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The nature of the insulating phases of the SU(N)-generalization of the one-dimensional Kondo lattice model
is investigated by means of nonperturbative approaches. By extending the Lieb-Schultz-Mattis (LSM) argument
to multicomponent fermion systems with translation and global SU(N) symmetries, we derive two indices which
depend on the filling and the “SU(N)-spin” (representation) of the local moments. These indices strongly
constrain possible insulating phases; for instance, when the local moments transform in the N-dimensional
(defining) representation of SU(N), a featureless Kondo insulator is possible only at filling f = 1 − 1/N . To
obtain further insight into the insulating phases suggested by the LSM argument, we derive low-energy effective
theories by adding an antiferromagnetic Heisenberg exchange interaction among the local moments [the SU(N)
Kondo-Heisenberg model]. A conjectured global phase diagram of the SU(N) Kondo lattice model as a function
of the filling and the Kondo coupling is then obtained by a combination of different analytical approaches.

DOI: 10.1103/PhysRevB.110.075104

I. INTRODUCTION

Heavy-fermion materials have attracted much interest over
the years as an example of strongly correlated systems which
harbor novel phases of matter and quantum phase transitions
[1,2]. In these systems, the interplay between localized mag-
netic moments from immobile d or f electrons and itinerant
conduction electrons is usually described by the Kondo lattice
model (KLM) [3,4]. In such a model, a lattice of local-
ized magnetic moments interacts with tight-binding electrons
through an antiferromagnetic exchange interaction, the Kondo
coupling JK. The KLM represents the minimal model to inves-
tigate the competition between magnetic ordering due to the
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction and the
Kondo screening [1,3,4]. At small JK, the long-range RKKY
interaction among the localized spins, mediated by conduction
electrons, is expected to produce an antiferromagnetic ordered
state, whereas for large JK a paramagnetic insulating phase
emerges. The latter is the Kondo insulating phase which is best
visualized as a collection of spin-singlet states made between
the localized spins and conduction electrons.

More exotic Kondo insulators have been discussed recently
through the interplay between correlation and spin-orbit cou-
pling with the stabilization of a topological Kondo insulating
phase [5,6]. The strong hybridization between spin-orbit cou-
pled localized f electrons and itinerant d-orbital electrons
leads to the formation of topological insulating phase with
protected metallic Dirac surface states. In this respect, the
Kondo insulator SmB6 compound has been predicted to host
a three-dimensional topological insulator state with metallic
protected Dirac surface states at the X points on the (001)
surface (see, e.g., Refs. [6,7] for a review). Other possible
candidates of topological Kondo insulators are YbB12 and

FeSi compounds [8,9]. Another mecanism to stabilize new
exotic Kondo insulating phases is to study the generalization
of the KLM where the lattice localized spins is replaced by a
two-dimensional Z2 quantum spin liquid such as the Kitaev
model on the honeycomb lattice [10] or its variants [11,12].
The resulting Kondo-Kitaev models describe various novel
quantum phases of matter as topological superconductivity,
odd-frequency pair-density wave, and a Kondo phase with
order fractionalization [13–18].

Here, we will explore another route to stabilize unconven-
tional Kondo insulating phases by enlarging the SU(2) spin
symmetry of the Kondo interaction to SU(N). This SU(N)
generalization of the KLM has been originally introduced in
the early eighties mainly as a mathematical convenience by
furnishing a small parameter 1/N which facilitates a con-
trolled large-N expansion about the limit N → ∞ [19–22].
There are now strong physical motivations to study the
SU(N)-symmetric KLM. First of all, ultracold atomic gases
of alkaline-earth and ytterbium fermions make it possible to
simulate SU(N) Kondo physics in a very controlled fashion
[23]. These atoms have a long-lived singlet ground state g
(1S0) and a metastable triplet excited state e (3P0) in which
the electronic state is decoupled almost perfectly from the nu-
clear one thereby leading to nuclear-spin-independent atomic
collisions. This leads then to the experimental realization of
fermions with an SU(N) symmetry where N � 2I + 1 (I be-
ing the nuclear spin) (see, e.g., Refs. [24,25] for reviews).
Several proposals to realize the SU(N) KLM exploit a state-
dependent optical lattice to selectively localize the e atoms
whereas the g atoms remain mobile thereby playing the role
of the conduction fermions [23,26–28]. Some experimental
investigations have been made to explore this heavy-fermion
physics with two-orbital alkaline-earth fermions [29,30].
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A second more recent motivation to study SU(N) heavy
fermions problems is the work of Song and Bernevig [31]
which describes the physics of twisted bilayer graphene as a
topological heavy fermion problem with the hybridization of
flat band f electrons with a topological band of conduction
electrons. This leads to the prediction that the magic-angle
twisted bilayer graphene could be described as a SU(8)-
or SU(4)-symmetric KLM depending on the energy scale
[32–36].

In this paper, we consider the SU(N) generalization of
the SU(2) KLM in the simplest situation, namely in one di-
mension to determine its insulating phases when N > 2. The
lattice Hamiltonian of the SU(N)-KLM is defined as follows:

HKLM = Hhop + HK,

Hhop := −t
∑

i

N∑
α=1

(c†
α, icα, i+1 + H.c.), (1)

HK := JK

∑
i

⎛⎝N2−1∑
A=1

ŝA
i SA

i

⎞⎠,

where the model consists of two parts which describe, respec-
tively, the hopping (Hhop) of the N-component lattice fermion
cα, i (α = 1, . . . , N) and the Kondo interaction (HK) between
the electronic spin density

ŝA
i =

N∑
α,β=1

c†
α, iT

A
αβcβ, i (2)

[with T A being the SU(N) generators in the defining rep-
resentation that are normalized as: Tr(T AT B) = δAB/2] and
the localized SU(N) spin moments SA

i . Although we can in
principle think of any irreducible representations [i.e., SU(N)
“spins”] for SA

i , we mainly consider for simplicity the N-
dimensional defining representation N [i.e., S = 1/2 in SU(2);
a physical explanation of the N representation is given in
Appendix A 1]. Here we do not specify the origin of α (=
1, . . . , N ) that labels different species of fermions; it may
come from N = 2I + 1 different nuclear-spin states when cα

describes fermions of alkaline-earth-like atoms [23,37], or
from spin-orbit-coupled J multiplets (N = 2J + 1) in heavy-
fermion systems [1,38].

The antiferromagnetic (JH > 0) Heisenberg exchange in-
teraction among the localized spins could also be added to
define the SU(N)-Kondo-Heisenberg model (KHM):

HKHM = Hhop + HK + HH

= −t
∑

i

N∑
α=1

(c†
α, icα, i+1 + H.c.)

+ JK

∑
i

⎛⎝N2−1∑
A=1

ŝA
i SA

i

⎞⎠+ JH

∑
i

⎛⎝N2−1∑
A=1

SA
i SA

i+1

⎞⎠.

(3)

These two models conserve (N − 1) quantities associated to
the global SU(N)-symmetry [generalization of the total Sz in

FIG. 1. A conjectured phase diagram of SU(N) Kondo lattice
model (1) in 1D derived from different analytical approaches.
Translation-invariant insulators are possible only at commensurate
fillings f = m/N (m = 1, . . . , N − 1), whose properties strongly de-
pend on f and (the parity of) N . The ground state at f = 1 − 1/N
is a featureless full-gap Kondo insulator when JK > 0, while an
inversion-breaking (chiral) SPT phase appears for JK < 0. The in-
sulating phase at f = 1/N (JK < 0) exhibits very different behaviors
depending on the parity of N which can be captured by an effective
nonlinear sigma model on the flag manifold. The insulator on the
JK > 0 side has a spin gap and breaks translation, regardless of
the parity of N . The ferromagnetic phases (highlighted in magenta)
extend to the lower-density (when JK < 0) or higher-density (JK > 0)
side of these insulating phases. The descriptions for f = 1/2 (N-
even) are valid for N � 6.

SU(2)] as well as the total electron number

L∑
i=1

N∑
α=1

n̂α,i (n̂α,i := c†
α, icα, i ).

From this, we define filling f (0 � f � 1) as

f := 1

NL

L∑
i=1

N∑
α=1

n̂α,i. (4)

One of the important differences from the usual N = 2 case is
that the model (1) or (3) does not possess the particle-hole
symmetry1 except when the local moments SA

i are in the
self-conjugate representations [39]. This is clearly seen in the
asymmetry of Fig. 1 with respect to the half-filling f = 1/2.

The zero-temperature phase diagram of the one-
dimensional (1D) KLM or KHM is well understood in
the N = 2 case (see, e.g., Refs. [40–42] for reviews of the 1D
KLM). On top of dominant ferromagnetic or paramagnetic
metallic phases, there are several insulating phases depending
on the filling and the sign of JK. At half-filling f = 1/2,
an insulating Kondo singlet phase is stabilized for an

1The particle-hole transformation takes the model (1) at the filling
f to another model with the local moments in the conjugate repre-
sentation at 1 − f .
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TABLE I. Properties of insulating phases of the SU(N) Kondo lattice model (1) or the SU(N) Kondo-Heisenberg Hamiltonian (3) predicted
by the LSM argument (GSD and gcd stand for the ground-state degeneracy and the greatest common divisor, respectively). For filling f =
1 − 1/N , no useful constraint is obtained from the LSM argument about the nature of the insulators that spontaneously break translation
symmetry (SSB insulators).

Filling ( f ) Featureless insulator SSB insulator

Generic Forbidden Forbidden
Rational ( f = p/q �= m/N) Forbidden Possible (C0S0/C0Sn)
Commensurate m/N (m �= 1, N − 1) Spin gapless (C0Sn) GSD = N/gcd(N, m + 1) (for C0S0)
1 − 1/N Full-gap insulator (C0S0) possible –
1/N Spin gapless (C0Sn) GSD = N/gcd(N, 2) (for C0S0)
1/2 (half-filling) N = even: spin-gapless (C0Sn) Full-gap insulator (C0S0) must break translation:

N = odd: forbidden GSD = 2N (N = odd), N (N = 4Z), N/2 (N = 4Z + 2)

antiferromagnetic Kondo coupling (JK > 0) in both models
where each localized spins binds with a conduction electron
into a spin singlet [40,41,43–47]. For a ferromagnetic
Kondo interaction (JK < 0), the insulating ground state
is replaced by a symmetry-protected topological (SPT)
phase which is equivalent to the Haldane phase of the
spin-1 antiferromagnetic Heisenberg spin chain [45,48]. At
quarter-filling f = 1/4, the insulating phase is dimerized
exhibiting the coexistence of local-spin dimerization and
Peierls-like ordering for the conduction electrons [49–51],
whereas, at filling f = 3/8, a charge-density wave (CDW) is
stabilized [52].

In stark contrast to N = 2, very little is known for the
global phase diagram of the KLM (1) or KHM (3) with N > 2
when the localized spin operators SA

i on the ith site trans-
forms in the N of the SU(N) group. A recent strong-coupling
analysis of the SU(N) KLM in Ref. [39] reveals a rich phase
diagram depending on the electronic filling f when |JK| is suf-
ficiently large. A ferromagnetic metallic phase emerges in the
KLM in the low-density (respectively, high-density) regime
when JK < 0 (respectively, JK > 0). Moreover, two insulating
phases were identified by means of the strong-coupling ex-
pansion. The first one, at filling f = 1 − 1/N with sufficiently
strong antiferromagnetic JK, is a fully gapped SU(N) Kondo
singlet phase which is a generalization of the similar one
found at f = 1/2 in the ordinary (N = 2) KLM. In this phase,
N − 1 conduction electrons form a site-centered SU(N) spin-
singlet with the localized magnetic moment on the same site.
The second insulating phase is found at another filling f =
1/N and for a sufficiently strong ferromagnetic JK. When N is
odd, the spin degrees of freedom are gapless whereas they are
fully gapped in the even-N case [39]. For other commensurate
fillings, including the half-filled case ( f = 1/2), no conclu-
sion can be derived from the strong-coupling approach.

In this paper, we determine the nature of the insulating
phases of the SU(N) KLM (1) and SU(N) KHM (3) for gen-
eral commensurate filling f = m/N (m = 1, . . . , N − 1) by
means of nonperturbative approaches. Symmetries together
with the filling fraction impose strong nonperturbative con-
straints on the possible phases realized in a microscopic lattice
model as emphasized by the Lieb-Schultz-Mattis (LSM)
theorem and its generalization [53–58]. One of the impor-
tant messages from the LSM theorem is the impossibility
in one dimension to get featureless insulating phase for

noninteger fillings in quantum systems with translation in-
variance and global U(1) symmetry, enforcing gapless or
gapped symmetry-broken ground states as the only possible
infrared (IR) behaviors [59]. We extend the LSM argument to
fermionic systems with translation and global SU(N) symme-
tries, i.e., the SU(N) KLM and its variant SU(N) KHM. We
find that fully gapped translationally invariant insulators are
possible only for a filling f = 1 − 1/N . For other commen-
surate fillings, a variety of different insulating phases with
gapless spin degrees of freedom or multiple ground states
with broken translation symmetry is predicted from the LSM
argument depending on N and the filling f as summarized
in Table I. In the case of the KHM, a low-energy approach
can be derived by exploiting the existence of a spin-exchange
JH �= 0 between the SU(N) localized spins to derive a con-
tinuum description. The interplay between the global internal
SU(N) and lattice translation symmetries in this field theory
leads to a nonperturbative index that enables us to constrain
possible low-energy field theories via the ’t Hooft anomaly
matching condition [60]. To be specific, we identify an index
I1 = f + 1/N (mod 1) which excludes, e.g., featureless spin-
gapped insulator when I1 is not an integer, in full agreement
with the LSM approach.

Being independent of the details of the models, the LSM
argument does not tell much about the actual phase structures
and the properties of the ground states. To go further, we
carry out careful low-energy field-theory analyses guided by
the ’t Hooft anomaly matching condition to identify various
insulating phases in the weak-coupling regions of the SU(N)
KHM as shown in Table II. The principal phases include the
followings (see also Fig. 1).

At filling f = 1 − 1/N , we find two fully gapped trans-
lationally symmetric insulators, i.e., (i) the SU(N)-singlet
Kondo insulator for JK > 0 [see Fig. 3(a)] and (ii) the SPT
phase that spontaneously breaks inversion symmetry (dubbed
a chiral SPT phase) for JK < 0 [Fig. 3(b)]. As the Kondo
insulator appears quite naturally also in the strong-coupling
region, we expect that it persists for all JK (> 0). In contrast,
as the Kondo coupling alone does not stabilize any particular
SU(N) spin at each site when JK is strongly negative, presum-
ably the chiral SPT phase might exist only at weak couplings.

At filling f = 1/N , however, the ground state depends not
only on the sign of JK but also on the parity of N . When N
is even, the ground state is a full-gap spin-singlet insulator

075104-3



PHILIPPE LECHEMINANT AND KEISUKE TOTSUKA PHYSICAL REVIEW B 110, 075104 (2024)

TABLE II. Insulating phases of the SU(N) Kondo-Heisenberg Hamiltonian (3) for commensurate fillings f = m/N (m = 1, . . . , N − 1).
Featureless insulators [SU(N) Kondo insulator and chiral SPT] occur only at f = 1 − 1/N as is predicted by the LSM argument.

Filling ( f ) JK > 0 JK < 0

1/N N = even: N/2-fold degenerate,
full-gap (Fig. 4)

N = even: N/2-fold degenerate,
full-gap (Fig. 5)

N = odd: N-fold degenerate, full-gap N = odd: spin gapless

m/N (m �= 1, N − 1) Full-gap with composite-CDW Spin gapless [C0S2(N − 1)]

1 − 1/N Ta0 -inv. full-gap SU(N) Kondo singlet
insulator (Fig. 3)

Parity-broken (Ta0 -inv.) full-gap
chiral SPT (Fig. 3)

1/2 (half-filling) N/2 = odd: N/2-fold degenerate
Full-gap composite-CDW Spin gapless [C0S2(N − 1)]

(only when N
even N > 4)

N/2 = even: N-fold degenerate

with broken translation symmetry, whose structure differs
according to the sign of JK (see Figs. 4 and 5). When N is
odd, the system is insulating, regardless of the sign of JK,
whereas the nature is very different for JK > 0 and JK < 0;
when JK is ferromagnetic, the spin sector remains gapless (the
same universality class as the integrable SU(N) Heisenberg
spin chain [61]), while we find a fully gapped phase with co-
existing valence-bond-solid and charge-density-wave (CDW)
orders when JK > 0.

For generic commensurate fillings f = m/N, m �= 1, N −
1, the insulating phases can be spin-gapless (when JK < 0;
as in the f = 1/N case) or fully gapped (JK > 0). In the latter
case, the insulating phase spontaneously breaks the translation
symmetry leading to ground-state degeneracy which depends
on N (see Table I). There, a long-range composite-CDW is
stabilized which is associated to the hybridization between the
itinerant electron and a spin-polaron bound state formed by
the electrons and the localized spin moments. The character-
istic momentum of the order parameter takes a renormalized
value 2k∗

F = 2mπ
Na0

+ 2π
Na0

since the localized-spin fluctuations

(with momentum 2π
Na0

) now participate in the formation of this
composite object. In the half-filled ( f = 1/2) case and even
N (N � 6), the ground-state degeneracy of the fully gapped
composite CDW phase for JK > 0 depends on the parity of
N/2. When N/2 is odd (respectively, even), the ground-state
degeneracy is N/2 (respectively, N). For a ferromagnetic
Kondo coupling (JK < 0), the insulating phase is spin gapless
with 2(N − 1) gapless modes. For N = 4, we do not have any
decisive conclusion for the ground state so far.

For the other rational fillings f = p/q [p and q ( �= N ) are
coprime integers], the system is either a metal or an insula-
tor with q/gcd(N, q) [with gcd(N, q) denoting the greatest
common divisor between N and q] degenerate ground states
associated with spontaneously broken translation symmetry.
Note that when this happens, opening of a charge gap and
breaking of translation symmetry must occur simultaneously.

Combining the results obtained in this paper and those
from the strong-coupling analyses [39], we conjecture the
global phase diagram of the SU(N) KLM (1) and KHM (3)
shown in Fig. 1. Of course, the detailed structure of the phase
diagram (precise locations of the boundaries, etc.) will be dif-
ferent for the models (1) and (3). However, since most of our
arguments based on nonperturbative indices rely only on the
kinematical information (e.g., the type of SU(N) moments,

fermion filling, etc.) and are independent of the details of
the Hamiltonian, we believe that the proposed phase diagram
(Fig. 1) correctly captures the structure common to the two
models.

The rest of the paper is structured as follows. In Sec. II,
we present our LSM argument on the lattice which gives the
constraint to get a translational-invariant featureless insulating
phase for the SU(N) KLM and SU(N) KHM. Its field-theory
interpretation as an anomaly matching mecanism is investi-
gated in Sec. III for the SU(N) KHM. In Sec. IV, we analyze
the weak-coupling approach to the insulating phases of the
latter model to find explicit realization of the possible phases
predicted by the LSM theorem. Finally, a summary of the
main results is given in Sec. V together with several technical
Appendices.

II. LIEB-SCHULTZ-MATTIS ARGUMENT

In this section, the LSM approach is applied to the SU(N)
KLM (1) and KHM (3) to derive nonperturbative constraints
on the properties of the insulating phases these models host
by exploiting the SU(N) and translational symmetries. See
Ref. [62] for a similar approach (i.e., flux insertion) to the
Fermi-volume problem of SU(N) fermion systems.

A. Constructing twist operators

1. Fermion twist

As twist operations acting on the itinerant fermions (c†
α, j)

and the local moments commute with each other, we construct
them separately, and then glue them in such a way that they
in total create finite-energy excitations. Let us begin with the
LSM twist Û (f)

α for the itinerant fermions. For the fermion part,
we require that the transformed fermions preserve periodic
boundary condition: Û (f)

α
†c†

β, j+LÛ (f)
α = Û (f)

α
†c†

β, jÛ (f)
α . Below,

we take

Û (f)
α := exp

⎧⎨⎩i
2π

L

L∑
j=1

j n̂α, j

⎫⎬⎭ (α = 1, . . . , N ), (5)

which transform the fermions as

Û (f)
α

†c†
β, j Û (f)

α = e−i 2π
L δαβ jc†

β, j (6)
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as the set of “elementary” twists and consider generic twists
of the form (Û (f)

1 )m1 · · · (Û (f)
N )mN specified by the set of integers

(m1, . . . , mN ) with negative mα (< 0) being understood as
(Û (f)

α )mα := (Û (f)†
α )|mα |.

Using Eq. (6), we see that the (nonhermitian) SU(N) “spin”
of the itinerant fermions Ŝμν

j := c†
μ, jcν, j (μ, ν = 1, . . . , N),

that are related to the usual hermitian generators ŜA as Ŝμν
j =

[SA]νμŜA
j + 1

N n̂ j , transform like

Û (f)
α

†Ŝμν
j Û (f)

α = exp

{
−i

2π

L
j(δαμ − δαν )

}
Ŝμν

j . (7)

Note that the diagonal generators Ŝμμ
j = n̂μ, j are invariant

under the twist as expected. By construction, the (second-
quantized) SU(N) spin Ŝμν

j automatically satisfies the peri-

odic boundary condition even after the twist: Û (f)
α

†Ŝμν
j+LÛ (f)

α =
Û (f)

α
†Ŝμν

j Û (f)
α .

2. Spin twist

Now let us consider twist operations for the localized spins.
As has been discussed in the context of SU(N) spin chains
in Ref. [54], the e2π iQα, j generator must commute with all the
SU(N) generators, i.e., e−2π iQα, jSμν

j e2π iQα, j = Sμν
j in order for

the periodic boundary condition Sμν
j+L = Sμν

j to be preserved
by the twist. Then, the Schur’s lemma dictates that e2π iQα, j

must be a scalar matrix for a fixed local SU(N) moment. The
simplest choice that gives the tightest constraint is

U (s)
α (θ (s)

α ) := exp

⎧⎨⎩i
θ (s)
α

L

L∑
j=1

j Qα, j

⎫⎬⎭ (α = 1, . . . , N ), (8)

where Qα, j is defined, in the N-dimensional defining repre-
sentation N, by

Qα, j := (1/N )1 − eα ([eα]mn = δmαδnα ),

Tr(Qα, j ) = 0. (9)

The angle θ (s)
α is an integer multiple of 2π and is to be fixed

later.
Since [

Qα, j,Sμν
j

] = −(δαμ − δαν )Sμν
j , (10)

the local spin operators transform like

U (s)
α

(
θ (s)
α

)†Sμν
j U (s)

α

(
θ (s)
α

) = exp

{
i
θ (S)
α

L
j(δαμ − δαν )

}
Sμν

j ,

(11)

which coincides with the twisted fermion spin (7) aside from
the minus sign in the exponent. From Eq. (11), it is obvious
that the transformed spins U (S)

α (θ (s)
α )

†Sμν
j U (S)

α (θ (s)
α ) satisfy the

periodic boundary condition as they should be.

B. Twist on Hamiltonian

To estimate the excitation energies, we first apply the ele-
mentary twist (5) to the hopping term2

Û (f)
α

†Hhop Û (f)
α − Hhop

= i
2π

L

L∑
j=1

[
h(hop)

j, j+1,
1

2
(n̂α, j+1 − n̂α, j )

]
+ O(L−1). (12)

The precise form of the O(L−1)-terms is given by

1

2
t

(
2π

L

)2 L∑
i=1

N∑
α=1

(c†
α, icα, i+1 + H.c.), (13)

which, by translational symmetry, is expected to be of the
order O(L−1). In deriving Eq. (12), we have used an identity

jn̂α, j + ( j + 1)n̂α, j+1

= ( j + 1
2

)
(n̂α, j+1 + n̂α, j ) − 1

2 (n̂α, j − n̂α, j+1)

and [h j, j+1
hop , (n̂α, j+1 + n̂α, j )] = 0. Note that, due to translation

invariance, the leading term in Eq. (12) is O(L0), in general.
The variation of the Heisenberg part HH due to the spin

twist Û (s)
α (θ (s)

α = 2πm(s) ) can be calculated similarly:

Û (s)
α (2πm(s) )† HH Û (s)

α (2πm(S)) − HH

= i
2π

L
m(s)

L∑
k=1

[
h(H)

k,k+1,
1

2
(Qk+1 − Qk )

]
+ O(L−1), (14)

where the integer m(s) has been introduced to take into account
the relative phase between the fermion and spin twists. At this
point, the integer m(s) seems arbitrary. However, as is shown in
Appendix B, it is fixed to m(s) = −1 by requiring that the LSM
twist should create O(L−1) excitations. Therefore, we are lead
to considering the following combination as the elementary
twist:

Ûα := Û (f)
α Û (s)

α (−2π ) = exp

⎧⎨⎩i
2π

L

L∑
j=1

j(n̂α, j − Qα, j )

⎫⎬⎭
(α = 1, . . . , N ),

(15)

which leaves the Kondo coupling invariant:

Ûα
†HK Ûα − HK = 0. (16)

Generic twists are given by the combinations of the form:

Û{mi} := (Û1)m1 · · · (ÛN )mN (17)

that are specified by the set of integers (m1, . . . , mN )
with a negative mα (< 0) being understood as (Ûα )mα :=
(Û†

α )|mα |.
Combining all the above results (12), (14), and (16), we

obtain the variation of the Kondo-Heisenberg Hamiltonian (3)

2In the summation of the last line, the term j = L is missing since
e−2π in̂α,L c†

α,Le2π in̂α,L = c†
α,L , etc.
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due to the elementary twist Ûα:

δαHKHM := Û†
αHKHM Ûα − HKHM

= i
2π

L

L∑
j=1

[
h(KHM)

j, j+1 ,
1

2
{(n̂α, j+1

− Qα, j+1) − (( j + 1) → j)}
]

+ O(L−1). (18)

The variation due to generic twists is given similarly.
When the ground state |g.s.〉 (with the energy Eg.s.)

of HKHM and the twisted state Ûα|g.s.〉 are orthogonal
〈g.s.|Ûα|g.s.〉 = 0, we expect that Ûα|g.s.〉 is made of excited
states. Let E (exc)

0 be the energy of the lowest state in the sector
to which Ûα|g.s.〉 belongs. Then, by the variational principle,
〈g.s.|δαHKHM|g.s.〉 gives an upper bound on the excitation gap
�αE :

�αE = E (exc)
0 − Eg.s.

� 〈g.s.|Û†
αHKHM Ûα|g.s.〉 − Eg.s. = 〈g.s.|δαHKHM|g.s.〉.

(19)

If |g.s.〉 is reflection symmetric, then we can expect that the
ground-state expectation value of the leading O(L0) term in
Eq. (18) vanishes and 〈g.s.|δαHKHM|g.s.〉 = O(L−1), which
means that the gap to the lowest excited state is bounded by
1/L. If we assume low-energy Luttinger-liquid description,
then we can explicitly give the expression of the energy in-
crease �αE which is proportional to 1/L (see Appendix D).
One way to tell if |g.s.〉 and Ûα|g.s.〉 are orthogonal to each
other or not is to calculate the crystal momentum carried by
the twisted state Ûα|g.s.〉. It is straightforward to generalize
the above to more general twists Û{mi}.

C. Momentum counting

The crystal momentum kα of the twisted state Û{mα}|g.s.〉
can be found by calculating the eigenvalue of the one-site
translation Ta0 (Ta0 SA

k T†
a0

= SA
k+1):

eikα Ûα|g.s.〉 = T†
a0
Ûα|g.s.〉

= T†
a0
ÛαTa0 T†

a0
|g.s.〉 = eik0 T†

a0
ÛαTa0 |g.s.〉,

(20)

where k0 is the ground-state momentum: T†
a0

|g.s.〉 = eik0 |g.s.〉.
Using the method used in, e.g., Ref. [54], we obtain the fol-
lowing result:

ei(kα−k0 ) = e−2π iQα,1 exp

⎧⎨⎩−i
2π

L

L∑
j=1

(n̂α, j − Qα, j )

⎫⎬⎭. (21)

As is shown in Ref. [54], the operator e−2π iQα,1 commuting
with all the SU(N) generators is a phase determined solely
by the “spin” of the local moments, i.e., e−2π iQα,1 = e−i 2π

N nyng

with nyng being the number of boxes in the Young diagram
specifying the local moments (nyng = 1 here). For further cal-
culations, it is convenient to represents the generators Qα, j of
the local moment in terms of fixed number (nyng) of fermions

d (s)†
α, j : Qα, j = nyng/N − n̂(s)

α, j (n̂(s)
α, j := d (s)†

α, j d (s)
α, j).

3 Then, the mo-
mentum shift in Eq. (21) reads

δkα := kα − k0 = −2π

L

L∑
j=1

(
n̂α, j + n̂(s)

α, j

)
, (22)

where the first and second terms act on the conduction elec-
trons and local moments, respectively. However, due to the
Kondo coupling,

∑
j n̂α, j and

∑
j Qα, j are not conserved sep-

arately, and it is convenient to move to a basis in which the
charge and SU(N) parts are separated.

The SU(N) symmetry of the Hamiltonian guarantees that
the N color-resolved total fermion numbers Nα are all con-
served (note that each local SU(N) moment can be regarded
as made of a single localized fermion 1 =∑N

α=1 n(s)
α, j ; see

Appendix A for how an SU(N) local moment is constructed
from fermions):

Nα :=
L∑

j=1

(
n̂α, j + n(s)

α, j

) =: nαL (α = 1, . . . , N ). (23a)

Instead, we may use the total fermion number N and the total
SU(N) weight �	tot:

N :=
N∑

α=1

Nα =
L∑

j=1

{
N∑

α=1

n̂α, j + 1

}
=: nL, (23b)

�	tot :=
N∑

α=1

Nα �μα =
L∑

j=1

N∑
α=1

(
n̂α, j + n(s)

α, j

)
�μα =: �λtotL,

(23c)

where �μα are the αth weights in the N-dimensional defining
representation ( ) and satisfy �μα· �μβ = (δαβ − 1/N )/2; the
conservation of N (23b) and �	tot (23c) imply Eq. (23a), and
vice versa. We solve (23b) and (23c) for nα to obtain

nα = n/N + 2�μα·�λtot = ( f + 1/N ) + 2�μα·�λtot. (24)

In SU(2), Eq. (24) expresses n↑ and n↓ in terms of the fermion
filling f and magnetization m = λtot/

√
2.

Now Eq. (24) enables us to rewrite the momentum shift
(21) in terms of the filling f and the SU(N) “magnetization”
�λtot as

δkα = −2π{( f + 1/N ) + 2�μα·�λtot}. (25)

It is straightforward to generalize the above to the case of
generic twists Û{mα}:

δk{mα} =
N∑

α=1

mαδkα

= −2π

{
( f + 1/N )M + 2�λtot·

(
N∑

α=1

mα �μα

)}
, (26)

3Physically, this seems quite reasonable. The d (s)
α fermion may cor-

respond to the f -electron (in the heavy-fermion setting) or an almost
immobile alkaline-earth-like fermion in the metastable excited state
when the models (1) and (3) are realized with ultracold gases.
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where we have introduced the average (M/N) and the zero-
mean (mα) parts of mα:

mα = M/N + mα (α = 1, . . . , N ),

M :=
N∑

α=1

mα,

N∑
α=1

mα = 0
(27)

(note
∑N

α=1 �μα = �0). Equation (26) is the central result of this
section. If δk{mα} �= 0 (mod 2π ), then we can use the varia-
tional argument in Sec. II B to show that there are low-lying
excitations with energies O(L−1).

Here we would like to stress that the momentum (26)
carried by low-energy excitations is determined by the “ef-
fective” filling feff := f + 1/N that includes contributions of
both the itinerant fermions ( f ) and the local moments (1/N),
and by the SU(N) magnetization density �λtot [i.e., the set of
the (N − 1) Cartan eigenvalues per site].

With M and mα defined in Eq. (27), generic twists Û{mα} in
Eq. (17) can be written as

Û{mα} = exp

⎧⎨⎩i
2π

L

L∑
j=1

j

[
M

N
n̂ j −

N∑
α=1

mα

(
Q̂α, j + Q(S)

α, j

)]⎫⎬⎭
= exp

⎧⎨⎩i
2π

L

L∑
j=1

j

[
M

N
n̂ j + 2

N∑
α=1

(mα �μα ) · �λ j

]⎫⎬⎭,

(28)

from which we see that twists with mα = 0 never change
the SU(N)-spin-dependent part (i.e., Û†

{mα}ŜμνÛ{mα} = Ŝμν ,

Û†
{mα}SμνÛ{mα} = Sμν), while those with at least one of mα is

nonzero create spin-charge entangled excitations, in general.
The simplest of such twists is Û(1,0,...,0) which will play an
important role in the next section. However, the spin-charge-
entangled appearance of Û(1,0,...,0) does not necessarily mean
that it creates excitations in both the spin and charge sec-
tors. In fact, as is discussed in Appendix D using low-energy
description, as far as spin-charge separation occurs at low en-
ergies, the spin-charge entangled twist Û(1,0,...,0) creates only
spin excitations in the charge-ordered insulators (e.g., Mott
and CDW states), while Û(1,...,1) never excites the charge-
ordered ground states.4 Therefore, in these cases, Û(1,0,...,0)

probes only the spin sector.

D. Predictions for low-energy physics

In this subsection, we use the results of the previous
subsections to predict the low-energy properties of the Kondo-
Heisenberg Hamiltonian HKHM for various filling fractions f .
Specifically, by searching for the values of f at which gapless
ground states are expected, we find where we can expect
(partially) gapped ground states. Also, to compare the results
with those of field-theory arguments given in the next section,

4This may be most easily seen in an extreme situation in which the
local fermion number n̂ j =∑α n̂α, j is constant all over the lattice.
In this case, the charge part exp{i 2π

L
M
N

∑L
j=1 jn̂ j} of (28) just adds a

phase, while the second Q-dependent part creates spin excitations.

we use a short-hand notation CmSn, that was introduced in
the context of fermionic ladder models in Ref. [63], which
means that there are m gapless branches in the charge (“C”)
sector and n in the SU(N) spin (“S”) sector (a ground state
with finite gaps to all excitations is denoted by C0S0). To
be specific, let us focus on the simplest case with the local
moments in the N-dimensional representation and assume
that the ground state is SU(N)-singlet, i.e., �λtot = �0. Then, the
momentum shift (26) due to Û{mα} depends only on the charge
part of the twist (the zero-mean part {mα} that acts on the spin
sector does not appear in the momentum shift of spin-singlet
ground states):

δk{mα} = −2π ( f + 1/N )M. (29)

Note that δk{mα} depends on {mα} only through the sum M =∑
α mα .

1. Possibility of unique full-gap insulator

We begin by examining the possibility of a unique
(i.e., nondegenerate) gapped translationally invariant ground
states. The tightest condition is obtained for, e.g., the
choice (m1, . . . , mN ) = (1, 0, . . . , 0) (M = 1) that generates
a charge-spin entangled twist:5

δk(1,0,...,0) = −2π ( f + 1/N ). (30)

From this, we introduce the first index:

I1 := f + 1/N (mod 1). (31)

When I1 /∈ Z, the LSM argument implies either (i) a gapless
ground state [as the twist (1, 0, . . . , 0) affects both charge
and spin, we do not care about which sector is gapless] or
(ii) multiple ground states with spontaneously broken trans-
lational symmetry appear in the limit L → ∞. For filling f
satisfying the above condition (i.e., I1 = f + 1/N /∈ Z), the
possibility of a nondegenerate gapped translationally invariant
ground state is excluded. Therefore, a unique fully gapped
(C0S0) ground state is allowed only when f + 1/N ∈ Z, i.e.,
at filling

f = 1 − 1/N. (32)

In fact, it is known [39] that a uniform spin-gapped Kondo
insulator is formed at f = 1 − 1/N at least when JK 
 t, JH.
The above argument states that this is the only featureless
spin-gap Kondo insulator in the KLM (1) and KHM (3).

2. Other insulating phases

To explore the possibility of insulating phases for other
fillings, let us consider the simplest charge-only twist Û(1,...,1)

(m1, . . . , mN ) = (1, . . . , 1). (33)

According to the general formula (26), it induces a momentum
shift

δk(1,...,1) = −2π (N f + 1), (34)

5When the ground state is “magnetized” (i.e., �λtot �= �0), δk(1,0,...,0)

receives the correction −2π �μ1·�λtot from the magnetization.
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which leads us to defining the second index:

I2 := N f (mod 1). (35)

It is important to note that although the twists (1, . . . , 1)
and (N, 0, . . . , 0) create excitations at the same momentum
δk(1,...,1) = δk(N,0,...,0) = N × δk(1,0,...,0), the natures of the ex-
cited states are very different.6

The index I2 restricts the possibility of C0Sn-type (n �= 0)
insulators without translation-symmetry-breaking order (e.g.,
charge-disproportionation). When spin and charge are entan-
gled (as in higher-dimensional metals), the twist Û(1,...,1) no
longer probes only the charge sector selectively. Nevertheless,
nonzero values of I1 [we exclude f = (N − 1)/N consid-
ered already above] and translation symmetry forbid the gap
opening in both the spin and charge sectors.7 Therefore, let
us assume spin-charge separation to explore the possibility
of translation-invariant insulators. Then, in order for a finite
charge gap, the condition I2 = 0, i.e.,

f = m/N (m = 1, . . . , N − 2) (36)

must be satisfied [the cases m = 0 and N correspond to
trivial (carrierless and fully occupied, respectively) insula-
tors].8 As far as translation symmetry is preserved, the spin
sector must be gapless (note that in the presence of spin-
charge separation, I1 �= 0 implies the existence of gapless
spin excitations; see Appendix D for how the LSM twists
act in spin-charge-separated systems); a finite spin gap is
necessarily accompanied by some sort of symmetry-breaking
order in the spin sector. We shall call the special fillings (36)
commensurate. For other rational fillings, translation-invariant
insulators are forbidden and, when the system becomes in-
sulating, both the spin and charge sectors necessarily break
translation symmetry. (An example of this is the spin-charge
dimerized insulator with algebraic spin correlation found in
the SU(2) KLM at f = 1/4 [49–51].)

The filling f = 1/N [m = 1 in Eq. (36)] is of particular
interest, since a nontrivial insulator whose low-energy spin
sector is described by the SU(N) Heisenberg model:

(37)

is expected [39] at strong coupling |JK| 
 t, JH (JK < 0;
when JK > 0, the strong-coupling expansion does not lead to
any useful conclusions). According to recent field theoretical
arguments [60,64,65], the ground state of the above model is
gapless when N = odd, and gapped with broken translation
symmetry when N = even (except for N = 2). Let us consider
this situation in the light of the LSM argument. As has been
discussed above, at f = 1/N , I2 = 0 (mod 1) and a charge
gap can open without breaking translation. The fate of the
spin sector is interesting. The (1, 0, . . . , 0) twist tells that the

6When SU(N) magnetization �λtot is finite, they create excitations at
different momenta [see Eq. (26)]

7If at least one of the two is gapped, the combined excitations must
be gapped, too, which contradicts with the nonzero index I1.

8Note that spin-only twists with M =∑α mα = 0 do not lead to
any meaningful statements for the spin-singlet ground states.

entire system is gapless (when the ground state is unique)
or has a (spin) gap over multiply degenerate ground states
with broken translation symmetry. Suppose that we have an
insulating ground state that has no charge modulation, etc.
Then, the translation-symmetry breaking occurs in the spin
sector. Again, the Û(1,0,...,0) twist can tell how many degenerate
ground states exist in the spin-gapped situation. The momen-
tum shift

δk(1,0,...,0) = −2π (1/N + 1/N ) = − 2π(
N
2

)
suggests a reasonable scenario that there are N/2 degenerate
ground states (N necessarily is even) on which the system can
hop from one to another by the repeated application of the
(1, 0, . . . , 0) twist (after ÛN/2

(1,0,...,0), the system returns to the
original ground state). This agrees with the prediction GSD =
N/gcd(N, 2) = N/2 for the pure spin model.

Clearly, this simple story breaks down when N = odd and
we expect N degenerate ground states to occur when a spin
gap is finite. In fact, recent analytical and numerical studies
[64,66,67] show that the ground state of the effective spin
model (37) for the uniform insulating state (one itinerant
fermion at each site) remains gapless when N = odd. There-
fore, the gapless option seems to be chosen when JK < 0.

Next, let us examine the possibility of opening the charge
gap at half-filling f = 1/2 (not necessarily commensurate):

δk(1,...,1)/(2π ) = −(N/2 + 1), (38)

while keeping translation symmetry. If N = odd, then the
LSM argument tells that there must be gapless excitations
at k = −2π (N/2 + 1) created by the (1, . . . , 1) twist. When
spin-charge separation occurs, this immediately implies that
the charge sector remains gapless for odd-N as the LSM twist
Û(1,...,1) acts only on the charge sector. When spin and charge
are coupled, however, the absence of the LSM gap implies
that none of spin and charge is gapped. Therefore, we gener-
ically expect [combining the analysis of the twist Û(1,0,...,0)]
that both spin and charge are gapless unless lattice-translation
symmetry is broken.

Therefore, in order for the charge sector to have a gap
(without breaking translation symmetry; we do not care about
the spin sector), N/2 ∈ Z, i.e., translation-symmetric insu-
lators are possible only when N = even (and presumably,
spin-charge separation is required). Even when this is the case,
the conclusion from the twist Û(1,0,...,0) tells us that the entire
system should remain gapless at f = 1/2 (N �= 2 is assumed)
unless the translation is broken. Therefore, the symmetric
insulating ground states allowed for f = 1/2, N = even are of
the type C0Sn (n �= 0, i.e., at least one of the N spin channels
is gapless) as in the usual SU(2) Hubbard model at half-filling.

If we allow degenerate ground states due to sponta-
neous translation-symmetry breaking, then full-gap insulators
(C0S0) are possible even at f = 1/2, regardless the parity
of N . The number of the degenerate ground states may be
estimated by looking at the momentum shift due to a single
twist:

δk(1,0,...,0) = −2π (1/2 + 1/N ) = −2π
N + 2

2N
.
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The simplest scenario would be that every time the twist
Û(1,0,...,0) is applied, a new degenerate ground state is gener-
ated. Therefore, the smallest period of the sequence

0 → −2π
N + 2

2N
→ −2π

N + 2

2N
× 2 → −2π

N + 2

2N
× 3

→ · · · → 0 (mod 2π )

gives the ground-state degeneracy (GSD) in the C0S0 phase.9

The answer is

GSD =
⎧⎨⎩2N when N = odd,

N when N = 4p (p ∈ Z),
N/2 when N = 4p + 2.

(39)

Before concluding this section, a few comments are in
order. First, all the above arguments do not assume a particular
form of the Hamiltonian and the results are applicable to any
one-dimensional lattice Hamiltonian [including the models
(1) and (3)] consisting of N-component fermions and local-
ized SU(N) moments in the SU(N) “spin” that couple to the
fermion part; depending on the detail of the Hamiltonian, one
of the options is chosen among several possibilities that the
LSM argument suggests (see Table I).

Also, it is straightforward to generalize the treatment to
a general SU(N) spin specified by a Young diagram with
nyng boxes (the treatment here is mostly for nyng = 1; see
Appendix A for more details on the SU(N) representations
and the Young diagrams). Repeating the same steps, we obtain
the two LSM indices:

I1 := f + nyng/N (mod 1),

I2 := N f + nyng (mod 1).
(40)

Now the featureless Kondo insulators are possible only at
filling:

f = 1 + �nyng/N� − nyng/N, (41)

where �x� denotes the largest integer that does not exceed
x. For instance, in the case of half-filling ( f = 1/2) and the
SU(N) local moment which transforms in the antisymmetric
self-conjugate representation nyng = N/2 (N even)

featureless Kondo insulators can be stabilized as has been
shown in Refs. [68,69].

III. PREDICTIONS FROM MIXED GLOBAL ANOMALIES

In the previous section, we have used the LSM argument to
obtain constraints on the nature of the ground state that depend
only on a set of kinematical information (e.g., N and filling f )
and does not depend on the details of the models (such as the
strength and sign of the Kondo coupling JK). Of course, the
actual ground state depends on the values of, e.g., JK/t and
JH/t , and detailed model-dependent analyses are required to

9Precisely speaking, the number of degenerate ground states can
be any integer multiple of this period when some additional discrete
symetries (other than lattice translation) are broken simultaneously.

FIG. 2. (a) The original lattice model [at stage (i)] and low-
energy effective field theories [(ii) and (iii)] connected by RG flow
(indicated by the arrows) must share the same index I in com-
mon. The two descriptions shown in the stage (ii) are explained in
Secs. III B 1 and III B 2. (b) Situations (b(iii)) allowed (right) and
forbidden (left) by the anomaly matching argument at commen-
surate fillings f = m/N (m = 1, . . . , N − 1) [see the discussion in
Sec. III B 1].

map out the ground-state phases. In the following sections, we
investigate the ground state of the SU(N) KHM (3) directly
in the continuum limit. To this end, we first construct the
low-energy effective Hamiltonian for the KHM. In contrast
to the KLM (1) in which there is no direct interaction among
the local moments, the existence of the Heisenberg exchange
interaction JH provides us with a good starting point for a
field theory analysis of the model (3). Below, we implicitly
assume that the Kondo interaction is sufficiently weak so that
the system first flows towards a conformal field theory (CFT)
fixed point which we derive in the next section [see Fig. 2(a)].

In the following sections, we also frequently use the
fact that certain nonperturbative indices must be preserved
all along the renormalization-group (RG) flow toward low-
energies to restrict possible phases. Specifically, we interpret
the LSM index I1 in terms of the ’t Hooft anomaly of the
effective theories and use the anomaly matching argument.
The analysis of the global anomalies of the underlying field
theory will then give some nonperturbative constraints on
the possible phases, which should be compared to the ones
obtained in Sec. II from the LSM theorem.

A. Continuum-limit description

The starting point is the continuum description of the lat-
tice fermion operator cα, i of the SU(N) KHM (3) in terms of
N left-right moving Dirac fermions [70,71]:

cα, n → √
a0(Lα (x)e−ikFx + Rα (x)eikFx ), (42)
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where kFa0 = π f = πm/N (0 � m � N) is the Fermi mo-
mentum and x = na0, with a0 being the lattice spacing. The
Hamiltonian density for the hopping part Hhop of the lattice
Hamiltonian (3) is equivalent to that of N identical left-right
moving Dirac fermions:

Hhop = −ivF(:R†
α∂xRα : − :L†

α∂xLα :), (43)

where vF = 2ta0 is the Fermi velocity, the symbol : · · · : de-
notes the normal ordering with respect to the Fermi sea, and
summation over repeated indices is implied in the following.
The noninteracting part (43) enjoys continuous U(N )|L ⊗
U(N )|R symmetry which results from its invariance under in-
dependent unitary transformations on the left and right Dirac
fermions. It is then very helpful to express the Hamiltonian
(43) directly in terms of the currents associated to these
continuous symmetries. To this end, we introduce the U(1)c

charge current and the SU(N )1,f (the subscript “f” means
fermion) current which underlie the CFT of massless N Dirac
fermions [70]:

jc,L = : L†
αLα : U(1)c charge current,

(44)
JA

f,L = L†
αT A

αβLβ fermion SU(N )f currents,

with α, β = 1, . . . , N , and we have similar definitions for the
right currents jc,R and JA

f,R.10 In Eq. (44), T A are the SU(N )
generators that have appeared in Eq. (2). The noninteracting
model (43) can then be written in terms of these currents (the
so-called Sugawara construction of the corresponding CFT)
[70,72,73]:

Hhop = πv(f)
c

N

[
: j2

c,R : + : j2
c,L :
]

+ 2πv(f)
s

N + 1

[
: JA

f,RJA
f,R : + : JA

f,LJA
f,L :
]
, (45)

with v(f)
c and v(f)

s denoting the characteristic velocities for the
charge and spin sectors, respectively [the superscript “(f)”
implies the itinerant fermions and the subscripts “c/s” are
used to denote the charge/spin sectors]. The second term is the
Hamiltonian of the level-1 SU(N) Wess-Zumino-Novikov-
Witten (WZNW) CFT. In what follows, we frequently use the
notation SU(N)k to denote the level-k SU(N) WZNW CFT.
To distinguish between the SU(N)1 CFT resulting from the
itinerant fermions and that from the local moments, we also
use the notations SU(N)1,f and SU(N)1,s, respectively.

The continuum description of the fermionic SU(N) spin
operator (2) at site n can be derived using Eq. (42):

ŝA
n /a0 � JA

f,L + JA
f,R + ei2kFxL†

αT A
αβRβ + H.c. (46)

It is then useful to introduce a bosonic charge field �c and
an SU(N )1,f WZNW gf field with the scaling dimension (N −
1)/N to get a non-Abelian bosonized description of the 2kF

part of Eq. (46) [73,74]:

ŝA
n /a0 � JA

f,L + JA
f,R + iCei2kFxei

√
4π/N�c Tr(gf T A) + H.c.,

(47)

where C is a positive constant.

10Note that normal ordering is not necessary for the SU(N) currents
as the divergences from the operator products on the right-hand side
cancel each other due to Tr(T A) = 0.

The interaction HH among the localized spins of the
SU(N) KHM (3) is described by the SU(N) antiferromagnetic
Heisenberg spin chain, which is known to be integrable by the
Bethe ansatz [61] and displays a quantum critical behavior
in the SU(N )1 universality class [74,75]. The low-energy de-
scription is obtained by expressing the SU(N) spin operators
in terms of SU(N )1,s chiral currents JA

s,R/L (with “s” standing
for the local spins) and the “spin” WZNW gs field with the
scaling dimension (N − 1)/N [73–76]:

SA
n /a0 � JA

s,L + JA
s,R + {iλ e

i2π
Na0

x Tr(gsT
A) + H.c.}

+
N−2∑
p=2

ei 2π p
Na0

xnA
s,p, (48)

where λ is a nonuniversal constant that stems from the av-
eraging of the underlying charge degrees of freedom which
are frozen in the insulating phase of the SU(N) KHM. As
discussed in Appendix E, λ turns out to be a complex number
whose argument depends on N : λ = |λ|eiθ0 with

θ0 = 0,
π

N
N = 2p,

θ0 = ± π

2N
N = 2p + 1. (49)

The higher-harmonics (2π p/N) parts of the decomposition
(48) are related to the SU(N )1,s primary fields �s,p (p =
2, . . . , N − 2) with the scaling dimension p(N − p)/N which
transform in the fully antisymmetric representations of SU(N)
represented by Young diagrams with a single column and p
rows (the representations Rp in Appendix A):

nA
s,p := iαp Tr

(
�s,pT A

p

)
, (50)

where T A
p are SU(N) generators in the same representations

and αp are the corresponding nonuniversal constants. By the
hermiticity of SA

n , the 2pkF component of the spin-density
(48) satisfies the constraint: nA†

s,p = nA
s,N−p. The low-energy

properties of HH, i.e., the SU(N) Heisenberg spin chain, is
then described by the Hamiltonian density:

HH = 2πv(s)
s

N + 1

[
: JA

s,RJA
s,R : + : JA

s,LJA
s,L :
]− γ JA

s,RJA
s,L, (51)

where v(s)
s is the spin velocity [the superscript “(s)” implies

the local spins] and the positive coupling constant γ accounts
for the logarithmic corrections to the SU(N )1 quantum critical
behavior [77–79]. Combining Eqs. (45) and (51), we see that
when JK = 0, the continuum limit of the KHM (3) is made of
three CFTs Hhop + HH corresponding to U(1)c × SU(N)1,f ×
SU(N)1,s.

B. Constraints from the existence of a mixed global anomaly

We now discuss the LSM argument based on the translation
and (on-site) SU(N) symmetries within the field-theory de-
scription. To this end, it is crucial to correctly identify how the
two symmetries are implemented in the low-energy effective
field theories paying particular attention to the existence of
two different low-energy descriptions (corresponding to two
different conformal embeddings).
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As is illustrated in Fig. 2(a), there are three stages in the
RG flow: (i) the original lattice model to which the LSM
argument apply, (ii) the intermediate scale at which the two
in-chain parts Hhop and HH are interacting only weakly and
described by a set of gapless CFTs with some interactions
allowed by symmetries and the filling f (now the flow is in the
vicinity of the CFT fixed-point), and (iii) “far-infrared (IR)”
region in which the Kondo coupling fully renormalizes the
system (the system flowing toward the real IR-fixed point). To
determine the ground state, we need to know the effective field
theory at stage (iii). The ’t Hooft anomaly matching condition
applies to all these stages [in the true ultraviolet (UV) limit (i),
anomalies are replaced with the corresponding LSM indices].
For instance, one may use the matching between the indices
at (i) and (ii) to check the validity of low-energy field theories
on which the standard RG approach is developed especially
when the continuum limit is not obvious [as in the case of the
KLM (2)].

As we will see below, the UV index is matched by the IR
one [at (iii)] in different ways depending on N , the filling f ,
and low-energy (IR) effective theories at the stage (iii). There
may be several candidate scenarios of the ground-state phase
for a given set of parameters. However, whatever scenario we
take, the corresponding IR effective theory [(iii)] must share
the same anomaly with the original lattice model [(i)]. The
constraints obtained this way is independent of the details of
the model (such as the sign and strength of JK). Therefore,
we need case-by-case analyses to find the actual ground state
as will be done in Sec. IV. Below, we introduce two different
formulations of the low-energy effective theories associated to
the two conformal embeddings and check how anomaly arises
in each formulation.

1. SU(N)1 × SU(N)1 basis

In the first, we describe the system in terms of the charge
boson �c [U(1)c] and the SU(N )1,f WZNW CFT which orig-
inate from the conduction electrons as well as the SU(N )1,s

WZNW CFT from the local moments (see Sec. III A). The
one-site translation symmetry Ta0 introduced in Sec. II C is
translated into a crucial on-site internal symmetry in the ef-
fective field theories that governs the low-energy properties
of the model (3). The form of the one-site translation Ta0

for the low-energy fields can be read off directly from the
correspondence (47) and (48) as

�c
Ta0−→ �c +

√
N

π
kFa0 = �c + √

Nπ f ,

gf
Ta0−→ gf, gs

Ta0−→ e
i2π
N gs. (52)

The original Ta0 symmetry on a lattice translates to a filling-
dependent shift of the charge bosonic field �c, whereas it
acts on the spin WZNW gs field as a discrete ZN symmetry
which is the center of the SU(N) group. The UV limit, i.e.,
noninteracting limit of the SU(N) KHM (3), is then described
by a CFT which is built from U(1)c × SU(N )1,f × SU(N )1,s

CFTs enriched by the on-site internal symmetry Ta0 (52).
Mixed global anomaly for the SU(N )k WZNW CFT

enriched with a discrete Zp symmetry has been studied
over the years in different contexts [60,80–82]. It is known

that there is a mixed global anomaly between ZN and
PSU(N ) = SU(N )/ZN symmetry of the SU(N )1 WZNW
model [60,81,82]. Coupling the WZNW model to a nontrivial
background gauge field APSU(N ) gives a nontrivial phase am-
biguity in the partition function of the theory (ZWZNW) under
the action of the ZN group [60]:

ZWZNW[APSU(N )] → exp (i2π/N )ZWZNW[APSU(N )]. (53)

This phase ambiguity in the description reveals the exis-
tence of a mixed global anomaly which, according to the ’t
Hooft-anomaly matching argument [83], should be present
nonperturbatively in the low-energy effective field theory with
PSU(N) × ZN symmetry which governs the IR physics of the
lattice model.11

First let us consider the situation where all the three degrees
of freedom [U(1)c, SU(N )1,f, and SU(N )1,s] are gapless as is
the case for the RG stage (ii) or JK = 0. Then, there are two
contributions to the entire anomaly. First, a combination of
the charge-conservation U(1)c and Ta0 [which is a subgroup
of chiral-U(1)] leads to a chiral anomaly: ei2π f , while PSU(N)
and ZN give ei 2π

N as is seen in Eq. (53). The total phase

exp
[
i2πI (1)

N, f

] = ei2π ( f +1/N ) (54)

originating from the mixed anomaly perfectly coincides with
the phase ei2πI1 associated with the first LSM index I1 (31).
The second LSM index I2 (35) is related to the following
internal U(1) acting only on the charge sector:

�c → �c + N
√

Nπ f , (55)

for which we obtain another anomaly index:

exp
[
i2πI (2)

N, f

] = ei2πN f . (56)

According to recent identification of the LSM indices as
the lattice counterparts of anomalies in the underlying field
theories [84–92], this coincidence may be viewed as the man-
ifestation of the ’t Hooft anomaly matching [83] between
the lattice model (3) that may be considered as the extreme
UV limit and the IR effective field theory Hhop + HH [see
Eqs. (45) and (51)] with U(1)c × SU(N)1,f × SU(N)1,s. Put
it another way, fully gapless metallic phase described by
c = 1 + (N − 1) + (N − 1) = 2N − 1 CFT is allowed by ’t
Hooft anomaly matching, regardless of filling f [see Fig. 2(a)].
Although it is not straightforward to derive the effective field
theory for the KLM [93] (due to the absence of the direct
interaction JH among the local moments that lifts the huge
degeneracy in the spin part), the coincidence between the
lattice LSM and ’t Hooft anomaly in the effective field theory
suggests that the two lattice models (KLM and KHM) share
the same low-energy effective theory Hhop + HH at the stage
(ii).

Suppose now the system is in an insulating phase in which
the charge boson �c is pinned and the charge sector becomes

11At this point, one may wonder if the modular anomaly, which
is known [80] to exist in the IR field theories, plays some roles
in restricting the low-energy behavior of the lattice (UV) model.
However, since the modular invariance is an emergent symmetry
which does not exist on a lattice, we cannot use it with the ’t Hooft
anomaly matching condition.
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fully gapped [see Fig. 2(b)]. One can then integrate out this
charge field to obtain the low-energy theory described solely
by the SU(N)1,f × SU(N)1,s CFT. Now it is clear that we
can no longer use Eq. (52) to represent Ta0 . After averag-
ing over the charge field fluctuations in Eq. (47), one sees
that, provided that filling is commensurate f = m/N [m (∈ Z)
fermions per site], the one-site translation Ta0 symmetry can
also be implemented as

gf
Ta0−→ e

i2mπ
N gf,

gs
Ta0−→ e

i2π
N gs. (57)

The Ta0 symmetry acts as a ZN (respectively, ZN/gcd(N,m))
symmetry for the gs (respectively, gf) WZNW field. Note that
for m /∈ Z, the transformed gf is no longer an SU(N) matrix
and (57) is not allowed as a legitimate internal symmetry of
the WZNW CFT. In the SU(N )1,f × SU(N )1,s formulation
with the one-site translation action (57), both SU(N)1 factors
contribute nontrivial phases and the total phase ambiguity is
given by

exp
[
i2πI (1)

N, f

] = ei 2mπ
N ei 2π

N = exp[i2π (1/N + f )], (58)

thereby correctly reproducing the first LSM index I1 (31)
at f = m/N even after the charge sector is gapped out [the
second one (35) which is I2 = m = 0 (mod 1) does not give
any constraint]. Therefore, translation-invariant insulators are
possible only at the commensurate fillings f = m/N [m ∈ Z;
see Fig. 2(b)].

For the other rational fillings f = p/q [p and q ( �= N )
being coprime], the implementation (57) of Ta0 is no longer
applicable and we need to go back to Eq. (52). Then, the set
of UV (LSM) indices (I1, I2) = ( f + 1/N, N f ) and that of
the IR insulating phase (I (1)

N, f , I
(2)
N, f ) = (1/N, 0) (mod 1) never

match (unless f = 0), and consequently opening a charge gap
is precluded unless Ta0 is broken. By matching I2 with its IR
value, we can conclude that any insulating phase at generic
rational fillings f = p/q must spontaneously break Ta0 and
possess q/gcd(N, q) degenerate ground states. The behavior
of the remaining spin sector is constrained by the new index
qI1/gcd(N, q) (mod 1); when it is nonzero, the spin sector
is either gapless or gapped accompanied by further breaking
of Ta0 . The spin-charge dimerized insulator with algebraic
spin-spin correlation proposed in Refs. [49–51] for the N = 2
KLM at f = 1/4 [q/gcd(N, q) = 2] perfectly fits the above
scenario.

Similarly, we can discuss the possibility of metallic phases
with fully gapped spin excitations. When these happen, the
LSM index f + 1/N and the mixed ’t Hooft anomaly f at
stage (iii) never match for generic filling f . This implies that
spin-gapped metals are forbidden in general unless translation
symmetry Ta0 is broken [see Fig. 2(b)]; if they are realized,
the ground state must be at least N-fold degenerate and break
Ta0 spontaneously.

Note that anomaly is absent if I (1)
N, f (= I1) = f + 1/N = 0

and I (2)
N, f = N f = 0 (mod 1), which means that there is no

obstruction to gapping out all the (spin and charge) degrees of
freedom while preserving Ta0 ; trivial IR theories, i.e., uniform
fully gapped insulating ground states, whatever they may be,
are possible only at the filling f = (N − 1)/N . This is nothing

but the special filling at which we find the SU(N)-singlet
Kondo insulator at strong coupling [39]. In Sec. IV, we will
identify two different types of such insulating phases depend-
ing on the sign of JK. In contrast, for other fillings with I (1)

N, f /∈
Z, the existence of a mixed global anomaly (58) prevents
the stabilization of a nondegenerate (translationally invariant)
fully gapped ground states. To fulfill the constraint from the
’t Hooft anomaly matching, the insulating ground states must
either support gapless spin excitations or spontaneously break
translation symmetry. As we will see in the next section, both
possibilities occur in the model (3) depending on N and f .
One thus reproduces the constraint from the LSM theorem
in Sec. II D by exploiting the existence of a mixed global
anomaly in the underlying field theory Hhop + HH.

2. SU(N)2 × ZN basis

Next, we consider yet another CFT embedding (see, for
instance, Refs. [94,95]) to single out the low-energy SU(N)
spin degrees of freedom of the original lattice model (3):12

SU(N)1 × SU(N)1 ∼ SU(N)2 × ZN , (59)

where ZN denotes the parafermionic CFT with central charge
c = 2(N − 1)/(N + 2) which describes the universal proper-
ties of the phase transition of the two-dimensional ZN clock
model [96]. The SU(N )2 CFT has central charge c = 2(N2 −
1)/(N + 2) and is generated by the currents IA

R,L defined as
follows:

IA
R/L = JA

f,R/L + JA
s,R/L. (60)

See Fig. 2(a) for the relation between the two different
low-energy descriptions in terms of SU(N)1 × SU(N)1 and
SU(N)2 × ZN .

When N > 2, the two SU(N )1 WZNW fields gf and gs can
be expressed in the SU(N )2 × ZN basis as [94,95]:

(gs)αβ ∼ Gαβ σ1, (gf )αβ ∼ Gαβ σ
†
1 , (61)

where α, β = 1, . . . , N , and G is the SU(N )2 WZNW field
with the scaling dimension xG = (N2 − 1)/N (N + 2) which
transforms in the fundamental representation of SU(N). In
Eq. (61), the first ZN spin field σ1 is one of the local or-
der parameters σk (k = 1, .., N − 1) which are primary fields
of the ZN CFT with the scaling dimension xσk = k(N −
k)/N (N + 2) and describe the low-temperature phase of the
two-dimensional ZN clock model. When N > 2, σ1 and σ

†
1 =

σN−1 are independent fields with the same scaling dimension
xσ1 .

Again, the crucial step is to identify the translation symme-
try Ta0 as an internal symmetry in the SU(N )2 × ZN basis.
We first try to implement (52) in the new basis. Using the
identification (61), we immediately see that the transformation

U(1) : �c → �c + √
Nπ f ,

SU(N)2 : G → eiπ (1−N )/N G, (62)

ZN : σ1 → eiπ (1+N )/Nσ1

12Intuitively, we move from the tensor-product basis of a pair of
spins to a new basis in which the total spin is diagonal.
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works when N = odd, whereas, for even-N , there is no consis-
tent way of translating (52) into the SU(N)2 × ZN language.
It is easy to verify that the set of internal symmetries (62)
(N = odd) leads to the same mixed anomaly I (1)

N, f = f + 1/N .
When the charge field �c is fully gapped ( f is assumed

to be commensurate, i.e., f = m/N), one can use Eq. (57)
instead to show that the Ta0 symmetry can be consistently
implemented only when N is odd or when N is even and
m is odd. For these cases, Ta0 is implemented in the new
[SU(N)2 × ZN ] basis as

G → eiπ (1+m)/N G,

σ1 → eiπ (1−m)/Nσ1,
(63)

when m is odd (N is arbitrary), and as

G → eiπ (1+m−N )/N G,
(64)

σ1 → eiπ (1−m+N )/Nσ1,

when N is odd and m is even.
There is no solution when both N and m are even such that

G is an SU(N) matrix, i.e., det G = 1. It means that the Ta0

symmetry cannot be consistently implemented as an internal
symmetry. In such a case, the conformal embedding (59) is not
suitable to elucidate the low-energy properties of the SU(N)
KHM (3). However, one can still use the SU(N )1 × SU(N )1

basis even when N and m are even as it will be the case for the
half-field case.

When the one-step translation symmetry Ta0 can be consis-
tently described as an internal symmetry in the SU(N )2 × ZN

basis, one can derive a phase ambiguity as in Eq. (58) by
exploiting the fact that the ZN CFT is not anomalous [97] and
that the level-2 of the SU(N )2 CFT gives an extra factor 2 in
the phase of the partition function (53) [81]. The implemen-
tations (63) and (64) give then, respectively, the total phase
ambiguity:

exp
[
i2πI (1)

N, f

]
:= ei 2π (m+1)

N = exp[i2π (1/N + f )],

exp
[
i2πI (1)

N, f

]
:= ei 2π (m+1−N )

N = exp[i2π (1/N + f )],
(65)

thereby correctly reproducing the first LSM index I1 (31) at
f = m/N as in the SU(N )1,f × SU(N )1,s formulation.

IV. WEAK-COUPLING APPROACH TO THE INSULATING
PHASES OF THE SU(N) KONDO-HEISENBERG MODEL

In the previous sections, we have seen how the combina-
tion of the LSM indices of the lattice model and the mixed
global anomalies in the IR effective theory constrains possi-
ble ground states for given N and the filling f . However, to
identify the physical properties of the actual ground states,
detailed case-by-case analyses are necessary. In this section,
we focus on insulating phases at commensurate fillings and
investigate them of the SU(N) KHM (3) by means of the
low-energy approach of Sec. III. To this end, we consider a
weak-coupling region where |JK| � t, JH for commensurate
fillings f = m/N (m = 1 . . . N − 1). We focus only on the
insulating phases, compatible with the LSM constraints, that
can be stabilized in the zero-temperature phase diagram of the
SU(N) KHM (3).

Let us first find the continuum expression of the Kondo
coupling HK that gives the interactions among the low-energy
field effective theories (45) and (51). To this end, we first
plug the continuum limit of the SU(N) spin operators of
the conduction electron (47) and those of the localized mo-
ments (48) into the Kondo coupling HK, and then keep
only the nonoscillatory terms satisfying 2kF + 2pπ/(Na0) ≡
0 (mod 2π ), with p = 1, . . . N − 1 and kF = πm/(Na0). We
thus find the following low-energy expression of the Kondo
coupling:

H f =m/N
K = −JK a0αN−mC ei

√
4π/N�c

× Tr(gf T A) Tr
(
�s,N−mT A

N−m

)+ H.c., (66)

where �s,p denotes the SU(N)1,s primary field appearing in
Eq. (50) and αN−1 = λ. We recall that the scaling dimension
of the �s,p field is p(N − p)/N so that the interaction (66) has
the scaling dimension

xN (m) = 1/N + (N − 1)/N + m(N − m)/N

= 1 + m(N − m)/N (67)

and can be strongly relevant when xN (m) < 2. The IR proper-
ties of the interaction (66) strongly depends on m (i.e., filling
f ) leading to the stabilization of several different insulat-
ing phases as expected from the LSM argument. On top of
this interaction, there is a marginal piece which stems from
current-current interactions:

VJJ = JK
(
JA

f,LJA
s,R + JA

f,RJA
s,L

)− γ JA
s,RJA

s,L, (68)

where we have neglected current-current interactions made of
currents of the same chirality (L/R) which just renormalize
the “light” velocity vF, and γ in the marginally irrelevant
coupling constant appearing in Eq. (51).

A. f = N−1
N

We first consider the situation with m = (N − 1) fermions
per site, i.e., filling f = (N − 1)/N since the LSM-anomaly
argument predicts the possible formation of a featureless
Kondo insulating phase. In fact, a strong-coupling analysis is
applicable when JK > 0 showing that the system is insulating
as far as JK is sufficiently large [39]. On the weak-coupling
side, we start from the expression (66) of the Kondo coupling,
which simplifies for this filling as

H f =1−1/N
K = −JKa0Cλ

2
ei

√
4π/N�c

×
{

Tr(gfgs) − 1

N
Tr(gf ) Tr(gs)

}
+ H.c. (69)

This can also be expressed in terms of the fields of the confor-
mal embedding (59):

H f =1−1/N
K = V (1)

K + V (2)
K ,

V (1)
K = −JKλ1ei

√
4π/N�c{Tr G2 + (Tr G)2} + H.c.,

V (2)
K = JKλ2ei

√
4π/N�cε1{(Tr G)2 − Tr G2} + H.c.,

(70)

where the first thermal operator ε1 of the ZN CFT is sin-
glet under the ZN symmetry and has the scaling dimension
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xε1 = 4/(N + 2). In Eq. (70), λ1 and λ2 are positive con-
stants and the phase θ0 (49) of the nonuniversal constant λ

has been absorbed in a redefinition of the charge field �c:
�c → �c + √

N/4π θ0.
The scaling dimension of the interaction in model (70) is

2 − 1/N < 2. It is thus a strongly relevant perturbation which
couples the U(1)c charge degrees of freedom to the SU(N )2

and ZN ones. A spectral gap � opens as � ∼ |JK|N , regardless
of the sign of JK. A charge gap �c is expected to open in the
weak-coupling limit for either sign of JK. In the insulating
phase, the charge field �c is pinned. As discussed in Ap-
pendix F, one can determine the possible values of the pinning
〈�c〉 by finding a pure umklapp operator which depends only
on the charge U(1)c degrees of freedom. In the even-N case,
we find 〈�c〉 = 0 for either sign of JK, while when N is odd,
one of the two inequivalent solutions 〈�c〉 = 0 and

√
π

4N must
be chosen depending on the sign of the umklapp coupling.
Below, we will keep only 〈�c〉 = 0 for odd N , since the choice
〈�c〉 = √ π

4N leads to physical results which are not consistent
with those of the strong-coupling approach.

Averaging over the charge degrees of freedom in the low-
energy limit E � �c, the leading relevant contribution (70)
becomes

H f =1−1/N
K = V (1)

K + V (2)
K ,

V (1)
K = −JKη1{Tr G2 + (Tr G)2} + H.c., (71)

V (2)
K = JKη2 ε1{(Tr G)2 − Tr G2} + H.c.,

with η1,2 > 0. When E � �c, the one-site translation sym-
metry Ta0 (57) for f = (N − 1)/N acts on the spin degrees of
freedom as

G → G, σ1 → σ1 ei2π/N , (72)

so that Ta0 is now realized as the global ZN symmetry of
the parafermionic CFT. The model (71) then reduces to the
low-energy effective theory of the two-leg SU(N) spin ladder
with unequal spins, one in the fundamental representation of
SU(N) and the other in its conjugate [98].

1. Kondo singlet phase (JK > 0)

Let us first consider the JK > 0 case in which we expect
the singlet Kondo insulator when JK is large enough [39].
The perturbation V (1)

K is strongly relevant and opens a spin
gap �s ∼ JN/2

K for the SU(N )2 degrees of freedom. When
JK > 0, the WZNW G matrix field is frozen to the ground-
state configuration G = ±I (respectively, G = I) if N is even
(respectively, odd), with I standing for the N-dimensional
identity matrix. For the remaining ZN -sector, described the
perturbation V (2)

K in Eq. (71), we get the following low-energy
effective action when E � �s:

Seff = SZN + η̃2

∫
d2x ε1, (73)

with η̃2 > 0. In Eq. (73), SZN is the Euclidean action of
the ZN parafermion CFT. The ZN effective action (73) is
integrable and describes a massive field theory for either
sign of η̃2 [99]. Since η̃2 > 0 here, we have 〈ε1〉 < 0 and,
in our convention, the underlying two-dimensional ZN lattice
model belongs to its high-temperature (paramagnetic) phase

FIG. 3. Illustration of the two translation-invariant fully gapped
insulating states realized at f = (N − 1)/N : (a) the SU(4) Kondo
singlet phase for JK > 0 and (b) the chiral SPT phase for JK < 0.
The two states shown in panel (b) are parity partner of each other.
The chiral SPT phase may be thought of as a bond-centered Kondo
singlet phase.

where the ZN symmetry is restored. It means that the one-site
translation symmetry Ta0 is preserved in the ground state [see
Eq. (72)]; the resulting insulating phase is a fully gapped
nondegenerate singlet phase which does not break any lattice
symmetry. This may be physically identified as the SU(N)
Kondo singlet phase found in the strong-coupling analysis
for f = 1 − 1/N and large positive JK in Ref. [39], in which
(N − 1) conduction electrons and one localized spin form an
SU(N) singlet on each site. A featureless fully gapped insu-
lating phase predicted by the LSM argument for f = 1 − 1/N
is thus realized for JK > 0 in the phase diagram of the SU(N)
KHM (3) from weak to strong positive JK. The Kondo singlet
phase is illustrated in Fig. 3(a).

2. Chiral symmetry protected topological phase (JK < 0)

When JK < 0, the minimization of the strongly perturba-
tion V (1)

K leads to the following solutions depending on the
value of N (N > 2) [98]:

G =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

±iI (N = 4p � 4),
e±i2pπ/N I (N = 4p + 1 � 5),
±i diag(1, 1, 1, 1, 1,−1) (N = 6),
±i e±iπ/N I (N = 4p + 2 � 10),
e±i(N+1)π/2N I (N = 4p + 3 � 3).

(74)

Averaging over the G field in Eq. (71), the effective action
for the SU(N)-singlet ZN parafermion sector is still given by
Eq. (73) with η̃2 > 0 and Ta0 is unbroken as in the JK > 0
case. In stark contrast to the SU(N) Kondo singlet phase
found in the previous case, the insulating phase here breaks a
discrete symmetry since the solutions (74) are twofold degen-
erate ground states without breaking the one-site translation
symmetry Ta0 . This discrete symmetry turns out to be the
inversion symmetry or the site-parity symmetry P:

SA
i

P−→ SA
−i,

ŝA
i

P−→ ŝA
−i,

(75)

which is a symmetry of the lattice model (3). Using the de-
compositions (48) and (47) and by averaging over the U(1)c
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charge field, we find the identification of the inversion sym-
metry on the gs and gf WZNW fields:

gs(x)
P−→ −e−i2θ0 g†

s (−x),

gf(x)
P−→ −ei2θ0 g†

f (−x),
(76)

where the phase θ0 is defined by Eq. (49). Using the conformal

embedding (61), we observe that G(x)
P−→ G†(−x) under the

inversion symmetry. The latter is thus spontaneously broken
in the solutions (74) and twofold degenerate ground states are
formed without breaking the one-site translation symmetry
Ta0 . In this respect, the resulting insulating phase for JK < 0
corresponds to the chiral SPT phase found in two-leg spin
ladders with unequal spins or other 1D SU(N) models in the
adjoint representation of the SU(N) group [98,100–104]. This
fully gapped topological phase which is protected by the on-
site projective SU(N) [PSU(N)] symmetry preserves Ta0 but
breaks the inversion symmetry spontaneously. In contrast to
the Kondo singlet phase in which SU(N) singlets are formed
mainly on the JK bonds [see Fig. 3(a)], the electron spins
form SU(N) singlets with the local moments on neighbor-
ing sites [see Fig. 3(b)]. In this sense, we may regard this
phase as a bond-centered Kondo singlet phase. A pair of two
nondegenerate chiral SPT phases [the two states in Fig. 3(b)]
that are related to each other by inversion are degenerate.
In open-boundary conditions, these chiral SPT phases have
different sets of the left and right edge states, related by the
conjugation symmetry, which transform either in the funda-
mental representation or the antifundamental one.

B. f = 1
N

We now consider the SU(N) KHM (3) with f = 1/N and
thus kF = π

Na0
. The leading contribution (66) of the continuum

limit of the Kondo coupling is now given by

H f =1/N
K = JKCλa0

2
ei

√
4π/N�c

×
{

Tr(gf g†
s ) − 1

N
Tr(gf ) Tr(g†

s )

}
+ H.c. (77)

Using the results of Refs. [95,105], one can rewrite this in the
U(1)c × SU(N )2 × ZN basis:

H f =1/N
K = Ṽ (1)

K + Ṽ (2)
K ,

Ṽ (1)
K = JKδ1ei

√
4π/N�c�1L�1R + H.c., (78)

Ṽ (2)
K = −JKδ2 ei

√
4π/N�cσ2 Tr �adj + H.c.,

where δ1,2 > 0 and �1L,R are the first ZN parafermion cur-
rents with the conformal weights h, h̄ = (N − 1)/N which
generate the ZN parafermion algebra. In Eq. (78), �adj is
the SU(N )2 primary field in the adjoint representation with
the scaling dimension 2N/(N + 2). In Eq. (78), as in the
f = N−1

N case, the phase θ0 (49) of the nonuniversal constant
λ has been absorbed in a redefinition of the charge field �c:
�c → �c + √

N/4π θ0.
Though the two perturbations (69) and (77) share the

same scaling dimension xN (1) = xN (N − 1) = 2 − 1/N < 2,
the resulting IR phases are very different. A charge gap is
expected to open since the interaction (77) which couples the

charge degrees of freedom to the SU(N )2 and ZN ones is
strongly relevant. As discussed in Appendix F, a pure umk-
lapp process can be derived by considering higher-order terms
in perturbation theory. In the even-N case, the charge field �c

is pinned at the configuration 〈�c〉 = 0, regardless of the sign
of JK. In the odd-N case, in contrast, we have two different so-
lutions: 〈�c〉 = 0 and 〈�c〉 = √ π

4N . For the consistency with
the strong-coupling results [39] [see Eq. (37)], the solution has
to be chosen as

〈�c〉 =
{√

π
4N when JK > 0,

0 when JK < 0.
(79)

1. Even-N case

We first consider the even-N case (N > 2) where 〈�c〉 = 0
for both JK > 0 and JK < 0. Averaging over the charge de-
grees of freedom in the low-energy limit E � �c, the leading
relevant contribution (78) in the Kondo coupling reads

H f =1/N
K = Ṽ (1)

K + Ṽ (2)
K ,

Ṽ (1)
K = JKδ̃1 (�1L�1R + H.c.), (80)

Ṽ (2)
K = −JKδ̃2 Tr �adj (σ2 + H.c.),

where δ̃1,2 are positive constants. The one-site translation
symmetry Ta0 is now given by [set m = 1 in Eq. (63)]:

G → G ei2π/N , σ1 → σ1, (81)

so that Ta0 acts as the center of the SU(N) group. The low-
energy theory (80) is very similar to that of the two-leg
SU(N) spin ladder with an interchain exchange interaction
JK [95,106]. The two perturbations in Eq. (80) are strongly
relevant with the same scaling dimension 2(N − 1)/N < 2.
The analysis of the low-energy properties of model (80) has
been presented in details in Ref. [95].

When JK > 0, a plaquette phase with a ground-state degen-
eracy N/2 which breaks spontaneously Ta0 has been found. It
corresponds to the formation of 4kF-valence-bond solid (VBS)
and 4kF-CDW with order parameters:

O4kF-VBS � e− i4πn
N SA

n SA
n+1,

O4kF-CDW � e−i4kFnc†
α,ncα,n.

(82)

Physically, this SU(N) Kondo singlet plaquette phase is a
product of SU(N) singlets made from the hybridization of N/2
localized spins with N/2 fermion ones (see Fig. 4; note that
there is one fermion per site on average).

When JK < 0, the perturbation Ṽ (1)
K in Eq. (80) acts only

in the ZN sector and corresponds to a massive integrable
deformation of the ZN parafermion [99,107]. The ZN sector
thus acquires a mass gap. In the low-energy limit, we can
integrate out the ZN degrees of freedom in Ṽ (2)

K to derive the
effective interaction in the SU(N )2 sector [95]:

V f =1/N
eff � γ̃ Tr �adj, (83)

with γ̃ > 0. The effective field theory describes the SU(N )2

CFT perturbed by the adjoint operator which is a strongly rele-
vant perturbation with the scaling dimension 2N/(N + 2) < 2
thereby opening a spectral gap in the spin sector when N is
even [66,108]. Therefore, the ground state for JK < 0 is a
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FIG. 4. The insulating ground states (plaquette phase) with fi-
nite spin gaps formed when JK > 0 and N = even: (a) N = 4 and
(b) N = 6. The N spins enclosed by each colored square form an
SU(N) singlet. There are N/2 degenerate states related by translation.

N/2-fold degenerate full-gap insulator that is characterized
by a staggered pattern of SU(N)-singlets (staggered-singlet
phase; see Fig. 5) similar to what was found in Ref. [95]
for the two-leg SU(N) spin ladder with ferromagnetic inter-
chain interaction. In Appendix G, we argue the connection
between the IR-limit of the effective field theory (83) with
negative JK and the nonlinear sigma model on the flag man-
ifold SU(N)/U(1)N−1 with N − 1 topological angles θa =
4πa/N (a = 1, . . . , N − 1) which is known to describe the
IR properties of the SU(N) Heisenberg spin chain in the
symmetric rank-2 tensor representation [64,109,110]. The lat-
ter spin chain is fully gapped with ground-state degeneracy
N/2 [60,110]. Interestingly enough, as seen in Eq. (37), the
SU(N) KLM for f = 1/N is described by such a model in the
strong-coupling regime JK → −∞ [39]. Thus we have arrived
at consistent descriptions both for weak and strong couplings.

2. Odd-N case

Now let us consider the cases with odd-N . We begin with
the JK < 0 case where the charge-field condenses such that
〈�c〉 = 0 [see Eq. (79)]. The strongly relevant perturbation

FIG. 5. The N/2-fold degenerate insulating ground states
(staggered-singlet phase) with finite spin gaps formed when JK < 0
and N = even: (a-1,2) N = 4 and (b-1,2,3) N = 6. The N spins
contained in each colored square form an SU(N) singlet.

(80) describes the physical properties of the underlying insu-
lating phase of the lattice model. As in the even-N case, the
ZN sector is fully gapped, and by averaging over these mas-
sive degrees of freedom, we find the same effective interaction
V f =1/N

eff in Eq. (83). However, there is a striking difference
from the previous case in the IR properties since N is now
odd. The SU(N )2 WZNW CFT perturbed by the effective
interaction (83) has been investigated in Refs. [66,108]; while
the adjoint perturbation is a strongly relevant perturbation
with the scaling dimension 2N/(N + 2), a massless RG flow
from SU(N )2 to SU(N )1 CFT is predicted when N is odd and
γ̃ > 0. Explicit proofs in the N = 3 case have been given by
mapping the model (83) with N = 3 onto the Z3 Gepner’s
parafermions [66] or by exploiting a semiclassical analysis
[105] (see also Appendix G). Since the current-current inter-
action (68) is marginally irrelevant and scales to zero when
JK < 0, we find that the SU(N) KHM at 1/N filling belongs
to an insulating phase with gapless SU(N) spin degrees of
freedom when N is odd and JK < 0. It describes a C0S(N − 1)
insulating phase phase in full agreement with the LSM con-
straints for f = 1/N and the strong-coupling result of the
SU(N) KHM since for odd N the effective spin model (37)
is believed to be gapless in the SU(N )1 universality class
[60,110,111].

In the JK > 0 case, the �c-field is expected to be pinned at
a different value 〈�c〉 = √

π/4N and the low-energy interac-
tion (78) reduces, after averaging over the charge degrees of
freedom, to

H f =1/N
K = Ṽ (1)

K + Ṽ (2)
K ,

Ṽ (1)
K = JKδ̃1(e

iπ
N �1L�1R + H.c.), (84)

Ṽ (2)
K = −JKδ̃2(e

iπ
N Tr �adj σ2 + H.c.),

with δ̃1,2 > 0. When N is odd, one can absorb the phase
factor e

iπ
N in Eq. (84) by the following redefinition on the ZN

parafermion currents:

�kL → �̃kL = (−1)keikπ/N�kL,
(85)

�kR → �̃kR = �kR,

�̃kL being still a parafermionic current (�̃N
kL ∼ I) when N

is odd. The transformation of the ZN spin fields σk should
be consistent with the fusion rules of the ZN parafermionic
theory [96]: σkμk ∼ �kL and σkμ

†
k ∼ �kR (μk being the ZN

disorder fields). We thus deduce

σk → σ̃k = eikπ/2N±ikπ/2σk,
(86)

μk → μ̃k = eikπ/2N±ikπ/2μk,

where the sign + (respectively, −) is chosen when N = 4p +
3 (respectively, N = 4p + 1). After this transformation, the
low-energy interaction (84) reads

H f =1/N
K = Ṽ (1)

K + Ṽ (2)
K ,

Ṽ (1)
K = −JKδ̃1(�̃1L�̃1R + H.c.), (87)

Ṽ (2)
K = JKδ̃2 Tr �adj (σ̃2 + H.c.),

which is identical to Eq. (80) except for the sign flip: JK →
−JK. Now we can borrow the results obtained above for
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negative JK and 〈�c〉 = 0; we again find a massless RG
flow SU(N )2 → SU(N )1 which might imply an insulating
C0S(N − 1) phase with a gapless spin sector described by the
SU(N )1 CFT for positive JK as well.

However, this is not the end of the story. In fact, for JK > 0,
one has to be very careful about the marginal interaction (68)
since along the massless RG flow SU(N)2 → SU(N)1, the
SU(N )2 currents IA

L,R are transmuted to the SU(N )1 currents
J A

L,R in the far-IR limit. The current-current interaction (68)
then gives a residual contribution in the low-energy effective
Hamiltonian for the SU(N )1 spin sector:

H f =1/N
IR = 2πv

N + 1

(
: J A

R J A
R : + : J A

L J A
L :
)+ λeffJ A

R J A
L ,

(88)

where λeff > 0 when JK is positive. As is well known [73],
the effective Hamiltonian (88) with positive λeff is a massive
integrable field theory suggesting a fully gapped phase (C0S0)
with

〈O2kF-VBS〉 := 〈e−i2πn/N SA
n SA

n+1

〉 �= 0,

〈O2kF-CDW〉 := 〈e−i2πn/N c†
α,ncα,n〉 �= 0. (89)

These imply the coexistence of 2kF-VBS order and 2kF-CDW
with a N-fold ground-state degeneracy that results from the
spontaneous-breaking of Ta0 .

C. Other commensurate fillings

We now consider general commensurate fillings f = m
N

with m �= 1, N − 1. The low-energy properties of the SU(N)
KHM (3) are governed by the interaction (66) and the
marginal piece (68). The interacting part (66) has the scaling
dimension xN (m) = 1 + m(N − m)/N [see Eq. (67)] and can
be relevant, marginal or irrelevant depending on filling, i.e.,
the value of m. For instance, at half-filling (m = N/2) the
interaction is irrelevant when N > 4 and the Kondo coupling
HK (3) is strongly oscillating and averages to zero in the low-
energy limit when N is odd. Nevertheless, a charge gap might
be generated in higher-orders of perturbation theory. There-
fore, we tentatively assume here the formation of a charge gap
and discuss the nature of the resulting insulating phase which
emerges within our low-energy approach. A comparison will
be done with the LSM predictions summarized in Table I.
Detailed numerical analyses of the lattice model are called
for to check the existence of the postulated charge gap for
particular commensurate fillings and JK.

When the interaction (66) is strongly irrelevant, the
current-current contribution (68) governs the IR properties of
the SU(N) KHM model:

VJJ = g1
(
JA

s,LJA
f,R + JA

s,RJA
f,L

)+ g2JA
s,RJA

s,L, (90)

with initial conditions g1(0) = JK and g2(0) = −γ < 0.
The one-loop RG equations for the perturbation (90) are

ġ1,2 = Ng2
1,2

4π
. (91)

When JK < 0, the perturbation (90) is marginally irrelevant
and scales to zero in the far-IR limit. The resulting insulating

phase supports gapless spin excitations and corresponds to a
multicomponent Luttinger liquid phase C0S2(N − 1).

When JK > 0, in contrast, the interaction g1 is marginally
relevant and one finds g1 → ∞ and g2 → 0 in the far-IR
limit. The low-energy theory that governs the strong-coupling
behavior of the spin sector is then

HIR = 2πv(f)
s

N + 1

(
: JA

f,RJA
f,R : + : JA

f,LJA
f,L :
)

+ 2πv(s)
s

N + 1

(
: JA

s,RJA
s,R : + : JA

s,LJA
s,L :
)

+ g∗
(
JA

s,LJA
f,R + JA

s,RJA
f,L

)
, (92)

with g∗ = g1(t∗) > 0 (t∗ being the RG time when the strong-
coupling regime is reached).

One can solve this theory using a trick exploited in
Ref. [112] in the study of the two-leg zigzag spin ladder.
Following the trick, we first perform a transformation on the
set of the SU(N )1 currents {JA

f,L/R, JA
s,L/R} and introduce a new

set {JA
1,L/R, JA

2,L/R}:

JA
1,L := JA

f,L, JA
1,R := JA

s,R,

JA
2,L := JA

s,L, JA
2,R := JA

f,R. (93)

By neglecting the velocity anisotropy |v(s)
f − v(s)

s |, the IR
Hamiltonian density (92) separates into two commuting
SU(N )1 Thirring models:

HIR = H1 + H2,

Hi := 2πv

N + 1

(
: JA

i,RJA
i,R : + : JA

i,LJA
i,L :
)+ g∗JA

i,LJA
i,R,

[H1,H2] = 0. (94)

The SU(N) Thirring model Hi is exactly solvable and de-
velops a nonperturbative spectral gap [73] when JK > 0 (i.e.,
g∗ > 0). Therefore, we conclude that the resulting insulating
phase is fully gapped (C0S0).

The next step is to identify the nature of this phase. To this
end, we introduce the SU(N )1 WZNW fields G1,2 associated
to the new set of currents (93). In the ground states of H1,2,
we have the long-range ordering of 〈Tr G1,2〉:

〈Tr G1〉 = 〈Tr(gfL gsR)〉 �= 0,

〈Tr G2〉 = 〈Tr(gsL gfR)〉 �= 0,
(95)

where we have introduced the left and right components
(gfL/R, gsL/R) of the original WZNW fields gf and gs. The
nonzero expectation values of the composite order parameters
〈Tr G1,2〉 (95) indicate that there is a strong hybridization
between the SU(N) spins of the itinerant fermion (gf) and
the local moment (gs) in the ground state of the model HIR

(94). With this in mind, we introduce a spin-polaron which
is a bound-state formed by the conduction electron and the
localized spin moment as in Refs. [113,114]:

c̃†
α,n := c†

β,nT A
βαSA

n . (96)

Out of the spin-polaron c̃†
α,n and the itinerant fermion, we

could then define a composite-CDW order parameter with
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oscillations at 2k∗
F (k∗

F = mπ
Na0

+ π
Na0

):

Oc-CDW � e−i2k∗
Fnc̃†

α,ncα,n = e−i2k∗
FnŝA

n SA
n , (97)

which couples the dominant fluctuation component of the
conduction-electron spin to that of the localized moment [note
that 2mπ

Na0
and 2π

Na0
are from the conduction electrons and the

local moments, respectively]. The characteristic momentum
of the resulting CDW gets renormalized and shifted from
the value 2kF = 2mπ

Na0
expected from the fermion filling to

2k∗
F by the momentum of the localized-spin fluctuations. This

order parameter (97) with a large Fermi surface associated
with its composite nature has already been introduced in
the context of the 1D SU(2) KHM for incommensurate fill-
ings in Refs. [46,115,116]. The continuous description of the
composite-CDW order parameter (97) can be obtained by
means of the identities (47) and (48):

Oc-CDW � −λCei
√

4π/N�c Tr(gf T A) Tr(gs T A)

∼ −λC

2

{
Tr(gf gs) − 1

N
Tr(gf ) Tr(gs)

}
, E � �c,

(98)

where the charge degrees of freedom have been averaged
over around 〈�c〉 = 0. In the ground-state of the low-energy
Hamiltonian (94), we find

〈Oc-CDW〉 ∼ 〈Tr(G1)〉〈Tr(G2)〉 �= 0. (99)

This phase breaks Ta0 spontaneously leading to degenerate
ground states.13 For instance, in the half-filled case f = 1/2
(N is assumed even), the momentum of the composite CDW
(97) is 2k∗

F = π
a0

+ 2π
Na0

. The degeneracy depends on the parity
of N/2; when N = 4p + 2 (respectively, N = 4p > 4) the
ground-state degeneracy is N/2 (respectively, N). We thus
find, at half-filling f = 1/2, the emergence of a fully gapped
2k∗

F-composite CDW phase for JK > 0 with ground-state de-
generacy which is consistent with the LSM prediction (39).

Finally, a remark is in order about the treatment of the
interactions in this section. In the above argument, we have
assumed that the first part (66) of the Kondo coupling is
irrelevant so that the marginal part (68) plays a crucial role.
However, the interaction (66) can be strongly relevant in some
particular cases. For instance, for N = 8 with m = 2, we
have the scaling dimension x8(2) = 7/4 < 2, while at half-
filling with N = 4 the interaction is marginal [x4(2) = 2] and
competes with the current-current interaction (68). In such
situations, a special analysis of the interaction (66) is required
which is beyond the scope of this paper and will be addressed
elsewhere.

In Fig. 1 and Table II, we summarize the properties of the
insulating phases at commensurate fillings discussed above.

V. CONCLUDING REMARKS

To summarize, in this paper, we identified various possible
insulating phases of the SU(N) Kondo lattice model [KLM;

13Note that after Ta0 , the right-hand side acquires a phase e
i2(m+1)π

N

by Eq. (57).

(1)] and Kondo-Heisenberg model [KHM; (3)] by means of
several complementary analytical approaches. Nonperturba-
tive constraints based on the LSM argument, that depend only
on the kinematical information (e.g., filling f , the type of
local moments, etc.), were derived by exploiting the trans-
lational and global SU(N) symmetries of the lattice models.
Specifically, two different indices (40) were introduced for
the original lattice models in which the local SU(N) moments
transform in a representation specified by a Young diagram
with nyng boxes. Depending on N , the filling f , and nyng,
the general constraints strongly restrict the phase structure,
especially the possible insulating phases of these models as
summarized in Table I for nyng = 1 [i.e., for the local moments
in the defining representation of SU(N)].

For instance, the symmetric Kondo insulator with a spin
gap [like the one found in the SU(2) KLM at half-filling] can
occur only at filling f = 1 − 1/N [see Eq. (41) for generic
local moments]. For other commensurate fillings f = m/N
(m = 1, . . . , N − 2), several different insulating phases with
gapless spin degrees of freedom or multiple ground states
with spontaneously broken translational symmetry can appear
depending on f and N (see Table I).

In the case of the SU(N) KHM (3) where a field-theory
analysis can be derived, the LSM argument was shown to be
equivalent to the ’t Hooft anomaly matching condition of the
resulting low-energy effective field theory. The existence of
a mixed global anomaly between ZN (the representation of
the one-step translational symmetry Ta0 in the continuum) and
SU(N) symmetries gives strong constraints on the possible
insulating phases which emerge in the far IR limit. For exam-
ple, when an anomaly-related index I (1)

N, f = f + 1/N , which
is to be identified with the first index I1 (31) in the LSM
argument, satisfies I (1)

N, f ∈ Z (when this is the case, I (2)
N, f ∈ Z

automatically), no anomaly exists and uniform fully gapped
insulating phases are allowed. In contrast, for other fillings
with I (1)

N, f /∈ Z, a mixed global anomaly is present thereby
excluding symmetric full-gap insulators; from the ’t Hooft
anomaly matching, the resulting insulating ground states must
then either support gapless spin excitations or be degenerate
due to the spontaneous breaking of the translation symmetry,
in full agreement with the LSM approach.

A weak-coupling approach to the SU(N) KHM (3) for
commensurate fillings f = m/N (m = 1, . . . , N − 1) enables
us to identify the nature of the insulating phases allowed
by the LSM and ’t Hooft anomaly matching constraints. By
assuming the existence of a charge gap, we found several
insulating phases depending on f , N , and the sign of the
Kondo coupling JK (see Table II). As is suggested by the
nonperturbative arguments, translation-invariant full-gap in-
sulators occur only at f = 1 − 1/N ; the usual Kondo insulator
with local (site-centered) Kondo singlets for antiferromag-
netic JK and the chiral SPT insulator for ferromagnetic JK with
bond-centered Kondo singlets that break inversion symmetry
[see Figs. 3(a) and 3(b)]. For other commensurate fillings, we
generically found spin-gapless insulators when JK < 0 (for
odd-N and f = 1/N) or fully gapped ones with ground-state
degeneracy when JK > 0. In the latter case (JK > 0), a variety
of degenerate insulating states have been found depending
on the filling f such as the plaquette phase (Fig. 4), the
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staggered-singlet phase (Fig. 5), and the long-range-ordered
composite-CDW phase with the hybridization between the
itinerant and local spin moments [see Eq. (97)].

The combination of the analytical approaches of this paper
together with the strong-coupling study of Ref. [39] led us to
conjecture a (schematic) global phase diagram of the SU(N)
KLM as function of the filling f and the Kondo coupling JK

which is presented in Fig. 1. Though the insulating phases
were derived explicitly for the SU(N) KHM, we believe
that the identified phases should be present in the SU(N)
KLM as well, since most of our arguments are based on
nonperturbative constraints which rely only on kinematical
information common to both models. Clearly, large-scale nu-
merical simulations are called for to shed further light on the
zero-temperature phase diagrams of these models.
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APPENDIX A: CRASH COURSE ON YOUNG DIAGRAMS
AND SU(N) REPRESENTATIONS

This Appendix quickly summarizes the minimal knowl-
edge on the Young diagrams and its relation to the irreducible
representations of SU(N). Let us first introduce the funda-
mental representations that are building blocks of all possible
irreducible representations. There are (N − 1) fundamental
representations Rp each of which is realized by a fixed
number p (= 1, . . . , N − 1) of N-colored fermions c†

α (α =
1, . . . , N) [the two cases m = 0, N correspond to SU(N)-
singlet and are trivial]. The n-fermion representation Rp is
spanned by the states of the form (the bracket [· · · ] stands for
antisymmetrization):

|[α1,...,αp]〉 := c†
α1

c†
α2

· · · c†
αp

|0〉F (A1)

and has dimensions N!
(N−p)!p! . We assign the following single-

column Young diagrams:

(A2)

to these representations. By construction, the n boxes in the
same column are antisymmetrized.

1. Defining representation and its conjugate

The simplest of them is the N-dimensional (defining) rep-
resentation (R1; ), which is spanned by the N single-fermion
(p = 1) states

|α〉 := c†
α|0〉F (α = 1, . . . , N )

and has been used for the local spins of the models (1) and (3).

FIG. 6. The Young diagram corresponding to the SU(N)
irreducible representation specified by the Dynkin labels
(d1, d2, . . . , dN−1).

The conjugate representation Rp of Rp is obtained by
applying the particle-hole transformation:

|[α1,...,αp]〉 :=cαp · · · cα1 |f〉F

= 1

(N − p)!

∑
{βi}

εα1···αnβp+1···βN | [βp+1,··· ,βN ]︸ ︷︷ ︸
N−p

〉

(|f〉F =c†
1 · · · c†

N |0〉F).

As the right-hand side transforms like RN−p, the conjugation
transforms the Young diagram as

(A3)

Clearly, the following N one-hole states

|α〉 = cα|f〉F = (−1)α−1
∏
β �=α

c†
β |0〉F (α = 1, . . . , N )

span the conjugate R1 of the one-fermion representation
R1 ( ).

2. General representations

The generic irreducible representations are constructed by
tensoring the N − 1 fundamental representations Rn:

R⊗d1
1 ⊗ · · · ⊗ R⊗dN−1

N−1 . (A4)

In doing so with fermions, we need to introduce an ad-
ditional degree of freedom (“flavor”) on top of the color
α(= 1, . . . , N). The set of nonnegative integers (Dynkin
labels) (d1, . . . , dN−1) uniquely specifies the irreducible rep-
resentation. The Young diagram corresponding to a generic
representation (d1, . . . , dN−1) is made of d1 length-1 columns,
d2 length-2 ones, and so on (see Fig. 6).

For example, the diagram

stands for the representation (2, 1, 0, . . . , 0), while the adjoint
representation (1, 0, . . . , 0, 1) under which the SU(N) gener-
ators transform is specified as

(A5)
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The conjugate of a given representation is obtained by ap-
plying the rule (A3) to each column of the corresponding
Young diagram and then rearranging the columns into the
correct form. For instance, the adjoint representation (A5) is
self-conjugate.

APPENDIX B: LSM TWIST FOR KONDO COUPLING

The integer m(S) that determines the relative phase between
the charge and spin twists [see Eq. (14)] can be fixed by
considering the energy cost from the Kondo coupling:

HK = JK

∑
j

⎛⎝N2−1∑
A=1

ŝA
j SA

j

⎞⎠
= JK

∑
j

⎧⎨⎩
N∑

μ,ν=1

Ŝμν
j Sνμ

j − 1

N

∑
j

n̂ j n̂
(e)
j

⎫⎬⎭, (B1)

to which a product of the two twists Û (F)
α Û (S)

α (2πm(S)) acts.
Using Eqs. (7) and (11), we obtain

L∑
j=1

∑
μ,ν

{
Û (F)

α
†Ŝμν

j Û (F)
α

}{
Û (S)

α (2πm(S))†Sνμ
j Û (S)

α (2πm(S))
}

=
L∑

j=1

∑
μ �=α

{
e−i 2π

L (1+m(S) ) jŜαμ
j Sμα

j + e+i 2π
L (1+m(S) ) jŜμα

j Sαμ
j

}

+
L∑

j=1

∑
μ,ν �=α

Ŝμν
j Sνμ

j . (B2)

It is important to note that, in contrast to the variation
of the other parts (12) (Hhop) and (14) (HH), explicit
site( j)-dependence does not cancel in the exponent, which
means that the increase of the Kondo energy created by the
twist Û (F)

α Û (S)
α (2πm(S)) is of the order O(L) [L−n

∑
j (1 +

m(S))n jn ∼ L]. Therefore, we see that the only way to avoid
this large O(L) energy cost and create low-lying excitations
is to take m(S) = −1 and consider the following particular
combination (15):

Ûα := Û (F)
α Û (S)

α (−2π ) = exp

⎧⎨⎩i
2π

L

L∑
j=1

j(n̂α, j − Qα, j )

⎫⎬⎭
(α = 1, . . . , N ). (B3)

APPENDIX C: BOSONIZATION OF FERMION PART

1. Orthogonal transformation to spin-charge basis

At low energies, the N species of lattice fermions cα, j (α =
1, . . . , N) are expressed by the left (Lα) and right-moving (Rα)
Dirac fermions as in Eq. (42). Then, these 2N Dirac fermions
are bosonized using a set of scalar fields ϕα,L/R as

Lα = κα√
2πa0

e−i
√

4πϕα,L ,

Rα = κα√
2πa0

ei
√

4πϕα,R ,

(C1)

where [ϕα,R, ϕβ,L] = iδαβ/4 and κα (= κ†
α ) are the Klein fac-

tors that satisfy {κa, κb} = 2δab. As in the usual electron
systems, we now move on from the color(α)-based basis
�ϕL/R = (ϕ1L/R, . . . , ϕNL/R)T to the spin-charge separated ones,

�� := (�c,�s,1, . . . , �s,N−1)T,

�� := (�c,�s,1, . . . , �s,N−1)T (C2)

[the first elements (�c and �c) describe the charge sector and
the remaining ones are associated to the SU(N)-spin] by the
following transformation:( ��

��
)

=
(

R R
R −R

)(
�ϕL

�ϕR

)
, (C3)

where the N-dimensional orthogonal matrix R is defined us-
ing the N weights {�μα} in the defining representation as

R :=
(

1/
√

N 1/
√

N · · · 1/
√

N√
2�μ1

√
2�μ2 · · · √

2�μN

)
,

[�μα· �μβ = (δαβ − 1/N )/2, RTR = 1]. (C4)

If we plug the expressions (C1) into the Hamiltonian (43)
and carry out the change of basis (C3), then we arrive at

Hhop = πv(f)
c

N

[
: j2

c,R : + : j2
c,L :
]

+ v(f)
s

2

N−1∑
a=1

[: (∂x�s,a)2 : + : (∂x�s,a)2 :], (C5)

where the charge current is defined as

jc,L/R := 1√
π

N∑
α=1

∂xϕα,L/R.

This is the free-boson representation of the Hamiltonian (45).

2. Gauge redundancy

The 2N bosons ϕαL/R introduced in Eq. (C1) are defined
only modulo

√
π , and any shifts of the form

ϕα,L/R ∼ ϕα,L/R + √
πnα,L/R (α = 1, . . . , N, nα,L/R ∈ Z)

(C6)

do not affect physics (gauge redundancy). This property
is crucial in correctly counting the number of inequiva-
lent ground states in multicomponent systems (see, e.g.,
Refs. [117–119]). In fact, from Eq. (C3), one can immediately
see that whenever the difference between a pair of ��( ��) fields
are written as(

δ ��
δ ��
)

= √
π

(
R R
R −R

)(
�nL

�nR

)
= √

π

(
R(�nL + �nR)
R(�nL − �nR)

)
,

�nL/R := (n1,L/R, . . . , nN,L/R), (C7)

they must be regarded as physically equivalent. Suppose we
are given a pair of semiclassical ground states in which ��-
fields are pinned to ��cl and ��′

cl. If there exist integral vectors
�nL/R satisfying

δ �� = ��cl − ��′
cl = √

πR(�nL + �nR) (C8)
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(since �� is indefinite in this case, we have only to consider
the first set of equations), then the two ground states are
physically equivalent.

APPENDIX D: LSM IN THE CONTINUUM

To find the continuum counterpart of Eq. (5), we bosonize
the local fermion density n̂α, j = c†

α, jcα, j as:

n̂α, j � 1√
π

∂xφ
(f)
α (x),

where we have introduced the Bose fields φ(f)
α and θ (f)

α by:
φ(f)

α := ϕα,L + ϕα,R and θ (f)
α := ϕα,L − ϕα,R. Then, it is easy

to find the continuum counterpart of the fermion twist (5):14

Û (f)
α = exp

[
i
2

L

√
π

∫ L

0
dx x∂xφ

(f)
α (x)

]
. (D1)

In fact, using [∂xφ
(f)
α (x), θ (f)

β (y)] = −iδαβδ(x − y), we can

readily check that the above Û (f)
α correctly adds x-dependent

phases to the left and right movers [see Eq. (6)]:

R†
β ∼ e−i

√
π (φβ−θβ ) Û (f)

α−−→ e−i 2π
L xδαβ R†

β,

L†
β ∼ ei

√
π (φβ+θβ ) Û (f)

α−−→ e−i 2π
L xδαβ L†

β,

thereby reproducing Eq. (6) in the continuum limit. Using
relations similar to Eq. (24), we can rewrite Eq. (D1) as

Û (f)
α = exp

[
i
2

L

√
π

N

∫ L

0
dx x∂x�c(x)

]

× exp

[
i
2

L

√
π

N−1∑
a=1

[�μα]a

∫ L

0
dx x∂x�

(f)
s,a(x)

]
. (D2)

For the spin twist, we plug the continuum expression of
Qα, j

Qα, j =
N∑

β=1

[Qα]ββ n(s)
β, j → − 1√

π

N−1∑
a=1

[�μα]a ∂x�
(s)
s,a

into Eq. (8) to obtain

Û (s)
α (−2π ) = exp

[
i
2

L

√
π

N−1∑
a=1

[�μα]a

∫ L

0
dx x∂x�

(s)
s,a(x)

]
.

(D3)

The elementary twists are obtained by combining Eqs. (D2)
and (D3).

Finally, a generic twist operation Û(m1,...,mN ) in the contin-
uum splits into the charge and spin parts

Û(m1,...,mN ) = Û (c)
M · Û (s)

(m1,...,mN ), (D4a)

14A more careful treatment suggests that we need to include the
surface term to obtain the correct expression given in Ref. [120]
(see also Ref. [121]), whereas the naive expression (D1) given here
suffices to our purposes. We thank Y. Fukusumi for pointing this
subtlety out.

with

Û (c)
M := exp

{
i
2π

L

M

N

∫ L

0
dx x

√
N

π
∂x�c(x)

}
,

Û (s)
(m1,...,mN ) := exp

{
i
2π

L

N−1∑
a=1

[(
N∑

α=1

mα �μα

)
a

×
∫ L

0
dx x

1√
π

(
∂x�

(f)
s,a(x) + ∂x�

(s)
s,a(x)

)]}
,

(D4b)

which is to be compared with the lattice expression (28).15

Now suppose that spin [SU(N )]-charge separation occurs
at low energies. Then, Û (c)

M that involves only the charge boson
�(F)

c of the itinerant fermions affects only the charge sector,
while Û (s)

(m1,...,mN ) twists the entire spin sector that includes both
the itinerant (�(f)

s,a) and local (�(s)
s,a) spins.

To get more insight into the low-energy spectral structure,
let us calculate the energy shift due to LSM twists using
the Luttinger-liquid Hamiltonian. Plugging all these into the
low-energy expressions (45) and (51), we obtain the following
Luttinger-liquid expression of the O(L−1) energy shift:

�E(m1,...,mN ) = 2π

L
v(f)

c
M2

N
Kc

+ 2π

L

(
v(f)

s + v(s)
s

)
2

(
N∑

α=1

mα �μα

)2

, (D5)

where Kc is the Luttinger-liquid parameter introduced in
Eqs. (F2) and (F4) that encodes the effects of marginal in-
teractions. The first term corresponds to the excitations in
the charge sector, while the second to the spin [i.e., SU(N)]
excitations.

The simplest choice,

(m1, . . . , mN ) = (1, 0, . . . , 0),

corresponds, despite its simple looking, to the following spin-
charge entangled twist:

charge: M = 1,

spin: (m1, . . . , mN ) = (1 − 1/N,−1/N, . . . ,−1/N ),(
N∑

α=1

mα �μα = �μ1

)
and increases the energy of the system as

�E(1,0,...,0) = 2π

L
v(f)

c
Kc

N
+ 2π

L

(
v(f)

s + v(s)
s

)N − 1

N
.

15Note that ∂x�
(F)
c (x) counts the density of itinerant fermions

n̂ ∼
√

N

π
∂x�

(F)
c (x)

and that (∂x�
(F)
a (x) + ∂x�

(S)
a (x))/

√
π gives the local SU(N) weight

�λ (including the that from both the itinerant and local fermions).
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This indicates that the (1, 0, . . . , 0) twist creates a spin exci-
tation corresponding to the primary states of the two SU(N )1

CFTs (second term) as well as the charge excitation propor-
tional to Kc.

If the charge sector gets gapped by forming some sort of
charge-ordered phases (e.g., Mott, CDW, etc.) with Kc → 0,
then �c is almost pinned, whereas the conjugate �c disap-
pears at low energies [see, e.g., Eqs. (F2) and (F4)]. Then, as
is seen in Eq. (D5), the twist Û(1,0,...,0) excites only the spin
sector leaving the gapped charge sector intact (as it affects
only �c).

In contrast, the uniform twist with vanishing zero-mean
part (m1, . . . , mN ) = (1, . . . , 1) corresponds to

Û(1,...,1) = exp

⎧⎨⎩i
2π

L

L∑
j=1

j

(
N∑

α=1

n̂α, j

)⎫⎬⎭
−→ exp

{
i
2π

L

∫
dx x

√
N

π
∂x�c(x)

}
(D6)

that excites only the charge part leaving the spin sector intact

�E(1,...,1) = 2π

L
v(f)

c NKc.

In the charge-ordered phases where �c is locked (and Kc →
0), Û(1,...,1) does not create excitations at all as is suggested
intuitively (note that Û(1,...,1) does not change a charge-ordered
state ⊗i|ni〉).

APPENDIX E: UMKLAPP INTERACTION IN THE 1D
SU(N) HUBBARD MODEL

In this Appendix, we discuss the values of the phase θ0 (49)
of the nonuniversal constant λ which occurs in the low-energy
expression of the SU(N) spin operator (48) of the localized
spin. This coupling constant stems from the averaging of the
charge degrees of freedom in the Mott-insulating phase of the
1D U(N) Hubbard chain at 1/N-filling:

HHubbard = −t
∑

i

N∑
α=1

(c†
α,i+1cα,i + H.c.)

+ U

2

∑
i,α,β

nα,inβ,i(1 − δαβ ). (E1)

In the limit of large repulsive U , this model (E1) reduces, at
low energies, to the SU(N) Heisenberg spin chain HH (3).

The SU(N) spin operator assumes a form similar to
Eq. (47) except that now ei

√
4π/N�c is replaced with its expec-

tation value as the charge degrees of freedom are fully gapped
in the large-U limit:

SA
n /a0 � JA

s,L + JA
s,R + iCe

i2πx
Na0 〈ei

√
4π/N�c〉c Tr(gsT

A) + H.c.,

(E2)

where C =
√

N
2πa1/N

0

and the charge degrees of freedom have

been averaged in the Mott-insulating phase. As has been seen
in Sec. IV, the actual expectation value of the charge bosonic
field 〈�c〉 is crucial. To determine how the charge boson �c

is pinned, we revisit here the argument of Ref. [76] on the

generation of the umklapp term which opens a charge gap in
the large-U regime of the U(N) Hubbard model (E1).

We first use the continuum limit (42) with the Fermi mo-
mentum kF = π/(Na0) of the lattice fermion cα,i of model
(E1). In stark contrast to the N = 2 case, the umklapp term
for N > 2 does not appear in the naive continuum limit of the
U(N) Hubbard model (E1) but requires higher-order pertur-
bation that generates a 2NkF nonoscillating piece [76]. One
can find its expression by exploiting the symmetries of model
(E1). Namely, the umklapp operator should be U(N)-singlet,
and invariant under the one-step translation Ta0 and the site-

parity Ps (cα,i
Ps−→ cα,−i) symmetries that act on the left-right

moving Dirac fermions (42) as follows:

Lα

Ta0−→ e
−iπ

N Lα, Rα

Ta0−→ e
iπ
N Rα,

Lα (x)
Ps−→ Rα (−x), Rα (x)

Ps−→ Lα (−x). (E3)

The umklapp operator of the lowest scaling dimension which
is a U(N) singlet and invariant under Eq. (E3) is

Oumklapp =
N∏

α=1

L†
αRα + H.c. (E4)

The next step is to obtain a bosonized expression of Eq. (E4).
To this end, one uses the Abelian bosonization rules (C1) of
the Dirac fermions given in Appendix C. The umklapp term
(E4) can be expressed in terms of the charge field �c and its
expression depends on the parity of N :

Oeven-N
umklapp = (−1)N/2

2N−1(πa0)N
cos(

√
4πN�c),

Oodd-N
umklapp = − (−1)(N−1)/2

2N−1(πa0)N
sin(

√
4πN�c),

(E5)

where �c =∑α ϕα/
√

N . The charge degrees of freedom are
thus described by a β2 = 4πN sine-Gordon model whose
explicit form depends on the parity of N :

Heven-N
c = v(f)

c

2

{
1

Kc
(∂x�c)2 + Kc(∂x�c)2

}
− λc cos(

√
4πN�c),

Hodd-N
c = v(f)

c

2

{
1

Kc
(∂x�c)2 + Kc(∂x�c)2

}
− λc sin(

√
4πN�c), (E6)

where vc and Kc are, respectively, the charge and Luttinger
parameter, and λc is an unknown coupling constant.

In the Mott-insulating phase when Kc = 2/N , the charge
field �c is pinned thereby forming the following ground states
depending on the sign of λc:

〈�c〉 = n

√
π

N
(λc > 0),

〈�c〉 =
√

π

4N
+ n

√
π

N
(λc < 0) (E7a)
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in the even N case (n being arbitrary integers), and

〈�c〉 =
√

π

16N
+ �

√
π

N
(λc > 0),

〈�c〉 = −
√

π

16N
+ �

√
π

N
(λc < 0) (E7b)

in the odd N case (� being arbitrary integers).
All these values do not necessarily represent physically

inequivalent states since the bosons ϕα,L/R that express the
physical fermions by Eq. (C1) are defined only modulo

√
π .

In fact, as has been discussed in Appendix C 2, there is gauge
redundancy in the bosonic charge field �c which is [see
Eq. (C8)]

�c ∼ �c +
√

π

N
, (E8)

and there are thus only two inequivalent ground states to
consider: 〈�c〉 = 0,

√
π

4N (〈�c〉 = ±√ π
16N ) when N is even

(odd). Averaging over the charge degrees of freedom in the
large-U limit, the SU(N) spin operator (E2) becomes

SA
n /a0 � JA

s,L + JA
s,R + iCe

i2πx
Na0 eiθ0 Tr(gsT

A) + H.c., (E9)

where the phase θ0 is given by Eq. (49) depending on the
pinning of the charge field (E7a), (E7b).

APPENDIX F: CHARGE-SECTOR GROUND STATE
AT f = 1/N AND f = 1 − 1/N

In this Appendix, we derive the umklapp operator of the
KHM model (3) for the two special fillings f = N−1

N and f =
1
N . As in Appendix E, the umklapp process depends only on
the U(1)c charge degrees of freedom and can be obtained by
considering higher-order processes in perturbation theory.

We first consider the Kondo interaction (70) for f = N−1
N in

the SU(N )2 × ZN basis. The derivation of the umklapp term
depends on the parity of N . In the odd-N case, a contribution
which depends only on the U(1)c charge field �c occurs at
N th order of V (1)

K in Eq. (70). Indeed, the latter term can be
expressed in terms of the SU(N )2 primary field � which
transforms in the symmetric rank-2 tensor representation
of SU(N):

V (1)
K ∼ −JK ei

√
4π/N�c Tr � + H.c. (F1)

By considering the fact that the identity operator appears in
the OPE of N� operators (note that the trivial SU(N)-
singlet appears in the decomposition of ⊗N ), we find a
umklapp operator which, together with the Luttinger-liquid
part, gives the β2 = 4πN sine-Gordon model:

Hodd-N
c = v(f)

c

2

{
1

Kc
(∂x�c)2 + Kc(∂x�c)2

}
− μc cos(

√
4πN�c), (F2)

where �c is the dual charge field, μc is a coupling con-
stant, v(f)

c and Kc are, respectively, the charge velocity and
the Luttinger parameter, whose values as a function of JK are
beyond the field theory analysis and requires complementary
numerical approaches.

When N is even, a umklapp contribution can be obtained
at order JN/2

K of perturbation theory which stems from the
second term V (2)

K of the Kondo interaction (70). The latter can

be expressed in terms of the SU(N )2 primary field � which

transforms in the representation of the SU(N) group:

V (2)
K ∼ JKei

√
4π/N�cε1Tr � + H.c. (F3)

Since we have ε
N/2
1 ∼ I in the OPE sense and the trivial irrep

of SU(N) appears in the decomposition ⊗ ⊗ . . . ⊗ (N/2
times), one may conclude that the sine-Gordon model with
β2 = πN for the �c charge field emerges at order JN/2

K of
perturbation theory in the even-N case:

Heven-N
c = v(f)

c

2

{
1

Kc
(∂x�c)2 + Kc(∂x�c)2

}
− μc cos(

√
πN�c). (F4)

When f = 1/N a similar approach can be done from the
Kondo interaction (78). The umklapp operator cos(

√
4πN�c)

is generated in higher order of perturbation theory at or-
der JN

K in the odd-N case since Ṽ (1)
K in Eq. (78) contains

the ZN parafermion currents �1L�1R. Using the fusion rule
(�1L�1R)N ∼ I , which stems from the parafermion algebra
[96], one obtains the umklapp term (F2) in the odd-N case.
When N is even, we now consider the operator Ṽ (2)

K in Eq. (78)
which contains the σ2 term and the SU(N )2 adjoint perturba-
tion �adj. Using the fact σ

N/2
2 ∼ I and the fusion rule (G2),

we get the β2 = πN sine-Gordon model (F4) as an umklapp
term for the �c charge field in the even-N case at order JN/2

K
of perturbation theory.

As the scaling dimensions of the perturbation in Eqs. (F2)
and (F4) are NKc and NKc/4, respectively, a charge gap opens
when Kc < 2/N (for odd-N) and Kc < 8/N (for even-N). In
the charge-gapped phase, the charge-bosonic field �c of the
sine-Gordon models (F2) and (F4) is pinned to one of the
minima of the cosine potentials depending on the sign of μc:

〈�c〉 = �

√
π

N
, (μc > 0),

〈�c〉 =
√

π

4N
+ �

√
π

N
, (μc < 0) (F5a)

for odd-N , and

〈�c〉 = 2�

√
π

N
, (μc > 0),

〈�c〉 =
√

π

N
+ 2�

√
π

N
, (μc < 0) (F5b)

for even-N (� being arbitrary integers). Note that all these val-
ues do not necessarily represent physically inequivalent states.
In fact, there is gauge redundancy (E8): �c ∼ �c + √

π/N .
Taking this into account in Eqs. (F5a) and (F5b), we deduce
that there is a single minimum 〈�c〉 = 0 to consider in the
even-N case for either sign of μc. In the odd-N case, we have
two different inequivalent solutions depending on the sign of
JK: 〈�c〉 = 0 (μc > 0) and

√
π

4N (μc < 0). Unfortunately, the
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precise JK-dependence of the umklapp coupling μc, which is
crucial in selecting one of the two possible solutions for a
given JK, cannot be determined within our approach. This is
why we have chosen, in the main text (Sec. IV A), one of the
two in such a way that the physical conclusions drawn from
the solution are consistent with those from the strong-coupling
approach.

APPENDIX G: MAPPING ONTO THE NONLINEAR SIGMA
MODEL ON A FLAG MANIFOLD

In this Appendix, we connect the weak-coupling anal-
ysis for the 1/N-filling with JK < 0 to the semiclassical
description of the SU(N) Heisenberg spin chain in symmetric
rank-2 tensor representation (37) which describes the strong-
coupling regime JK → −∞ of the SU(N) KLM for f = 1/N
[39].

As described in Sec. IV B, the low-energy effective theory
which governs the properties of the SU(N) KHM for one-
fermion per site with JK < 0 is the SU(N )2 CFT perturbed
by the adjoint operator (83). In this respect, let us consider
the most general SU(N )2 perturbed action compatible with
the PSU(N) symmetry and the one-site translation invariance,
e.g., the ZN symmetry (81), first introduced in Ref. [122]:

S = SWZNW +
[N/2]∑
n=1

∫
d2x gnTr[Gn]Tr[(G†)n], (G1)

where SWZNW is the Euclidean action for the SU(N )2 CFT and
g1 = γ̄ > 0. In Eq. (G1), the n = 3, . . . [N/2] terms are actu-
ally irrelevant contributions and the g2 term is a subleading
relevant operator which is generated in the RG flow according
to the fusion rules of SU(N )2 CFT:

�adj × �adj ∼ I + �adj + �′ + ..., (G2)

where the dots describe terms that are marginal or irrelevant
operators. The SU(N )2 primary field �′ transforms in the self-
conjugate representation of SU(N) with the Young tableau of

N boxes,

(G3)

and is relevant with the scaling dimension x′ = 2(N −
1)/N < 2 and translation invariant. Our approach cannot fix
the sign of the coupling g2 of this operator. We assume g2 > 0
to reproduce the strong-coupling result.

We can now consider analyze the field theory (G1) by
means of a strong-coupling limit. When gn → +∞, the po-
tentiel term of Eq. (G1) selects a SU(N) matrix G such that
Tr[Gn] = 0 with n = 1, . . . , [N/2]. As shown in Ref. [122],
the latter condition can be extended to n = 1, . . . , N − 1 and
the SU(N) G field can be written as

G = U�U †,

� = ω−(N−1)/2

⎛⎜⎜⎜⎝
ωN−1 0 · · · 0

0 ωN−2 · · · 0
... · · · ω 0
0 · · · 0 1

⎞⎟⎟⎟⎠, (G4)

U being a general U(N) matrix and ω = ei2π/N . The solution
(G4) describes a U(N)/U(1)N ∼ SU(N)/U(1)N−1 flag man-
ifold [109]. Using the identification (G4) in the action (G1),
it can be shown that the low-energy effective field theory is a
nonlinear sigma model on the flag manifold SU(N)/U(1)N−1

with N − 1 topological θ terms θa = 4πa/N (a = 1, . . . , N −
1) [82,122]. The flag sigma model with topological angles
θa = 2π pa/N is also known to control the IR properties of
SU(N) Heisenberg spin chain in symmetric rank-p tensor
representation [64]. We thus deduce that the weak-coupling
analysis for the SU(N) KHM at 1/N-filling with JK < 0 is
connected to the physics of the SU(N) Heisenberg spin chain
in symmetric rank-2 tensor representation. When N is even,
the flag sigma model with topological angles θa = 4πa/N
(a = 1, . . . , N − 1) is fully gapped with a ground-state de-
generacy N/2 whereas a gapless behavior is expected in the
odd-N case [65,110].
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