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Analytic method for quadratic polarons in nonparabolic bands
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Including the effect of lattice anharmonicity on electron-phonon interactions has recently garnered attention
due to its role as a necessary and significant component in explaining various phenomena, including super-
conductivity, optical response, and temperature dependence of mobility. This study focuses on analytically
treating the effects of anharmonic electron-phonon coupling on the polaron self-energy, combined with numerical
Diagrammatic Monte Carlo (DiagMC) data. Specifically, we incorporate a quadratic interaction into the method
of squeezed phonon states, which has proven effective for analytically calculating the polaron parameters.
Additionally, we extend this method to nonparabolic finite-width conduction bands while maintaining the
periodic translation symmetry of the system. Our results are compared with those obtained from Diagrammatic
Monte Carlo, partially reported in a recent study [S. Ragni et al., Phys. Rev. B 107, L121109 (2023)], covering
a wide range of coupling strengths for the nonlinear interaction. Remarkably, our analytic method predicts the
same features as the Diagrammatic Monte Carlo simulation.
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I. INTRODUCTION

Polaron physics, which originates from a theoretical prob-
lem that involves the interaction of a particle with a quantum
field [1,2], has garnered significant experimental interest due
to its practical applications. This curiosity has additionally
driven the advancement of polaron theory, which has broad-
ened its scope from its original concentration on polarons in
crystals [3] to include a range of condensed matter systems,
such as quantum gases [4–6], and even celestial bodies like
neutron stars [7,8].

Conventional theoretical frameworks for polarons typically
center around the idea of small oscillations within a crystal lat-
tice or another bosonic quantum field. Within this framework,
the linear-harmonic approximation characterizes the phonon
field as harmonic, with the electron-phonon interaction being
directly proportional to the phonon coordinates. Instances of
such frameworks include the Fröhlich and Holstein models for
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polarons in solid-state physics [2], as well as Fröhlich-type
Hamiltonians for impurity polarons in quantum gases [9]. In
these applications, the Fröhlich model relies on the assump-
tion of a parabolic energy dispersion for the conduction band.

It has been established for a while that in certain situations,
higher-order terms beyond the linear-harmonic approximation
can be significant [10]. These additional terms specifically
influence the optical response and kinetics of impurities
within crystals. Lately, there has been a resurgence of inter-
est in nonlinear electron-phonon interactions and anharmonic
phonons [11–18]. These occurrences have proven crucial in
elucidating different phenomena, such as superconductivity
at low carrier concentrations [19,20] and the temperature-
dependent mobility [21].

While Diagrammatic Monte Carlo (DiagMC) simulations
have made it possible to describe polaron properties for both
linear [22,23] and nonlinear [15] electron-phonon interactions
with high accuracy, analytic methods remain of significant
interest. These methods provide a clear physical picture of
polarons and enhance our understanding of results obtained
through numerical techniques such as density functional the-
ory and DiagMC simulations.

The primary objective of the present study is to develop
an analytical method for investigating anharmonic polarons
within a nonparabolic conduction band characterized by a
finite bandwidth. By adjusting the bandwidth and exploring
various electron-phonon interaction amplitudes, this frame-
work encompasses scenarios involving both small and large
polarons, as well as the intermediate regime between these
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extremes. Our approach is based on the well-established
method of using displaced squeezed phonon states [24,25]
after elimination of the electron coordinate by a shift to the
frame comoving with the electron [26]. This technique has
been widely used for large polarons with linear interactions in
weak- and intermediate-coupling regimes.

One of the important advances in the understanding of
the role of high-order terms in the electron-phonon coupling
is presented in [16] where the semianalytic method of mo-
mentum average approximation is used to study the Holstein
model with simultaneous quadratic and quartic terms. Unfor-
tunately, we cannot verify our results against the data in [16]
because we consider a different model, with only quadratic
interaction, whereas the authors of [16] do not provide results
where the quartic term is missing. Also, the paper [16] deals
with a polaron in 1D and 2D, while the present work is
devoted to a polaron in three dimensions.

In this work, we first extend the displaced squeezed
phonon approximation to incorporate quadratic interactions
(discussed in Sec. II). Next, in Sec. III, we examine polaron
behavior with a quadratic interaction in nonparabolic bands
while maintaining periodic boundary conditions for the Bril-
louin zone. This polaron model has been recently explored
numerically [15] using the DiagMC technique, and we com-
pare our results with those of DiagMC. Finally, the results
obtained are summarized in Sec. IV.

II. POLARON WITH FRÖHLICH
AND 2TO INTERACTIONS

A. The system

In this section, we investigate the polaron in a parabolic
conduction band, focusing on two distinct types of electron-
phonon interactions. First, we examine the Fröhlich interac-
tion, which involves longitudinal optical (LO) phonons and
exhibits a linear dependence on phonon coordinates. Second,
we explore the quadratic interaction which engages two trans-
verse optical (TO) phonons. This 2TO interaction manifests
itself as a quadratic function of phonon coordinates. Although
the 2TO interaction was introduced in theoretical frameworks
long ago [10], it has recently regained interest. Notably, a
coexistence of Fröhlich and 2TO couplings has proven rele-
vant in experimental contexts, particularly with materials such
as SrTiO3 [17,19,20]. These interactions have allowed us to
successfully elucidate various phenomena, including response
properties and superconductivity.

Our analysis centers around the electron-phonon Hamilto-
nian:

H = p2

2m
+

3∑
a=1

∑
q

h̄ω(a)
q b(a)†

q b(a)
q

+
∑

q

(
Vqb(3)

q eiq·r + V ∗
q b†(3)

q e−iq·r) + H2TO. (1)

Here, r is the position operator of the electron with band mass
m, p is its canonically conjugate momentum operator, and
b†(a)

q and b(a)
q are the creation and annihilation operators for

optical phonons of wave vector q and energy h̄ω(a)
q . The index

a = 1, 2 labels the TO phonon modes, and a = 3 denotes the

LO mode. So further on in this note we assume that ω(1)
q =

ω(2)
q = ω(TO)

q and ω(3)
q = ωLO. The Vq are Fourier components

of the linear (Fröhlich) part of the electron-phonon interaction,

Vq = h̄ωLO

q

(
4πα

V

) 1
2
(

h̄

2mωLO

) 1
4

. (2)

The strength of the Fröhlich electron-phonon interaction is
expressed by a dimensionless coupling constant α, which is
defined as

α = e2

h̄

√
m

2h̄ωLO

(
1

ε∞
− 1

ε0

)
. (3)

In this definition, ε∞ and ε0 are, respectively, the high-
frequency and static dielectric constants of the polar crystal.

We apply the quadratic electron-phonon interaction Hamil-
tonian following Ref. [13],

H2TO = g2

2
�P2(r), (4)

where g2 is the coupling strength for the 2TO interaction. The
polarization �P(r) is given by

�P(r) =
∑

q

∑
a=1,2

e(a)
q√
V

κq
(
b(a)

q eiq·r + b(a)†
q e−iq·r) (5)

with the factor to the interaction strength

κq =
√

ω
(TO)
q

ε0(q) − ε∞
4π

, (6)

where ε0(q) and ε∞ are, respectively, the static momentum-
dependent dielectric function and high-frequency dielectric
constant. In the considered isotropic model, there are two unit
vectors ea

q for TO modes, with a = 1, 2, orthogonal to q and
to each other.

B. The approximation of squeezed phonon states

The original idea of the Lee-Low-Pines transforma-
tion [26] followed by the Bogoliubov-Tyablikov diago-
nalization [27] of the truncated coordinate-free polaron
Hamiltonian, quadratic in phonon coordinates, belongs to
Gross [24]. This approximation was subsequently further
developed in different modifications, e.g., the method of
displaced squeezed phonon states [25] or correlated Gaus-
sian wave functions [6] (see also Refs. [28–30]). Here, we
show that the approximation of displaced squeezed phonon
states (abbreviated to SPS in the figures) is straightforwardly
extended to a polaron with a quadratic electron-phonon inter-
action.

The first Lee-Low-Pines unitary transformation

S1 = exp

⎡
⎣ i

h̄

⎛
⎝P −

∑
a,q

h̄qb(a)†
q b(a)

q

⎞
⎠·r

⎤
⎦, (7)

where P is the eigenvalue of the total momentum, leads to the
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coordinate-free polaron Hamiltonian

H = S−1
1 HS1

=
(
P − ∑

a,q h̄qb(a)†
q b(a)

q

)2

2m
+

3∑
a=1

∑
q

h̄ω(a)
q b(a)†

q b(a)
q

+
∑

q

VqB(3)
q + g2

2V

⎛
⎝∑

q,a

κqe(a)
q B(a)

q

⎞
⎠

2

. (8)

Here B(a)
q is proportional to the phonon coordinate, and is

given by

B(a)
q = b(a)

q + b(a)†
q . (9)

The coordinate-free Hamiltonian looks appealing for ap-
proximate methods and led to numerous attempts to make
analytic approximations suitable at both weak and strong cou-
pling. Here, we consider the well-established approach for the
weak- and intermediate-coupling regime. In this approach, the
second Lee-Low-Pines transformation is performed,

S2 = exp

⎡
⎣−

∑
a,q

f (a)
q

(
b(a)

q − b(a)†
q

)⎤⎦. (10)

The phonon shifts f (a)
q are real, in accordance with the polaron

Hamiltonian. The unitary transformation S2 results in a dis-
placement of the phonon operators. The resulting transformed
Hamiltonian consists of two terms,

S−1
2 HS2 = H0 + HI ,

where H0 and HI are the following contributions to the
coordinate-free Hamiltonian after phonon shifts: (1) The
Hamiltonian truncated to the quadratic normal form of phonon
operators:

H0 = E0 +
∑
a,q

h̄�(a)
q b(a)†

q b(a)
q

+ 1

2m

⎛
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⎞
⎠

2

+ g2

2V

⎛
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q,a=1,2

e(a)
q κqB(a)

q

⎞
⎠

2

(11)

with the renormalized phonon energy

h̄�(a)
q = h̄ω(a)

q + h̄2q2

2m
− h̄(q · P)

m
+

∑
a′,q′

h̄2

m

(
q · q′)( f (a′ )

q′
)2

,

(12)
where the term E0 does not contain operators:

E0 = P2
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m

)(
f (a)
q
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q

Vq f (3)
q

+ 1
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q

)2

⎞
⎠

2

+2g2

V

⎛
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q κq f (a)

q

⎞
⎠

2

.

(13)

(2) The remaining part of the Hamiltonian, which is also
written in the normal form:

HI =
∑

q

(
h̄�(3)

q f (3)
q + Vq

)
B(3)

q +
∑

q,a=1,2

×
⎛
⎝h̄�(a)

q f (a)
q +2g2

V

∑
q′,a′=1,2

(
e(a)

q · e(a′ )
q′

)
κqκq′ f (a′ )

q′

⎞
⎠B(a)

q

+
∑
a,q

∑
a′,q′

h̄2(q · q′)
m

f (a)
q b(a′ )†

q′ B(a)
q b(a′ )

q′

+
∑
a,q

∑
a′,q′

h̄2(q · q′)
2m

b(a)†
q b(a′ )†

q′ b(a)
q b(a′ )

q′ . (14)

The term HI can only quantitatively influence the polaron
energy in a sufficiently strong coupling. Consequently, an
account of this contribution is beyond the scope of the present
work, which is restricted to weak- and intermediate-coupling
regimes.

C. 2TO polaron self-energy

The Hamiltonian H0, given by Eq. (11), is quadratic in the
phonon operators, but it does contain products of two cre-
ation or two annihilation operators. Such Hamiltonians can be
diagonalized by a Bogoliubov transformation, which can be
interpreted as a unitary transformation representing a phonon
squeezing. We refer to this transformation as the Bogoliubov-
Tyablikov diagonalization [27]. The momentum-dependent
polaron energy shift provided by the Bogoliubov-Tyablikov
diagonalization is found starting from the definition [31]

�E = 1

2

∑
a,q

h̄
(
ν (a)

q − �(a)
q

)
, (15)

where ν (a)
q are eigenfrequencies determined in Appendix A

which satisfy Eq. (A26). In fact, the energy �E is calculated
exactly without the necessity to know the eigenfrequencies
explicitly; the details are described in Appendix A. The re-
sulting polaron self-energy consists of (13) and the self-energy
correction due to the squeezing transformation,

Ep(P) = E0 + �E . (16)

Polarons of different types with linear electron-
phonon coupling within the displaced squeezed phonon
approximation were extensively studied in earlier work,
e.g., [6,24,28,29]. Therefore, here we focus only on
the self-energy of the 2TO polaron. To understand the
effects of quadratic coupling more clearly, we restrict the
results analysis to the case of a purely quadratic polaron
without linear electron-phonon interaction. In general, when
both linear and quadratic interactions are present in the
Hamiltonian, f (a)

q are treated as variational functions and
are chosen to minimize the polaron self-energy (16). In the
absence of linear coupling, the optimal phonon shift values
appear to be zero. Thus, the polaron energy shift for a purely
quadratic polaron is only expressed by the term �E . It is
derived using the known scheme of the meson pair theory [31]
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FIG. 1. Integration contour in the complex s plane for the polaron
energy shift.

and expressed through the contour integral

�E (2TO)(P) = − h̄

8π i

∮
C

ds
1√
s

ln �(2TO)(s, P) (17)

with the function (see Appendix A)

ln �(2TO)(s, P)

=
∑

j=x,y,z

ln

⎡
⎣1 − g2

h̄V

∑
q,a=1,2

(
1 − q2

j

q2

)
κ

2
q�

(a)
q

s − (
�

(a)
q

)2

⎤
⎦.

(18)

The integration contour C contains inside all values of (ν (a)
q )2

and (�(a)
q )2 as shown in Fig. 1.

Here, for numeric testing, we use the approximation of a
soft TO mode applied by Kumar et al. [13],

ω(TO)
q =

√
ω2

T + c2q2,

and neglect ω(TO)
q |q=0 = ωT with respect to cq. Thus the soft

mode is approximately sound-like:

ω(TO)
q ≈ cq, κ

2
q ≈ ε∞ω2

LO

4πcq
. (19)

Without knowledge of a realistic large-q behavior of the
TO-phonon energy and of the 2TO interaction, the integrals
over the phonon momentum in the present approximation di-
verge. To remove this divergence a phonon wave vector cutoff
k0 is introduced. The coupling strength of the 2TO interaction
is expressed through the dimensionless coupling constant

αT = g2
ε∞mω2

LO

6π3h̄2c
. (20)

The polaron energy shift (17) describes the dispersion of
the polaron �E (2TO)(P) as a function of the polaron momen-
tum P. The numeric results for this 2TO contribution to the
polaron self-energy are shown in Fig. 2. The polaron energies
�E (2TO) are plotted as functions of the total momentum P
for different values of the coupling constant αT . The numeric
calculation is performed using the units with h̄ = 1, m = 1,
and c = 1. Thus the energy is measured in units of mc2.

To our knowledge, the sign of the coupling constant for the
2TO interaction is not known a priori. Therefore, the polaron
self-energy is calculated here for both positive and negative
αT , shown by solid and dashed curves, respectively. The range

Δ

FIG. 2. Momentum-dependent 2TO-polaron energy shift as a
function of the polaron momentum P for different values of the
coupling constant αT , calculated using the momentum cutoff h̄k0 =
10mc. Solid and dashed curves show the energy for positive and
negative αT , respectively.

of the polaron momentum is chosen sufficiently small with
respect to the momentum cutoff in order to avoid possible
artifacts related to the cutoff. As can be seen in Fig. 2, the 2TO
polaron energy shift �E (2TO)(P) smoothly and monotonically
decreases as a function of P.

Expanding the momentum-dependent 2TO-polaron energy
shift (17) in powers of P up to the second order, we obtain
the ground-state energy and the polaron contribution to the
inverse effective mass for the 2TO polaron. The ground-state
energy �E (2TO)(P) is plotted in Fig. 3. Results of the present

Δ Δ

(a) (b)

FIG. 3. (a) 2TO-polaron ground-state energy calculated using the
approximations for the soft-mode TO-phonon dispersion and the
coupling factor by Kumar et al. [13] for different values of
the phonon cutoff momentum k0. The thin lines show the first-order
perturbation results for E (2TO). (b) The ground-state polaron energy
within the approximation of squeezed phonon states compared with
results of partial summation of DiagMC series containing up to
2-loop diagrams (filled symbols) and up to 3-loop diagrams (hollow
symbols). Error bars of DiagMC data are smaller than the points’
size.
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−

FIG. 4. 2TO-polaron effective mass as a function of the coupling
constant αT , calculated using different values of the the momentum
cutoff k0.

method are labeled “SPS” which stands for the “squeezed
phonon state” approach, since that is indeed what we rely on
through the Bogoliubov-Tyablikov diagonalization.

The polaronic energy shift resulting from the 2TO inter-
action depends not only on the magnitude of the interaction
but also on its sign. For αT > 0, its behavior resembles the
repulsive polaron in atomic quantum gases [5]. The depen-
dence of the self-energy on αT is not fully antisymmetric
when changing the sign of αT , because both even and odd
terms contribute to the total energy.

The dashed lines show the first-order perturbation result
for the ground-state energy determined by the averaging of
the electron-phonon interaction term with the Hamiltonian of
free electrons and phonons,

E (2TO)
weak = 〈H2TO〉0 = 3

8

h̄2k2
0

m
αT . (21)

The ground-state energy determined from (17) at P = 0 an-
alytically tends to 〈H2TO〉0 in the limit of small coupling
constant αT .

The dependence of the effective mass on the coupling
constant α is shown in Fig. 4. For a positive coupling constant,
the αT dependence of the effective mass is smooth and does
not manifest any specific feature. The 2TO-polaron effective
mass monotonically rises with an increasing αT , as well as
with an increasing phonon cutoff momentum k0.

The behavior of the effective mass at negative αT is
more interesting. It exhibits a resonant divergent peak of the
effective mass at some value of αT . A divergence of the effec-
tive polaron mass at some negative coupling strength of the
quadratic interaction was also obtained in our preceding work
on a polaron in a finite-width band [15] using the numerically
exact Diagrammatic Monte Carlo method. This result has
been verified analytically in the case of an infinitely narrow
conduction band, which is known as the atomic limit, also
discussed in the next section. The atomic limit results in an
explicit analytic change of the phonon frequency. When the
coupling constant passes through a certain critical negative
value, this renormalized squared phonon frequency becomes

negative, which indicates a negative stiffness and an insta-
bility of the crystal lattice possibly resulting in a structural
phase transition. At the critical coupling strength, the polaron
effective mass diverges. Consequently, this also means an
instability of the polaron state.

When the width of the conduction band is not equal to
zero, the effect of the quadratic coupling is more complicated
and can hardly be reduced to a renormalization of the phonon
frequency. Nevertheless, it is physically clear that a quadratic
polaron with any bandwidth should become unstable when the
coupling strength reaches a sufficiently large negative value.
This must be also true for the polaron model with a parabolic
electron dispersion treated in this section. Therefore, the di-
vergence of the polaron effective mass shown in Fig. 4 is
attributed to the polaron instability. The present approxima-
tion of squeezed phonon states gives formal solutions for
coupling strengths both above and below this critical value
(denoted as α

(c)
T ). However, we should only consider the range

αT > α
(c)
T as physically reasonable.

It should be noted that an account of a whole series of
anharmonic terms in the phonon Hamiltonian (see also dis-
cussions in Refs. [16,32]) might avoid this polaron instability,
which may appear as an artifact of restricting the phonon
Hamiltonian to the quadratic order. However, even in this case
the instability would be an artifact of the quadratic polaron
model but not an artifact of the approximation of squeezed
phonon states, because, as shown in the next section, the Di-
agMC calculation and the approximation of squeezed phonon
states predict the same divergence of the polaron effective
mass.

As was proven by Gerlach and Löwen [33] who con-
sidered rigorous relations for a polaron, “phase transitions”
when varying the coupling strength are forbidden for a rather
wide class of polarons, which however does not include
all existing polaron models. Gerlach and Löwen considered
polarons with a linear electron-phonon coupling, where the
coupling amplitude depends only on the phonon momentum.
The theorem can be inapplicable even for a nonlocal linear
electron-phonon interaction, for example, the Peierls/Su-
Schrieffer-Heeger polaron [34] or for a polaron exposed to
a short-range potential [33]. Furthermore, polarons with non-
linear electron-phonon interactions were beyond the scope of
the study in Ref. [33].

The polaron with a quadratic electron-phonon coupling
of Ref. [15] represents an example of an exactly solvable
polaron model in the atomic limit. It shows that the Gerlach-
Löwen theorem can be inapplicable in the case of a quadratic
interaction.

Remarkably, there are kinks (discontinuities of the first
derivative) in the curve for the ground-state energy in Fig. 3
at the same critical values of the coupling constant where the
2TO-polaron effective mass diverges. As discussed above and
in Sec. III, the physical origin of these features consists in the
polaron instability which appears when the coupling strength
of the quadratic interaction reaches some critical negative
value α

(c)
T . In the parameter range for α > α

(c)
T , the result of

the approximation of squeezed phonon states is quite consis-
tent with DiagMC simulations [Fig. 3(b)] of a subset of the
diagrammatic expansion of the polaron Green function. The
terms involved are all crossing diagrams containing 2-loops
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−

−

FIG. 5. 2TO-polaron effective mass as a function of the coupling
constant αT , calculated using the momentum cutoff h̄k0 = 80mc,
which approximately corresponds to the Brillouin zone edge in
SrTiO3. Inset: The effective mass in the weak-coupling range of
αT . The arrow indicates the value αT ≈ 0.079 obtained using the
parameters from Ref. [13].

and 3-loops, which are the dominant contribution at small
coupling. The inclusion of 3-loops results in a behavior closer
to the squeezed phonon state result compared to 2-loops alone.
The implementation of the DiagMC method is described in
Appendix B.

In Fig. 5, the 2TO-polaron effective mass is shown as
a function of αT choosing other parameters the same as in
Ref. [13] in order to see whether the 2TO interaction may be
relevant for polarons in strontium titanate. Kumar et al. use
g2 as a fitting parameter, and apply for numerics g2 = 0.92a3

0
where a0 is the lattice constant taken in Ref. [13] to be
a0 = 3.9 Å. With other parameters from the same work, c =
6.6 × 105 cm s−1, the bare electron band mass m = 1.8m0

(where m0 is the electron mass in vacuum), and with h̄ωLO =
0.0987 eV [35], we estimate the dimensionless 2TO coupling
constant in SrTiO3 as αT ≈ 0.079. This value is indicated by
the arrow in the inset of Fig. 5. The phonon cutoff momentum
is chosen here as the edge of the Brillouin zone, k0 = π/a0,
which gives us the dimensionless cutoff value p0 = h̄k0/

mc ≈ 80.
As can be seen from Fig. 5, the relative contribution of the

2TO interaction to the polaron mass in SrTiO3 is relatively
small with respect to the Fröhlich polaron mass, which can
be estimated as m∗

F /m − 1 ≈ α/6 ≈ 0.35 [35]. However the
2TO contribution is not negligible. Moreover, if it may appear
that the coupling constant in SrTiO3 is negative, the value
|αT | ≈ 0.079 lies rather close to the resonance obtained in the
present calculation. This may explain larger values for the ef-
fective mass of a “dressed” electron obtained in spectroscopic
measurements with respect to that which follows from our
calculations (predicting α ≈ 2.1).

Figures 4 and 5 show that the critical negative coupling α
(c)
T

gradually decreases in magnitude when increasing the mo-
mentum cutoff k0. If the cutoff value tends to infinity, it means
physically an infinite increase of a negative contribution to the
renormalized squared phonon frequency at any finite αT . Thus

we can suggest that in the limit k0 → ∞, the critical coupling
constant α

(c)
T must tend to zero.

III. INCLUDING NONPARABOLICITY AND FINITE
WIDTH OF THE CONDUCTION BAND

A. Model

The most important point of this subsection consists of
a generalization of the method using displaced squeezed
phonon states to the polaron in a nonparabolic finite-width
conduction band. The generalized method satisfies periodic
boundary conditions in the Brillouin zone and consequently it
is not restricted to a small polaron momentum. Thus, it allows
for a description of both large and small polarons.

The treatment in the present work is performed for the
polaron model introduced in Ref. [15]. The polaron problem
is treated using the Hamiltonian in the lattice representation
for a simple cubic lattice, written as H = H0 + He-ph, where

H0 = −t
∑
〈i′,i〉

∑
σ=±1/2

c†
i′,σ ci,σ +

∑
i′,i

ω0

(
b†

i′bi + 1

2

)
, (22)

He-ph = ω0

4
g
∑

i

niB
2
i , (23)

with

Bi = bi + b†
i , (24)

ni =
∑

σ=±1/2

c†
i,σ ci,σ . (25)

In reciprocal space the lattice corresponds to a discrete finite
set of wave vectors,

− π

a0
� (k j, q j ) <

π

a0
, (k j, q j ) = 2π i j

L
( j = x, y, z),

(26)
where L = N1/3a0 is the size of the system (V = L3 = Na3

0),
a0 being the lattice constant, and i j are integers.

In the momentum representation, applying the discrete
Fourier transform

ci,σ = 1

N1/2

∑
k

ck,σ eik·ri , c†
i,σ = 1

N1/2

∑
k

c†
k,σ e−ik·ri ,

(27)

Bq = 1

N1/2

∑
i

e−iq·ri Bi, Bi = 1

N1/2

∑
q

eiq·ri Bq, (28)

the Hamiltonian H0 takes the form

H0 =
∑

k

ε(k)
∑

σ

c†
k,σ ck,σ +

∑
q

ω0

(
b†

qbq + 1

2

)
(29)

with ε(k) (counted from the middle of the conduction band)
given by

ε(k) = −2t
∑

j=x,y,z

cos(k ja0). (30)

The quadratic interaction Hamiltonian becomes

He-ph = ω0

4
g

1

N

∑
q

∑
q′

∑
k

∑
σ

c†
k+q−q′,σ ck,σ BqB†

q′ (31)
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with Bq = bq + b†
−q.

Expanding the band dispersion up to quadratic order,
ε(k) = a2

0tk2 + O(k4), yields the relation between the band-
width parameter t and the band mass mb:

t = h̄2

2mba2
0

, mb = h̄2

2a2
0t

. (32)

The bandwidth for the tight-binding model is W ≡
max[ε(k)] − min[ε(k)] = 12t . Further on, we set h̄ = 1. The
other units will be set below.

For a single polaron, the parts of the single-polaron Hamil-
tonian are

H0(p, {b†
q, bq}) = ε(p) +

∑
q

ω0

(
b†

qbq + 1

2

)
, (33)

He-ph(r, {b†
q, bq}) = ω0

4
g

1

N

∑
q

∑
q′

ei(q−q′ )·rBqB†
q′ . (34)

The first Lee-Low-Pines transformation, as in Sec. II, leads
to an electron-coordinate-free Hamiltonian. In order to apply
the Bogoliubov-Tyablikov transformation, this Hamiltonian is
rewritten in terms of real phonon coordinates,

H = ε(P − Q) +
∑

q

ω0

(
b†

qbq + 1

2

)

+ ω0g

4N

⎛
⎝∑

q

(
bq + b†

q

)⎞⎠
2

, (35)

where the total phonon momentum is Q = ∑
q qb†

qbq. Rep-
resenting ε(P − Q) through the normal products of phonon
second quantization operators, we arrive at the result

ε(P − Q) = −t
3∑

j=1

⎡
⎣eia0PjN exp

⎛
⎝∑

q

(e−ia0q j − 1)b†
qbq

⎞
⎠

+ e−ia0PjN exp

⎛
⎝∑

q

(
eia0q j − 1

)
b†

qbq

⎞
⎠

⎤
⎦, (36)

where N(. . .) denotes the normal form of second quantization
operators. When truncating the Taylor series of (36) in powers
of normal products of phonon operators up to the quadratic
order, this gives us the expression

ε(quad)(P − Q) = ε(P) +
∑

q

[ε(P − q) − ε(P)]b†
qbq. (37)

Consequently, the Hamiltonian (35) can be subdivided into the
two parts

H = H0 + HI , (38)

where the Hamiltonian H0 is a quadratic form of phonon
operators,

H0 =ε(P) +
∑

q

ω0

2
+

∑
q

�qb†
qbq+ ω0g

4N

⎛
⎝∑

q

(
bq+ b†

q

)⎞⎠
2

,

(39)

with the renormalized phonon frequency �q,

�q = ω0 + ε(P − q) − ε(P), (40)

and HI is a series of all higher-order terms beyond the
quadratic expansion,

HI = ε(P − Q) − ε(quad)(P − Q). (41)

As can be explicitly seen from (36), both the total Hamil-
tonian H and the quadratic Hamiltonian H0 have the correct
periodic translation symmetry, the same as for the initial ex-
act electron-phonon Hamiltonian. Namely, ε(P), ε(P − Q),
and �q are invariant with respect to the periodic translations
Pj → Pj + 2π/a0 and/or q j → q j + 2π/a0. Consequently,
the present scheme exactly accounts for the boundary condi-
tions of the Brillouin zone both for an electron and phonons.
When including both linear and quadratic electron-phonon
interactions, the full expansion of the kinetic energy in powers
of phonon operators is performed in the same way without
difficulties. Therefore this expansion gives us the straightfor-
ward extension of the method of squeezed phonon states to a
polaron in a nonparabolic finite-width band. As a particular
case, this provides the equivalent scheme of the displaced
squeezed phonon approach for a small polaron.

B. Self-energy of a polaron with a quadratic interaction

The shift of the self-energy provided by the Bogoliubov-
Tyablikov diagonalization is determined in the same way as
in Sec. II and gives

�E (P) = − 1

8π i

∮
C

ds
1√
s

ln

⎛
⎝1 − ω0g

N

∑
q

�q

s − �2
q

⎞
⎠.

(42)
The summation over q is performed within the first Brillouin
zone over sites of the reciprocal lattice with the number of
sites N = V

a3
0

= (2l )3 (with L ≡ 2la0). Thus the present treat-
ment is in fact for the lattice polaron rather than for the
continuum polaron in bulk. The subsequent numeric check
shows that the relative difference between the energies for the
continuum and lattice polarons becomes negligibly small al-
ready at relatively small l . For example, the relative difference
of the ground-state energies calculated with l = 10 and l = 20
is about 2.4 × 10−9. Consequently, the lattice representation
very well reproduces the properties of a polaron in bulk even
at a relatively small number of sites.

To obtain the particular case of the atomic limit (AL),
the limiting transition t → 0 can be taken explicitly for the
leading term of the ground-state energy. For the ground-state
energy in this limit we can consider the Hamiltonian

lim
t→0

H0 =
∑

q

ω0

(
b†

qbq + 1

2

)
+ ω0g

4N

⎛
⎝∑

q

(
bq + b†

q

)⎞⎠
2

.

(43)
For the numeric calculation, we apply the expression (42),
which is simplified in the atomic limit to the analytic
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FIG. 6. Ground-state energy of the quadratic polaron in the adi-
abatic regime with ω0 = 0.25t (a) and in the antiadiabatic regime
with ω0 = 48t (b) as a function of the strength g of the quadratic
electron-phonon coupling calculated within the present approach
(solid curve) and by DiagMC (dots). The DiagMC data are from
Ref. [15]. In panel (a), the dashed line shows the weak-coupling limit
for the ground-state energy within the first-order perturbation theory.
In panel (b), the dashed curve shows the ground-state energy in the
atomic limit t → 0 calculated using the expression (44).

expression for the ground-state energy, which is exact for (43),

�E (AL)
0 = − ω0

4π i

∮
C

dz ln

(
1 − g

z2 − 1

)

= 1

2
ω0(

√
g + 1
(g + 1) − 1), (44)

where 
(g + 1) is the Heaviside step function. Equiva-
lently, the Hamiltonian (43) can be exactly diagonalized by
the Bogoliubov-Tyablikov canonical transformation similarly
to (39). In the atomic limit, the value g = −1 indicates the
polaron instability as discussed above and in Ref. [15].

In Fig. 6(a), we plot the ground-state polaron energy of a
polaron with a quadratic interaction as a function of the cou-
pling constant g in the adiabatic regime, with ω0 = 0.25t . The
obtained ground-state energy is compared with the DiagMC
data of Ref. [15] shown by full dots.

As we can see from Fig. 6(a), the qualitative behavior of the
ground-state energy within the extended squeezed phonon ap-
proach is similar to that obtained using DiagMC calculations.
In the adiabatic regime the extension of the squeezed phonon
method to the polaron in the tight-binding conduction band
provides polaron ground-state energy values in between the
weak-coupling results and the DiagMC data, being closer to
DiagMC rather than to the weak-coupling result. For a weak
and intermediate coupling strength (g � 10), the agreement
between the squeezed phonon approximation and DiagMC
results seems to be rather good.

In Fig. 6(b), the ground-state energy is calculated for
ω0/t = 48, which corresponds to the antiadiabatic regime.
In the antiadiabatic regime, when ω0 � t , the agreement be-
tween the current method with squeezed phonon states and
DiagMC for the ground-state energy appears to be better than
in the adiabatic regime. This is explained by the fact that in
the limit t → 0, the coordinate-free Hamiltonian (35) tends
to a quadratic form which is exactly diagonalized by the
Bogoliubov-Tyablikov transformation. For the comparison,
the result of this limiting transition is shown by the red dashed
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FIG. 7. Parameter κ = 1 − mb/m∗ of the quadratic polaron in the
adiabatic regime with ω0 = 0.25t (a) and in the antiadiabatic regime
with ω0 = 48t (b) as a function of the coupling strength g calculated
using the SPS method (solid curves) and by DiagMC, Ref. [15]
(dots).

curve in Fig. 6(b). The ground-state energy calculated using
the approximation of squeezed phonon states consistently reg-
isters higher values compared to the results derived from the
full DiagMC series, as distinct from the partial DiagMC sum-
mation in Sec. II. This trend is not observed in the atomic limit
in comparison with DiagMC results due to the finite width of
the conduction band. Under strong-coupling conditions, the
ground-state energy within the atomic limit may fall below
the DiagMC results for t 
= 0, as depicted in Fig. 6(b).

In Fig. 7, we plot the parameter κ = 1 − mb/m∗ which
determines the polaron effective mass m∗, in the adiabatic
(a) and antiadiabatic (b) regimes. The parameter κ is the
coefficient at k2 in the series expansion of the momentum-
dependent polaron energy Ep(k) in powers of k. For the
simple cubic tight-binding band used in the present work and
in Ref. [15], the electron and polaron effective masses are
isotropic.

The dependence of κ as a function of the coupling constant
g is qualitatively similar to that extracted from the DiagMC
data. However, quantitatively there is a difference between our
results and Ref. [15]. In the adiabatic regime, the present cal-
culation underestimates the polaron mass with respect to the
DiagMC result. On the contrary, in the antiadiabatic regime
we can see an overestimation of κ given by the present method
with respect to DiagMC.

Because the approximated coordinate-free Hamiltonian
keeps the translation symmetry of the initial electron-phonon
Hamiltonian, it allows us to calculate the polaron energy
Ep(k) in the whole Brillouin zone. In Fig. 8(a), the band
dispersion is shown for the polaron with a quadratic interac-
tion for several values of the coupling constant g (including
g = 0 which corresponds to the bare band electron) along
the standard path for the cubic lattice: �-X -M-�-R-X |M-R
in the adiabatic regime with ω0/t = 0.25. As can be seen from
the figure, the quadratic electron-phonon interaction leads to
a narrowing of the conduction band with respect to that of
the bare electron. For sufficiently high coupling strengths, the
polaron self-energy exhibits nonmonotonic behavior at large
momentum close to the point M, so that local minima appear
along the chosen path. Consequently, the polaron band disper-
sion is more complicated than the electron band dispersion.
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FIG. 8. Band dispersion of the polaron with a quadratic in-
teraction in the adiabatic case with ω0/t = 0.25 (a) and in the
antiadiabatic case with ω0/t = 48 (b) along the path for the cubic lat-
tice �-X -M-�-R-X |M-R for different values of the coupling strength.

The polaron band dispersion in the antiadiabatic regime
shown in Fig. 8(b) looks different from the momentum-
dependent energy in the adiabatic regime. First, here the
polaron shift of the energy is relatively large with respect to
the electron bandwidth. As a result, the polaron effect on the
energy in the antiadiabatic regime is expressed through the
shift of the whole band rather than through a renormalization
of the bandwidth. Thus in the antiadiabatic regime the top and
the bottom of the conduction band shift in the same directions,
while in the adiabatic case they shift in the opposite directions.

Looking back at Figs. 6(b) and 7(b), we can note that the
method of squeezed phonon states is highly effective at ap-
proximating the ground-state energy in the deep antiadiabatic
regime, but it performs rather poorly in quantitatively estimat-
ing the effective mass. Observing the polaron dispersion in
Fig. 8, we can conclude that in the deep antiadiabatic regime
the intraband dispersion of the polaron self-energy (as well
the conduction band width) is small with respect to the shift
of the whole band. The good agreement between the method
of squeezed phonon states and DiagMC on the ground-state
energy in the deep antiadiabatic regime is explained by the
fact that the expression (43) represents the atomic limit not
only for the truncated Hamiltonian (39) but also for the exact
one (35). As the variation of the polaron self-energy within the
conduction band in the deep antiadiabatic regime constitutes
only a small part of the total self-energy, the relative error for
the effective mass in this regime can be substantially larger
than for the ground-state energy. Despite this quantitative
deviation from the DiagMC results, the method of squeezed
phonon states rather well captures the behavior of the effective

mass at g < 0 and the value of the critical negative coupling
strength indicating the polaron instability.

IV. CONCLUSIONS

One of the primary outcomes of this treatment involves
incorporating quadratic electron-phonon interaction into the
squeezed phonon states scheme, which appears straightfor-
ward. The resulting dependence of the ground-state energy
and the effective mass of a polaron, arising from the quadratic
interaction between an electron and TO phonons, exhibits no-
table differences for positive and negative coupling constants.
In the regime of positive coupling strengths, we observe
behavior typical of a repulsive polaron, without irregulari-
ties. However, for a negative coupling constant, the polaron’s
effective mass diverges at a critical value of the negative cou-
pling strength. This divergence indicates a polaron instability,
akin to what has been described in Ref. [15].

An advantageous feature of the current modification to the
squeezed phonon states method lies in its ability to calculate
the polaron band dispersion across the entire Brillouin zone,
extending beyond the assumption of small polaron momentum
and the quadratic expansion in powers of polaron momentum,
and keeping the periodic boundary conditions exactly. This
represents the second key result of our present work.

Even for a parabolic band, achieving a comprehensive
variational treatment is inherently complex [6]. The feasibil-
ity of obtaining a tractable form for the complete correlated
Gaussian wave function remains uncertain in the context of
a nonparabolic conduction band. This unresolved question
serves as the focus of subsequent studies.

The analytic method employed in this work enables the
investigation of various polaron characteristics across a broad
range of parameters, including coupling strength. Notably, it
complements the numeric DiagMC treatment. Our method’s
predictions align qualitatively with DiagMC results, high-
lighting features such as the instability of the polaron with
quadratic interaction at specific negative coupling strengths.
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APPENDIX A: DERIVATION OF THE POLARON
SELF-ENERGY

The off-diagonal component of the quadratic Hamilto-
nian (11) and (39) remains irrelevant to the energy within the
Lee-Low-Pines approximation. The Bogoliubov-Tyablikov
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canonical transformation, as described in [24,28,29], is the
third transformation,

b(a)
q = 1√

V

∑
q′,a′

(
u(aa′ )

qq′ β
(a′ )
q′ + v

(aa′ )∗
qq′ β

(a′ )†
q′

)
,

b(a)†
q = 1√

V

∑
q′,a′

(
u(aa′ )∗

qq′ β
(a′ )†
q′ + v

(aa′ )
qq′ β

(a′ )
q′

)
. (A1)

This mixes the creation and annihilation phonon operators,
and corresponds to a transformation from the original phonon
states to squeezed phonon states. This is why we refer
to this approach as the “squeezed phonon state” approach.
When the Bogoliubov-Tyablikov transformation is used in
conjunction with the displacement operator S2, this leads to
displaced squeezed phonon states, which are useful when both
a linear-harmonic interaction and a quadratic interaction are
present. The matrix elements of the Bogoliubov-Tyablikov
unitary transformation are chosen in order to diagonalize the
Hamiltonian H0. After applying (A1) to (39), the resulting
Hamiltonian can be written as

H0 = E0 +
∑
a,q

h̄ν (a)
q β (a)†

q β (a)
q + �E , (A2)

where ν (a)
q are eigenfrequencies, and �E is the polaron energy

shift,

�E = 1

2

∑
a,q

h̄
(
ν (a)

q − �(a)
q

)
. (A3)

In order to obtain the polaron self-energy within the
squeezed phonon states method for H0, we do not need
an explicit form of eigenfrequencies and matrix elements.
The self-energy can be derived using a scheme described by
Wentzel [31]. First, the Hamiltonian H0 is rewritten in terms
of phonon coordinates and momenta,

Q(a)
q =

√
h̄

2m�
(a)
q

(
b(a)†

q + b(a)
q

)
,

P(a)
q = −i

√
h̄m�

(a)
q

2

(
b(a)

q − b(a)†
q

)
, (A4)

leading to

H0 = E0 +
∑
a,q

⎛
⎝(

P(a)
q

)2

2m
+ m

(
�(a)

q

)2

2

(
Q(a)

q

)2

⎞
⎠

+ h̄W2
1 + g2m

h̄
W2

2 − 1

2

∑
a,q

h̄�(a)
q , (A5)

with the collective coordinates

W1 =
∑
a,q

q
√

�
(a)
q f (a)

q Q(a)
q , W2 =

∑
q,a=1,2

e(a)
q κq

√
�

(a)
q√

V
Q(a)

q .

(A6)
The equation for eigenfrequencies and eigenvectors of the
quadratic form (A5) is determined in the standard way,∑

a′,q′
M (a,a′ )

q′,q (ω)Q(a′ )
q′ (ω) = 0, (A7)

where the elements of the matrix M(ω) = ‖M (a,a′ )
q′,q (ω)‖ are

M (a,a′ )
q′,q (ω) = δa′,aδq′,q

[
ω2 − (

�(a)
q

)2]
− 2h̄(q ⊗ q′)

√
�

(a)
q �

(a′ )
q′ f (a)

q f (a′ )
q′

− (1 − δa,3)(1 − δa′,3)
2g2

h̄V

(
e(a)

q ⊗ e(a′ )
q′

)
× κqκq′

√
�

(a)
q �

(a′ )
q′ . (A8)

The eigenfrequencies are the roots of the equation

det M(ω) = 0. (A9)

A reduced set of equations for collective coordinates (A6)
can be extracted from the full set of equations (A7) when we
divide the equation by ω2 − (�(a)

q )2 and perform summations
over q with different weight coefficients. It results in the
matrix equation

A(ω)W(ω) = 0, (A10)

where W(ω) is a 6-dimensional vector, which is given in a
block form by

W(ω) =
(

W1(ω)

W2(ω)

)
.

The matrix A(ω) can be written as the block matrix

A(ω) =
(

A(LO)(ω) A(mix)(ω)

[A(mix)(ω)]T A(2TO)(ω)

)
, (A11)

with the matrices

A(LO)(ω) = I − 2h̄
∑

q,a=1,2,3

α(a)
q (q ⊗ q), (A12)

A(2TO)(ω) = I − 2g2

h̄V

∑
q,a=1,2

λ(a)
q

(
e(a)

q ⊗ e(a)
q

)
, (A13)

A(mix)(ω) = − 2g2

h̄
√

V

∑
q,a=1,2

γ (a)
q

(
q ⊗ e(a)

q

)
, (A14)

and weight functions

α(a)
q (ω) = �(a)

q

(
f (a)
q

)2

ω2 − (
�

(a)
q

)2 , λ(a)
q (ω) = κ

2
q�

(a)
q

ω2 − (
�

(a)
q

)2 ,

γ (a)
q (ω) = κq�

(a)
q f (a)

q

ω2 − (
�

(a)
q

)2 . (A15)

The eigenvalues of the phonon energy are determined by the
equation

det A(ω) = 0. (A16)

A mixing of the Fröhlich and 2TO interactions is provided
by nondiagonal blocks of the matrix (A11). For P = 0, they
are exactly equal to zero due to symmetry. Therefore, for
the ground-state energy the Fröhlich and 2TO contributions
are completely decoupled within the approach of squeezed
phonon states. For a nonzero momentum, this mixing is not
equal to zero. However, it can be significant only when the
LO and TO phonon frequencies are in resonance. For soft TO
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phonon modes in strongly polar crystals like SrTiO3, this is
not the case, and hence the aforesaid LO-TO phonon mixing
is expected to be of a relatively small importance. When the
nondiagonal blocks of A(ω) are neglected, it is reduced to
a quasidiagonal form of two blocks describing, respectively,
Fröhlich and 2TO contributions. Without loss of generality,
we can choose axes in coordinate and momentum spaces such
that P ‖ Oz, so that Pz = P, Px = Py = 0. In this basis, the first
block is

A(LO)(ω) =

⎛
⎜⎝

Axx 0 0

0 Ayy 0

0 0 Azz

⎞
⎟⎠

with the matrix elements

Aj j = 1 − 2h̄
∑

q,a=1,2,3

α(a)
q k2

j . (A17)

Also the second block results in the diagonal matrix,

A(2TO)(ω) =

⎛
⎜⎝

Bxx 0 0

0 Byy 0

0 0 Bzz

⎞
⎟⎠, (A18)

with the matrix elements

Bj j = 1 − g2

h̄V

∑
q,a=1,2

λ(a)
q

(
1 − k2

j

k2

)
. (A19)

As the Fröhlich polaron self-energy within the approach of
squeezed phonon states is already thoroughly studied in the
literature [6,25,28–30], we focus on the contribution for the
polaron self-energy for a 2TO interaction. The determinant of
the matrix A(2TO)(ω) is

det A(2TO)(ω) =
∏

j=x,y,z

⎡
⎣1 − g2

h̄V

∑
q,a=1,2

λ(a)
q

(
1 − k2

j

k2

)⎤
⎦.

(A20)
The change in the self-energy resulting from the Bogoliubov-
Tyablikov diagonalization is established in the following
manner, following the logical framework outlined in Ref. [31].
The eigenfrequencies are solutions to the equation

det M(ω) = 0. (A21)

The matrix M(ω) is diagonalized using the Bogoliubov-
Tyablikov transformation described above. The transforma-
tion (A1) is unitary and can be written as UBTF (b†, b)U−1

BT
for any function of phonon operators F (b†, b). Hence, the
diagonalized matrix is

M̃(ω) = UBTM(ω)U−1
BT = ∥∥δa′,aδq′,q

[
ω2 − (

ν (a)
q

)2]∥∥,

(A22)
where ν (a)

q are eigenfrequencies. The determinant of the
matrix M(ω) is an invariant of unitary transformations:
det M̃(ω) = det M(ω). Hence

det M(ω) =
∏
a,q

[
ω2 − (

ν (a)
q

)2]
. (A23)

If the interaction terms in (A8) tend to zero, this determinant
turns to its limiting value

det M0(ω) =
∏
a,q

[
ω2 − (

�(a)
q

)2]
. (A24)

Let us introduce the ratio function of s ≡ ω2:

�(s) ≡
∏
a,q

s − (
ν (a)

q

)2

s − (
�

(a)
q

)2 = det M(ω)

det M0(ω)
. (A25)

Eigenfrequencies ν (a)
q are the solutions of Eq. (A9) and also

satisfy Eq. (A20):

det A(ω) = 0. (A26)

Consequently, det M(ω) ∝ det A(ω). Using (A24) and the
fact that det A(ω)|{ fk}=0,g2=0 = 1, we find that

det M(ω) = det M0(ω) det A(ω). (A27)

Consequently, we reproduce here the Wentzel result:

�
(
ω2

) = det A(ω). (A28)

The polaron self-energy �E is expressed through the function
�(s) using the identity [31]

∂

∂s
ln �(s) =

∑
a,q

(
1

s − ν
(a)2
q

− 1

s − �
(a)2
q

)
. (A29)

For any analytic function F (s) this can be expressed via the
Cauchy integral formula as∑

a,q

[
F

(
ν (a)2

q

) − F
(
�(a)2

q

)] = − 1

2π i

∮
C

ds
∂F (s)

∂s
ln �(s),

(A30)
where the contour C embraces all points s = ν (a)2

q and s =
�(a)2

q as shown in Fig. 1, and the path direction along the
contour is counterclockwise.

For the self-energy, F (s) = √
s. Because the contour C lies

in the area where Re s > 0,
√

s is an analytic single-valued
function in that region. Hence

�E = − h̄

8π i

∮
C

ds
1√
s

ln �(s), (A31)

where the factor �(s) is related to the matrix A as

�(ω2) = det A(ω). (A32)

The particular 2TO contribution to the polaron energy is then

�E (2TO) = − h̄

8π i

∮
C

ds
1√
s

ln �(2TO)(s), (A33)

�(2TO)(s) =
∏

j=x,y,z

⎡
⎣1 − g2

h̄V

∑
q,a=1,2

κ
2
q�

(a)
q

s − (
�

(a)
q

)2

(
1 − k2

j

k2

)⎤
⎦.

(A34)

This is Eq. (18) from the main text.

APPENDIX B: DIAGRAMMATIC MONTE CARLO
FOR THE 2TO INTERACTION

The DiagMC method employed to obtain the polaron en-
ergies for the 2TO interaction in Fig. 3(b) is largely based on
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the section Momentum space representation in Ref. [15] and
further described in its Supplemental Material.

Consider the Hamiltonian in Eq. (1). Assuming a symmet-
ric choice for the polarization vectors such that e(1)

q = e(1)
−q and

e(2)
q = e(2)

−q, H2TO can be expressed in the form

H2TO =
∑

k,q,q′,a,a′
V (a,a′ )

q,q′ a†
k+q+q′ak

(
b(a)†

−q + b(a)
q

)(
b(a′ )†

−q′ + b(a′ )
q′

)
,

(B1)
which is the same as in Ref. [15, Supplemental Material,
Eq. (17)]. The constant vertex (g2�/4)/(2π )3 is replaced by

V (a,a′ )
q,q′ = 1

(2π )3

3π2αT

4

e(a)
q · e(a′ )

q′√
ω

(a)
TO(q) ω

(a′ )
TO (q′)

, (B2)

with the following choice of polarization vectors,

e(1)
q = eθ

q = (
cos(θ ) cos(φ), cos(θ ) sin(φ), − sin(θ )

)
,

(B3)

e(2)
q = eφ

q = (− sin(φ), cos(φ), 0
) · sgn [cos(θ )], (B4)

where

θ = arccos(qz/q), (B5)

φ = arctan(qy/qx ). (B6)

In order to impose a momentum cutoff, every time a
phonon momentum is to be extracted in the MC updates,
it is chosen uniformly inside a sphere in momentum space
with radius k0. Consequently, the acceptance ratio of the
Add/remove 2-loop and Add/remove 3-loop updates must
be modified to contain, respectively, U (q1, q2) = (4/3πk3

0 )−2

and U (q1, q2, q3) = (4/3πk3
0 )−3. The uniform choice of a

particular polarization for the inserted phonon yields a further
probability factor of 1/4 (2-loop) or 1/8 (3-loop) that must be
taken into account in the acceptance ratio.

The summation of the complete series of 1-loop diagrams
can be analytically calculated and corresponds precisely to the
first-order energy correction (21). As in Ref. [15], to alleviate
the sign problem in the positive coupling regime, these dia-
grams can be included into a renormalized electron propagator
with a dispersion shifted by (21).
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