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A higher-order topological superconductor can experience topological phase transitions driven by variations in
a bulk parameter without closing the bulk gap. This presents a challenge in establishing a direct bulk-boundary
correspondence, as conventional bulk invariants change only upon the closure of the bulk gap. Our study of
two-dimensional higher-order phases in the DIII and BDI symmetry classes, both characterized by chiral sym-
metry, demonstrates that zero-energy crossings facilitate a direct connection between the bulk Hamiltonian and
Majorana zero modes at corners. These crossings, emerging as boundary conditions vary, can be identified
from the bulk Hamiltonian. For both classes, we introduce a pair of topological invariants derived from these
zero-energy crossings to characterize the higher-order topology. Phases in which at least one invariant assumes
a nonzero value are anticipated to host Majorana corner modes. Moreover, these invariants may change with
the closure of either bulk or edge gaps, thereby providing a clear and direct demonstration of bulk-boundary
correspondence in higher-order phases. Our findings offer a promising framework for systematically exploring
higher-order topology through boundary condition modulation.
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I. INTRODUCTION

Topology in superconducting systems is typically char-
acterized by invariants derived from bulk states under the
assumption of periodic boundary conditions (PBC) [1,2].
In most scenarios, a nontrivial topological invariant guar-
antees the emergence of localized Majorana modes [3–10]
at the boundaries (edges or surfaces), which are introduced
by “cutting” the periodic system. This phenomenon, known
as bulk-boundary correspondence, is a defining feature of
topological states of matter. The recognition of higher-order
topology [11–17] extends this correspondence, leading to the
expectation that Majorana modes in superconductors may
also appear at intersections (corners or hinges) of adjacent
boundaries. This implies that a nontrivial higher-order topo-
logical superconductor [18–26] manifests Majorana modes
when cut at least twice along different directions. While this
higher-order extension broadens the potential material base
within the topological family, it also presents challenges in
fully understanding the connection between bulk properties
and boundary signatures.

A pertinent question is whether one may identify topo-
logically protected Majorana modes directly from the bulk
Hamiltonian in higher-order topological superconductors. The
answer to this question becomes nuanced when considering
the influence of crystalline symmetries. It is well known
that crystalline symmetry, such as mirror symmetry, can
protect higher-order topology unless the bulk gap closes
[27]. States exhibiting this characteristic are termed intrinsic
higher-order topological states [28], resembling topological
crystalline states, wherein characterizing nontrivial topology

from the bulk states of a periodic system, using symme-
try indicators, for instance [29–40], is plausible. However,
higher-order states also distinguish themselves from topolog-
ical crystalline states in that their boundary signatures can
persist even under perturbations breaking related crystalline
symmetries [41–45]. In this circumstance, variations in a bulk
parameter may drive the system across topological phase tran-
sitions without closing the bulk gap, making it challenging to
establish a direct bulk-boundary correspondence.

In our previous work [46] on two-dimensional (2D) su-
perconductors in the D symmetry class, we discovered that
zero-energy crossings [47,48] in the Bogoliubov-de Gennes
(BdG) energy spectrum serve as robust indicators for higher-
order topology. These crossings manifest as the 2D system
transitions from toroidal to cylindrical geometry. Topological
phase transitions, occurring where either the bulk or edge
gap closes, are accompanied by the emergence or disappear-
ance of zero-energy crossings. Importantly, these crossings
could be readily identified from the bulk Hamiltonian, thereby
acting as a bridge connecting the bulk Hamiltonian and Ma-
jorana corner modes. In this study, we focus on the DIII
and BDI symmetry classes, and examine the higher-order
bulk-boundary correspondence within the same framework.
In contrast to the D class, the topological charges associated
with these crossings—well defined due to the presence of
chiral symmetry in the two classes—also play a pivotal role
in determining the higher-order topological invariants.

The rest of this article is organized as follows: In Sec. II,
we set up the general framework and introduce the boundary-
modulated Hamiltonian that is central to our study. In
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Sec. III, we demonstrate how a pair of higher-order topologi-
cal invariants, which are derived from zero-energy crossings,
characterize the higher-order topology in the DIII class, and
then take a specific model as an example for illustration. In
Sec. IV we investigate the higher-order bulk-boundary cor-
respondence in the BDI class following the same procedure
as in the DIII class. Finally, in Sec. V we provide additional
discussions and a brief summary to our work.

II. BOUNDARY-MODULATED HAMILTONIAN

We consider a generic 2D superconducting system with
boundary conditions modulated in the x or y direction [31,49].
The Hamiltonian is composed of two parts, given by

Ha(λa) = H − (1 − λa)Ba, (1)

where a = x(y) and ā = y(x). The first part, H, represents
the bulk Hamiltonian, describing a system with PBC in both
directions. The second part, Ba, introduces boundary termi-
nations and is referred to as the boundary Hamiltonian. Ba

includes all intercell terms crossing the terminations (edges)
that extend along the ā direction. It is important to note that
this definition of the boundary Hamiltonian does not involve
intracell terms at boundary sites. Take the 2D spinless p-wave
superconductor as an example. The intercell terms consist of
nearest-neighbor hopping and pairing terms, whose ampli-
tudes are represented by t and �, respectively. Denote ci, j as
the annihilation operator at site labeled by (i, j), and we have
Bx = ∑Ny

j=1 tc†
Nx, jc1, j + �c†

Nx, jc
†
1, j + H.c., where Na refers to

the number of unit cells along the a direction. In general,
when considering the hopping with range r, we need to in-
clude all the corresponding terms that cross the edge in the y
direction, like

∑r
n=1 c†

Nx−n+1, jcr−n+1, j + H.c. In this paper, we
only consider boundary terminations that are commensurate
with unit cells. As such, the boundary Hamiltonian is solely
determined by the intercell terms in the bulk Hamiltonian.
The real parameter λa controls the boundary condition in
the a direction and modulates the amplitude of the boundary
Hamiltonian. In particular, λa = 1(0) corresponds to periodic
(open) boundary condition, with Ha[λa = 1(0)] describing a
toroidal (cylindrical) system. Varying λa continuously in the
range [0,1] is akin to gradually cutting the periodic system
along the ā direction.

For the boundary-modulated Hamiltonian Ha, the momen-
tum along the ā direction remains a good quantum number,
allowing us to express its second-quantized form as

Ha(λa) =
∑

kā

�†
a (kā)Ha(kā, λa)�a(kā), (2)

where �a(kā) is the Nambu spinor, and Ha(kā, λa) is the
Bloch BdG Hamiltonian, defined in the space parameter-
ized by (kā, λa), with kā ∈ [−π, π ) and λa ∈ [0, 1]. We may
alternatively view Ha as a series of quasi-one-dimensional
(quasi-1D) Hamiltonian with varying λa, which all extend
along the ā direction, as depicted in Fig. 1. The unit cell
for this quasi-1D system has a dimension proportional to the
number of lattice sites in the a direction. This boundary-
modulated Hamiltonian is central to our study of higher-order
topology in both symmetry classes. Unless otherwise stated,
we will omit the subscript of kā and λa, with the understanding

2D quasi-1D

(a)

(b)

FIG. 1. Illustration of the equivalence between higher-order
topology in 2D systems and first-order topology in quasi-1D systems.
(a) Majorana zero modes, indicated by the orange ovals, reside at two
opposite corners in the 2D system. In this configuration, the quasi-1D
systems along the x and y direction both exhibit nontrivial first-order
topology. (b) Majorana zero modes appear at two adjacent corners. In
this scenario, only the quasi-1D system oriented along the y direction
demonstrates nontrivial first-order topology. Lattice sites enclosed by
blue (red) rectangles correspond to a single unit cell in the quasi-1D
system extending along the x(y) direction.

that the Bloch Hamiltonian Ha(k, λ) is defined in the (kā, λa)
parameter space.

To determine the higher-order topology, we begin with
the cylindrical Hamiltonian Ha(λ = 0), which features two
edges stretching along the ā direction. When the 2D system
supports Majorana corner modes, distributed as in Fig. 1, the
quasi-1D cylindrical system exactly resembles a nontrivial
first-order topological superconductor in 1D, with stable Ma-
jorana zero modes at its ends. In this case, we may directly
apply the topological invariants used for diagnosing first-order
topology to the cylindrical system. When assuming nontrivial
values, these invariants indicate Majorana zero modes emerg-
ing at the corners, formed by cutting the cylindrical system
along the direction perpendicular to its edges. As the invari-
ants are derived from cylindrical Hamiltonian, they fail to
reveal the connection between Majorana corner modes and the
2D bulk (toroidal) Hamiltonian. To explore the bulk-boundary
correspondence in higher-order phases, we shall investigate
how the boundary-modulated Hamiltonian responds to the
continuously varying λ.

In our previous study of D-class superconductors, we es-
tablished that zero-energy crossings, which emerge during
variations of λ, could be utilized to identify nontrivial higher-
order phases. For a D-class system, it suffices to consider
zero-energy crossings on the high-symmetry lines, namely
K = 0 and π , in the (k, λ) parameter space. The higher-order
topology is characterized by a pair of Z2 invariants, denoted
as (Mx,My), which relates to the total count of zero-energy
crossings. When either of these invariants assumes the value
−1, the system is anticipated to harbor Majorana corner states,
as depicted in Fig. 2(a). In this article, we focus on the DIII
and BDI symmetry classes, and aim to demonstrate that,
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FIG. 2. Zero-energy crossings in nontrivial higher-order phases
of three symmetry classes. Higher-order topology in each class
is characterized by a pair of topological invariants. (a) In the D
class, only the crossings (marked by orange crosses) on high-
symmetry lines contribute to the Z2 type topological invariants
(Mx,My ). (b) In the DIII class, zero-energy crossings occur in
pairs at (±kF , λF ), with each pair possessing opposite topological
charges, indicated by crosses in different colors. The system with
one or both of the two Z2 invariants (νx, νy ) taking nonzero values
is expected to support Majorana Kramers pairs at corners. (c) In the
BDI class, zero-energy crossings off high-symmetry lines appear in
pairs at (±kF , λF ). Unlike in the DIII class, the two crossings in each
pair may not have opposite topological charges. The higher-order
topological invariants (ωx, ωy ) in this class are of Z type. In panels
(b) and (c), the colors of the dots indicate the chiralities (±1) of
Majorana zero modes.

zero-energy crossings emerging at any point in the parameter
space may significantly influence the higher-order topology in
these classes. The topological invariants are determined by the
cumulative topological charges of all crossings.

III. DIII CLASS

In the tenfold classification scheme [2], a DIII-class system
is characterized by three intrinsic symmetries, namely time-
reversal (T ), particle-hole (P), and chiral symmetry (S). They
act on the Hamiltonian Ha(k, λ) according to

T Ha(k, λ)T −1 = Ha(−k, λ), T 2 = −1,

PHa(k, λ)P−1 = −Ha(−k, λ), P2 = 1,

SHa(k, λ)S−1 = −Ha(k, λ), S2 = 1, (3)

where T and P are antiunitary operators and S is a unitary
operator. From Eq. (3) we observe that time-reversal and
particle-hole transformations act as reflections in the (k, λ)
parameter space, with the high-symmetry lines at K = 0, π

serving as the mirror lines. As a result, each crossing at
(kF , λF ) has its partner at (−kF , λF ). Additionally, chiral
symmetry enforces that zero energy levels at any point in the
parameter space are degenerate, with the degeneracy being
twice the number of zero-energy crossings at that point. On
the high-symmetry lines, if zero-energy crossings exist, then
they are anticipated to come in pairs due to Kramers degen-
eracy, thereby ensuring that the total count of zero-energy
crossings on these lines is always even. In D-class systems,
the parity of this number is closely related to the higher-order
topological invariant Ma. The emergence of Majorana corner
states is expected when the parity is odd, i.e., Mx or My

equals −1, as illustrated in Fig. 2(a). Apparently, these invari-
ants always take trivial values in DIII-class systems, and hence
could not be used to characterize the higher-order topology
therein. In our subsequent discussions, we introduce a pair
of Z2 invariants, which also relate to zero-energy crossings,
to diagnose the nontrivial higher-order topology of the DIII
class.

A. Z2 invariants

Following the same procedure as in the D class, we relate
the higher-order topology in the 2D system to the first-order
topology of the corresponding cylindrical Hamiltonian Ha(0),
which describes a quasi-1D system with PBC in the ā di-
rection. Due to Kramers degeneracy, Majorana zero modes
are always paired in real space, forming Majorana Kramers
pairs. When such pairs manifest at two of the four corners in a
square sample, as shown in Figs. 1 and 2(b), we can expect
the quasi-1D system, extending along the x or y direction,
to exhibit nontrivial first-order topology. In DIII class, the
first-order topology is characterized by topological invariants
of Z2 type.

To further our analysis, we note that the Bloch BdG
Hamiltonian Ha(k, λ) can be transformed into an off-diagonal
form in the eigenbasis of the chiral symmetry operator. This
is represented by

U †
S Ha(k, λ)US =

(
0 Da(k, λ)

D†
a(k, λ) 0

)
, (4)

where US is the unitary matrix that diagonalizes chiral sym-
metry operator S. For the DIII class, with an appropriate
selection of US , the D matrix in Eq. (4) can always be written
in a form that satisfies Da(k, λ) = −DT

a (−k, λ) [50], im-
plying that the D matrix on high-symmetry lines, Da(K, λ),
is antisymmetric. Employing singular value decomposition,
we write Da(k, λ) = Ua(k, λ)�a(k, λ)V †

a (k, λ), where Ua and
Va are both unitary matrices, and �a is a diagonal matrix
with nonnegative entries. We then define a unitary q matrix,
qa(k, λ) = Ua(k, λ)V †

a (k, λ). The first-order topology of the
quasi-1D Hamiltonian Ha(λ) is characterized by topological
invariant ν̃a(λ) in terms of the q matrix [51], which reads

(−1)ν̃a (λ) = Pf[qa(0, λ)]

Pf[qa(π, λ)]

√
det[qa(π, λ)]√
det[qa(0, λ)]

= Pf[qa(0, λ)]

Pf[qa(π, λ)]

× exp

{
1

2

∫ π

0
dk∂k ln det[qa(k, λ)]

}
, (5)
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where “Pf” represents Pfaffian. In Eq. (5),
√

det[qa(k, λ)]
is required to be in the same branch for k ∈ [0, π ]. No-
tably, ν̃a(0) and ν̃a(1) represent the first-order topological
invariants of cylindrical and toroidal systems, respectively.
We denote νa = ν̃a(0), and the pair of invariant, (νx, νy), can
precisely characterize nontrivial higher-order phases. Specif-
ically, when either νx or νy equals 1, the 2D system is
expected to host two Majorana Kramers pairs distributed at
two corners, as shown in Fig. 2(b). Alternatively, utilizing the
two equalities, Pf(Da) = √| det(Da)| Pf(qa) and det(Da) =
| det(Da)| det(qa), the topological invariants can also be ex-
pressed using the D matrix, which reads

(−1)ν̃a(λ) = Pf[Da(0, λ)]

Pf[Da(π, λ)]

√
det[Da(π, λ)]√
det[Da(0, λ)]

= Pf[Da(0, λ)]

Pf[Da(π, λ)]

× exp

{
1

2

∫ π

0
dk∂k ln det[Da(k, λ)]

}
. (6)

Equations (5) and (6), both formulated using cylindrical
Hamiltonian Ha(0), do not elucidate the link between corner
modes and bulk Hamiltonian. To achieve this, our subsequent
analysis aims to connect the pair of invariants to the zero-
energy crossings that occur as the parameter λ varies. These
crossings can be derived from bulk Hamiltonian of the 2D
system, thus allowing us to establish a direct bulk-boundary
correspondence in higher-order phases.

B. Zero-energy crossings

Before delving into the relationship between zero-energy
crossings and higher-order topological invariants, we first take
a look at the physical meaning of ν̃a(1), which is associated
with the torus Hamiltonian Ha(1). When interpreting the torus
system as a quasi-1D system along the ā direction, a nontrivial
ν̃a(1) implies the presence of Majorana Kramers pairs at both
ends. This translates to the existence of gapless Majorana
modes propagating along the edges in the a direction of the 2D
system, a feature of first-order topological superconductors
in the DIII class. However, our interest lies in topological
superconductors that exhibit nontrivial higher-order topology
while maintaining trivial first-order topology, characterized
by gapped edge spectra. Therefore, in our context, ν̃a(1) is
always assumed to be zero. This suggests that, in the nontriv-
ial higher-order phase, the Z2 invariant ν̃a(λ) is expected to
change at some point as λ is continuously varied from 1 to 0.
This transition point is exactly where zero-energy crossings
occur. In this regard, zero-energy crossings reveal the topo-
logical distinctions between the toroidal and the cylindrical
system, which is crucial to our understanding of the bulk-
boundary correspondence in higher-order topological phases.

Combining the expression of ν̃a(λ) for λ = 0 and λ = 1
from Eq. (6), we arrive at an equivalent formula for the higher-
order topological invariant νa, namely ν̃a(0), which is given
by

(−1)νa = Pf[Da(0, 0)]

Pf[Da(0, 1)]

Pf[Da(π, 1)]

Pf[Da(π, 0)]

× exp

{
1

2

∫ π

0
dk∂k ln

det[Da(k, 0)]

det[Da(k, 1)]

}
. (7)

Our next step is to show that the ratio of Pfaffian terms in
Eq. (7) can be reformulated as an integral. It is important to
note that while the D matrix on high-symmetry lines (K = 0
or π ), denoted as Da(K, λ), is well defined for all λ ∈ [0, 1],
its determinant may become zero. Following this observation,
our subsequent analysis will distinguish between two cases.

In the first case, we assume det[Da(K, λ)] �= 0 for all val-
ues of λ, indicating that there are no zero-energy crossings
on the high-symmetry lines. We then select Nλ equally spaced
points along these lines, with λn = n/Nλ for integers n in the
range [0, Nλ]. This allows us to express the ratio of Pfaffians
in Eq. (7) as the product of ratios for adjacent points, which
reads

Pf[Da(K, 1)]

Pf[Da(K, 0)]
=

Nλ−1∏
n=0

Pf[Da(K, λn+1)]

Pf[Da(K, λn)]
. (8)

Under the condition that det[Da(K, λ)] �= 0, the phase of
Pf[Da(K, λ)] can be made to vary continuously with λ, and
so is the phase of

√
det[Da(K, λ)]. Due to this continuity we

have

Pf[Da(K, λn+1)]

Pf[Da(K, λn)]
=

√
det[Da(K, λn+1)]√
det[Da(K, λn)]

. (9)

With this equality, we may further express Eq. (8) in an inte-
gral form in the limit of infinitely large Nλ, given by

Pf[Da(K, 1)]

Pf[Da(K, 0)]
= exp

{
1

2

∫ 1

0
dλ∂λ ln det[Da(K, λ)]

}
. (10)

From Eq. (10) it follows that the ratio of Pfaffian in the left
side of Eq. (10) is related to line integrals of the determinant
of D matrix along high-symmetry lines, similar to the integral
in Eq. (6), which is calculated along lines with a constant λ

in the parameter space. Substituting Eq. (10) into Eq. (7), we
obtain

(−1)νa = exp

{
1

2

∮
C1

dl∇l ln det[Da(k, λ)]

}

= exp

⎡
⎣iπ

∑
(kF ,λF )

na(kF , λF )

⎤
⎦, (11)

where the integration along the loop C1, illustrated in Fig. 3(a),
is proportional to the winding number of the D matrix. In
the second equality of Eq. (11), we identify the winding
number as the sum of topological charges for all zero-
energy crossings (kF , λF ) enclosed by C1, with na(kF , λF )
representing the corresponding charge. In practice, na is de-
termined by calculating the winding number along a loop that
encloses the crossing, such as the circle l in Fig. 3(b). Time-
reversal symmetry guarantees that each crossing at (kF , λF )
has its partner at (−kF , λF ). Due to the relation Da(kF , λF ) =
−Da(−kF , λF )T , the two partners have opposite charges,
i.e., na(kF , λF ) = −na(−kF , λF ). Thus, the total topological
charges of zero-energy crossings on either half of the param-
eter space could give the same νa.

Now let us consider the second case, where zero-energy
crossings also occur on high-symmetry lines. Considering
that Pfaffian of the D matrix becomes zero at the cross-
ing (K, λF ), we need to exclude them while selecting the
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(b)

(c)

(a)

FIG. 3. Zero-energy crossings on and off high-symmetry lines in
the DIII class. (a) Variations of energy spectra with λ for fixed k.
On high-symmetry lines (right panel), Kramers degeneracy requires
all energy levels to be degenerate and hence zero-energy crossings
always come in pairs, whereas there is no such restriction for the
crossings off high-symmetry lines (left panel). The red (solid) and
blue (dashed) lines are deliberately shifted for demonstration of the
degeneracy. (b) The first case where the crossings only occur off
high-symmetry lines. (c) The second case with crossings on high-
symmetry lines. The loop C2 now excludes these crossings. The
red and blue crosses indicate zero-energy crossings with opposite
topological charges. A Z2 topological charge can be associated to
each pair of crossings, by considering a loop [black dashed lines in
panels (b) and (c)] that encloses the pair of crossings.

sample points in Eq. (8). Also, Eq. (9) may fail if there
exists crossings between the two adjacent points, which we
denote as (K, λF ± δλ). The phase difference of the Pfaf-
fian between these two points is not necessarily infinitely
small while δλ approaches zero. In this case, the loop C1 in
Eq. (11) is replaced by C2 shown in Fig. 3(b), which exactly
circumvents the crossings. All the sample points still lie on
the high-symmetry lines. On the vertical line segments of
C2,

√
det[Da(k, λ)] can be made to vary continuously, thus

ensuring
√

det[Da(K, λF + δλ)]/
√

det[Da(K, λF − δλ)] to be
infinitely small. This leads to the relation

Pf[Da(K, λF + δλ)]

Pf[Da(K, λF − δλ)]
= (−1)ηa (K,λF )

×
√

det[Da(K, λF + δλ)]√
det[Da(K, λF − δλ)]

, (12)

where ηa(K, λF ) is an integer that depends on the crossing
at (K, λF ). Comparing with Eq. (9), there is an additional

phase factor in Eq. (12). An odd ηa suggests a π -phase shift
in Pf[Da(K, λ)] across the zero-energy crossings.

To determine the precise value of ηa, we decompose the
2N × 2N antisymmetric matrix Da(K, λ) into the form Da =
QT

a MaQa, with Qa being a unitary matrix, and Ma taking the
block diagonal form as follows:

Ma = diag

{(
0 ma,1

−ma,1 0

)
, ...,

(
0 ma,N

−ma,N 0

)}
. (13)

For a nonsingular D matrix, ±ma, j , which represent eigenval-
ues of Hamiltonian Ha(K, λ), all take finite values. Assuming
|ma,1| to be the smallest nonnegative energy level near the
crossing (K, λF ), we then have ma,1 = 0 exactly at the cross-
ing. In the case of linear band crossing, we have ma,1 ∝
(λ − λF ) near the crossing. As λ crosses λF , a level crossing
occurs between ma,1 and −ma,1, as Fig. 3(a) shows in the
energy spectrum, and hence ma,1 is expected to change its
sign. We should note that, there are two degenerate crossings
in the energy spectrum due to Kramers degeneracy, but ±ma, j

in Eq. (13) only account for half of the energy levels. While
λ crosses λF , Qa—specifically, the phase of its determinant—
changes continuously. Alternatively, one may require ma,1 to
remain nonnegative, by swapping the positions of ±ma,1 in
Eq. (13) after crossing λF , albeit at the expense of altering the
sign of det[Qa]. Here, to clarify how zero-energy crossings
affect the Pfaffian of D matrix, we require det[Qa] to be a
continuous function of λ near the crossing. By expressing the
Pfaffian of D matrix as

Pf[Da(K, λ)] = det[Qa(K, λ)]
N∏

j=1

ma, j (K, λ), (14)

we readily find that the sign change of ma,1 leads to an abrupt
π -phase shift in the Pfafian of D matrix. At λF , it is possible
for more than one pair of ±mj,a to cross zero energy. The
number of such pairs is precisely half that of zero singular
values of Da(K, λF ) if we only consider linear band crossings.
According to Eq. (12), each pair contributes to a π -phase shift,
and hence this number is also equal to ηa(K, λF ). Since only
the parity of ηa matters, we may define the parity of ηa to
be the Z2 charge of the crossing pair on the high-symmetry
lines. In this case, Eq. (8) still holds, as the sample points
λn do not include the crossing points. For the two sample
points adjacent to the crossing, Eq. (9) needs to be replaced
by Eq. (12). It then follows from Eq. (7) that the higher-order
topological invariant in the second case is given by

(−1)νa =
∏

(K,λF )

(−1)ηa (K,λF )

× exp

⎡
⎣iπ

∑
(kF �=K,λF )

na(kF , λF )

⎤
⎦. (15)

Comparing with Eq. (11), Eq. (15) also includes contributions
from zero-energy crossings on high-symmetry lines. The sum-
mation in the second line of Eq. (15) involves crossings in
either half of the parameter space.

In both cases aforementioned, the pair of higher-order
topological invariants (νx, νy) are determined by the topo-
logical charges of zero-energy crossings in the parameter
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space. For the crossings off the high-symmetry lines, their
topological charges, na, are of Z type, in contrast to the Z2

charge, namely ηa, for crossings on the high-symmetry lines.
Although na may take any integer values, the topological
invariants only depend on its parity, as Eqs. (11) and (15)
suggest. Besides, the time-reversal partner of each crossing
actually does not provide additional information. With these
observations, we may treat each pair of zero-energy crossings
at (±kF , λF ) as a whole, and associate a Z2 charge to them in
a unified fashion, regardless of whether they appear on or off
the high-symmetry lines. The topological charge, denoted as
ña(kF , λF ), is defined according to [50]

(−1)ña (kF ,λF ) = Pf[Da(K, λ1)]

Pf[Da(K, λ2)]

√
det[Da(K, λ2)]√
det[Da(K, λ1)]

, (16)

where the two points, (K, λ1) and (K, λ2), are the intersections
of the high-symmetry line and the dashed square loop, as de-
picted in Figs. 3(b) and 3(c). The loop encloses only the pair of
zero-energy crossings considered. In Eq. (16),

√
det[Da(k, λ)]

is required to vary continuously along the left or right half
of the loops, instead on the high-symmetry lines, where
zero-energy crossings may appear. Equation (16) reduces to
Eq. (12) when we consider an infinitely small loop and set
λ1 = λ + δλ, λ2 = λ − δλ. Winding numbers of the D matrix
along these loops are always zero, but the Z2 charge defined
in Eq. (16) can be nontrivial. To be specific, ña(kF , λF ) = 1
if ηa(K, λF ) (for crossings on the high-symmetry lines) or
na(kF , λF ) (for crossings off high-symmetry lines) is odd;
otherwise, ña(kF , λF ) = 0. Consequently, the higher-order
topological invariant νa simply reflects the parity of the total
Z2 charges for all pairs of zero-energy crossings, i.e.,

νa =
∑

(kF�0,λF )

ña(kF , λF ) mod 2. (17)

So we have established the connection between Majorana
corner modes appearing in nontrivial higher-order phases and
zero-energy crossings occurring while the toroidal system
is deformed into the cylindrical one. To gain an intuitive
understanding of this connection, we note that the higher-
order topology we are studying in this work represents the
topological difference (in the first-order sense) between the
toroidal Hamiltonian Ha(λa = 1) and the cylindrical Hamil-
tonian Ha(λa = 0), both viewed as quasi-1D Hamiltonian.
While λa varies continuously in the range [0,1], the first-
order topological invariant of Ha(λa) only changes when
the energy gap closes for certain value of λa, showing as
zero-energy crossings in the (kā, λa) parameter space. The ex-
istence of a single crossing does not necessarily imply that two
Hamiltonian Ha(λa) with distinct λa on either side of the
crossing are topologically distinct. We need additionally con-
sider the topological charge of the crossing, which indicates
its stability. A zero-energy crossing with nontrivial charge
suggests that Ha(λa) cannot be smoothly deformed across it,
thereby signaling a change in the topology of the quasi-1D
Hamiltonian. The higher-order topology is then determined
by all the (pairs of) crossings in the (kā, λa) parameter space,
as indicated by Eq. (15) or Eq. (17).

C. Bulk-boundary correspondence

Having related the zero-energy crossings to higher-order
topology, we now demonstrate how these crossings and their
topological charges are effectively identified from the bulk
Hamiltonian, to make a direct bulk-boundary correspondence
in higher-order phases. This approach is applicable to systems
in both DIII and BDI classes.

To begin with, we note that at the crossing point
(kF , λF ), λF is a root of the characteristic equation
det[Ha(k, λ)] = 0 [52]. Its multiplicity is even due to the
presence of chiral symmetry. In terms of D matrix, the char-
acteristic equation reduces to

det[Da(k, λ)] = 0, (18)

except that the root’s multiplicity is halved. In particular,
for linear crossings on the high-symmetry lines, we have
det[Da(K, λ)] ∝ (λ − λF )pa near the crossing, from which it
follows that the root’s multiplicity pa is equal to the number
of zero singular values of Da(K, λF ) [±ma,1 in Eq. (13)],
which exactly equals 2ηa(K, λF ), i.e., pa/2 = ηa. Hence, the
root’s multiplicity determines the Z2 charge of zero-energy
crossings on the high-symmetry lines. It is possible that the
crossings are of quadratic or cubic type, and there may exist
a number of crossings with different types at the same point
λF . We will discuss this generic case in Sec. V, where it is
demonstrated that the Z2 charge is still given by the parity of
pa/2.

Following Eq. (11), the topological charge for each indi-
vidual crossing off the high-symmetry lines is equal to the
winding number of the D matrix along a loop that encloses
the crossing. No matter where the crossings occur, we need to
compute the determinant of the D matrix. To demonstrate how
it is obtained from the bulk Hamiltonian, we first write down
Ha(k, λ) as

Ha(k, λ) = Ha(k, 1) − (1 − λ)Ba(k) (19)

in the Bloch basis �a(k), with Ba(k) being the Bloch
Hamiltonian of boundary Hamiltonian Ba in Eq. (1). We de-
note the components of �a(k) as [ca(k)]iα , where the Latin
letter i labels the unit cell along the a direction, and the Greek
letter α labels the degree of freedom within each cell. The
entries of the Bloch Hamiltonian matrix are thus represented
by [Ha(k, λ)]iα, jβ . Since chiral symmetry operates within the
inner space, the corresponding D matrix has a similar relation
as Eq. (19), which reads

Da(k, λ) = Da(k, 1)Aa(k, λ), (20)

with

Aa(k,λ) = I − (1 − λ)D−1
a (k, 1)Db

a(k). (21)

Here, I represents the identity matrix, and Db
a(k) is the D

matrix of Ba(k).
For higher-order phases with gapped bulk spectrum,

det[Da(k, 1)] always takes a finite value, and hence Eq. (18)
is equivalent to

det[Aa(k, λ)] = 0. (22)

The boundary Hamiltonian Ba(k) only involves boundary de-
grees of freedom, which we denote by ibα. Consequently,
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the only possible nonzero entries of Ba(k) are [Ba(kā)]ibα, jbβ .
As such, we demonstrate in the Appendix that det[Aa(k, λ)]
is equal to the determinant of a ra × ra matrix, denoted by
Ãa(k, λ), with ra representing the rank of Db

a(k). The specific
form of Ãa(k, λ) is given by

Ãa(kā, λa) = Ira×ra − 1

2π
(1 − λa)

×
∫

dkaṼ
b†

a [F (ka) ⊗ D−1(k)]D̄b
a(kā)Ṽ b

a , (23)

where we recover the subscripts of k and λ to avoid confu-
sion. In Eq. (23), F (ka) is related to Fourier transformation
with [F (ka)]ib, jb = eika (ib− jb), D(k) is the D matrix of bulk
Hamiltonian in 2D momentum space, and D̄b

a(kā) is the block
that corresponds to boundary cells in matrix Db

a(kā). Ṽ b
a is a

semiunitary matrix related to compact singular value decom-
position of D̄b

a(kā).
As a result, Eq. (22) reduces to

det[Ãa(k, λ)] = 0. (24)

The loop integral in Eq. (15) may also be reexpressed in terms
of Ãa(k, λ), by noting that with trivial first-order topology we
always have ∮

C
dl∇l ln det[Da(k, 1)] = 0 (25)

for any loop C in the parameter space. The topological charge
of each zero-energy crossing is then determined according to

na(kF , λF ) = 1

2π i

∮
C

dl∇l ln det[Ãa(k, λ)], (26)

with C being any loop that encloses the crossing (kF , λF )
only. Therefore, all calculations involving the determinant of
Da(k, λ) can now be replaced by that of Ãa(k, λ), which,
according to Eq. (23), is obtained from the D matrix of bulk
Hamiltonian, D(k). After finding all the zero-energy crossings
and their topological charges, we immediately obtain the topo-
logical invariants according to Eq. (15).

Thus far, we have demonstrated that zero-energy crossings
serve as a bridge connecting bulk Hamiltonian and Majorana
corner modes. Although zero-energy crossings are determined
from the bulk Hamiltonian, their numbers may change when
bulk gap remains open. This happens when topological phases
transitions are driven by the closure of edge gaps, as we shall
demonstrate in the following example.

D. An example

We consider a spinful toy model in 2D with two orbital
degrees in each unit cell. The Bloch BdG Hamiltonian takes
the form

HDIII(k) = εkτz + 2�(sin kxτy − sin kyτxszσz )

+ m(sin θτzσx − cos θszσy)

− δmτxszσy − m1τxsxσy, (27)

where the kinetic energy εk = μ − 2t (cos kx + cos ky). Here
� represents the p-wave pairing amplitude, and the Pauli
matrices τ, s and σ act in particle-hole, spin and orbital space,
respectively. The three symmetry operators defined in Eq. (3)

are represented as T = −isyK, P = τxK and S = τxsy, where
K denotes the complex conjugation operator. Additionally,
the model preserves inversion symmetry when m1 = δm = 0,
with the corresponding operator being I = τz, up to a gauge
factor.

The first two terms in Eq. (27) describe two copies (σz =
±1) of topological superconductors with p ± ip pairing.
Each copy features two counter-propagating helical Majorana
modes on edges in the nontrivial phase. The three onsite terms
m, δm, and m1 can gap out the helical modes. In particu-
lar, the m term introduces anisotropic mass gaps to the four
edges, controlled by θ . This is crucial for the emergence of
Majorana corner modes, which appear when two adjacent
edges exhibit mass gaps of opposite signs. In the absence
of m1, sz is a good quantum number, and the model simply
reduces to two independent copies (sz = ±1) of the D-class
model we introduced in Ref. [46]. In the D-class model, the
nontrivial higher-order topology is captured by zero-energy
crossings on high-symmetry lines. Crossings off these lines
are not protected due to the absence of chiral symmetry. In
contrast, for the DIII class, zero-energy crossings both on
and off these lines contribute to the higher-order topology.
Time-reversal symmetry-preserving perturbations, such as the
m1 term, either couple and eliminate the pair of crossings on
high-symmetry lines or separate them away from these lines,
depending on the Z2 charge of the pair defined in Eq. (16).

Given that we focus on boundary terminations commen-
surate with unit cells, the boundary Hamiltonian is directly
derived from the bulk Hamiltonian. In the boundary basis,
which in this model includes only the first and last unit
cells—denoted as {ψa,Na (k), ψa,1(k)} with Na representing the
number of unit cells in the a direction and ψa, j (k) encompass-
ing all internal degrees of freedom [ca(k)] jα—the resulting
matrix Ba takes the following simple form:

Ba =
(

0 ha

h†
a 0

)
, (28)

where ha includes all intercell hopping and pairing terms,
with hx = −tτz − i�τy and hy = −tτz + i�τxszσz. The uni-
tary matrix that sends the bulk Hamiltonian H (k) into block
off-diagonal form is

US = 1√
2

(
s0 −isy

sy is0

)
⊗ σ0, (29)

where s0 and σ0 are identity matrices in the spin and orbital
space, respectively. The zero-energy crossings can then be
identified according to Eqs. (23) and (24).

In Figs. 4(a) and 4(e), we plot the positions of zero-energy
crossings in the parameter space for various values of δm and
m1. When m1 = 0, the system supports a pair of zero-energy
crossings on the high-symmetry line K = 0. The introduction
of the m1 term drives the pair of crossings away from this line
along opposite directions. The arrows in Figs. 4(a) and 4(e)
indicate where the zero-energy crossings flow with increasing
m1.

In this model, each zero-energy crossing at (kF , λF ) is also
paired with another one at (kF ,−λF ), the latter not explicitly
shown here as we focus only on crossings with λF ∈ [0, 1]. As
δm increases [see Figs. 4(a) and 4(e)], the crossings at ±λF
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(a)

(b) (c) (d)

(e)

(f) (g) (h)

FIG. 4. The flow of zero-energy crossings in the parameter space under the variations of δm and m1. (a) In the (ky, λx ) space, a pair
of crossings, marked as black circles, reside on the high-symmetry line K = 0 when m1 = 0. Finite m1 separates the pair and drive them
off the line in opposite directions, as indicated by the arrows. With the increase of δm, the crossings move toward λ = 0 and vanish. (b–d)
λ profiles generated by solving Eq. (24) for k ∈ [−π, π ). For sufficiently large δm, the characteristic equation has no real root, signaling
the disappearance of zero-energy crossings. (e–h) A similar phenomenon is observed in the (kx, λy ) space. The other parameters are set as
μ = 3t, � = t, m = 0.4t, θ = π/4, which, unless otherwise specified, remain the same in subsequent plots.

migrate toward λ = 0, eventually annihilating. A straightfor-
ward way to illustrate this transition is through the λ profile,
which displays all roots of Eq. (24) for k ∈ [−π, π ). Zero-
energy crossings correspond to real roots for λ. As depicted in
Figs. 4(b)–4(d) and 4(f)–4(h), the zero-energy crossings van-
ish at sufficiently large δm, signaling edge phase transitions
where Majorana zero modes at different corners may either
change positions or couple. Our previous study in the D-class
model [46] showed that, in the absence of m1, the energy
gap on edges along the x direction closes at |δm| = |m sin θ |,
and along the y direction at |δm| = |m cos θ |. The presence of
m1 term has a negligible impact on these gap-closing points.
Pinpointing the phase transition position for finite m1 is not
our focus here. Instead, our next step is to examine the topo-
logical charges of these zero-energy crossings to derive the
higher-order topological invariants.

Let us first consider zero-energy crossings on high-
symmetry lines, denoted as (K, λF ). We already know that
λF is a root of Eq. (24) at k = K . According to Eq. (12),
ηa(K, λF ), which equals half the root’s multiplicity, deter-
mines whether the Pfaffian of the D matrix experiences a
π -phase jump as λ crosses this point. The plots corresponding
to m1 = 0 in Figs. 5(a) and 5(c) indeed exhibit such a jump,
suggesting an odd ηa. By solving Eq. (24), we obtain a real
root with multiplicity 2, implying ηa(K, λF ) = 1. This is con-
sistent with the energy spectrum along the high-symmetry line
in Figs. 5(b) and 5(e), where each level is doubly degenerate
due to Kramers degeneracy, resulting in exactly two linear
band crossings at the zero energy for m1 = 0. Turning on m1

drives the crossings away from the high-symmetry line, and
hence the Pfaffian of D matrix varies continuously along the
line, as seen in Figs. 5(a) and 5(d) for finite m1. This leads us

to the first case investigated in Sec. III B, where zero-energy
crossings appear off the high-symmetry lines.

Since the pair of crossings on the high-symmetry line has a
nontrivial Z2 charge, we expect that finite m1 will not couple
them. To verify this argument, we may first locate the position

(a)

(b)

(c)

(e)

(d)

(f)

FIG. 5. The π -phase jump in Pfaffian of the D matrix induced
by zero-energy crossings. (a, d) Zero-energy crossings occurring on
high-symmetry lines when m1 = 0 leads to an abrupt π -phase jump
in Pf[Da(0, λ)]. For cases with finite m1, there is no such discontinu-
ity. (b–c, e–f) Energy spectra along K = 0. No zero-energy crossing
exists on the high-symmetry line when m1 is finite. In these plots, Na,
the number of unit cells along the a direction, is chosen to be 40. The
Pfaffian is calculated using the code from Ref. [53].
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(a)

(b)

(c)

FIG. 6. Topological charges of zero-energy crossings off high-
symmetry lines. Nontrivial windings in the phase of det[Ãa(k, λ)] are
observed along the loops l1 and l2, each of which encircles a single
zero-energy crossing. The two time-reversal partners at ±kF carry
opposite charges. In these plots, m1 = 0.3t and δm = 0.

of each crossing, followed by the determination of their topo-
logical charges according to Eq. (26). Note that each crossing
at (kF , λF ) has its time-reversal partner at (−kF , λF ), with
opposite charge. In Figs. 6(b) and 6(c), we show the phase
of det[Ãa(k, λ)] along a contour that encircles each crossing
for m1 = 0.3, which clearly shows nontrivial windings, with
topological charges being ±1. This suggests the Z2 charge
associated with the pair of crossings remains 1. Due to this
nontrivial Z2 charge, finite m1 can at most separate the two
crossings away from each other.

Through the above analysis, we are able to obtain the pair
of topological invariants (νx, νy ) as defined in Eq. (15). For the
examples shown in Figs. 5 and 6, we have (νx, νy) = (1, 1),
which indicates that two Majorana Kramers pairs sit at diago-
nals, as depicted in Fig. 7(a). When the inversion symmetry
is enforced (m1 = δm = 0), the two pairs always appear at
opposite corners and never meet. This suggests that νx is
always equal to νy, and hence we can simply use one of them
to characterize the higher-order phase protected by inversion
symmetry. In this case, topological phase transition occurs
only when the bulk gap closes. Without inversion symmetry,
the two Majorana pairs may reside at any two corners, as
shown in Fig. 7(d) for θ = 0, where zero-energy crossings
only occur in (ky, λx ) parameter space and hence (νx, νy) =
(1, 0). It is possible that the two Majorana pairs in neighboring
corners couple with each other through the closure of the
edge gap, driving the system into trivial phases. Since the
pair of invariants are protected by both bulk and edge gaps,
they are able to indicate higher-order topology regardless of
whether the inversion symmetry is enforced. When at least
one of the two invariants is nonzero, we immediately know
the system resides in the nontrivial higher-order phase, but
not the other way around. For instance, if all four corners host
Majorana Kramers pairs, then both invariants would be zero.
This argument also applies to the BDI class which we shall
deal with in the following.

IV. BDI CLASS

A. Z invariants

The Hamiltonian in the BDI class also satisfies the three
intrinsic symmetries listed in Eq. (3), except that the time-
reversal operator has the property T 2 = 1. This key difference

(a)

(b)

(c)

(e)

(d)

(f)

Low High

Low High

(d)(d)(d)(d)(d)(d)))))((((((((((((((((((((((dddddddddd)))))))
Low High

FIG. 7. Distributions of Majorana Kramers pairs in nontrivial
higher-order phases. (a) The probability distributions of Majorana
zero modes. The inset shows the energy spectrum for an 80 × 80
open-boundary system, with red dots representing Majorana zero
modes. The two invariants, νx and νy, both take nontrivial values,
as indicated by λ profiles in panels (b) and (c). This results in two
Majorana Kramers pairs sitting at opposite corners. (d) Only one of
the invariants is nonzero, as revealed by λ profiles in panels (e) and
(f), and the two Majorana pairs therefore reside on adjacent corners.
In these plots, m1 = 0.3t and δm = 0.1t .

determines that zero-energy crossings on high-symmetry lines
in the parameter space do not necessarily come in pairs, due
to the absence of Kramers degeneracy, as schematically il-
lustrated in Fig. 8(b). However, time-reversal symmetry still
ensures that a crossing off the high-symmetry lines, say at
(kF , λF ), has a partner at (−kF , λF ), only that the two may
not have opposite topological charges, as the D matrix does
not satisfy the relation Da(k, λ) = −DT

a (−k, λ). Hence, each
crossing within the pair must be examined individually. Con-
sequently, the higher-order topological invariants in this case
are of Z type.

In 2D, the BDI class does not have stable first-order topol-
ogy but can exhibit nontrivial higher-order topology [2]. Here,
we continue to consider systems with gapped bulk and edges,
meaning that Hamiltonian Ha(k, λ) is gapped for both λ = 1
and λ = 0. We may associate a topological invariant to the
boundary-modulated Hamiltonian for generic λ, akin to the
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(a)

(b)

FIG. 8. (a) The relation between higher-order topological invari-
ants and Majorana corner modes in the BDI class. The invariant ωy

corresponds to the difference in the number of Majorana zero modes
with opposite chiralities at two corners on the left, while ωx counts
the two bottom corners. Blue and red dots represent Majorana modes
with chiralities +1 and −1, respectively. (b) Zero-energy crossings
in the BDI class. The crossings off high-symmetry lines always come
in pairs. On the line, the crossing may appear alone. In contrast to the
DIII class, signs of topological charges for time-reversal partners, as
indicated by colors of the crosses, can be identical.

ν̃a(λ) in Eq. (6) for the DIII class. The topological invariant
in the BDI class is the winding number of D matrix along the
loop with constant k and takes the form

ω̃a(λ) = 1

2π i

∫ π

−π

dk∂k ln det[Da(k, λ)]. (30)

Similar to the DIII class, the higher-order topological invariant
ωa here is defined to be the first-order topological invariant of
the quasi-1D cylindrical Hamiltonian Ha(k, 0), i.e.,

ωa = ω̃a(0). (31)

Meanwhile, ω̃a(1) indicates the first-order topology of a
toroidal system and is hence always zero.

Following from Eqs. (30) and (31), ωa may take any integer
value. In a 1D system, this invariant reflects the difference
in the count of Majorana zero modes with distinct chiralities
(±1), namely the eigenvalues of chiral operator, at one end.
For the Hamiltonian Ha(k, λ) in consideration, we may denote
NL(R)

a± as the number of Majorana zero modes at left (right) end
with chirality ±1. Then we have

ωa = NL
a+ − NL

a− = NR
a− − NR

a+. (32)

In a truly 1D system, Majorana zero modes of differ-
ent chiralities can couple, resulting in only one type of
Majorana modes residing at each end if no other symmetries
are enforced. However, in the quasi-1D system here, each end,
comprising two spatially separated corners, can accommodate
stable Majorana corner modes of different types, as depicted
in Fig. 8(a). The system enters nontrivial higher-order phases
when one or both of the invariants (ωx, ωy) take nonzero
values.

To establish the relationship between higher-order invari-
ants and zero-energy crossings, we consider a large loop, C3,

along the boundary of the parameter space. This loop consists
of four line segments, l1 to l4, as depicted in Fig. 8(b). The
winding number of the D matrix along this giant loop is given
by

� = 1

2π i

4∑
i=1

∫
li

dl∇l ln det[Da(k, λ)]

=
∑

(kF ,λF )

na(kF , λF ), (33)

where the summation in the last equality runs over all zero-
energy crossings in the parameter space. The line integrals
along l1 and l3 exactly cancel each other. We are thus left
with integrals along l2 and l4, which essentially represent the
winding number ω̃(1) and ω̃(0) as defined in Eq. (30), up to a
sign difference. Hence, we have

� = ω̃a(0) − ω̃a(1). (34)

Given that ω̃a(1) = 0, we now arrive at the relation between
higher-order topological invariants and zero-energy crossings,
which reads

ωa =
∑

(kF ,λF )

na(kF , λF ). (35)

It follows from Eq. (35) that the sign of the topological charge
for each crossing matters, and that all the zero-energy cross-
ings together determine the overall higher-order topological
invariants.

B. An example

As a demonstration, we consider a 2D Hamiltonian in the
BDI class, which is based on the model described in Eq. (27).
The Hamiltonian takes the form

HBDI(k) = HDIII(k) − m2σy. (36)

Due to the additional σy term, this Hamiltonian does
not preserve time-reversal symmetry of the DIII-class
Hamiltonian, which is T = −isyK. Instead, the model ex-
hibits a different time-reversal symmetry with T = σxK.
Since the latter time-reversal operator satisfies T 2 = 1, the
Hamiltonian falls into BDI classification. The chiral symme-
try operator is now represented as S = τxσx. Similar to the
DIII-class model, Hamiltonian in Eq. (36) preserves inversion
symmetry when m1 and δm terms are absent.

In the case where m1 = m2 = 0, the system could possi-
bly host a pair of zero-energy crossings on high-symmetry
lines, depending on the relative strength of m and δm. We
already know that m1 term does not couple the two cross-
ings but instead separates them and drives them away from
the high-symmetry lines. The m2 term does not couple them
either, albeit for a different reason. Due to the redefined chiral
symmetry, the two crossings within the pair now carry the
same topological charge, implying they cannot annihilate with
each other. At the onset of m2, the pair moves along the
high-symmetry line in opposite directions. In this situation,
turning on m1 cannot immediately move each crossing off
the line because of the time-reversal symmetry. However, for
sufficiently large m1, the two separated crossings on the high-
symmetry line may meet again. If we continue to increase m1,
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FIG. 9. Zero-energy crossings and higher-order topological invariants in three distinct phases of the BDI model. The pair of higher-order
invariants, (ωx, ωy ), is determined by topological charges of zero-energy crossings. In panels (a, b), (d, e), and (g, h), the crosses mark the
relative positions of zero-energy crossings, and the numbers adjacent to each cross indicate their respective topological charges, which are
obtained from winding numbers of the D matrix along loops, l1 and l2, enclosing each crossing. (c, f, i) The distributions of Majorana corner
modes. The solid blue and red circles represent Majorana zero modes with chiralities +1 and −1, respectively. Insets showcase energy spectra
for an 80 × 80 open-boundary system. In these plots, m1 = 0.3t and δm = 0.1t .

then the pair would move off the line. Therefore, the positions
of the two crossings vary according to the relative strength
of m1 and m2. When the m1 term is dominant, one might
anticipate that the pair of zero-energy crossings occur off the
high-symmetry lines at (±kF , λF ). On the contrary, if the m2

term is large compared to m1, then they may both reside on
the high-symmetry lines, but at distinct points.

To illustrate these arguments, we present three represen-
tative cases with varying m2 in Fig. 9. It is evident that
the number and positions of zero-energy crossings, along
with their topological charges, differ in each case, leading
to distinct topological invariants. For smaller m2, two cross-
ings appear off the high-symmetry lines and have identical
topological charges, as shown in Figs. 9(a)–9(c). Follow-
ing Eq. (35), we determine the topological invariants to be
(ωx, ωy) = (2,−2). As a result, four Majorana zero modes are
found distributed across two opposite corners. At each corner,
the two zero modes share the same chirality, as indicated
by colors of the solid circles in Fig. 9(c). These topological
invariants are further corroborated using Eq. (32), by noting
that NL

x− = NL
y+ = 0 and NL

x+ = NL
y− = 2.

As m2 increases, the two crossings are driven toward the
high-symmetry line K = 0 where they will meet with each
other. Subsequently, the pair is pushed in opposite directions
along the line. One of the crossings gradually approaches
λ = 0, and annihilates with its counterpart at negative λ. As
depicted in Figs. 9(d) and 9(e) for m = 0.4, two crossings
are located on the line K = 0 in the (kx, λy) space, whereas

only one crossing are left in the (ky, λx ) space as the other one
has annihilated with the crossing with −λx when they meet at
λx = 0. In this case, the topological invariants are (ωx, ωy) =
(1,−2). There are still four Majorana zero modes at the cor-
ners, but their distribution varies from the previous case. As
shown in Fig. 9(f), two Majorana zero modes with chirality
−1 group in one corner, while the others with chirality +1
occupy two separate corners, i.e., NL

x+ = 1, NL
x− = NL

y+ = 0
and NL

y− = 2.
With a further increase in m2, the two crossings in the

(kx, λy) space remain. In the (ky, λx ) space, however, an-
other crossing emerges on the high-symmetry line carrying
an opposite charge. We then have (ωx, ωy) = (0,−2). Four
Majorana modes are still present, but their locations differ
from the previous cases. Now, each corner hosts one Majorana
mode, with NL

x+ = 1, NL
x− = 1, NL

y+ = 0, and NL
y− = 2.

In all three cases, at least one of the two invariants is
nonzero, indicating the nontrivial higher-order topology. It is
possible that two systems with identical topological invariants
can have distinct distributions, or even different numbers of
Majorana corner modes. Nonetheless, the presence of nontriv-
ial higher-order topology in BDI class is assured whenever at
least one of the invariants assumes a nonzero value.

Like in the case of DIII class, the topological indicators
are applicable regardless of whether the inversion symmetry
is present. As we mentioned earlier in the DIII case, inver-
sion symmetry guarantees that Majorana corner modes in
the nontrivial higher-order phase (νx = νy = 1) remain stable
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unless the bulk gap closes. It seems that in the BDI class,
this argument may fail in certain cases. For example, we can
start from the phase with Majorana modes at two corners,
each of which hosts two zero modes with the same chirality,
as in Fig. 9(c). It is possible that the two corners exchange
one of the two modes while preserving inversion-symmetry
as well as a finite bulk gap. Due to the difference in the
chirality, the resulting two Majorana modes at the same cor-
ners annihilate each other. This inconsistency arises because
the pair of Z invariants, (ωx, ωy), characterize the so-called
extrinsic classification [27], where two phases are deemed
to be topologically inequivalent if they cannot be smoothly
transformed into each other while preserving both bulk and
boundary gaps. In contrast, the intrinsic classification only
requires the preservation of bulk gaps during the transfor-
mation, according to which the inversion-symmetry-protected
BDI system is Z2 classified [18]. Considering that ωx mod2 =
ωy mod 2 in the presence of inversion symmetry, we may
take ωx(ωy) mod 2 to be the Z2 invariant characterizing the
intrinsic classification.

V. DISCUSSIONS AND CONCLUSIONS

In summary, we have demonstrated that zero-energy cross-
ings, occurring when boundary conditions vary, can act as
reliable indicators for higher-order topology in DIII and BDI
classes. These crossings provide a direct and intuitive un-
derstanding of how bulk properties influence the emergence
of Majorana zero modes at the corners. With variations
in a bulk parameter, topological phase transitions may oc-
cur when either the number or the topological charges of
these crossings change, even if the bulk gap remains open.
The close relationship between zero-energy crossings and
the bulk Hamiltonian directly illustrates the bulk-boundary
correspondence in higher-order topological superconductors,
irrespective of crystalline symmetries. The fact that zero-
energy crossings could change when either the bulk or edge
gap closes highlights a striking contrast to conventional
bulk-boundary correspondence, where topological phase tran-
sitions typically occur only when the bulk gap closes.

In the DIII class, the Z2 charge for crossings on high-
symmetry lines is obtained from the root’s multiplicity by
solving Eq. (24) in the case of linear band crossings. For
other types of crossings, this argument still holds. Let us first
consider a pair of band crossings at (K, λF ), which means
only ma,1 in Eq. (13) equals zero at the crossing, and assume
ma,1 ∝ (λ − λF )r near the crossing. The exponent r indicates
the type of crossings. Apparently, only if r is odd will ma,1

change its sign after crossing λF . Hence, ηa = 1 for odd r and
ηa = 0 for even r. For instance, the quadratic band crossing
corresponds to r = 2, in which case ηa = 0, suggesting that
the Pfaffian of the D matrix does not experience a π -phase
jump across λF . Given that det[Da(K, λ)] ∝ (λ − λF )2r near
the crossing, we immediately obtain the root’s multiplicity as
pa = 2r. The parity of pa/2 is exactly equal to that of ηa. For
a generic case, ηa is given by the number of ma, j that changes
sign after crossing λF , which equals the number of cross-
ing pairs with odd r. The root’s multiplicity is expressed as
pa = 2ρrr, where ρr represents the number of crossing pairs
with exponent r. One can verify that pa/2 mod 2 = ηa mod 2.

Therefore, the Z2 charge of zero-energy crossings on the high-
symmetry lines can be determined by the root’s multiplicity,
independent of the crossing type. For a crossing away from the
high-symmetry lines, it is necessary to evaluate its topological
charge defined in Eq. (26), which carries an opposite charge to
its time-reversal partner. In this case, the Z2 charge defined for
the time-reversal pair is nonzero when the topological charge
of either crossing within the pair is odd. An interesting ques-
tion arises about whether one may determine the Z2 charge
based solely on the root’s multiplicity, akin to the crossings
on high-symmetry lines. For example, consider two crossings
off high-symmetry lines at (±kF , λF ), each with multiplicity
pa. If we move these crossings toward the high-symmetry
lines, which does not affect the Z2 charge, then the multiplic-
ity at the meeting point (K, λF ) on the high-symmetry lines
becomes 2pa unless the crossing type changes in this process.
This implies that under these conditions, the Z2 charge could
be inferred from the root’s multiplicity. However, it is chal-
lenging to conclusively prove that the crossing type remains
the same, which means we do not know whether pa remains
constant before the crossing pair arrive at the high-symmetry
lines, though it seems unlikely to change in most cases. In the
model we studied in Sec. III D, pa for crossings off the high-
symmetry lines does not change while the crossings move. In
the BDI class, the distinction between zero-energy crossings
on and off high-symmetry lines becomes irrelevant, and the
root’s multiplicity seems also to lose its significance. Here,
the higher-order invariants rely on the cumulative topological
charges of all crossings.

In this paper, we have characterized higher-order topology
in 2D systems through pairs of topological invariants: (νx, νy )
for the DIII class, as defined in Eq. (15), and (ωx, ωy) for the
BDI class, introduced in Eq. (35). A system enters nontriv-
ial higher-order phases when at least one of these invariants
becomes nonzero. However, the reverse is not necessarily
true. Nontrivial higher-order topology can occur even if both
topological invariants are zero. For example, in the DIII class,
if Majorana Kramers pairs are present at all four corners, then
the invariants may still be zero, i.e., (νx, νy) = 0. This happens
because these invariants represent the first-order topology of
a quasi-1D cylindrical system, where each end corresponds to
two corners in a square sample. When each corner supports a
Majorana pair in the DIII class, their combined effect results
in trivial invariants, due to the Z2 classification. A similar
scenario occurs in the BDI class, where trivial invariants can
arise if the two corners at each end host Majorana zero modes
with opposite chiralities. This can also be viewed from the
perspective of edge topology by noting that these invariants
actually indicate the topological differences between oppo-
site edges, as we have established in our previous study of
D-class systems [46]. However, in higher-order topological
phases, topological differences may only exist between ad-
jacent edges, rendering these invariants inadequate. For a
comprehensive bulk-boundary correspondence in such cases,
other general twisted boundary conditions, involving phase
modulations of the boundary Hamiltonian, might be necessary
[37,54–58]. Our research underscores that boundary condition
modulation can reveal a direct connection between bulk and
corners. Future explorations within this framework may en-
compass a wider array of higher-order phases.
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In systems with three dimensions (3D), higher-order topol-
ogy can be second-order or third-order. To characterize
these higher-order phases, we may explore the 3D parameter
space and investigate zero-energy crossings within it. For
second-order phases, we can consider variations in bound-
ary conditions along one direction, with the parameter space
spanned by two k parameters and one λ parameter, e.g.,
(kx, ky, λz ). Thus, three topological invariants are needed
instead of two, as in the 2D case. If the quasi-2D boundary-
modulated Hamiltonian, such as H (kx, ky, λz = 0), exhibits
nontrivial first-order topology, then a second-order topologi-
cal phase featuring chiral or helical Majorana modes on the
hinges will emerge. We also expect zero-energy crossings
to occur in the (kx, ky, λz ) space. For third-order topology,
variations in boundary conditions along two directions need
to be considered, and the parameter space is characterized by
one k parameter and two λ parameters, such as (kx, λy, λz ).
If the quasi-1D boundary-modulated Hamiltonian H (kx, λy =
0, λz = 0) is topologically nontrivial in the first-order sense,
then a nontrivial third-order phase with Majorana corner
modes could arise. In this scenario, the zero-energy crossings
are expected to extend into a line (ring) in the λyλz plane for
certain kx. This is due to first-order topology of H (kx, λy =
±1, λz = ±1) being trivial, necessitating topological phase
transitions as both λy and λz approach zero. Therefore, un-
like in the second-order phase, where zero-energy crossings
exist as nodal points, these crossings can form nodal lines in
third-order phases. In the DIII and BDI classes, the third-order
topology is determined by the topological charges of these
nodal lines.

Finally, we make a comparison between the higher-order
invariants introduced here and momentum-space topological
invariants widely used to characterize first-order topological
phases, such as the Chern number and the Fu-Kane invariant.
Although the higher-order invariants proposed in this work
can be obtained solely from the bulk Hamiltonian under the
assumption of commensurate boundary terminations, they do
not directly reflect the topology of the occupied state vector
bundle defined over the bulk Brillouin zone. Unlike in con-
ventional first-order phases, topological phase transitions in
higher-order systems may occur while the bulk gap remains
open, posing challenges in associating higher-order topolog-
ical invariants with occupied bands over the bulk Brillouin
zone. To address this issue, it is necessary to identify the
qualitative (topological) changes in the bulk band for topo-
logical phase transitions occurring through the closing of
boundary gaps, as demonstrated in Refs. [59,60] for a class
of minimal models. Additionally, it is worthwhile to exam-
ine other momentum-space topological indicators that reveal
nontrivial topology in previously considered trivial phases
and investigate their possible connections to higher-order
topology [61].
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APPENDIX: THE MATRIX Ãa

In this Appendix, we will present the details in deriving the
matrix Ãa(k, λ) introduced in Eq. (23), whose determinant is
shown to be equal to that of Aa(k, λ) in Eq. (21).

Firstly, we note that the D matrix of bulk
Hamiltonian in momentum space is given by D(k) =
u†H (k)v, where US = (u v) is the unitary matrix that
diagonalizes the chiral symmetry operator S. For the
boundary-modulated Hamiltonian Ha(k, λ) represented
in the basis �a(k) = {ψa,1(k), ..., ψa, j (k), ..., ψa,Na (k)},
with ψa, j (k) including all internal degrees of freedom,
denoted as [ca(k)] jα , on the site j, the corresponding
matrices u and v are replaced by ua = INa×Na ⊗ u and
va = INa×Na ⊗ v, respectively. Here, Na represents the
number of unit cells along the a direction. As such, the
D matrix of boundary-modulated Hamiltonian is given by
Da(k, λ) = u†

aHa(k, λ)va, and similarly for the boundary
Hamiltonian Db

a(k) = u†
aBa(k)va. The entries of Aa can be

written as

[Aa(k, λ)]iᾱ, jβ̄ = δi jδᾱβ̄ − (1 − λ)

× [
D−1

a (k, 1)
]

iᾱ,l γ̄

[
Db

a(k)
]

l γ̄ , jβ̄
, (A1)

with Einstein summation assumed. In Eq. (A1) we distinguish
ᾱ and β̄ from α and β as the former indices run over only
half the inner degrees of freedom. The two representations of
bulk Hamiltonian, Da(kā, 1) and D(k), are related with each
other through Fourier transformation, represented in matrix
form as

[Da(kā, 1)]iᾱ, jβ̄ =
∑

ka

[U †
F ]i,ka [D(k)]ᾱ,β̄[UF ]ka, j . (A2)

Here, the subscript of k is explicitly shown for clarity, and
the Fourier matrix [UF ]ka, j = 1√

Na
e−i jka . Since the boundary

Hamiltonian operates only on boundary cells, it follows that
the entries [Aa(k, λ)]iᾱ, jβ̄ = δi jδᾱβ̄ if j does not represent a
boundary cell. Consequently, the determinant of Aa can be
calculated using only the block corresponding to boundary
cells, denoted by Āa(k, λ), with

det[Aa(k, λ)] = det[Āa(k, λ)]. (A3)

Combining Eqs. (A1) and (A2), we arrive at

[Āa(kā, λa)]ibᾱ, jbβ̄ = δib, jbδᾱ,β̄ − 1

2π
(1 − λa)

×
∫

dka[F (ka)]ib,lb[D
−1(k)]ᾱ,γ̄

× [
D̄b

a(kā)
]

lbγ̄ , jbβ̄
, (A4)

where D̄b
a represents the block of Db

a corresponding to bound-
ary cells labeled by ib, jb, [F (ka)]ib,lb = eika (ib−lb), and the
summation over ka is replaced by integration.

In certain cases, D̄b
a(k) may not be a full-rank matrix. Its

singular value decomposition is represented as

[
D̄b

a(k)
]

ibᾱ, jbβ̄
= [

Ū b
a (k)

]
ibᾱ,n

[
�̄b

a(k)
]

n,n

[
V̄ b†

a (k)
]

n, jbβ̄
, (A5)

where �̄b
a is a diagonal matrix with ra nonzero entries, with
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ra representing the rank of D̄b
a(k). In addition, �̄b

a can be
arranged such that [�̄b

a]n,n �= 0 for n � ra. Given that Ū b
a and

V̄ b
a are unitary matrices, it follows that

det[Āa(k, λ)] = det
[
V̄ b†

a (k)Āa(k, λ)V̄ b
a (k)

]
. (A6)

From Eqs. (A4) and (A5) we know [V̄ b†
a ĀaV̄ b

a ]m,n = δm,n if
n > ra. Hence, we only need to consider the entries where
m, n � ra while calculating its determinant. For convenience,
we group the first ra columns of V̄ b

a into a new matrix, denoted

as Ṽ b
a . Define

Ãa(k, λ) = Ṽ b†
a (k)Āa(k, λ)Ṽ b

a (k), (A7)

and thus

det[Āa(k, λ)] = det[Ãa(k, λ)]. (A8)

Combining Eqs. (A4) and (A7) we arrive at Eq. (23) in the
main text, which shows the specific form of this ra × ra matrix
Ãa(k, λ).
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