, a flat band with zero Chern number is obtained. These
two HF states are competing with each other with energy
difference ∼0.01–1 meV. Therefore, one needs to hole dope
both types of isolated flat bands, and compare the energies of
the many-body ground states in the two cases. One needs to be
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FIG. 4. Phase diagram at 2/3 and 1/3 electron fillings obtained
from exact-diagonalization calculations. (a) Phase diagram at 2/3
electron filling, (b) the “gap/spread” (see text) at 2/3 electron filling
plotted on a logarithmic scale, (c) phase diagram at 1/3 electron
filling, and (d) the “gap/spread” at 1/3 electron filling plotted on
a logarithmic scale. In (a) and (c), “FCI” stands for fractional Chern
insulator, “ND” stands for nondegenerate state, “CDW” stands for
charge density wave, while “FCI/ND” denotes crossover state be-
tween FCI and ND.

careful that, when performing the particle-hole transformation
ĉk → ĥ†

−k (where ĉk refers to electron annihilation operator
and ĥ†

−k refers to hole creation operator), the two-particle
interaction Hamiltonian Eq. (15) is unchanged. However, the
single-particle Hamiltonian is changed by a constant due to
normal ordering of the hole operators, i.e.,

ĉ†
k ĉk → ĥ−k ĥ†

−k = 1 − ĥ†
−k ĥ−k. (21)

Thus, the effective single-particle Hamiltonian of the isolated
flat band generated from the ν = 1 HF state is also subjected
to the above transformation:

ĤHF
ν=1 =

∑
k

EHF
k (1 − ĥ†

−k ĥ−k ), (22)

where EHF
k is the valley-spin polarized HF energy dispersion

of the isolated flat band right below the chemical potential
of the ν = 1 HF state, and k is the wave vector within the
moiré Brillouin zone. We note that in order to compare the
energies of many-body states at partial hole fillings of two
different HF flat bands, one has to include the constant HF
band energy sum in Eq. (22), which may be interpreted as “ef-
fective vacuum energy” of the two different HF vacua in our
calculations.

Keeping this subtlety in mind, at 2/3 electron doping (1/3
hole doping), we perform ED calculations on a 27-site cluster
with periodic boundary condition (see Fig. 3), and dope 9
holes into the two types of isolated flat band. The phase di-
agram at 2/3 electron filling is shown in Fig. 4(a). We see that
Laughlin-type FCI state (marked in red) is fiercely competing

with two types of CDW states (marked by “CDW1” in blue
and “CDW2” in purple) and a nondegenerate state (“ND”
marked in light green). Both the FCI state and the CDW
states are characterized by a (nearly) threefold-degenerate
ground-state manifold, which is separated from other excited
states by a finite energy gap on the order of 1–10 meV. The
ND, however, is characterized by a nondegenerate ground
state separated from excited states by a gap on the order of
1 meV. We note that there are three blocks in the (D, εr ) space
exhibiting the FCI ground state at 2/3 filling, i.e., (εr = 5,
D = 0.9 V/nm), (εr = 6, D = 0.8 V/nm), and (εr = 8, D =
0.7 V/nm), as indicated by red color in Fig. 4(a). Moreover,
it is interesting to note that there is also a finite region in
the phase diagram of Fig. 4(a) in which the system seems to
undergo a crossover from a nondegenerate state to FCI. Such
a crossover region is marked as “FCI/ND” by orange color
in Fig. 4(a). The presence of such a crossover regime may be
attributed to finite-size effects. In the thermodynamics limit,
the crossover regime is expected to shrink to a line of phase
boundary.

In order to better capture the characters of the different
types of many-body states shown in the phase diagram at 2/3
electron filling, we extract the energy gap between the fourth
and third eigenstates, and divide it by the energy spread of
the first three lowest-energy eigenstates. Such “gap/spread”
function is plotted in (D, εr) space on a logarithmic scale,
as shown in Fig. 4(b). If the log of this quantity is large, it
means that there are three low-energy states which are sepa-
rated from the fourth state by a notable gap, which implies
either FCI or CDW state. Otherwise, it could either be a
gapless state or a ND state. Practically, in our calculations
a threefold quasidegenerate many-body state is identified as
a FCI if it is topologically nontrivial (to be discussed in the
following) and meanwhile the log of its gap/spread is greater
than 0.5. We find that the log of this gap/spread quantity is
largest (∼4) at D = 0.9 V/nm and εr = 5, which means that
the FCI state around this point is most stable. More detailed
characterizations of the different types of correlated states are
to be discussed later.

In Fig. 4(c) we present the phase diagram at 1/3 electron
filling. The FCI ground state emerges at (D = 0.7 V/nm, εr =
6) and (D = 0.7 V/nm, εr = 7). However, experimentally no
signature of the fractional quantum anomalous Hall effect has
been observed at 1/3 electron filling, while it is observed for
0.95 V/nm � D � 0.965 V/nm at 2/3 filling [5]. Comparing
our theoretical results with experimental observations at both
2/3 and 1/3 fillings, we find that the background dielectric
constant can be unambiguously determined as εr = 5, which
leads to results that are consistent with experiments at both
fillings. In Sec. V C, we will show that using the same di-
electric constant εr = 5, we are also able to obtain numerical
results that are quantitatively consistent with experimental ob-
servations at 3/5 and 2/5 fillings. In Fig. 4(d) we present the
“gap/spread” (as defined above) at 1/3 filling on a logarithmic
scale. Clearly, the CDW region is marked by large and positive
“log10(gap/spread)” value ∼5, while the FCI region has a
small value ∼0.5–1, much smaller than that of the FCI state at
2/3 filling (∼2–4). This indicates that the FCI state obtained
at 1/3 filling for D = 0.7 V/nm and εr = 6, 7 is not as robust
as that at 2/3 filling. Again, here we identify a threefold-
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(a) (c) (d)

(h)(g)(f)(e)

(b)

FIG. 5. (a) Many-body band structures of Laughlin-type fractional Chern insulator state at 2/3 electron doping. (b) The spectral-flow
behavior of Laughlin-type FCI state, where the upper panel shows the spectral flow of the lowest 30 states, and the lower panel zooms in
the spectral flow within the (nearly) threefold-degenerate ground-state manifold. (c) Many-body band structures of a crossover state between
fractional Chern insulator and nondegenerate state (FCI/ND), which shows three low-lying states separated by a gap from other excited
states. But the gap is comparable to the energy spread of the three low-lying states. (d) Spectral-flow behavior of the crossover FCI/ND state.
(e) Many-body band structures of nondegenerate state. Many-body band structures of (f) CDW1 state and (g) CDW2 state, where their insets
mark the ground-state crystalline momenta within moiré Brillouin zone. (h) Many-body band structures of the gapless phase.

quasidegenerate state as FCI if it is topologically nontrivial
(to be discussed later) and if the log of its gap/spread quantity
is greater than 0.5.

As mentioned above, both FCI and CDW states are char-
acterized by (nearly) threefold-degenerate ground states and
finite energy gaps. One has to look at more detailed properties
to distinguish them. To this end, in Fig. 5 we show the total
energy versus total crystalline momenta dispersions (dubbed
as “many-body band structures” hereafter) of various types
of correlated states. In particular, as shown in Fig. 5(a), the
many-body band structures of FCI exhibits three (nearly) de-
generate ground states in the zero-momentum sector, which
satisfies the “generalized Pauli principle” [6] for 27 sites at
1/3 hole doping. Upon the adiabatic insertion of magnetic
flux φ, the three degenerate ground states of FCI would flow
into each other, and come back to the original configuration
when φ = 3φ0 (φ0 = h/e is the flux quantum). With Landau
gauge, this amounts to changing the crystalline momentum
along one direction by δk1 = (φ/φ0)/N1, where Ni (i = 1, 2)
is the number of lattice sites along the two primitive reciprocal
vector directions, and k1 is the corresponding reduced crys-
talline momentum along the first reciprocal vector direction.
Such spectral-flow behavior of the FCI state at 2/3 electron
filling is clearly shown in the lower panel of Fig. 5(b). For
the purpose of spectral-flow calculation at 2/3 electron filling,
we take a 4 × 6 site with 8 holes (see Fig. 3), which also
yields the FCI state the same as the case of 27 sites and 9
holes.

In Fig. 5(c) we present the typical many-body band struc-
tures of the FCI/ND crossover states at 2/3 electron filling.
We see that, although there are three low-lying states which
are separated from the fourth state by a gap ∼1 meV, the
energy spread of the three low-lying states is also about
1 meV. In Fig. 5(d) we show the energy of the FCI/ND
crossover state as a function of inserted fluxes (for 24-site
system with 8 holes). There is similar spectral-flow behavior
as FCI. Nevertheless, the large energy spread of the three low-
lying states and small excitation gap hinder us from calling it
FCI. In Fig. 5(e) we present the many-body band structures
of the ND state, which clearly show a nondegenerate ground
state.

In Figs. 5(f) and 5(g), we show typical many-body band
structures of the two types of CDW states. Both types of
CDW states are threefold degenerate and are gapped from the
excited states. However, for the first type of CDW (CDW1),
the total crystalline momenta of the three ground states oc-
cur at �s, Ks, and K ′

s as marked in the inset of Fig. 5(f),
which are the characteristic wave vectors of CDW states at
1/3 and 2/3 fillings preserving threefold rotational symme-
try. For the second type of CDW (CDW2), the total reduced
crystalline momenta of the three degenerate ground states
are (0, 1/3), (1/3, 0), and (2/3, 2/3), as marked in the
inset of Fig. 5(g). The CDW2 state is a stripe state that
breaks the threefold rotational symmetry. In Fig. 5(h), typical
many-body band structures for the gapless phase are also
presented.
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FIG. 6. (a) Finer phase diagrams in a smaller range of parameters
0.9 V/nm � D � 1.0 V/nm and 4 � εr � 6 at 2/3 electron filling.
(b) The corresponding “gap/spread” (see text) at 2/3 electron filling
plotted on a logarithmic scale.

We continue to search for the phase diagram at 2/3 electron
filling (1/3 hole filling) within a smaller parameter space
0.9 V/nm � D � 1.0 V/nm and 4 � εr � 6, and we compare
the ground-state energies by 1/3 hole doping to topologically
distinct flat bands derived from two competing HF states at
ν = 1. This finer phase diagram is presented in Fig. 6(a).
When 0.9 V/nm � D � 0.92 V/nm and εr = 5, FCI is the
ground state at 2/3 electron filling. In Fig. 6(b) we present
the “gap/spread” on a logarithmic scale, which shows peak
values in the FCI and CDW states. It is worthwhile noting that
the experimentally fractional quantum anomalous Hall effect
shows up at 2/3 filling for 0.95 V/nm � D � 0.965 V/nm
[5], which is quantitatively consistent with the fine phase
diagram in Fig. 6(a).

C. Results at 2/5 and 3/5 fillings

We further consider the situations of 2/5 and 3/5 hole
dopings of the isolated flat band with respect to ν = 1, cor-
responding to 3/5 and 2/5 electron dopings with respect to
the charge neutrality point. We perform ED calculations on
a 20-site (4 × 5; see Fig. 3) cluster under periodic boundary
conditions with 8 (2/5 hole doping) and 12 (3/5 hole doping)
doped holes. The fractional quantum anomalous Hall effect
has been observed at both of these fillings [5], implying the
presence of composite-fermion-type FCI states [23] at these
fillings. In Fig. 7 we present the phase diagram at 3/5 electron
filling, which is obtained by 2/5-hole-doping the two types of
isolated flat bands emerging from the two competing HF states
at ν = 1. We see that when D = 0.9 V/nm and εr = 5, and
D = 1.1 V/nm and εr = 4, the system may stay in composite-
fermion-type FCI state marked by red blocks in Fig. 7(a). The
fine white mesh within the red FCI block at (D = 0.9 V/nm,
εr = 5) in Fig. 7(a) means that within this red block, we
have performed ED calculations in a finer range of D field
at 2/5 hole filling (3/5 electron filling) of the two distinct flat
bands emerging from the two competing HF states at filling
1. We find that the system stays in the composite-fermion
FCI state for D = 0.9 V/nm and for D = 0.93 V/nm � D �

FIG. 7. Phase diagram and many-body energy spectra at 3/5 and
2/5 electron fillings obtained from exact-diagonalization calcula-
tions. (a) Phase diagram at 3/5 electron filling. (b) Many-body band
structures of the composite-fermion type FCI state at 3/5 electron
filling at D = 0.94 V/nm and εr = 5. (c) Phase diagram at 2/5
electron filling. (d) Spectral-flow behavior of the composite-fermion
type FCI state at 3/5 electron filling, where the upper panel shows the
spectral flow of lowest 30 states, while the lower panel zooms in on
the spectral flow within the (nearly) fivefold-degenerate ground-state
manifold. The fine white mesh within the red FCI block in (a) means
that we have performed ED calculations in a finer range of D field
at 3/5 electron filling for 0.9 V/nm � D � 0.96 V/nm (with interval
of 0.1 V/nm) at εr = 5.

0.95 V/nm (with interval of 0.1 V/nm) with εr = 5. Such a
state is characterized by a fivefold (nearly) degenerate ground
state and a sizable gap ∼1 meV from the excited states,
as shown in Fig. 7(b). Moreover, upon the adiabatic flux
insertion, these five nearly degenerate ground states would
interchange with each other and return to the original con-
figurations when φ = 5φ0, as clearly shown in Fig. 7(d). This
further confirms the topological nature of such a degenerate
many-body state. There are also some other correlated ground
states in the (D, εr ) phase diagram at 3/5 electron filling, such
as the ND, gapless, and FCI/ND crossover states, as shown in
Fig. 7(a).

In contrast, at 2/5 electron filling, according to our ED
calculation on a relatively rough mesh in the (D, εr ) space
as shown in Fig. 7(c), the FCI state only shows up at D =
0.7 V/nm and εr = 7. And this FCI state is not very robust,
with the log of the gap/spread ∼1.18. When εr = 5, the
FCI/ND crossover state emerges for D = 0.8, 0.9 V/nm at
2/5 electron filling. We note that in experiments the fractional
quantum anomalous Hall effect has been observed over a rel-
atively large range of D field at 3/5 filling (0.91 V/nm � D �
0.95 V/nm), but only observed within a small range of D field
at 2/5 filling (0.92 V/nm � D � 0.93 V/nm) [5]. Therefore,
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FIG. 8. Phase diagrams at 2/3 electron filling, for (a) tetralayer, (b) pentalayer, and (c) hexalayer graphene moiré superlattice aligned with
hBN. The FCI (FCI/ND) states are marked by red (orange) dashed boxes. The color coding indicates Chern numbers of the isolated flat bands
emerging from gapped HF ground states at filling 1, where the gray shaded regions mark the gapless states. The dense narrow color bars
(representing Chern numbers) in (a) at 0.449◦ represent a fine scanning of D field from 0.9 V/nm to 1.1 V/nm with an interval of 0.01 V/nm.

our numerical results with εr = 5 at 2/5 and 3/5 fillings are
also fully consistent with experimental observations.

VI. GENERIC MULTILAYER GRAPHENE SYSTEMS

We further apply our theoretical formalism to generic
rhombohedral multilayer graphene systems with only their
bottom layers aligned with hBN, and have established many-
body phase diagrams for various multilayer systems in the
parameter space of twist angle θ and D field, with fixed
dielectric constant εr = 5. In Figs. 8(a), 8(b) and 8(c), we
present the Chern number of the lowest conduction bands
(LCBs) (with respect to the charge neutral point) obtained
from the interaction-driven symmetry-breaking ground states
at ν = 1 under the HF approximation for N = 4, 5, and 6,
respectively. An ill-defined Chern number is marked with
shaded area implying that the direct gap between the first
and second conduction bands is vanishingly small. It is inter-
esting to note that in most parts of the parameter space, the
Hartree-Fock LCBs exhibit Chern number 1 for N = 4, 5,

and 6. Our calculations indicate that the integer Chern insu-
lator state is robust in tetralayer, pentalayer, and hexalayer
graphene moiré superlattices at filling factor 1.

For the N = 4 system, we have performed exact-
diagonalization calculations at 1/3 hole filling of the
Chern-number-1 LCB emerging from symmetry-breaking
Hartree-Fock states (corresponding to 2/3 electron filling with
respect to charge neutrality), and find that FCI state is stable
only at (D = 1.02–1.04 V/nm, θ = 0.449◦), as marked by
a narrow red dashed box in Fig. 8(a), where the dense nar-
row color bars (representing Chern numbers) in Fig. 8(a) at
0.449◦ represent a fine scanning of D field from 0.9 V/nm to
1.1 V/nm with an interval of 0.01 V/nm. For the N = 5, i.e.,
pentalayer, system, we find that the FCI state is stable in a
substantial region of the (D, θ ) parameter space as marked
by red dashed boxes in Fig. 8(b). Moreover, there is also

some region in the (D, θ ) parameter space which exhibits a
crossover between the FCI and nondegenerate states (dubbed
as FCI/ND), marked by orange dashed boxes in Fig. 8(b).
Lastly, for the N = 6 system, the bandwidth of the topologi-
cal LCB emerging from the symmetry-breaking Hartree-Fock
states at filling 1 is comparable to that of the N = 5 system,
while the corresponding Berry-curvature standard deviations
are even smaller than those of the N = 5 system (see
Supplemental Material [77]). Therefore, one would expect
that the FCI state may be even more robust for the N = 6
system at fractional fillings. In Fig. 8(c) the FCI ground state
in the N = 6 system is marked by red dashed boxes in the
phase diagram, and the orange dashed boxes in Fig. 8(c) mark
the FCI/ND state.

Overall, for the tetralayer system (N = 4), the integer
Chern insulator state exists over a finite range of twist angles
and D fields at filling 1, while the fractional Chern insulator
only exists at θ = 0.449◦ in an extremely small range of
D (1.02 V/nm � D � 1.04 V/nm). For pentalayer and hex-
alayer systems (N = 5 and N = 6), both integer and fractional
Chern insulators are present, and exist over a finite range of
twist angles and D fields. For the hexalayer system, the nor-
malized Berry curvature standard deviations of the topological
LCBs (emerging from the Hartree-Fock ground states filling
1) are even smaller than those of the pentalayer system, which
may imply more stable FCI ground states at fractional fillings.
More details can be found in the Supplemental Material [77].

VII. CONCLUSIONS

To some extent, our theory can be considered as being de-
veloped from first principles. We start from the highest energy
scale EC ∼ 2 eV in the problem and progressively integrate
out the high-energy modes using RG until a low-energy cut-
off E∗

C ∼ 0.15 eV is reached. We thus obtain a renormalized
low-energy Hamiltonian including the effects of Coulomb
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TABLE I. The range of D (in units of V/nm) within which the fractional quantum anomalous Hall effect shows up. We show the results
from our theoretical calculations with εr = 5, and the experimental observations [5].

Filling

2/3 1/3 3/5 2/5

Theory 0.9 � D � 0.92 None 0.9 � D � 0.95 None
Experiment 0.95 � D � 0.965 None 0.91 � D � 0.95 0.92 � D � 0.93

interactions from remote-band electrons to low-energy elec-
trons, with self-consistently screened D field. Within E∗

C , we
perform fully unrestricted HF calculations at filling 1, which
yield two competing HF states with distinct topological char-
acters. We further compare the energies of ED ground states
by hole-doping the topologically distinct flat bands emerging
from two competing HF states, and determine the genuine
many-body ground state. Eventually, we obtain FCI states at
both 2/3 and 3/5 fillings with εr = 5 for the PLG system,
which emerge in a range of D fields that are quantitatively
consistent with experiments as shown in Table I. Our work
thus provides a microscopic theory for the fractional quantum
anomalous Hall effect and other correlated states observed in
the hBN-PLG moiré superlattice.

We have theoretically studied the correlated topological
states in generic hBN-aligned N-layer graphene moiré su-
perlattices (with N = 2, 3, 4, 5, 6), where many-body phase
diagrams have also been constructed in the parameter space of
D (0.6 V/nm � D � 1.1 V/nm) and θ (0.353◦ � θ � 1.36◦).
We find that a robust FCI state at 2/3 electron filling may

emerge in both pentalayer and hexalayer systems. For the
tetralayer graphene moiré superlattice, the integer Chern insu-
lator state is robust at filling factor 1, while FCI at 2/3 filling
occurs only within a small range of D field around 1 V/nm
at twist angle θ = 0.449◦. The methodology developed in this
work can be readily applied to various other two-dimensional
systems to explore potentially richer correlated and topologi-
cal physics.

Note added. Recently, we became aware of several closely
related works [89–92].
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