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Strong local bosonic fluctuations: The key to understanding strongly correlated metals
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In this paper, we present a theoretical framework for understanding the extremely correlated Fermi liquid
(ECFL) phenomenon within the U = ∞ Hubbard model. Our approach involves deriving equations of motion
for the single-particle Green’s function G and its associated self-energy �, which involves the product of the
bosonic correlation function comprising both density (DN ) and spin (DS) correlations with G. By solving these
equations self-consistently, we explore the behavior of G, DN , and DS as functions of frequency, temperature,
and hole concentration. Our results reveal distinct coherent and incoherent Fermi liquid regimes characterized
by the presence or absence of quasiparticle excitations. Additionally, we analyze the intrinsic dc resistivity ρ(T ),
observing a crossover from T 2 to linear behavior with increasing temperature. Our findings delineate Fermi
liquid, quantum incoherent, and “classical” regimes in strongly correlated systems, emphasizing the importance
of quantum diffusive local charge and spin fluctuations.
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I. INTRODUCTION

Strongly correlated electronic systems are a fertile ground
for phenomena that are unusual, unexpected, and often
poorly understood, such as high-temperature superconductiv-
ity, metallic states without quasiparticles, and resistivity that
varies linearly with temperature over a wide range. Traditional
theories, e.g., those based on well-defined quasiparticles with
the concept of adiabatic continuity between the Drude or free
electron gas models and interacting many-electron systems,
have been successful in many contexts but fall short in pro-
viding qualitative explanations for these phenomena.

The Hubbard model, introduced by Hubbard [1] and re-
viewed in a 2022 analysis by Arovas et al. [2], adeptly
captures the nuances of local electronic interactions. In a
simplified scenario where each lattice site in a homogeneous
system hosts one orbital, the model is defined by an energy
ε at each site i, the intersite hopping amplitude ti j , and the
local correlation energy U . The last of these represents the
additional energy cost for accommodating two electrons with
opposite spins at the same site and is the critical parameter for
electron interaction effects. For small and intermediate values
of (U/t ), where t is the nearest-neighbor hopping amplitude,
there exists a continuum of (U/t) values with the solvable
Drude limit of the free electron gas at (U/t ) = 0, allowing
for well-defined quasiparticles. However, as U increases, the
system crosses over through a Mott metal-insulator phase
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change for commensurate electron densities, a phenomenon
not accounted for in the quasiparticle framework, heralding
the onset of a strongly correlated regime that has been the
focus of intensive research for over 50 years. This discussion
centers on the paradigmatic limit of strong correlation, specif-
ically U/t = ∞, known as the extremely correlated Fermi
liquid (ECFL) phase as proposed by Shastry, to derive re-
sults that resonate broadly with the characteristics of strongly
correlated systems. At both U = 0 and U = ∞ limits (rep-
resenting the free gas and ECFL, respectively), the carrier
density, indicated here by the hole density δ is the sole mate-
rial parameter. For large but finite (U/t ), the small parameter
relative to this limit becomes (t/U ), leading to the emergence
of symmetry-broken states such as antiferromagnetism and
superconductivity.

In the case of cuprates, for instance, both electronic struc-
ture calculations and experimental findings suggest U ≈ 4 eV
and t ≈ 0.4 eV [3], rendering (U/t ) ≈ 10 � 1 and thereby
positioning the U/t → ∞ limit as a natural analytical start-
ing point. The literature on the strong correlation problem
is extensive; however, a few directions stand out. For in-
finitely strong correlation, states with local double occupation
are excluded via a site-local Gutzwiller projection operator,
resulting in “projected” noncanonical fermions. Among the
numerous studies on this approach, notable are a 2009 review
by Gebhard and Gutzwiller [4] and a 2007 review on a strong
correlation (RVB) theory of superconductivity employing the
Gutzwiller projection extensively [5]. Another strategy em-
ploys a faithful representation of local states via Hubbard X
operators [6], a method extensively elucidated by Ovchin-
nikov and Val’kov [7]. This representation, where Fermi-like
and Bose-like X fields (lattice fields) deviate from canonical
Fermi or Bose fields, has been widely adopted. Within this
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framework, Shastry and colleagues developed a substantial
body of work using the Schwinger source method, notably
in the U = ∞ limit. This well-known approach is described
in the condensed matter context, for example, by Baym and
Kadanoff [8], and by Tremblay [9], with the foundational
paper by Shastry serving as a reference [10], as well as [11,12]
and a recent publication [13]. Furthermore, many auxiliary
field theories have been developed to describe the corre-
lated Fermi system with finite U using canonical fermionic
and bosonic fields subject to local constraints. These the-
ories imply that the involved basic quantum fields are not
canonical Fermi or Bose fields, but have additional local
constraints which are generally applied globally [14]. The
exploration of metals with (U/t ) � 1, namely, the strongly
correlated Hubbard model metal, spans more than half
a century.

Against this backdrop, we develop a simple, approxi-
mate, self-consistent theory for the (U/t ) = ∞ system or the
ECFL, employing the equation of motion approach for G, the
single-particle Green’s function. The Dysonian self-energy
� incorporates local charge and spin fluctuation correlators
(DN and DS , respectively). The equation of motion for these
correlators leads to an equation involving the current-current
correlator, which in turn involves only a product of two G’s
for large d . By numerically solving the resulting coupled
equations, we identify and self-consistently determine G and
thereby other physical quantities.

We uncover two generic features of strongly correlated
systems. One is that there is a coherent nonpeturbative Fermi
liquid regime of quantum origin at very low temperatures
characterized by Im�(ω, T ) going as (ω2 + π2T 2), mandated
by exact spectral properties and our approximtion for �. This
crosses over at rather low temperatures TFL (≈0.002t) to an in-
coherent Fermi liquid (well below the “classical” temperature
Tcl defined by Tcl = �̄, where �̄ is the average frequency of
quantum diffusive local bosonic charge fluctuations. This is a
feature arising from self-generated, local charge fluctuations
inevitable to strong correlations; their coupling to electron
dynamics (e.g., via �) is the cause of incoherence. Second,
in this incoherent Fermi liquid the resistivity is linear in T in
the large intermediate temperature regime TFL < T < Tcl. At
“high” temperatures, namely, for T > �̄ = Tcl, the resistivity
is linear in T , as expected if it arises from scattering by
bosonic fluctuations at temperatures above their characteristic
frequency �̄. The two slopes are different, as also seems to be
the case in earlier work.

This paper is organized as follows. Section II discusses
the developed approximate theory. Subsequent sections detail
the results from the self-consistent solution of the coupled
equations for G and D, focusing on the same-site bosonic
correlation functions (charge, spin, and current) (Sec. III), �,
and dc resistivity (Sec. IV). The concluding Sec. V outlines
some limitations and future research directions. Appendixes
A to D provide in-depth information on several results refer-
enced in the text, including a description of the X operators
(Appendix A), the charge and spin correlation function and
their equations of motion (Appendix B), the current-current
correlation for charge and spin (Appendix C), and an analyt-
ical demonstration of coherent Fermi liquid-like behavior at
low temperatures (Appendix D).

Our approach to the (U/t ) = ∞ limit, within a simplified
materials-oriented model, identifies the universal origins of
two prominent characteristics of strongly correlated systems:
the evolution from coherent to incoherent Fermi liquid states
with temperature and linear temperature-dependent resistivity.
These phenomena stem from diffusive fluctuations of local
electron number (charge) and spin, with the inevitable cou-
pling to constituent Fermi-like excitations shaping electron
dynamics. At high temperatures, this interaction manifests
as thermal classical electrical noise (white, Johnson-Nyquist
noise) at each lattice site, exhibiting a universal amplitude
proportional to T . This perspective diverges from models that
seek to derive observed physical properties (e.g., the strange
metal behavior) from a theory of canonical fermions coupled
to quantum critical (canonical) Bose fields which avoids the
assumption of such fields or their quantum criticality; this
typically confines the analysis to a specific point in parameter
space.

II. THEORY

To provide a clear understanding of the assumptions and
methodologies employed in our work, it is crucial to outline
the various approximations used before delving into the theo-
retical framework. This helps setting the context and ensures
that the subsequent derivations and results are interpreted cor-
rectly. We use the d = ∞ approximation for the self-energy
�, and then we use the noncrossing approximation (NCA)
and the self-consistent Born approximation (SCBA) to decou-
ple the self-energy into Fermi and Bose Green’s functions.
We also use the d = ∞ approximation in the current-current
correlation function, which appears in the expression of Bose
Green’s function, to drop the vertex function.

Our procedure starts with the calculation of the retarded
Green’s function (GF) for the fermionic X operator, achieved
by formulating its equation of motion through differentia-
tion with respect to time variables t and t ′. This formulation
yields an expression that includes a thermal average of four
X fields, consisting of both Bose-like and Fermi-like pairs.
As d becomes large, the expression simplifies, retaining only
Bose-like and Fermi-like fields at the same site, intercon-
nected through electron hopping. Approximating in a manner
similar to the noncrossing approximation (NCA), we reduce
this average to products of local bosonic (DN and DS) and
fermionic correlation functions, subsequently linked to the
Dysonian self-energy � of the initial GF. We then derive
equations of motion for the bosonic electron number and
spin correlation functions, connecting their time derivatives
to current-current correlation functions, which act as a sort
of “self-energy.” In the limit of large d , this “self-energy” is
depicted as the product of two fermionic GFs, culminating
in a set of self-consistently solved coupled equations for G
and D. This methodology facilitates the direct determination
of electronic properties such as charge and spin correlation
functions, alongside dc and ac electrical resistivities, via G in
the high-dimensional limit.

The Hubbard Hamiltonian for the U = ∞ scenario,
adopting the precise X operator representation for physical
quantities as detailed in Appendix A [assuming energy lev-
els εσ

1 for a single-particle state with spin σ and ε0 for the
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zero-particle state are equal (zero), with the system’s chemical potential denoted as μ] is

H = −μ
∑
i,σ

X σσ
i +

∑
i j

ti jX
σ0
i X 0σ

j , (2.1)

where X σσ
i symbolizes the number operator, ti j indicates the element of the electron jumping matrix between the sites i and j,

and X σ0
i serves as a creation operator, introducing an electron with spin σ at the site i initially free of electrons. The focus is on

the double-time, retarded Green’s function for the fermionic X -operator, defined as

GRσσ ′
i j (t, t ′) = −iθ (t − t ′)

〈[
X 0σ

i (t ), X σ ′0
j (t ′)

]
+
〉 ≡ 〈〈

X 0σ
i (t )

∣∣X σ ′0
j (t ′)

〉〉
, (2.2)

where [ , ]+ denotes the anticommutator and 〈. . .〉 represents the expectation value in the grand canonical ensemble. The second
notation on the right-hand side offers a more concise description of the first term.

To derive GRσσ ′
i j (t, t ′), we utilize the equation of motion method.1 The equation of motion for the Green’s function defined in

Eq. (2.2) is

i∂t G
Rσσ
i j (t, t ′) = Qδi jδ(t − t ′) − μGRσσ

i j (t, t ′) + Q
∑

l

til G
Rσσ
l j (t, t ′) + (ir)

Rσσ

G
i j

(t, t ′), (2.3)

where Q = 〈Bσσ
i 〉 = Bσσ

i and (ir)GRσσ
i j (t, t ′) is a higher-order irreducible Green’s function [originating from fluctuations in the

Bosonic operator Bσσ ′
i (t )] and is detailed as

(ir)GRσσ
i j (t, t ′) = 〈〈[

X 0σ
i , H

](ir)∣∣X σ0
j

〉〉
ω

=
〈〈[

X 0σ
i , H

] −
∑

ik

zikX 0σ
0

∣∣X σ0
j

〉〉
ω

. (2.4)

The unknown constant z is defined by the condition (or constraint)〈[
X 0σ

i , H
] −

∑
ik

zikX 0σ
0

∣∣X σ0
j

〉
=

∑
lσ ′′

til
〈[
δBσσ ′′

i (t )X 0σ ′′
l (t ), X σ0

j (t )
]
+
〉 = 0. (2.5)

This condition can be thought of in the Mori- Zwanzig memory function language (see, e.g., Ref. [15] and the book by Forster
[16]) as related to the “noise” implied in their Liouvillean operator projection scheme. As elucidated in the Appendix A, Bσσ ′

i =
δσσ ′X 00

i + X σ ′σ
i . This represents a local charge operator for σ = σ ′ and a local spin flip for σ 
= σ ′. The irreducible Green’s

function in terms of the fluctuation operator δB takes the following form:

(ir)Gi j (ω) =
∑
lσ ′′

til
〈〈
δBσσ ′′

i (t )X 0σ ′′
l (t )

∣∣X σ0
j (t ′)

〉〉
ω

, where δBσσ ′
i (t ) = Bσσ ′

i (t ) − 〈
Bσσ ′

i (t )
〉
. (2.6)

The equation of motion, Eq. (2.3), when expressed in frequency space (under equilibrium conditions), transforms to

GR
i j (ω) = GR,MF

i j (ω) +
∑

l

GR,MF
il (ω)

1

Q
(ir)GR

l j (ω), (2.7)

where the mean-field Green’s function GR,MF
i j is outlined as

GR,MF
i j =

∑
eik·(Ri−Rj )GR,MF

k (ω) and GR,MF
k (ω) = Q

(ω + μ − Qεk + i0+)
, (2.8)

Here, ε(�k) = −2t
∑d

i=1 coski, where d is the dimension of the lattice, and ki are the components of the wave vector k.

The fluctuation component (ir)GRσσ

i j (ω), obtained through the Fourier transform (FT) of (ir)GRσσ

i j (t − t ′) as defined in Eq. (2.6),
is determined via its equation of motion concerning t ′. In frequency space, the resultant expression is as follows:

(ω + μ)(ir)GRσσ

i j =
∑
lσ ′′

til
〈[
δBσσ ′′

i X 0σ ′′
l , X σ0

j

]
+
〉 + Q

∑
l

til
(ir)GRσσ

l j (ω) +
∑

ll ′σ ′′σ ′′′
tl ′ jtil

〈〈
δBσσ ′′

i (t )X 0σ ′′
l (t )

∣∣δB j
σσ ′′′

(t ′)X σ ′′′0
l ′ (t ′)

〉〉
ω
.

(2.9)

The first term on the right in the above equation vanishes by design Eq. (2.5), as described in the projection operator formalism
of Plakida [17]. After applying a spatial Fourier transform to Eq. (2.9) we obtain

(ir)GR
k (ω) = Tk (ω)

1

Q
GR,MF

k (ω). (2.10)

1Henceforth, we focus on the spin diagonal case σ = σ ′, as only this configuration is nonzero for paramagnetic spin isotropic systems with
spin quantization along the z axis; additionally, G is independent of σ .
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In this equation, the superscripts σσ are omitted, and T is irreducible and identified as a scattering matrix defined by

T σσ
k (ω) =

( ∑
ll ′σ ′′σ ′′′

tl ′ jtil
〈〈
δBσσ ′′

i (t )X 0σ ′′
l (t )

∣∣δB j
σσ ′′′

(t ′)X σ ′′′0
l ′ (t ′)

〉〉
ω

)
FT

. (2.11)

Implementing Eq. (2.10) in Eq. (2.7) results in an equation for G as

G = GMF + GMFT̃ GMF , with the scattering matrix T̃ = T

Q2
. (2.12)

To define self-energy, one should separate the “proper” part in the following way:

T = � + � GMF T . (2.13)

where

�i j (ω) = [Ti j (ω)](p). (2.14)

Here, the proper part of the T matrix (T (p)) is the portion that cannot be decomposed into simpler parts using any form of
decoupling approximation. This equation, expressed in Dyson’s form, becomes

G = GMF + GMF�G. (2.15)

The self-energy is

�R,σσ
i j (ω) = 1

Q2

∑
ll ′σ ′′σ ′′′

tl ′ jtil
〈〈
δBi

σσ ′′
(t )X 0σ ′′

l (t )
∣∣δBj

†σσ ′′′
(t ′)X σ ′′′0

l ′ (t ′)
〉〉(p)

ω
(2.16)

= 1

Q2

∑
ll ′σ ′′σ ′′′

tl ′ jtil
〈〈

Bσσ ′′
i (t )X 0σ ′′

l (t )
∣∣Bj

†σσ ′′′
(t ′)X σ ′′′0

l ′ (t ′)
〉〉

ω
. (2.17)

The self-energy term above, under a Bose-Fermi or DG decoupling is the same as the self-consistent Born approximation
(SCBA) discussed by Plakida (see, e.g., Refs. [17,18]) or the noncrossing approximation (NCA). This form closely resembles
Hubbard’s description [19] of the leading “scattering correction” term or self-energy, extending beyond the mean-field term
presented in Eq. (2.8).

In the large approximation d , self-energy becomes site local (i = j), predominantly influenced by the nearest neighbor l = l ′

to site i. With the only nonzero hopping term being til = t/
√

d (where t = 1), the sum of l introduces a factor of d . To calculate
the self-energy, a decoupling approximation is applied as follows:

�R,σσ
ii (ω) = 1

Q2

[
−iθ (t − t ′)

(∑
σ ′′

〈
Bσσ ′′

i (t )Bi
†σσ ′′

(t ′)
〉〈

X 0σ ′′
i (t )X σ ′′0

i (t ′)
〉 + 〈

Bi
†σσ ′′

(t ′)Bσσ ′′
i (t )

〉〈
X σ ′′0

i (t ′)X 0σ ′′
i (t )

〉)]
ω

. (2.18)

The approximation error in this decoupling is also of relative order (1/d ).
Using the spectral representation for the correlation functions specified above and connecting them to the spectral represen-

tation of the retarded Green’s functions, the local self-energy �R(ω) is formulated as

�R(ω) = − 1

Q2

∫ ∞

−∞
dε1dε2 ρG(ε1)ρD(ε2)

(
tanh

(
βε1

2

) + coth
(

βε2

2

)
ω+ − ε1 − ε2

)
, (2.19)

where ρG(ε1) = − 1

π
ImGR(ε1), ρD(ε2) = − 1

π
ImDR(ε2), (2.20)

and DR(t, t ′) =
∑
σ ′′

〈〈Bσσ ′′
(t )|B†σσ ′′

(t ′)〉〉 = −iθ (t − t ′)
∑
σ ′′

〈[Bσσ ′′
(t ), B†σσ ′′

(t ′)]−〉. (2.21)

DR, when expressed in terms of the number N and spin Sz operators, is outlined as (refer to Appendix B for details)

DR(t, t ′) = 1
4 {−iθ (t − t ′)〈[N (t ), N (t ′)]−〉} + 3

4 {−iθ (t − t ′)〈[S+(t ), S−(t ′)]−〉}. (2.22)

Given that computing DR
N/S (ω) through an equation of motion approach is impractical due to the commuting nature of operators,

resulting in the disappearance of equal time inhomogeneous terms [20] multiplying the delta function δ(t − t ′), alternative
strategies are necessary.

We adopt a specific approach to compute these functions. The expression for DR
N and DR

S , which involves the commutator
can be expanded in individual terms of the commutators, which we denote by D+ and D− below, which involve the product of
respective operators and then we set up the equation of motion for D+ and D−. The expressions for DR

N (t − t ′) = 〈〈N (t )|N (t ′)〉〉
and DR

S (t − t ′) = 〈〈S+(t )|S−(t ′)〉〉 are defined as

DR
N (t − t ′) = D+

N (t − t ′) + D−
N (t − t ′) = −iθ (t − t ′)〈N (t )N (t ′)〉 − iθ (t − t ′)〈N (t ′)N (t )〉, (2.23)
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and DR
S (t − t ′) = D+

S (t − t ′) + D−
S (t − t ′) = −iθ (t − t ′)〈S+(t )S−(t ′)〉 − iθ (t − t ′)〈S−(t ′)S+(t )〉. (2.24)

In the context of spectral functions, the formulation is as follows:

Dα
γ (ω) =

∫ ∞

−∞
dω′ ρα

Dγ
(ω′)

ω − ω′ + i0+ , (2.25)

where the indices α can take values of + or −, and γ represents either N or S. The spectral functions, denoted as ρα
Dγ

=
−Im(Dα

γ )/π , adhere to the following relationships:

DR
γ (ω) =

∑
α

Dα
γ (ω), ρDN/S

(ω) =
∑

α

ρα
DN/S

(ω), (2.26)

ρDN/S
(ω) = −ρDN/S

(−ω), ρ−
DN/S

(ω) = −e−βωρ+
DN/S

(ω), (2.27)

where ρα
DN

(ω) satisfies the following sum rule: ∫ ∞

−∞
dωρα

DN
(ω) = αn. (2.28)

Following this, an equation-of-motion method for Dα
γ (ω) is established, paralleling the approach above for GR(ω) (this is

detailed in Appendix B).
This yields the expressions for Dα

N/S (ω) as

[
Dα

N (ω)
]−1 = α

1

n

(
ω − α

χα
N (ω)

n

)
,

[
Dα

S (ω)
]−1 = α

2

n

(
ω − α

χα
S (ω)

n
2

)
, (2.29)

where χα
N/S (ω) is the Fourier transform of the following:

χ+
S (t ) = −iθ (t )〈Js(t )Js(0)〉, χ+

N (t ) = −iθ (t )〈Jc(t )Jc(0)〉, (2.30)

χ−
S (t ) = −iθ (t )〈Js(0)Js(t )〉, χ−

N (t ) = −iθ (t )〈Jc(0)Jc(t )〉. (2.31)

Here, Js and Jc are defined as the spin and charge currents, respectively,

Js = 1

N

∑
k

vkX 0σ
k X σ̄0

k , Jc = 1

N

∑
k,σ

vkX 0σ
k X σ0

k , (2.32)

where vk = ∂kεk , with εk being the energy dispersion on the lattice.
The spectral representation for χα

γ is given by

χα
γ

(ω) =
∫ ∞

−∞
dω′

{
1+α

2 + nB(ω′)
}
ργ (ω′)

ω − ω′ + i0+ , (2.33)

where ργ (ω′) = − 1

π
ImχR

γ (ω′) and nB(ω′) = 1

eβω′ − 1
, (2.34)

where χR(ω) for both spin and charge sectors is derived from the particle-hole bubble diagram, ignoring vertex corrections, as
detailed in Ref. [21]. The relationship χR

N (ω) = 2χR(ω) and χR
S (ω) = χR(ω) is outlined in Appendix C, with the current-current

correlation in infinite dimensions (d = ∞) described as follows:

χR(ω) = 1

N

∑
k

∫∫
dω1dω2

ρG(k, ω1)ρG(k, ω2)v2
k

ω + ω1 − ω2 + iη
[nF (ω1) − nF (ω2)], (2.35)

where ρG(k, ω) = − 1
π

ImGR(k, ω) and nF (ω) denotes the Fermi function. The calculation of the imaginary part of χR(ω) utilizes
the convolution/correlation theorem, with the real part derived from the Kramers-Kronig relation. The adaptation for a Bethe
lattice modifies the expression to involve the transport density of states �(ε) [21], leading to a refined calculation of ImχR(ω)
as detailed in the equations

ImχR(ω) = −π

∫∫
dε dω1 �(ε)ρG(ε, ω1)ρG(ε, ω + ω1){nF (ω1) − nF (ω + ω1)},

�(ε) = 1

N

∑
k

v2
k δ(ε − εk ) = �0(4 − ε2)3/2. (2.36)
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FIG. 1. Self-consistency loop. This is a schematic illustration of
the numerical scheme in which the input GR(ω) and the output GR(ω)
should match for self-consistency.

The process of determining �R, GR, χR, DR, Dα , and χα

involves a self-consistent scheme, which can be summarized
as follows.

(1) Initialization:
Begin with an arbitrary selection of GR. Using a specific

equation [referred to as Eq. (2.36)], compute χR based on the
initial GR.

(2) Computation of χα and Dα:
From χR, calculate χα using another equation [Eq. (2.33)].

This, in turn, allows for the determination of Dα through
Eq. (2.29).

(3) Self-Energy Calculation (�R):
The self-energy, �R, is calculated using both DR

γ [from
Eq. (2.26)] and the initial or previously computed GR [via
Eq. (2.19)].

(4) Update of GR:
With the newly computed �R, update the full Green’s

function, GR, using Eq. (2.15). This updated GR is then used
as the starting point for the next iteration of the process.

The cycle repeats, starting from step (1) with the newly
obtained GR, and continues until �R converges within
a specified tolerance. This iterative procedure, known as
the self-consistency loop, ensures that the calculations for
�R, GR, χR, DR, Dα , and χα are mutually consistent and con-
verge to a stable solution. The entire self-consistency loop is
illustrated in a figure referred to here as Fig. 1. Throughout
this iterative process, adherence to the sum rule, expressed in
Eq. (2.28), is maintained.

To provide a clear and comprehensive understanding of
the theoretical framework, we summarize all the equations in-
volved in self-consistency in one place. This allows one to see
all the equations at a glance.

Summary of equations used in Self Consistency

G = GMF + GMF�G, GMF(ω) = Q

ω − Qεk + i0+

χR(ω) = 1

N

∑
k

∫∫
dω1dω2

ρG(k, ω1)ρG(k, ω2)v2
k

ω + ω1 − ω2 + iη
[nF (ω1) − nF (ω2)]

χR
N (ω) = 2χR(ω) and χR

S (ω) = χR(ω)

χα
γ

(ω) =
∫ ∞

−∞
dω′

{
1+α

2 + nB(ω′)
}
ργ (ω′)

ω − ω′ + i0+

[
Dα

N (ω)
]−1 = α

1

n

(
ω − α

χα
N (ω)

n

)
,

[
Dα

S (ω)
]−1 = α

2

n

(
ω − α

χα
S (ω)

n
2

)

DR
γ (ω) =

∑
α

Dα
γ (ω),ρDN/S

(ω) =
∑

α

ρα
DN/S

(ω)

ρDN/S
(ω) = −ρDN/S

(−ω),ρ−
DN/S

(ω) = −e−βωρ+
DN/S

(ω),

�R(ω) = − 1

Q2

∫ ∞

−∞
dε1dε2ρG(ε1)ρD(ε2)

(
tanh

(
βε1

2

) + coth
(

βε2

2

)
ω+ − ε1 − ε2

)

where ρG(ε1) = − 1

π
ImGR(ε1), ρD(ε2) = − 1

π
ImDR(ε2).
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(a) (b)

FIG. 2. (a) The evolution of ρDN (ω) for positive frequency as a function of temperature for doping δ = 0.3. (b) The normalized charge

spectral function
ρDN (ω)

ωκ
at a fixed temperatures and its fit with Lorentzian; the inset shows the Lorentzian width, �(T ) versus T at δ = 0.3.

III. LOCAL CHARGE, SPIN AND CURRENT
CORRELATION FUNCTIONS

In this section, we discuss the bosonic correlation functions
mentioned above; these determine the electron dynamics of
the infinitely strongly correlated metal, and as discussed in
Sec. II, they are all related to each other. In the large d
limit, charge and spin correlation functions are identical to
within numerical factors having to do with the spin (1/2)
of the electron. We therefore discuss here only the charge
correlation function. We also discuss here the charge current
current correlation function which is the “self-energy” of the
charge correlation function, as seen from Eq. (2.29). The real
frequency spectral density ρDN (ω) of the charge correlation
function is shown in Fig. 2(a) as a function of positive fre-
quency ω for different temperatures T and at doping δ = 0.3.
This has the general properties of being real, positive for
positive ω, and antisymmetric with respect to its sign change.
The local charge fluctuation is a massless damped excitation,
as is evident from the general shape of ρDN (ω) (there is no
sharp peak corresponding to a mass term or a restoring force;
on the other hand, its spectral density has a smooth structure
with a generally broad asymmetric peak and a long tail).
The charge at each site diffuses quantum mechanically in
a time and temperature dependent manner; there is no net
restoring force. Since, in the electron phonon system, the best-
known model of a bosonic system coupled to electrons, the
quantum scale is set by the Debye frequency ωD determined
by the nonzero restoring force it is likely that there is no such
scale here, and that the occurrence of a small Fermi-liquid-like
regime (Sec. IV) is due to a different reason.

The very existence of such a distinct bosonic fluctuation
coupled to electron dynamics is a strong correlation effect
since it is defined in relation to projected fermion or X
operator degrees of freedom whose specific properties are
determined by strong correlation. Roughly, the diffusion spec-
trum Fig. 2(b) consists of a rising part at low frequencies, a
peak, and a long tail. The low frequency rise is less steep as
temperature increases, as is the fall. Overall, the spectrum can

be fitted roughly by a Lorentzian like form going as �/[ω2 +
�2] with � being the damping constant, as shown in Fig. 2(b).
The actual spectrum decays more rapidly at higher frequen-
cies than this form so that its normalized area is unity, and
its first moment is finite. The simplified form is useful since
it focuses attention on the quantity � [see inset of Fig. 2(a)],
which is the damping rate of fluctuations. It is small at low
temperatures, being roughly proportional to T but larger than
it and one has well-defined quasiparticles (a Fermi liquid).
We discuss below the implied quantum and classical regimes
in local density fluctuations. We now infer two consequences
of the actual ρDN (ω) shown in Fig. 2(a), one from the low
frequency or quantum end, and another from using its overall
spread or first moment which weights strongly the higher
frequency or classical regime. At low frequencies ρDN (ω)
(ideally above ω = 0, but in reality above a low nonzero value
ωl = 0.002t  8K for the large t = 0.4 eV) is seen to be lin-
ear in ω (it is a smooth function and is antisymmetric in ω so
that the leading term near ω = 0 has to be linear). As observed
from the inset in Fig. 2(a) for extremely low temperatures, the
slope of spectral density [A(T )] (not shown in the figure) very
close to ω = 0 is almost T independent and this gives rise to
canonical Fermi Liquid form of Im�(ω, T )(we show that this
is true analytically in Appendix D).

The typical energy scale of ρDN (ω) is the average energy
of the local density fluctuations or the first moment

�(T ) =
∫ ωu

ωl

ω

(
ρDN (ω)

ωκ

)
dω,

where κ =
∫ ∞

−∞

(
ρDN (ω)

ω

)
dω . (3.1)

In the above equation, κ is the thermodynamic compress-
ibility, and the upper frequency limit ωu of the integral is very
large but finite; we use ωu = 30t .

We show �(T ) as a function of T in Fig. 3(a). It is small at
low temperatures, roughly proportional to T but larger than
it and one has well-defined quasiparticles (a Fermi liquid).
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(a) (b)

FIG. 3. (a) The average frequency, denoted as ¯�(T ), varies with temperature for a doping level of δ = 0.3. In the temperature range
0 < T < 0.005, represented by a shallow red area, the system exhibits Fermi liquid (FL) behavior. For temperatures in the range of 0.005 <

T < Tcl (= 0.135), the system is within the incoherent quantum region, crossing over to the classical regime (CR) when T > Tcl. An inset
illustrates the relationship between Tcl and doping δ, with a dashed line indicating Y = T . (b) shows the charge compressibility κ as a function
of temperature T for different doping levels.

As temperature increases, it increases sublinearly with T and
essentially flattens out at high temperatures. The case when
�(T ) is lower than the temperature T defines the classical
limit for fluctuations. We observe that for T > 0.13 for doping
δ = 0.3, we enter into the classical regime. Below T < 0.13
we are in a quantum regime and we have a coherent Fermi
liquid phase at extremely low temperatures followed by a
linear in T resistivity regime (which also lies in the quantum
regime) which is denoted by the incoherent quantum regime
(IQR).

The quantities �(T ), A(T ) (not shown in the figure), and
�(T ) defined above, are different calculated characteristics of
the local charge correlation function describing its diffusion
and “stay at home” probability in frequency space. In strongly
correlated lattice systems, at “high” temperatures, quantum
mechanical intersite hopping ti j can be neglected, and the sys-
tem is a statistical superposition of energetically degenerate
states with one or no charge at a lattice site. This regime is ac-
cessed by experiments on thermopower of strongly correlated
metals (see, e.g., Ref. [22]) and references in Ref. [23]). The
thermopower, which measures the entropy of charge carriers,
is seen to saturate at values consistent with a Heikes-like
estimate of the entropy of this classical metal; experimentally,
the “classical” regime begins at surprisingly low temperatures.

The frequency and momentum dependence of charge fluc-
tuations has been recently explored experimentally using
momentum-resolved EELS (see, e.g., Ref. [24]) and RIXS
(see, e.g., Ref. [25]). They do find essentially nondispersive
density fluctuations; namely, they are spatially local, as ob-
tained here. In subsequent work, we will present detailed
predictions of this spectrum in our theory. The imaginary part
of current-current correlation function, Imχ+

N (ω), and the real
part of the optical conductivity, σ (ω) are defined as

σ (ω)

πσ0
= (1 − e−βω )

ω
Imχ+

N (ω). (3.2)

In this expression, σ0 can be taken to be of order σ0 =
a2−d e2

h̄ , with the lattice spacing a (corresponding in a quasi-
two-dimensional system to a sheet resistance of one quantum
per plaquette). In Fig. 4, we present contour plots of imag-
inary part of current-current correlation function Imχ+

N (ω)
for various doping values. The spectra display the following
features: (i) For T < ω, Imχ+

N (ω) varies with ω up to a certain
ω and is constant afterwards. (ii) For small ω and T > ω,
Imχ+

N (ω) is a constant in temperature. This region of constant
Imχ+

N (ω) reduces as doping is reduced. (iii) For high T and
small ω, we see another region of constant Imχ+

N (ω). We

(a) (b)

(c) (d)

FIG. 4. Contour plots of imaginary part of current-current cor-
relation function Imχ+

N (ω, T ) for doping values of δ = 0.3, 0.2,

0.15, 0.1.
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(a) (b)

(c) (d)

FIG. 5. (a) −Im�(ω) at T = 0.005 for various doping levels. The left inset shows Re�(ω), linear in ω for ω− < ω < ω+. The right inset
is −Im�(ω) near ω = 0 showing ω2 behavior. (b) −Im�(ωc, T ) versus T at δ = 0.2 for ωc = −0.5, −0.4, . . . , −0.1 (green), ωc = 0.0 (thick
black), and ωc = 0.1, 0.2, . . . , 0.5 (red). (c) Spectral function at doping δ = 0.2 at various temperatures. (d) Variation of quasiparticle weight
with doping at T = 0.002.

conclude that resistivity when Imχ+
N (ω) is independent of

temperature is linear in T . As mentioned above, the region
of linear T is large for large doping and starts reducing upon
decreasing doping. Our approach finds two regimes of lin-
earity in resistivity, with different slopes, one at intermediate
and another at high temperatures. It should also be noted
that the Planckian constant is the inverse of Imχ+

N (ω), and it
should be the same for all doping an from our results, it is not
exactly 1, but is close to it for higher doping but not for lower
doping.

IV. SELF-ENERGY AND DC RESISTIVITY

In this section, we discuss the electron self energy and the
intrinsic dc electrical resistivity of the infinitely correlated
metal, which is intimately linked with the electron self-
energy. For instance, the imaginary part of the self-energy,
Im�(ω, T ), provides insight into the lifetime and coherence
of quasiparticles, which are crucial for determining how elec-
trons propagate through a material, and so its resistivity.

We also note here (Sec. IV A) that analytically (see Ap-
pendix D) the imaginary part of the self-energy, Im�(ω, T ),
adheres for very low ω and T to the Fermi liquid description,
scaling as (ω2 + π2T 2). This is also seen from our self-
consistent result for Im�(0, T ). This insight sets the stage
for a deeper analysis of how single-particle properties change

with doping, for both positive and negative excitation ener-
gies (particle-like and hole-like) and at different temperatures.
Some of the results are exhibited in Figs. 5(a) to 5(d), and
insets therein. For example, we show that in the Fermi liquid
(very low temperature) regime the quasiparticle residue Z
(typically of order 0.1 to 0.2) increases roughly linearly with
increasing hole doping. We also plot the local single-particle
spectral density and see the quasiparticle like low excitation
energy peak in it disappearing as temperature increases and
the electron system becomes an incoherent liquid of Fermi-
like excitations.

We next discuss (Sec. IV B) dc resistivity using the well
known large d form for the result [21], which neglects vertex
corrections. At low temperatures, it is seen to have the classic
Fermi liquid form, going as T 2 (in correspondence with the
result above for the same region, namely, that Im�(ω, T )
goes as (ω2 + π2T 2). It transitions via a long crossover region
straddling both the incoherent quantum regime and the “clas-
sical” metal regime (Sec. III) into linear resistivity behavior.
We also see no signs of resistivity saturation; the resistivity
continues to rise linearly with the same slope, beyond the
Mott-Ioffe Regel (MIR) quantum limit.

We believe that the defining characteristics of the ex-
tremely strongly correlated metal, mentioned above, are due
to the influence of local bosonic charge and spin fluctua-
tions which are strongly coupled to electrons. They determine
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(a) (b)

FIG. 6. (a) Temperature dependence of resistivity for several doping levels δ in the unit of ρ0(= 1/σ0 ). The inset shows the low-temperature
resistivity versus T , revealing the T 2 behavior with the black line representing the parabolic fit. (b) Different temperature regimes: FL (yellow)
for T < TFL, incoherent quantum regime (IQR) for TFL < T < Tcl, and T > Tcl a classical regime (CR).

the electron self-energy (Sec. II) and have a sizable, nearly
constant, strength over a large frequency region at most tem-
peratures.

A. Scattering rate and local bosonic correlation functions

In Fig. 5(a), we begin by going into the details of
−Im�(ω), examining how it varies with frequency (ω)
across diverse doping levels at a notably low temperature of
T = 0.005. This analysis uncovers a fascinating transition
in behavior around ω = 0, where the pattern evolves from
square-like to linear. Such a transformation underscores the
pivotal role of local charge dynamics in modulating electron
scattering processes. Interestingly, when comparing the de-
gree of particle-hole asymmetry in our findings with those
obtained from dynamical mean-field theory (DMFT) and
Shastry’s work, ours exhibit a lesser asymmetry. Furthermore,
within the same graphical representation, we shift our focus to
the real component of the self-energy, Re�(ω). Here, we iden-
tify a linear section extending between two critical points, ω−
and ω+, with the latter’s value notably adjusting in response
to variation in doping levels.

Venturing into Fig. 5(b), our exploration extends to the
imaginary component of self-energy at a specific frequency,
evaluated as a function of temperature. This provides in-
sight into the behavior of the scattering rate under finite
frequencies. Notably, for hole-like excitations (where ω < 0),
the scattering rate consistently exceeds that of electron-like
excitations (where ω > 0). As temperature increases, the rela-
tionship between Im� and T for various positive frequencies
unveils a crossing threshold. Beyond it, the scattering rate
inversely correlates with frequency, implying that at higher
temperatures, low-energy, electron-like excitations with finite
positive ω values enjoy longer lifespans compared to those
precisely at ω = 0. While the overall trends are the same as
DMFT predictions, some of our findings differ; for example,
the �(ω, T ) crossing is at much larger values of ω and T .

In Fig. 5(c), the progression of the spectral function with
varying temperatures is presented, focusing specifically on

a doping level of δ = 0.2. This visualization allows us to
observe how temperature influences the spectral features, re-
vealing important insights into the decoherence effects on the
electronic structure at this particular level of doping. On the
other hand, Fig. 5(d) is dedicated to illustrating the behavior
of the quasiparticle residue across a range of doping levels at
a particular low temperature (T = 0.002) where the system
is a Fermi liquid. This aspect of the study sheds light on the
correlation between doping concentration and the quasiparti-
cle strength, elucidating how the electronic properties of the
system evolve with changes in doping.

B. DC resistivity and the influence of local bosonic
correlation functions

In Fig. 6(a), we exhibit the relationship between resis-
tivity (ρ) and temperature (T ) for various levels of doping.
At the lowest temperatures, the system demonstrates typical
Fermi-liquid behavior, characterized by a quadratic increase
in resistivity with temperature. This trend is clearly depicted
in the inset of Fig. 6(a), in which the low temperature re-
gion is shown, enlarged, illustrating the coherent interactions
among particles. These interactions are mediated by local
charge bosons (charge excitations), which play a critical role
in the coherent Fermi-liquid-like resistivity behavior of the
the system at low temperatures as well. As temperature in-
creases, crossing into the incoherent quantum regime (IQR),
we observe a linear rise in resistivity. This change signals a
crossover from coherent to incoherent or chaotic behavior,
despite the continued influence of local charge excitations on
the system’s dynamics.

Analyzing the resistivity outcomes more closely, we dis-
tinguish three separate temperature domains as outlined in
the data: 0 < T < TFL, where TFL signifies the temperature
boundary above which Fermi-liquid behavior is no longer
observed; TFL < T < TIQR, marking the range within the
IQR characterized by a linear increase in resistivity; and
T > Tcl, representing temperatures beyond which the system
exhibits incoherent behavior (see Sec. II). These domains are
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graphically represented as functions of doping in Fig. 6(b),
where the temperature thresholds TFL and Tcl are plotted
against doping levels. It’s observed that TFL changes linearly
with doping, indicating a direct correlation between doping
levels and the Fermi-liquid to non-Fermi-liquid crossover
temperature. In contrast, the variation of Tcl with doping does
not follow a simple linear pattern, underscoring the complex
interplay between doping and the material’s crossover to in-
coherent electronic states.

This extensive exploration into self-energy, electron scat-
tering, and resistivity, all through the lens of local charge
excitations, uncovers the complex dynamics in extremely
correlated electron systems. Its impact is seen to vary in a
characteristic way with temperature, frequency, and doping
on electron behavior, crossing over from coherent to inco-
herent or chaotic states, and presents a thorough framework
for comprehending the diverse phenomena observed in these
complex materials, centering around the role of local charge
excitations.

We do not compare our results in detail with the ubiquitous
linear resistivity observed over an astonishingly wide range
of temperatures, though our results cover the entire range and
are for continuous real frequencies (unlike much work in this
broad field, which is for discrete imaginary Matsubara fre-
quencies and uses analytical continuation therefrom). Some
reasons are the following. It is likely that the temperature scale
is strongly pushed down by infrared catastrophe effects (see,
e.g., Ref. [30], where the resultant low temperature results
to the observed strange metal regime are linked). Further,
in all strongly correlated systems, U � t (≈10t), but finite,
whereas our theory is for infinite (U/t ). We are in the process
of developing a perturbation theory in (1/U ) and are investi-
gating (1/U ) effects; the most important of these for metals is
perhaps superconductivity (which depends on J ≈ (4t2/U );
numerically, J is ≈0.25t in most cuprates). Because of this,
the observed physics at temperatures T below and above (but
near) J is likely to be dominated by degrees of freedom
associated with intersite pairs (due to J). (In cuprates, J ≈
1500 K). A U = ∞ theory (for which J = 0) cannot address
this regime.

V. SUMMARY, LIMITATIONS, AND FUTURE DIRECTIONS

In our research, we explore metals with infinitely strong
local electron repulsion, known as extremely correlated Fermi
liquids (ECFL), employing for it the single orbital Hubbard
model at U = ∞. This model, and the noninteracting model
(which is at the other limit of U , namely, with U = 0), are
both characterized by a single parameter, the chemical poten-
tial which governs the average electron count in the system.
The U = 0 limit, foundational to the Drude model, serves as
the baseline for developing perturbative theories for electron
systems with interactions (U 
= 0), simplifying interaction ef-
fects into a concise set of Landau parameters.

We propose a new, approximate, self-consistent theory
using the nonperturbative equation of motion technique for
lattice quantum fields, resulting in an equation for the Dyso-
nian self-energy � of the single-particle Green’s function G.
We find that � is roughly the convolution of local bosonic de-
grees of freedom, namely, of local charge and spin fluctuation

correlators DN and DS , with G, an approach proven exact in
the d = ∞ limit. Subsequently, we derive equations for the
correlators DN and DS , disregarding vertex corrections. We
find that these are electron hole fluctuations, and iterate to a
self-consistent solution. This is the mechanism for electron
dynamics in strongly correlated systems.

We find that, in the strong correlation limit, spatially
local diffusive, quantum, bosonic fluctuations made up of
electron hole excitations with their strong coupling to elec-
trons, determine the characteristic dynamics. This dynamics
is also temporally nearly local; the diffusive fluctuation spec-
trum (“noise”) extends with significant and nearly constant
strength over a wide frequency range for all (except rather
low) temperatures. We reach this conclusion by making sev-
eral simplifying approximations which enable us to clearly
focus on these fluctuations: we consider only the simplest
“scattering correction” term involving this fluctuation for the
electron self energy; we use the large d approximation so that
the bosonic correlator of relevance is atomic site local and is
separated out; we use a self-consistent approach to evaluate
both the electron propagator and the bosonic correlator to
emphasize their strong interrelation. We also use throughout
a real time description to emphasize the physical domain of
their operation, obviating the need for analytical continuation
from imaginary time (and in frequency space, from discrete
imaginary Matsubara frequencies). Further, since there is no
restoring force or characteristic frequency of the bosonic
mode, the characteristic temperature can be low, determined
solely by when the long time or low energy quantum co-
herence due to these diffusive local fluctuations becomes
ineffective.

This seems quite different from a recent approach by
Sachdev and coworkers (see, for example, some recent papers,
e.g., Refs. [26–28]) who basically proposed and developed a
model for electrons coupled to zero energy (or quantum criti-
cal) phonons; the basic Yukawa electron phonon coupling has
static disorder, as does the electron system. They performed
a very sophisticated weak coupling analysis of the resulting
many body system, and obtained some of the above broad
results, namely, a crossover from Fermi liquid to incoherent
metal behavior, and linear resitivity with the potential to be
universal. There are superficial similarities in that the many
body theory leads to overdamped, localized bosonic modes,
for example. However, in our case, there is no static disorder
and no static localization; the observed properties emerge as
consequences of quantum dynamics in the strongly correlated
clean system. There are no zero frequency or quantum crit-
ical bosons; the bosonic excitation is self generated. There
is no extreme phonon drag regime. Ours is a materials-based
strong coupling approach, albeit captured in an oversimplified
one orbital Hubbard model. It is not impossible, though, that
because of a kind of duality, there may be some mapping be-
tween the strong coupling and the weak coupling approaches
which makes sense of the similarity in the most significant
outcomes.

Our findings highlight two distinct characteristics of
strongly correlated systems: the crossover from coherent to
incoherent Fermi liquid behavior as temperature increases,
and the emergence of linear resistivity in the strange metal
phase, both predominantly due to the coupling of electrons
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with local number fluctuations. Earlier results, supported by
numerical analyses (e.g., single site DMFT [29], DCA [30]),
emphasized the crucial influence of onsite, incoherent charge
fluctuations (DN and DS) on the electronic properties. The
qualitative outcomes of these, and of the line of work by
Shastry and collaborators [10–13] are the same as ours.

We observe a potential universality in ECFL properties,
such as linear resistivity, resulting from localized, incoherent
charge noise driven by hole movement, highlighted by the
straightforward dependence of physical properties on hole
density (Secs. III to IV). At temperatures beyond the quan-
tum scale of local fluctuations, the noise spectrum becomes
“white,” reflecting classical thermal noise driven by hole
motion (see Fig. 4 for scale comparison). This suggests a uni-
versal interaction mechanism between local fluctuations and
electrons, leading to fluctuations in local electron numbers
due to electron dynamics.

However, our results may not directly correlate with obser-
vations from specific systems; one fact is the higher crossover
temperature T ∗

cl compared to empirical findings for the onset
of the strange metal regime. This discrepancy could be at-
tributed to our excluding the orthogonality catastrophe effect
(this was pointed out first by Anderson [31] who included
it approximately in a Gutzwiller projected fermion approach.
Additionally, since all strongly correlated systems have a large
but finite U , there is quite likely to be a new low-energy scale
related to it, specifically the intersite spin coupling scale Ji j ,
which sets a new small temperature scale, of relative order
(t/U ).

Our ongoing research aim is to investigate the role of
local bosonic excitations in systems with large, finite, U
values, using hybridization-expansion continuous-time quan-
tum Monte Carlo (CTQMC) and the local moment approach
within dynamical mean-field theory. The latter, albeit approx-
imate, has the advantage of yielding real frequency spectra
and self-energies at zero and finite temperatures, and hence
will be complementary to CTQMC, which yields Matsubara
frequency quantities and requires analytic continuation. We
also aim to develop a model for the leading (1/U ) phenomena
in the spirit of quantum mechanical perturbation theory, with
the U = ∞ results of this paper as the unperturbed system
input.
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APPENDIX A: X OPERATORS

For a lattice system with one orbital per site, a general
state can be described completely in terms of the orbital states
at a site i. This set consists of states |0〉, |σ 〉, |σ̄ 〉, and |2〉;
namely, those with no electron, one electron with spin σ (↑) or
σ̄ (↓), and two electrons (↑↓). The X operators introduced by

Hubbard [6] are all the matrix elements in this Hilbert space;
e.g., X σ0

i is |σ 〉〈0| for states at site i. They are local Fermi-like
or Bose-like field operators (not canonical Fermi or Bose
operators), depending on whether they describe change in
local electron number by unity (odd numbers in general) or by
zero (even numbers in general) (see the book by Ovchinnikov
and Val’kov [7] is on the X operators and its application in
condensed matter physics). Commutators/anticommutators of
X operators at different sites vanish, while for the the same
site, they do not. These results are uniquely determined by
the definition of X operators. The results of on site commu-
tation/anticommutation are not c numbers as for canonical
fermions and bosons, but are X operators.

The X operators obey the commutation relation[
X αβ

i , X γ δ
j

]
± = (

X αδ
i δβγ ± X γ β

i δδα

)
δi j , (A1)

since at a given site one has

X αβ
i X γ δ

i = δβγ X αδ
i . (A2)

The basic commutator involving X arises from the Heisenberg
equation of motion for the X -operator. It is

i∂t X
αβ
i = iẊ αβ

i = [
X αβ

i , H
]
−

= −μ
∑

σ

(
X 0σ

i δβσ − X σβ
i δσα

)
+

∑
jm

t jm
([

X αβ
i , X 0σ

j

]
±X σ0

m ± X 0σ
j

[
X σ0

m , X αβ
i

]
±
)
,

(A3)

where the upper and lower sets of signs are for bosonic and
fermionic operators, respectively.2

The case of α = 0 and β = σ , namely, the fermionic op-
erator X 0σ

i is relevant for the equation of motion of the single
particle Green’s function. We have[

X 0σ
i , X σ ′0

j

]
+ = δi j

(
δσσ ′X 00

i + X σ ′σ
i

) = δi jB
σσ ′
i , (A4)

where Bσσ ′
i is a bosonic operator centered at i. It is a charge

fluctuation operator for σ = σ ′ and a spin fluctuation operator
for σ 
= σ ′. Using the compact notation Ref. [10], this can be
written as [

X 0σ
i , X σ ′0

j

]
+ = δi j

(
δσσ ′I − σσ ′X σ̄ σ̄ ′

i

)
, (A5)

iẊ 0σ
i (t ) = −μX 0σ

i (t ) +
∑
mσ ′

tmiB
σσ ′
i (t )X 0σ ′

m (t ), (A6)

and[
Bσ1σ2

i , X 0σ3
j

]
− = −σ1σ2

[
X σ̄1σ̄2

i , X 0σ3
j

]
− = −σ1σ2δi jX

0σ̄2
i δσ̄1σ3 .

(A7)

In Eq. (A6),we notice that there is a novel, local spin flip
term due to hopping (last term on the right) present only
because of correlation. This involves a spin flip at say site i
and a number change (of the spin-flipped electron) at site j

2We use the (nearly standard) convention that [A, B]± is an anti-
commutator for the + sign and the commutator for the − sign.
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connected with it via hopping. In the following, we assume
(as is common) that tim = tmi.

The equation of motion for bosonic operators is illustrated
with the example of Ẋ σ̄ σ

i for which α = σ̄ , β = σ . We have

−Ẋ σ̄ σ
i =

∑
m

tim
(
X 0σ

m X σ̄0
i − X 0σ

i X σ̄0
m

)
. (A8)

For the extremely strongly correlated Fermi liquid (ECFL)
where (U/t ) → ∞ the doubly occupancy state |2〉 can be
neglected since it has an infinitely high energy. In this limit,
the relations satisfied by the Hubbard operators can be written
as

X 00
i +

∑
σ

X σσ
i = I , X σσ

i + X σ̄ σ̄
i = Ni, X σσ

i − X σ̄ σ̄
i = 2Sz

i ,

(A9)

X 00
i +

∑
σ

σX σσ
i = I − Ni

2
+ σSz

i , (A10)

where I is the identity operator, and Ni and Sz
i are the number

and the z component of spin operators at site i, respectively.
Since the system is homogeneous, the thermodynamic average
at any site i is independent of i. We define n and m as the
average number and the average z component of the magne-
tization, namely, n = 〈Ni〉 and m = 〈Sz

i 〉. We assume that the
system is paramagnetic, so that m = 0 and 〈X σ̄ σ̄ 〉 = 〈X σσ 〉 =
n/2, and that it is spin isotropic. A commonly occurring quan-
tity is

〈
Bσσ

i

〉 =
〈
I − Ni

2
+ Sz

i

〉
=

(
1 − n

2

)
=

(
1 + δ

2

)
= Q.

(A11)

APPENDIX B: EQUATION OF MOTION FOR D+
N AND D+

S

DR in terms of the N and Sz operators can be derived using
Bσσ = X 00 + X σσ = 1 − N

2 + Sz, Bσ σ̄ = X σ σ̄ = S+ for the
B operator

DR(t, t ′) = 〈〈Bσσ (t )|Bσσ (t ′)〉〉 + 〈〈Bσ σ̄ (t )|Bσ̄ σ (t ′)〉〉, (B1)

DR(t, t ′) = 1
4 〈〈N (t )|N (t ′)〉〉 + 〈〈Sz(t )|Sz(t ′)〉〉
+ 〈〈S+(t )|S−(t ′)〉〉 − 1

2 〈〈N (t )|Sz(t ′)〉〉
− 1

2 〈〈Sz(t )|N (t ′)〉〉, (B2)

DR(t, t ′) = 1
4 〈〈N (t )|N (t ′)〉〉 + 3

2 〈〈S+(t )|S−(t ′)〉〉
− 1

2 〈〈N (t )|Sz(t ′)〉〉 − 1
2 〈〈Sz(t )|N (t ′)〉〉. (B3)

Since 〈〈S+|S−〉〉 = 〈〈Sx|Sx〉〉 + 〈〈Sy|Sy〉〉 = 2〈〈Sz|Sz〉〉 in is an
isotropic phase. The third and fourth terms would vanish in
the paramagnetic phase

DR(t, t ′) = 1
4 〈〈N (t )|N (t ′)〉〉 + 3

2 〈〈S+(t )|S−(t ′)〉〉. (B4)

Since

D+
N (t − t ′) = −iθ (t − t ′)〈N (t )N (t ′)〉,

D+
S (t − t ′) = −iθ (t − t ′)〈S+(t )S−(t ′)〉. (B5)

To develop the equation of motion for D+
N we start by

differentiating it with respect to t

i∂t D
+
N (t − t ′) = δ(t − t ′)〈NN〉 − iθ (t − t ′)〈iṄ (t )N (t ′)〉

⇒ i∂t D
+
N (t − t ′) = δ(t − t ′)n − iθ (t − t ′)〈iṄ (t )N (t ′)〉

⇒ i∂t D
+
N (t − t ′) = δ(t − t ′)n + D̃+

N (t − t ′), (B6)

where n is the number density and

D̃+
N (t − t ′) = −iθ (t − t ′)〈iṄ (t )N (t ′)〉. (B7)

Now, we develop an equation of motion for D̃+
N by differ-

entiating it with respect to t ′

i∂t ′D̃+
N (t − t ′)=−δ(t − t ′)〈iṄ (t )N (t )〉+iθ (t − t ′)〈Ṅ (t )Ṅ (t ′)〉.

(B8)

First term in the above expression is zero which can be
easily seen from the fact that the number operator acting on
number basis (in which we are taking the trace) will give us
the same state so 〈ṄN〉 = 〈Ṅ〉 which is 0 in equilibrium, so
we get

i∂t ′D̃+
N (t − t ′) = iθ (t − t ′)〈Ṅ (t )Ṅ (t ′)〉

i∂t ′D̃+
N (t − t ′) = −χ+

JJ (t − t ′), (B9)

where we define

χ+
JJ (t − t ′) = −iθ (t − t ′)〈Ṅ (t )Ṅ (t ′)〉. (B10)

We define the Fourier transform as (in the same manner for
all the terms)

D+
N (t − t ′) = 1

2π

∫
d (t − t ′)e−iω(t−t ′ )D+

N (ω). (B11)

Fourier transforming and combining equations (B6) and
(B9) we get

D+
N (ω) = 1[

ω
n − χ+

JJ (ω)
n2

] . (B12)

Similarly, for D+
S

i∂t D
+
S (t − t ′) = δ(t − t ′)〈S+S−〉 + D̃+

S (t − t ′)

〈S+S−〉 = 2〈SzSz〉 = 〈X σσ + X σ̄ σ̄ 〉
2

= n

2

⇒ i∂t D
+
S (t − t ′) = δ(t − t ′)

n

2
+ D̃+

S (t − t ′), (B13)

where

D̃+
S (t − t ′) = −iθ (t − t ′)〈iṠ+(t )S−(t ′)〉, (B14)

i∂t ′D̃+
S (t − t ′)=−δ(t − t ′)〈iṠ+S−〉 + iθ (t − t ′)〈Ṡ+(t )Ṡ−(t ′)〉.

(B15)

To determine the 〈iṠ+S−〉 we go back to the definition
S+ = X σ σ̄ and S− = X σ̄ σ . By using the Heisenberg equa-
tion of motion, we find

iẊ σ σ̄ =
∑

j

ti j
(
X σ0

i X 0σ̄
j − X 0σ̄

i X σ0
j

)
, (B16)
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using this relation, we can find iṠ+S− = iẊ σ σ̄ X σ̄ σ
i to be

iṠ+S− =
∑

j

ti j
(
X σ0

i X 0σ
j − X σ0

j X 0σ
i

)
, (B17)

the right-hand side (rhs) of the above equation is same as the
current operator, hence 〈iṠ+S−〉 = 0. So, we have

i∂t ′D̃+
S (t − t ′) = iθ (t − t ′)〈Ṡ+(t )Ṡ−(t ′)〉,

i∂t ′D̃+
S (t − t ′) = −χ+

JsJs
(t − t ′),

χ+
JsJs

(t − t ′) = −iθ (t − t ′)〈Ṡ+(t )Ṡ−(t ′)〉. (B18)

Fourier transforming and combining equations (B13) and
(B18), we get

D+
S (ω) = 1[

ω
n/2 − χ+

JsJs
(ω)

n2/4

] . (B19)

APPENDIX C: CURRENT CURRENT CORRELATION
FUNCTION FOR SPIN AND CHARGE

In imaginary time, we can write the time ordered current-
current correlation functions for charge and spin as

χN (τ, τ ′) = −〈Tτ Jc(τ )Jc(τ ′)〉, χS (τ, τ ′) = −〈Tτ Js(τ )Js(τ
′)〉

(C1)

Jc = 1

N

∑
k,σ

vkX 0σ
k X σ0

k , Js = 1

N

∑
k

vkX 0σ
k X σ̄0

k . (C2)

Tτ is the time ordering operator. The contribution to bubble
diagram in imaginary frequency is

χN (iνn) = 1

N

∑
σ,k,m

v2
k Gσσ (k, iωm)Gσσ (k, iνn + iωm), (C3)

χS (iνn) = 1

N

∑
k,m

v2
k Gσσ (k, iωm)Gσ̄ σ̄ (k, iνn + iωm), (C4)

iωn = (2n+1)π
β

, iνn = 2nπ
β

, and β is inverse temperature. Since
in the paramagnetic phase Gσσ = Gσ̄ σ̄

χN (iνn) = 2

N

∑
k,m

v2
k Gσσ (k, iωm)Gσσ (k, iνn + iωm), (C5)

χS (iνn) = 1

N

∑
k,m

v2
k Gσσ (k, iωm)Gσσ (k, iνn + iωm). (C6)

By writing the spectral representation for the Green’s function
G(k, iωn) and doing analytic continuation, we obtain

χR(ω) = 1

N

∑
k

∫∫
dω1dω2

ρG(k, ω1)ρG(k, ω2)v2
k

ω + ω1 − ω2 + iη

× {nF (ω1) − nF (ω2)}, (C7)

and χR
N (ω) = 2χR(ω), χR

S (ω) = χR(ω).

APPENDIX D: SELF-ENERGY LOW-
TEMPERATURE BEHAVIOR

The low temperature and low frequency behavior of the
scattering function �(ω, T ) is

�(ω, T ) = −Im�(ω, T )

= π

∫ ∞

−∞
dyρG(ω − y)ρD(y)[nF (y − ω) + nB(y)]

≈π

∫ ∞

−∞
dyρG(−y)ρD(y)

[
nF (y)+ ω2

2
n′′

F (y) + nB(y)

]
= I1 + I2,

where

I1 = π

∫ ∞

−∞
dyρG(−y)ρD(y)[nF (y) + nB(y)]

= π

∫ ∞

0
dy[ρG(−y) + ρG(y)]ρD(y)[nF (y) + nB(y)],

ρD(y) is an odd function. We can expand around y = 0,
ρD(y) = Ay, we obtain

I1 = 2AπρG(0)
∫ ∞

0
dy y (nF (y) + nB(y)) = π

2
AρG(0)π2T 2.

(D1)

In addition,

I2 = −πω2

2

∫ ∞

−∞
dy ρG(−y) ρD(y) (−n′′

F (y))

= πω2

2
AρG(0), (D2)

�(ω, T ) at low temperature and low frequency is

�(ω, T ) = π

2
ρG(0)A(π2T 2 + ω2). (D3)
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