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Topological phase transition without single particle gap closing in strongly correlated systems

Peizhi Mai ,1,* Jinchao Zhao,1 Thomas A. Maier ,2 Barry Bradlyn,1 and Philip W. Phillips1,†

1Department of Physics and Institute of Condensed Matter Theory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
2Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

(Received 15 January 2024; revised 1 May 2024; accepted 15 July 2024; published 5 August 2024)

We show here two models where changing topology does not necessarily close the bulk insulating charge
gap as demanded in the standard noninteracting picture. From extensive determinantal and dynamical cluster
quantum Monte Carlo simulations of the half-filled and quarter-filled Kane-Mele-Hubbard model, we show that,
for sufficiently strong interactions at either half- or quarter-filling, a transition between topological and trivial
insulators occurs without the closing of a charge gap. To shed light on this behavior, we illustrate that an exactly
solvable model reveals that while the single-particle gap remains, the many-body gap does, in fact, close. These
two gaps are the same in the noninteracting system but depart from each other as the interaction turns on.
We purport that for interacting systems, the proper probe of topological phase transitions is the closing of the
many-body rather than the single-particle gap.
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I. INTRODUCTION

The discovery of topological insulators [1–7] has high-
lighted the fact that the energy spectrum alone does not fully
capture the behavior of electronic systems. In systems with
broken time-reversal symmetry, band inversions driven by
complex next-nearest-neighbor hopping (as in the Haldane [1]
model) lead to Chern insulating states with nontrivial Berry
curvature. Similarly, in time-reversal invariant models such as
the Kane-Mele [3] and Bernevig-Hughes-Zhang [2] models,
spin-orbit coupling can open a topological gap leading to a
quantum spin Hall state with nontrivial spin Chern numbers
and Z2 invariant. In noninteracting systems such as these, the
nontrivial topology is encoded in the analytic properties of
the occupied single-particle wave functions over the Brillouin
zone, which cannot change under adiabatic deformations that
maintain an insulating gap without breaking any symme-
tries. Consequently, a transition from a topologically trivial
to a topologically nontrivial insulating state must involve the
closing of an many-body energy gap, or the breaking of a
symmetry (such as time-reversal invariance) that protects the
topological phase. Since in noninteracting systems the energy
gap is entirely determined by the single-particle band struc-
ture, a topological phase transition (TPT) without symmetry
breaking in noninteracting systems also requires the single-
particle charge gap to close.

This conventional understanding of a TPT has now been
challenged by recent experiments on strongly correlated
topological systems. Specifically, experiments on AB-stacked
MoTe2/WSe2 moiré heterobilayers [8] find a quantum spin or
valley Hall effect at ν = 2 resembling the Kane-Mele physics
and the emergence of a ferromagnetic quantum anomalous
Hall (QAH) insulator at ν = 1 (one hole per moiré unit cell)
driven by strong correlations. Also, by tuning the gate voltage,
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they observed a transition to a trivial Mott insulator without
closing the charge gap. Interestingly, two subsequent exper-
iments [9,10] on twisted moiré bilayer MoTe2 also found a
QAH insulator at ν = 1 and a similar TPT but signaled by
closing the charge gap. Another experiment [11] on twisted
bilayer WSe2 identified a similar transition at ν = 1 with
substantial suppression of the charge gap though they were
not able to determine if a complete gap closing was obtained.
Crucially, each of these nontrivial topological phases is known
to be realizable in weakly correlated models. Hence, it is ex-
pected that any transition between them would require either
the breaking of the protected symmetry or the closure of a
(single-particle) charge gap, as in noninteracting models. Mo-
tivated by these paradoxical results, we study here generally
how a TPT obtains without closing the single-particle gap in
the presence of strong correlations.

The issue of a TPT in the absence of the closure of
the single-particle gap (which we denote as a “gap-not-
closing TPT”) was initially discussed in Ref. [12]. Those
authors demonstrated that in a noninteracting system if a
TPT is associated with explicit symmetry breaking (driven
by a symmetry-breaking field) that affects a change of
topological classes, then the gap does not need to close.
This same principle applies to the mean-field theory for
interaction-driven TPTs in which the Hamiltonian lacks an
explicit symmetry-breaking term, but the ground state sponta-
neously breaks the symmetry. For instance, earlier studies of
the Bernevig-Hughes-Zhang-Hubbard model [13–15] and the
Kane-Mele-Hubbard (KMH) model [16–18] primarily exam-
ined half-filling (corresponding to ν = 2 in the experiment)
and observed a phase transition from a quantum spin Hall
(QSH) insulator to a trivial Mott insulator without closing
the single-particle gap as U increases. By contrast, a recent
study [19] on the KMH model at quarter filling (correspond-
ing to ν = 1) found the general emergence of a topological
Mott insulator from a metallic state in the presence of strong
correlations, consistent with the experiments [8–11]. Whether
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there is a closing of the single-particle gap in its transition to a
trivial Mott insulator is yet to be determined. Such a transition
cannot be captured even qualitatively by Ref. [12] since there
is no noninteracting counterpart for both insulating states.

In this paper, we address the conditions under which a
TPT driven by strong correlations requires the closing of
a single-particle charge gap. We first study the generalized
KMH model at half and quarter filling using the unbiased
determinantal quantum Monte Carlo (DQMC) and the dy-
namical cluster approximation (DCA). We find that in the
presence of strong interactions, a TPT can occur even though
the single-particle (charge) gap remains open between a topo-
logical insulator and a trivial Mott insulator at both 1/2
and 1/4 filling. This observation challenges our conventional
understanding of a TPT. To analyze this situation in more
details, we then study the exactly soluble KM model with
extended orbital Hatsugai-Kohmoto (HK) [19–24] interaction
which provides an example of such a TPT at half filling.
We find generically that the single-particle gap departs from
the many-body gap in the presence of interactions. It is the
closure of the many-body gap that indicates the change of
topology, while the single-particle gap, usually measured in
the transport experiment, could remain open during the tran-
sition. Experiments designed to measure the many-body gap
can directly probe this claim.

II. RESULTS

Hubbard interaction

We consider the generalized KMH model in an external
magnetic field

HKMH = HKM + HHubbard,

HKM = t
∑
〈ij〉σ

eiφi,j c†
iσ cjσ + t ′ ∑

〈〈ij〉〉σ
e±iψσ eiφi,j c†

iσ cjσ

− μ
∑
i,σ

niσ + λv

⎛
⎝ ∑

i∈A,σ

niσ −
∑

i∈B,σ

niσ

⎞
⎠, (1)

HHubbard = U
∑

i

(
ni↑ − 1

2

)(
ni↓ − 1

2

)
,

where we include the nearest-neighbor hopping t = 1 be-
tween sites on the two different sublattices on the honeycomb
lattice as the energy scale. The next-nearest-neighbor hopping
t ′e±iψσ plays the role of spin-orbit coupling with the Haldane
phase ψ [1], and λv is the sublattice potential difference, as
shown in Fig. 1. If ψ = 0.5 (in the unit of π ), the hopping
reduces to the original KM model. In the noninteracting case,
the two lower bands are in the QSH regime provided λv <

3
√

3t ′ sin ψ . The phase factor exp(iφi,j) resulting from the
standard Peierls substitution contains the effect of the external
magnetic field, which is introduced to probe the zero-field
topology and minimize finite-size effects [19,25,26]. Here
φi,j = (2π/�0)

∫ rj

ri
Adl, where �0 = e/h represents the mag-

netic flux quantum, the vector potential A = (xŷ − yx̂)B/2
(symmetric gauge), and the integration is along a straight-line
path. To maintain the single-valueness of the wave function in
a finite system with the adjusted periodic boundary condition

FIG. 1. Hopping vectors and parameters for the Kane-Mele
Hamiltonian.

requires the flux quantization condition �/�0 = n f /Nc with
n f an integer and Nc the number of unit cells. We simulate
this model using DQMC method with jackknife resampling
to estimate the error bars. We focus on a lattice with 6 × 6
unit cells; finite-size effects are suppressed considerably with
a small magnetic flux [25]. To access the charge gap evo-
lution during the phase transition, we calculate the charge
compressibility

χ = βχc = β

N

∑
i,j

[〈ninj〉 − 〈ni〉〈nj〉] = d〈n〉
dμ

, (2)

which is measured directly in experiments [10,11]. χ → 0
when the system has a single-particle charge gap and hence
insulating behavior. We first explore two topological phase
transitions between QSH and trivial insulators, driven by λv

with U = 0 and by U with λv = 0, respectively, at half-
filling 〈n〉 = 2. Without loss of generality, we set t ′/t = 0.2
and ψ = 0.5 (the original KM model). The compressibility
at the minimal finite field (�/�0 = 1/36 ≈ 0.028) and half
filling from DQMC simulation is plotted in Figs. 2(a) and
2(b), respectively, to describe these two transitions at varying
temperatures. Since both QSH and trivial insulator have a zero
charge Chern number, they remain insulating at a small mag-
netic flux and 〈n〉 = 2 according to Streda’s formula. Thus
the compressibility at the minimal flux can well represent
its zero-field counterpart while having the least finite-size
effect [25].

Consider first the noninteracting KM model studied in
[Fig. 2(a)]. Here the system is a QSH insulator with a spin
Chern number Cs = 2 for small λv and turns into a trivial
band insulator at λv = 3

√
3t ′ sin ψ ≈ 1.039 accompanied by

closing and reopening of the charge gap. The compressibility
χ characterizing this transition in Fig. 2(a) has a peak at the
transition point which only sharpens as the temperature is
lowered. Away from λv ≈ 1.039, the peak in the compress-
ibility vanishes and insulating behavior obtains. This is the
standard story. In the interacting case [Fig. 2(b)], the QSH
insulator converts into an xy-antiferromagnetic trivial Mott
insulator as U becomes sufficiently large (Uc ≈ 6.2 labeled by
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FIG. 2. Panels (a) and (b) show the compressibility at the minimal field and half-filling from DQMC simulations as a function of λv with
U = 0 and as a function of U with λv = 0, respectively, for different temperatures. Both indicate a topological phase transition from a QSH
insulator to a trivial insulator. Panel (c) presents the staggered xy spin susceptibility as a function of U with λv = 0 for different temperatures.
t ′/t = 0.2 and ψ = 0.5 are set for all panels.

the dashed line) [16–18]. Figure 2(b) is qualitatively different
from Fig. 2(a). Although there is a soft peak around Uc at
β = 5 suggesting the gap becomes smaller, at sufficiently low
temperature β = 12 so as to resolve the gap (β� � 1), the
compressibility vanishes everywhere, meaning that the charge
gap remains finite across the transition. In Fig. 2(c), we show
the xy-antiferromagnetic spin correlation

Sxy
AF = 1

N

∑
i, j

(−1)i+ j

〈
Sx

i Sx
j + Sy

i Sy
j

2

〉
, (3)

related to the transverse magnetization as m2
xy = Sxy

AF [16,17].
Thus, Fig. 2(c) exhibits the onset of xy-antiferromagnetic
order driven by increasing U at low temperature, indicating
a continuous phase transition consistent with earlier studies
[16,17]. Also, this spontaneous symmetry breaking and the
associated Goldstone mode indicates the closing of the spin
gap during the transition. Indeed, a noninteracting TPT with
explicit symmetry breaking can also happen without closing
the single-particle gap [12]. However, since this is a Mottness-
driven TPT, a single-particle picture is not sufficient to capture
the full interplay between correlation-driven magnetism and
topological Mott insulation. A nonperturbative many-body
theory is needed to understand this phenomenon. Note that
although the charge gap remains open, the large-U antifer-
romagnetic ordering indicates gapless spin-wave excitations,
namely, a closing of the many-body energy gap.

More relevant to the TMD materials [8–10] is the TPT
at quarter filling. An earlier study [19] demonstrated that a
ferromagnetic QAH Mott insulator emerges at 1/4 filling with
a flat lower band and sufficiently large U without sublattice
potential (λv = 0). This case must lie outside the paradigm
of topological band insulators since the system is metallic at
small U . Here we choose t ′ = 0.3, ψ = 0.81 which bears a
noninteracting flatness (bandwidth to gap) ratio r(λv = 0) ≈
1/6 with a small bandwidth W ≈ 0.3t for the lower band
when λv = 0. In analogy with the noninteracting case, turning
on λv lifts the inversion symmetry and drives the insulator to
a trivial one. This change occurs because the interaction pri-
marily introduces an insulating gap at quarter filling, whereas
the topology originate from the interplay between spin-orbit
coupling and the sublattice potential. A QAH insulator is
observed at small λv = 0.2 with Chern number C = ±1 ac-

cording to Streda’s formula, while a trivial insulator obtains
at λv = 1, at least for U � 3 as shown in Fig. 3. We also note
that in all four scenarios presented in Fig. 3, there is a peak
in the uniform spin susceptibility at quarter-filling and zero
field, as detailed in Appendix A. This observation suggests
these quarter-filled (topological or trivial) states susceptible
to ferromagnetism. Thus, a TPT must occur between these
values while the symmetry is the same for both phases. For
the TPT between QAH and trivial insulators, we have to study
the zero-field 1/4-filling point which would suffer from finite-
size effects at low temperatures in DQMC. Also, the presence
of a serious sign problem in DQMC prevents us from going
to sufficiently low temperatures to resolve the gap which is
much smaller than the half-filling one [19]. Therefore, we use
DCA [27–30] on a 2 × 2, i.e., four-unit cells, eight-site cluster

FIG. 3. The compressibility is plotted as a function of mag-
netic flux and density for (a) U/t = 8, β = 4/t, λv/t = 0.2;
(b) U/t = 8, β = 4/t, λv/t = 1; (c) U/t = 3, β = 8/t, λv/t = 0.2;
and (d) U/t = 3, β = 8/t, λv/t = 1. The other parameters are t ′/t =
0.3, ψ = 0.81.
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FIG. 4. Panel (a) displays the compressibility at zero field and
quarter-filling as a function of λv with varying temperature while
fixing U = 8. Panel (b) presents the same quantity but by varying U
while fixing β = 20. t ′/t = 0.3 and ψ = 0.81 are set for both panels.

with a continuous-time QMC [31] cluster solver to calculate
the zero-field compressibility. DCA treats the infinite lattice
in the thermodynamic limit by restricting spatial correlations
to a finite-size cluster that is embedded in a self-consistent
dynamical mean field. Given the dynamical mean field, DCA
has a milder sign problem and less finite-size errors compared
to DQMC. The zero-field compressibility at quarter-filling
from DCA simulations is shown in Fig. 4(a) for varying tem-
peratures with U = 8. Figure 4(a) is qualitatively similar to
Fig. 4(b). As the temperature is reduced, the compressibility
vanishes for all λv , indicating the charge gap also remains
finite during this transition, which is consistent with the ex-
periment for ν = 1 AB-stacked MoTe2/WSe2 heterobilayers
[8]. In Fig. 4(b), the compressibility at the lowest temperature,
β = 20, develops a higher and sharper peak as U decreases.
This suggests that, for a smaller U , the transition could take
place with a closure of the single-particle gap, which explains
the experimental observation in ν = 1 twisted bilayer MoTe2

[9,10] and WSe2 [11]. During the TPT, the gap is always
suppressed to some extent indicated by the peak of the com-
pressibility. If the topological gap is sufficiently large (due to
a large U ), it only becomes smaller but does not vanish at the
transition. If the effective flatness ratio (which also controls
the gap size) is tunable for example by the twist angle, such a
change in gap evolution may also appear.

In short, the TPT between topological and trivial insulators
in the presence of sufficiently strong interactions at either
half-filling [Fig. 2(b)] or quarter-filling [Fig. 4(a)] appears
generally without closing the single-particle gap and without
the introduction of explicit symmetry-breaking fields. This
is contradictory to the traditional topological band theory,
and indicates that these interaction-enabled topological phase
transitions are intrinsically many-particle effects.

III. EXTENDED ORBITAL HK INTERACTION

To decipher this enigma, it is useful to work with a solvable
model that exhibits such a TPT. To this end, we adopt the HK
[19–24,26,32] interaction which has been used extensively
recently. The drawback of this interaction, namely, a thermo-
dynamic degeneracy is completely lifted by resorting to the
orbital HK interaction [33]. In this model, it is the hybridiza-
tion between the orbitals that lifts the degeneracy except at
time-reversal invariant momenta. A recent study [34] showed
a direct correspondence between the orbital HK interaction
and Hubbard interaction in twisted boundary condition. We
will refer to the traditional same sublattice repulsion of the
HK model as U ′ and V ′ as the nearest-neighbor intersublattice
repulsion, both between opposite spins to represent Mottness.
With this in mind, we write the KM model with extended
orbital HK interaction as (at zero field φi,j = 0),

HKM-HK = HKM + HHK,

HHK = U ′ ∑
αk

nα,k↑nα,k↓ + V ′ ∑
kσ

nA,kσ nB,kσ̄ .
(4)

We keep t ′ = 0.2 and ψ = 0.5 for illustration. We denote
the noninteracting dispersion relation as εγ ,kσ c†

γ ,kσ , where
γ = ± represents the band index of the upper and lower bands
from diagonalizing the noninteracting KM model. As we will
show below, with V ′ > 0, there is a transition to a trivial
Mott insulator without closing the single-particle gap given
a sufficiently large U ′.

This model is exactly solvable since the k’s are indepen-
dent. The model is further simplified if U ′ = V ′. In this case,
the Hamiltonian in Eq. (4) has a simple form in the band basis

HKM-HK =
∑
γ ,kσ

εγ ,kσ c†
γ ,kσ cγ ,kσ − μ

∑
γ ,kσ

nγ ,kσ

+ U ′ ∑
k

(n+,k↑ + n−,k↑)(n+,k↓ + n−,k↓). (5)

In the following, we will explore the physics at half-filling for
general U ′ and V ′ with special attention to U ′ = V ′.

We first solve the KM-HK Hamiltonian to obtain the
many-body and single-particle spectra with the chemical po-
tential shifted to μ = U ′/2 + V ′/2. The many-body spectrum
εmb
η,k at 〈nk〉 = 2 is plotted in Figs. 5(a), 5(c) and 5(e) for

U ′ = V ′ = 0, U ′ = 7 & V ′ = 0 and U ′ = V ′ = 7, respec-
tively, obtained by diagonalizing the Hamiltonian at each k.
Here η is the band index running from 1 to 6 since there
are six states at each k for nk = 2, and η = 1 represents the
ground state. In a general quantum phase transition [35], there
must be a level crossing between the many-body ground state
and the first excited state by definition. Thus, we focus on the
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FIG. 5. The many-body (left column) and single-particle (right
column) spectra for the KM model with extended orbital HK inter-
action. Panels (a) and (b) show the noninteracting limit. The second
(c), (d) and third rows (e), (f) display the cases at U ′/t = 7,V ′/t =
0 and U ′/t = V ′/t = 7, respectively. The chemical potential is
μ = U ′/2 + V ′/2.

lowest two states, which are usually the degenerate spin-triplet
states (| ↑↑〉 or | ↓↓〉 labeled in red of Figs. 5(c) and 5(e) and
the topological state labeled in blue. With U ′ and V ′ nonzero,
the QSH state gains energy, while the trivial singly occupied
spin-triplet state remains unchanged. Eventually, when U ′ and
V ′ reach a threshold, a level crossing for TPT occurs and the
spin-triplet state becomes the ground state. Hence, the level
crossing in the many-body spectrum could be an indicator of
the TPT. However, the many-body spectrum for the Hubbard
model can only be obtained using exact diagonalization which
is limited to only small clusters and is significantly influenced
by finite-size effects.

Experimentally, however, it is the single-particle spec-
trum that is more accessible. What we show now is that
the single-particle spectrum is likely to be a poor indica-
tor of the transition. We obtain the single-particle spectrum
defined as the ground-state energy difference of adding a
particle ε

sp
m,k = εmb

1,k(〈nk〉 = m) − εmb
1,k (〈nk〉 = m − 1) by com-

puting the corresponding many-body spectrum to acquire the
needed energy differences. The results are shown in Figs. 5(b),
5(d), and 5(f) for various interaction strengths. There are
four separated single-particle bands in Figs. 5(d) and 5(f)
because interactions separate the doubly occupied states from
the singly occupied ones. Unlike the noninteracting spinful
counterpart in Fig. 5(a) with a degeneracy of 2, each inter-
acting single-particle subband can only fill one particle for
each momentum. At half-filling, the lowest two single-particle
subbands are filled. Unlike the many-body spectrum, since all
single-particle bands are nondegenerate (i.e., blue in Fig. 5),
it is not obvious to determine whether level crossing happens.

FIG. 6. The single-particle and many-body gaps as well as the
phase diagram at half-filling. Panel (a) plots the gap as a function
of U ′ at V ′ = 0. Panel (b) shows the dependence on U ′ if fixing
U ′ = V ′. The dashed lines are located where the many-body gap
closes and therefore are indicators of the phase transition. Panel
(c) shows the phase diagram of the KM model with extended orbital
HK interaction.

To further explore the possible level crossing in these spec-
tra, we calculate the many-body gap �mb which vanishes
at the TPT, and the single-particle gap �sp which is usu-
ally measured in transport experiments [9,10]. At half-filling,
they are

�mb(〈n〉= 2) = min
[
εmb

2,k(〈nk〉= 2)
] − max

[
εmb

1,k(〈nk〉= 2)
]
,

(6)

and

�sp(〈n〉 = 2) = min
(
ε

sp
3,k

) − max
(
ε

sp
2,k

)
, (7)

where �mb represents the lowest-energy cost for multiparticle
excitations, such as particle-hole pairs creation, while �sp rep-
resents the lowest-energy cost for a single-particle excitation.
As mentioned above, �mb vanishes definitely when a TPT
obtains. In the noninteracting case, �mb(〈n〉) = �sp(〈n〉).
Thus in topological band theory, a TPT is always accom-
panied by closing and reopening the single-particle gap. In
interacting systems, however, the single-particle gap could
depart from the many-body gap. Figures 6(a) and 6(b) shows
two such examples of the U ′ dependence of both gaps. In
Fig. 6(a), we fix V ′ = 0 and increase U ′ since it is natural
to expect intraorbital repulsion to be dominant, correspond-
ing to the orbital-HK model [23]. The single-particle gap
increases monotonically while the many-body gap decreases
monotonically and approaches zero asymptotically for U ′ →
∞. Thus, no topological transition occurs during this process
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FIG. 7. The single-particle spectra are presented for (a) QSH
insulator, (b) mixed insulator, and (c) trivial Mott insulator. Purple
and orange color represent Cs = 1 and Cs = −1 subbands, respec-
tively. Singly and doubly occupied subbands are denoted by solid and
dashed lines, respectively. The evolution of the spin Chern number
and spontaneous magnetization with U ′ is shown in panel (d). In all
cases, we set U ′ = V ′ and fix the chemical potential to 0.

and the system remains a QSH insulator, but �sp > �mb due
to repulsive interactions. In Fig. 6(b), we find that increasing
U ′ to V ′ = U ′ and that the many-body gap closes at U ′ = 2
and reopens at U ′ = 6 (both highlighted with dashed lines),
while the single-particle gap remains finite all the entire time
though exhibits kinks at those two interaction strengths. This
is similar to the finite dip of the single-particle gap in the
Hubbard case [18]. In this process, the topology changes from
a QSH state (U ′ < 2) to a trivial Mott insulator (U ′ > 6).

By analytically calculating where the many-body gap
closes (see Appendix B), we obtain the phase diagram in
Fig. 6(c). The blue, red, and green lines depict the phase
boundaries representing level-crossing of the many-body
spectrum at K and K ′(V ′ = 6

√
3t ′ ≈ 2.078), M (U ′V ′ = 4),

and � (U ′V ′ = 36) points, respectively. We observe three
different phases. The system is a QSH insulator with weak in-
teractions and becomes a trivial Mott insulator for adequately
strong U ′ and V ′. The intermediate state is an insulator with
a finite single-particle gap (except at a single point U ′ =
0,V ′ = 6

√
3t ′). We call this a mixed insulator because it is

composed of the QSH state and the trivial triplet state in dif-
ferent parts of the Brillouin zone, which we further elaborate
in Fig. 7.

From the phase diagram in Fig. 6(c), the dashed line
U ′ = V ′ crosses all three phases and hence offers a clear view
of the phase transition. As mentioned earlier, the Hamiltonian
becomes particularly simple [Eq. (5)] in this case because
the eigenstates can be constructed by rearranging the nonin-
teracting eigenstates with different eigenvalues. We plot the
single-particle spectrum for U ′ = V ′ = 1, 4, 7 in Figs. 7(a)
to 7(c), respectively. In this case, we use a different color
scheme from Fig. 5 since all subbands here are nondegenerate;
further, we fix the chemical potential μ = 0 for convenient

comparison. We use purple for Cs = 1 and orange for Cs =
−1 sub-bands. As U ′ turns on, the doubly occupied states
(dashed curve) elevate, leaving the singly occupied (solid
curve) states in the lower band unchanged. Note that the
singly occupied states in the upper band also rise in energy
due to the interband repulsion from the purple dashed band.
For U ′ = V ′ = 1 in Fig. 7(a), half-filling still corresponds
to fully occupying the lower two (purple solid and dashed)
subbands, indicating a QSH insulator as in the noninteract-
ing case. When the energy of the lower doubly occupied
(purple-dashed) subband increases to touch the original (non-
interacting) upper band (at U ′ = 2), the upper singly occupied
(orange-solid) subband starts to replace the lower doubly oc-
cupied (purple-dashed) subband gradually over the Brillouin
zone while a single-particle gap is maintained by the interband
repulsion. This process occurs for 2 < U ′ < 6 [Fig. 7(b)] in
which case the second lowest band contains the lower doubly
occupied and upper singly occupied states in different parts of
the Brillouin zone. For this reason, we named this intermedi-
ate state a mixed insulator. Once the replacement is complete
at U ′ > 6 [Fig. 7(c)], the half-filling system becomes a trivial
insulator with the two lowest subbands occupied yielding
Cs = 0. We deduce that the transition is driven by the in-
traband repulsion, while it is the interband repulsion that
maintains a single-particle gap throughout the transition. For
Hubbard or other more realistic interactions, the interaction
term does not commute with the kinetic term. This always
leads to an inherent intra and interband contribution if written
in the band basis. Thus, the single-particle gap is allowed to
remain open during the TPT in the presence of interactions.
This explains our previous observation on a persistent single-
particle gap in the TPT for the Hubbard model.

We also calculate the spin Chern number [19] and mag-
netization (see Appendix C) as a function of U ′, shown in
Fig. 7(d). As expected, Cs = 2 for the QSH state at U ′ < 2
and Cs = 0 for the trivial state at U ′ > 6. In the intermediate
region, since the many-body gap remains closed, the Chern
number is not well defined, namely, not quantized, as if the
system were in a metallic state in the sense of band theory. But
here it is a correlated insulator with an emergent charge gap
due to the interactions. It still remains valid to define the spin
Chern number using the summation of the Berry curvature
over the filled mixed states in the Brillouin zone. Thus, we see
a continuous change of spin Chern number for U ′ increasing
from 2 to 6. The degenerate singly occupied spin-triplet states
(at each k) are unstable against spontaneous symmetry break-
ing towards ferromagnetism at zero temperature, while the
QSH state is paramagnetic. Thus, by counting the number of k
points in which the triplet state is the ground state, we obtain
the spontaneous magnetization m. As shown in Fig. 7(d), it
turns on at U ′ = 2 and subsequently increases until U ′ = 6 at
which point it saturates. This phase transition is continuous
according to the evolution of the magnetization. The solvable
HK model provides a clear example at half-filling to elucidate
how a TPT between a topological and trivial insulator obtains
without closing the single-particle gap. The HK model at
quarter-filling with a nonzero λv can exhibit strange topology,
where spin-up particles occupy one half of the Brillouin zone
and spin-down particles the other half.
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IV. DISCUSSION

Although the trivial insulating states differ in the Hub-
bard (antiferromagnet) and HK (ferromagnet) models, both
interactions containing Mottness show a TPT between a topo-
logical and trivial insulator without closing the single-particle
gap for the half-filled interacting KM model. This indicates
the generality of this emergent phenomenon as a direct cause
of topological Mottness. Sufficiently strong interactions (U >

�0 and U > W ) are needed to observe this in experiments.
The transition between QSH and trivial band insulator in
AB-stacked MoTe2/WSe2 moiré heterobilayers at ν = 2 [8]
is essentially the noninteracting transition as in Fig. 2(a) and
hence the charge gap closes and reopens when the topology
changes. At ν = 1 of the same material [8], corresponding
to 1/4 filling of our model, a topological phase transition
between QAH and trivial Mott insulators is observed without
a single-particle gap-closing. However, this phenomenon is
likely to not be general, but specific to this material because a
similar transition has been observed in ν = 1 twisted bilayer
MoTe2 [10,36] with a closing of the single-particle gap. In
our DCA simulation, depending on the Hubbard interaction
strength, the compressibility plots at 1/4 filling support both
gap-not-closing and gap-closing topological phase transitions,
as is observed differently in these two materials. Conse-
quently, which scenario wins is likely to be controlled by the
details of the interaction strength and hence the flatness of the
bands. Nonetheless, our work here offers examples of both
scenarios and represents a platform to understand the range of
experimental results.

We also emphasize that the gap-not-closing TPTs in the
KM-Hubbard and KM-HK models occur in the absence of
any external symmetry-breaking fields. For all values of the
interaction strength and tuning parameters, the symmetries of
the Hamiltonian do not change. Nevertheless, the TPTs with
no single-particle gap closing in our models are accompanied
by the onset of spontaneous symmetry breaking in the ground
state. The gapless Goldstone modes associated with the spon-
taneous symmetry breaking emerge via the closure of the
many-body energy gap, and ensure that the TPT occurs when
the many-body gap closes. Our work thus gives a completely
microscopic picture of correlation-driven TPTs in electronic
systems beyond mean-field theory, without the need to intro-
duce explicit symmetry-breaking fields. Our findings are also
relevant to the recent advancement in the field of interacting
topological quantum chemistry [37].

ACKNOWLEDGMENTS

We thank Kai Sun, Edwin W. Huang, Kin Fai Mak, Yi-
hang Zeng, and Charlie Kane for useful discussions. This
work was supported by the Center for Quantum Sensing and
Quantum Materials, a DOE Energy Frontier Research Center,
Grant No. DE-SC0021238 (P.M., B.B., and P.W.P.). P.W.P.
also acknowledges Grant No. NSF DMR-2111379 for par-
tial funding of the HK work which led to these results. The
analytical work of B.B. on orbital HK models was partially
supported by the Alfred P Sloan foundation and the Na-
tional Science Foundation under Grant No. DMR-1945058.
The contributions of T.A.M. to the DCA calculations were

FIG. 8. The uniform spin susceptibility is plotted as a function
of magnetic flux and density for (a) U/t = 8, β = 4/t, λv/t = 0.2;
(b) U/t = 8, β = 4/t, λv/t = 1; (c) U/t = 3, β = 8/t, λv/t = 0.2;
and (d) U/t = 3, β = 8/t, λv/t = 1. The other parameters are t ′/t =
0.3, ψ = 0.81. The panels are in one-to-one correspondence with
those in Fig. 3.

supported by the U.S. Department of Energy, Office of
Science, Basic Energy Sciences, Materials Sciences, and
Engineering Division. The DQMC calculations used the
Advanced Cyberinfrastructure Coordination Ecosystem: Ser-
vices & Support (ACCESS) Expanse supercomputer through
the research allocation TG-PHY220042, which is supported
by National Science Foundation Grant No. ACI-1548562
[38]. The DCA calculations were supported through the
INCITE program and used resources of the Oak Ridge
Leadership Computing Facility, which is a DOE Office of
Science User Facility supported under Contract No. DE-
AC05-00OR22725.

APPENDIX A: SPIN SUSCEPTIBLITY
AT QUARTER-FILLING

In this section, we present the uniform spin susceptibility
χs = (1/N )

∑
i, j〈Sz

i Sz
j〉 for the interaction-driven insulating

states at quarter-filling (〈n〉 = 1) in Fig. 8. The panels in
Fig. 8 correspond to those in Fig. 3, respectively. From Fig. 8,
we observe a peak in the spin susceptibility for the quarter-
filling state at zero field in all four parameter sets, although
the topological cases [Figs. 8(a) and 8(c)] have a slightly
higher χs.

APPENDIX B: CALCULATION OF PHASE
BOUNDARY AT HALF-FILLING FOR THE EXTENDED

ORBITAL HK MODEL

In this section, we present the details of the analytical
calculation to obtain the phase boundary in Fig. 3 of the main
text. From plotting the many-body spectrum at different U
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and V , we notice that the first and last band touching between
the lowest two bands always happens at the high symmetry
points: �, M, and K (K ′). Thus, we can obtain the phase
boundaries by working out the conditions for band touching
at those points.

Let’s rewrite the Hamiltonian in momentum space

H = t
∑
kσ

g0(k)c†
Akσ cBkσ + H.c.

+ it ′ ∑
αkσ

ασg1(k)c†
αkσ cαkσ + H.c. − μ

∑
αkσ

nαkσ

+ U
∑
αk

nαk↑nαk↓ + V
∑
kσ

nAkσ nBkσ̄ . (B1)

At half-filling, namely, the N = 2 sector, there are six states.
We work with the following ordered basis (ignoring k index):

|11〉 = c†
A↑c†

B↑|0〉, |11̄〉 = c†
A↓c†

B↓|0〉,

|10〉 = 1√
2

(c†
A↑c†

B↓ + c†
A↓c†

B↑)|0〉,

|a〉 = i√
2

(c†
A↑c†

A↓ + c†
B↑c†

B↓)|0〉, (B2)

|b〉 = 1√
2

(c†
B↑c†

B↓ − c†
A↑c†

A↓)|0〉,

|c〉 = 1√
2

(c†
A↑c†

B↓ − c†
A↓c†

B↑)|0〉.

The three states {|11〉, |11̄〉, |10〉} have total spin S = 1, while
the other three states {|a〉, |b〉, |c〉} are spin singlet states with
total spin S = 0. Now we write the Hamiltonian in this basis,
denote as H2:

H2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 V 0 0 2dz

0 0 0 U 0 2idx

0 0 0 0 U 2idy

0 0 2dz −2idx −2idy V

⎞
⎟⎟⎟⎟⎟⎟⎠

− 2μ, (B3)

where dx = Re(g0), dy = −Im(g0), dz = −2Im(g1) (all are
functions of k). The term −2μ can be dropped for the cal-
culation of band touching as it shifts all bands equally. From
Eq. (B3), the relevant matrix dimension is 4 × 4.

When k = � = (0, 0), then dx = 3, dy = 0, dz = 0. The
4 × 4 matrix becomes

H ′
2(�) =

⎛
⎜⎜⎝

V 0 0 0
0 U 0 6i
0 0 U 0
0 −6i 0 V

⎞
⎟⎟⎠. (B4)

There are two eigenvalues U and V by observation. Band
overlap starts to happen when the lowest energy of the
above matrix becomes zero, the same as the first two spin-
triplet states. Plugging that into the eigenvalue equation (U −
x)(V − x) − 36 = 0, we obtain the condition UV = 36.

When k = K = (2π/3, 2π/(3
√

3)), then dx = 0, dy =
0, dz = −3

√
3t ′. The 4 × 4 matrix becomes

H ′
2(K ) =

⎛
⎜⎜⎝

V 0 0 −6
√

3t ′
0 U 0 0
0 0 U 0

−6
√

3t ′ 0 0 V

⎞
⎟⎟⎠. (B5)

Similarly, a two-fold degenerate state with energy U is ob-
tained. Band overlap starts to happen when the lowest energy
of the above matrix becomes zero, the same as the first two
spin-triplet states. Plugging that into the eigenvalue equa-
tion (V − x)2 − (6

√
3t ′)2 = 0, we obtain the condition V =

6
√

3t ′. When k = K ′ = (0, 4π/(3
√

3)), dx = 0, dy = 0, dz =
3
√

3t ′. Therefore, the band-crossing condition is the same, as
expected from the inversion symmetry of the model.

When k = M = (π/3, π/
√

3), dx = 1/2, dy =√
3/2, dz = 0. The 4 × 4 matrix becomes

H ′
2(M ) =

⎛
⎜⎜⎝

V 0 0 0
0 U 0 i
0 0 U

√
3i

0 −i −√
3i V

⎞
⎟⎟⎠. (B6)

The eigenvalue equation for the lower 3 × 3 matrix is (U −
x)2(V − x) − 4(U − x) = 0. To obtain a solution x = 0, we
need the condition UV = 4. In summary, we obtain all three
phase boundaries for the phase diagram through analytical
calculation.

APPENDIX C: CALULATION OF SPIN SUSCEPTIBILITY
AT HALF-FILLING

1. Hamiltonian

The Hamiltonian is

H = t
∑
kσ

g(k)c†
Akσ cBkσ + iλ

∑
αkσ

σαg1(k)nαkσ

− μ
∑
αkσ

nαkσ + U
∑
αk

nαk↑nαk↓ + V
∑
kσ

nAkσ nBkσ̄ ,

(C1)

where α = 1 for A sublattice and −1 for B sublattice and

nαkσ = c†
αkσ cαkσ . (C2)

In the case U = V , it becomes particularly simple as

H =
∑
γ kσ

(εγ k − μ)nγ kσ

+ U
∑

k

(n+k↑ + n−k↑)(n+k↓ + n−k↓) − h

2

∑
γ kσ

σnγ kσ ,

(C3)

where γ = ± is the band index and we add a small Zeeman
field which would be sent to 0 at the end.

2. Partition function at half-filling

With Eq. (C3), we can write down the partition function as

Z =
∏

k

Zk. (C4)
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For each k, we have

Zk = Z0k + Z1k + Z2k + Z3k + Z4k, (C5)

where the number in subscript tells how many states are
occupied at a given k. First of all, Z0k = 1 and Z4k =
exp[−β(4U − 4μ)].

The others are

Z1k =
∑
γ σ

exp

[
−β

(
εγ k − μ − hσ

2

)]
, (C6)

Z2k = 2 exp[−β(U − 2μ)] +
∑

σ

exp[−β(−2μ − hσ )]

+
∑

γ

exp[−β(2εγ k + U − 2μ)]. (C7)

Note that ε+k = −ε−k.

Z3k =
∑
γ σ

exp

[
−β

(
εγ kσ + 2U − 3μ − hσ

2

)]
. (C8)

For half-filling, μ = U , then Z0k = Z4k = 1 and Z1k = Z3k =∑
γ σ exp[−β(εγ k − U − hσ

2 )]. Therefore,

Zk = 2 + 2
∑
γ σ

exp

[
−β

(
εγ k − U − hσ

2

)]
+ 2 exp(βU )

+
∑

σ

exp[β(2U + hσ )] +
∑

γ

exp[−β(2εγ k − U )].

(C9)

3. Magnetization and magnetic susceptibility at half-filling

With the partition function, we can calculate the magneti-
zation as

〈m〉 = 1

N

∑
k

〈mk〉, (C10)

〈mk〉 = 1

2

∑
γ

(〈nγ k↑〉 − 〈nγ k↓〉) = 1

β

∂ ln Z

∂h
= 1

Zk

⎛
⎝∑

γ σ

σ exp

[
β(−εγ k + U + hσ

2

)⎤
⎦ +

∑
σ

σ exp[β(2U + hσ )]). (C11)

Due to the factor of σ , 〈mk〉 → 0 if h → 0. The magnetic susceptibility is

χs = d〈m〉
dh

∣∣∣∣∣
h→0

= 1

N

∑
k

d〈mk〉
dh

∣∣∣∣∣
h→0

= 1

N

∑
k

χs,k. (C12)

For a certain k,

χs,k = β

Zk
(exp[β(−ε+k + U )] + exp[β(−ε−k + U )] + 2 exp[2βU ]) = β

Zk
exp(βU )(exp[−βε+k] + exp[βε+k] + 2 exp[βU ])

= β exp(βU )(exp[−βε+k] + exp[βε+k] + 2 exp[βU ])

2 + 2
∑

γ σ exp[−β(εγ k − U )] + 2 exp(βU ) + 2 exp(2βU ) + ∑
γ exp[−β(2εγ k − U )]

. (C13)

Here we use ε+k = −ε−k. With ε+k > 0 in mind, taking
the zero temperature limit T → 0 or β → ∞, we have

χs,k
∣∣
β→∞ = β exp(βU )(exp(βε+k ) + 2 exp[βU ])

2 exp(2βU ) + exp[β(2ε+k + U )]
. (C14)

There are three situations: U < ε+k, ε+k < U < 2ε+k and
U > 2ε+k.

For U < ε+k,

χs,k|β→∞ = β exp(βU ) exp(βε+k )

exp[β(2ε+k + U )]
(C15)

= β exp(−βε+k ) → 0. (C16)

For ε+k < U < 2ε+k,

χs,k|β→∞ = 2β exp(2βU )

exp[β(2ε+k + U )]
(C17)

= 2β exp[β(U − 2ε+k )] → 0. (C18)

For U > 2ε+k,

χs,k|β→∞ = 2β exp(2βU )

2 exp(2βU )
= β. (C19)

To summarize, approaching zero temperature, if U < 2ε+k,
χs,k → 0 and if U > 2ε+k, χs,k → β. Since 1 < ε+k < 3
(2 < 2ε+k < 6) over the Brillouin zone, as shown in the Fig. 1
of the main text, then χs → 0 for U < 2; χs → pβ for 2 <

U < 6 where p is the proportion of the Brillouin zone with
2ε+k < U ; χs → β for U > 6.

The susceptibility calculated above is for magnetization
along the z direction, namely, χsz,k. We also calculate the
susceptibility for magnetization along the x direction:

χsx,k = β

4

〈( ∑
γ ,σ

c†
γ kσ

cγ kσ̄

)( ∑
γ ′,σ ′

c†
γ ′kσ ′cγ ′kσ̄ ′

)〉

= β

Zk
(exp[β(−ε+k + U )]

+ exp[β(−ε−k + U )] + exp(2βU ) + exp(βU )).

(C20)

Taking the zero temperature limit β → ∞, exp(2βU ) �
exp(βU ). Then χsx,k → χsz,k/2.
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