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Magnetic instability in the spin susceptibility of chiral carbon-based structures
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Chiral carbon nanostructures have been found to display unexpected magnetic behaviors. Several theoretical
calculations performed in the macroscopic limit q = 0 have addressed or predicted some of these findings.
To gain more insight into the magnetism of these systems at finite q, here we use linear response theory to
calculate the wave-vector-dependent spin susceptibility χ (q, 0) in a half-filling tight-binding model of a helix
of carbon atoms with intrinsic spin-orbit coupling (SOC). We find that at the nesting wave number q = 2kF the
paramagnetic state of the system is unstable with respect to the formation of a spin-density-wave type state.
Chirality has a small effect on the paramagnetic phase but has no impact on the spin-density-wave type state.
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I. INTRODUCTION

Recently, there has been increasing interest in chiral
structures with respect to their magnetism and other spin-
related properties. Among the systems that have attracted
great attention are allotropic modifications of carbon, DNA,
polypeptides, and helicenes. Pure carbon allotropes are as-
sumed to be diamagnetic, but magnetic behavior has been
observed in many of them. Paramagnetism has been found
in helical carbon nanofibers [1,2] and nanosolenoides [3],
among others [4], while ferromagnetism has been observed
in a variety of all-carbon nanostructures [1,5,6], representing
promising nonmetallic magnets for technological applications
in spintronic. The origin of ferromagnetism in sp-electron car-
bon materials is unknown, with possible explanations ranging
from the presence of impurities to defects to negative curva-
ture. As sample quality has improved, the structural (defects
and curvature) argument is favored as the mechanism for this
magnetism.

For helical carbon structures, curvature-induced mag-
netism has been suggested [1,5–9]. Theoretically, a negative
curvature in helical structure may be caused by protected
carbon radicals and a remote delocalization, which could re-
sult in unpaired spins and, therefore, in magnetism. Intrinsic
ferromagnetism in helical carbon nanostructures is yet to be
confirmed experimentally. So far (to our knowledge) mag-
netism in pure samples (free of magnetic impurities) has been
reported only in Ref. [1]. Most of the time, ferromagnetism
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has been attributed to the presence of catalyst’s spin particles
such as Fe or Ni. Clearly, purer samples need to be examined.

Some kind of magnetism is also found in pure carbon
nanotubes, in which chirality is present for the m �= n closing
of the graphene sheet. In these materials, the Fermi energy
at T = 0 is at the center of the band (half filling). It has
been shown theoretically (using band-structure calculations
in the macroscopic limit q = 0) and experimentally that for
a magnetic field applied along the axis of the nanotube the
response is paramagnetic for metallic chiral systems and is
diamagnetic for semiconducting chiral ones [9–12]. Interest-
ingly, it was predicted that a small deviation from half filling
changes dramatically the longitudinal susceptibility [11].

Other magnetically intriguing helical carbon-based sys-
tems are DNA, polypeptides, and helicenes, which show
spin-selective property [13] while lacking traditional spin-
active interactions such as magnetic centers and strong
exchange couplings [14]. The effect, which is still not well
understood, is known as chirality-induced spin selectivity
(CISS).

The magnetic analyses in the aforementioned systems have
been mainly performed in the static ω = 0 and macroscopic
limit q = 0 limits, in which the ground states are stable. The
scenario for q �= 0 has been studied mostly in chiral carbon
nanotubes and little in the other compounds. We recall the
very rich physics that has been found in this region in all
kind of low-dimensional systems, with phenomena such as the
exciting quantum instabilities charge- and spin-density waves
(CDW and SDW) [15,16], Peierls anomaly [17], and Kohn
anomaly and Friedel oscillations in the charge density [18].

Most work in the chiral nanotubes has been carried out on
the Kohn and Peierls instabilities using density functional the-
ory (DFT) calculations. For an extended review see Ref. [19].
Classic studies on these anomalies in carbon nanotubes with
electron-phonon coupling are those of Refs. [20,21]. It is
worth mentioning the works on optical phonons of chiral
metallic nanotubes at zero and finite temperatures that found a
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FIG. 1. A helix is described by a pitch b, a radius ρ, and an
inclination angle α. All three parameters are defined positive. R ji is
a vector joining consecutive carbon sites (i,j); it is the cell parameter.

Kohn anomaly in the LO (axial) branch [22] and on interacting
carbon nanotubes with spin-orbit coupling that showed a spin-
selective Peierls-type transition [23].

Here, we are interested in the peculiar magnetism of chi-
ral carbon structures at finite q. To carry out the analysis,
we represent these structures by a helix of periodic carbon
sites, which is in fact a one-dimensional (1D) system. It is
well known that linear chains exhibit magnetic instabilities
when q �= 0, usually as a consequence of electron interactions
[15,16,24,25]. In a first approximation, we disregard interac-
tions but include the intrinsic SOC of the system. We calculate
the wave-vector-dependent spin susceptibility χ (q, 0) of the
helix using a half-filling pz orbital tight-binding Hamiltonian
in a linear response theory. This orbital is consistent with the
sp2 hybridization of carbon presents in these materials. That
is, we analyze the stability of the paramagnetic state of this
1D chiral metallic system. We perform the calculations in the
more natural but seldom used helical coordinate system. We
find an antiferromagnetic SDW-type instability at the nesting
wave number q = 2kF . Chirality slightly affects the paramag-
netic phase but has no impact on the SDW-type state.

II. HELICAL COORDINATE SYSTEM

For convenience, here we adopt the helical coordinate
system. Since it is not widely employed, we present a brief
description of it. The transformation from helical to cylindri-
cal coordinates is given by [26]

ρ = r,

φ = θ (only in magnitude),

ζ = z − bθ

2π
, (1)

where b is a positive constant defining the helix pitch, as
indicated in Fig. 1. Thus, a position vector at any point in
helical coordinates is

r = ρ cos φx̂ + ρ sin φŷ +
(

ζ + bφ

2π

)
ẑ. (2)

From this, we find that the unit vectors for the helical
coordinate system are

ρ̂ = cos φx̂ + sin φŷ,

φ̂ = − cos α sin φx̂ + cos α cos φŷ + ς sin αẑ,

ζ̂ = ẑ, (3)

with the scale factors hρ = 1, hφ = ρ/ cos α, and hζ = 1. The
angle α is defined by tan α = b

2πρ
, with 0 < α < π/2. We

introduce the parameter ς in the unit vector φ̂ to account for
the chirality of the system. In Fig. 1, the helical surfaces are
right handed. A positive change in φ̂ with constant ζ̂ implies
a positive change in z and ς = 1 (positive chirality). In left-
handed surfaces, a positive change in φ̂ with constant ζ̂ leads
to a negative change in z and ς = −1 (negative chirality). That
is, the absence of inversion symmetry in the helix is charac-
terized via the system coordinate φ̂. The unit vectors ρ̂, φ̂, and
ζ̂ are not all mutually perpendicular (φ̂ · ζ̂ = ς sin α), so the
helical coordinate system is nonorthogonal. Mathematically,
chirality could be described in this nonorthogonal system by
the sign of the x − y components of ρ̂ × φ̂ = ς sin α(sin φx̂ −
cos φŷ) + cos αẑ.

The Pauli matrices in the helical coordinate system are
given by

σρ =
(

0 e−iφ

eiφ 0

)
,

σφ =
(

ς sin α −i cos α e−iφ

i cos α eiφ −ς sin α

)
,

σζ =
(

1 0
0 −1

)
. (4)

Notably, only the component σφ depends on chirality.

III. MODEL

We follow the tight-binding model for a double helix
DNA molecule with one type of nucleotide pair presented in
Ref. [27]. This model, developed in cylindrical coordinates,
incorporates intrinsic SOC and Rashba-type interactions.
Here, we consider a single helix with one type of atom (car-
bon) and one orbital (pz) (a one-dimensional periodic chain)
and restrict the Hamiltonian to the leading kinetic term and its
first correction the intrinsic SOC. We derive the Hamiltonian
up to second order in wave vector k. In our model, neither the
kinetic energy nor the intrinsic SOC depends on the chirality
ς , but they are functions of the parameters b and α of the helix
(see Appendix).

In line with Ref. [27], we consider a tight-binding Hamil-
tonian of the form

H = ti
∑
〈i j〉

c†
i c j + iλSO

∑
i j

sgn( j − i)c†
i σφc j, (5)

where 〈i j〉 is the nearest neighbor index, c†
i (c j) are fermion

creation (annihilation) operators at sites ri (r j), ti represents
the hopping term for π overlaps, λSO gives the intrinsic spin-
orbit strength, and σφ is one of the Pauli matrices given in (4).
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To solve the corresponding Schrödinger equation in k-
space, we assume states that obey Bloch’s theorem,

ψkl (r) = 1√
N

∑
R ji

eik·R jiφl (r − R ji ), (6)

where φl (r − Ri j) are the overlapping atomic orbitals, l is
the orbital label (in our case l = pz, but we keep the index l
for notational ease), and R ji is the position vector connecting
nearest neighbors (see the Appendix). Also, for convenience
in performing the calculations, we retain the space vectors in
3D even though our system is 1D. These functions are the ba-
sis for the crystal single-particle wave functions (eigenstates)

�k(r) = akψkl (r), (7)

where ak is the only surviving coefficient of the expansion in
our model with one atom and one orbital per atom.

The energy band (eigenvalue) is then calculated as usual
by a secular equation (for other carbon systems, see also
Refs. [28,29])

|〈ψkl (r)|H|ψkl (r)〉 − E (k)〈ψkl (r)|ψkl (r)〉|ak = 0. (8)

The Hamiltonian matrix elements

Hll = 1

N

N∑
R′

ji

N∑
R′′

ji

eik·(R′
ji−R′′

ji )

× 〈φl (r − R′′
ji )|H|φl (r − R′

ji )〉

=
N∑

R ji

eik·R ji〈φl (r)|H|φl (r − R ji )〉

= επ
2p +

N∑
R ji �=0

eik·R ji 〈φl (r)|H|φl (r − R ji )〉, (9)

where επ
2p is the on-site energy for orbitals in the same atom

and the summation in the second (hopping) term runs only
through nearest neighbors. The overlap matrix elements of
Eq. (8), in our case of the same orbital on the same atom,

〈ψkl (r)|ψkl (r)〉 = 1. (10)

After calculating the hopping matrix elements, the solution of
Eq. (8) yields the eigenvalue in spin space

E (k) = [
επ

2p + 2ti f (k)
]
1σ − 2λSOg(k)σφ, (11)

where f (k) = cos(k · R ji ) and g(k) = sin(k · R ji ) are func-
tions in the reciprocal space. This eigenvalue is similar to the
energy found in Ref. [27] without the out-strand and Rashba
terms. Then, the diagonalization in spin space leads to the
energy spectrum

Es(k) = επ
2p + 2ti f (k) − 2sλSOg(k), (12)

where s = ±1 represents the spin label. The total wave func-
tion is a two-component spinor

�ks(r) = ψkl (r)ei φ

2√
2(1 − sς sin α)

(
cos α e−i φ

2

i(s − ς sin α) ei φ

2

)
. (13)

FIG. 2. (a) Kinetic energy band in the first Brillouin zone. The
Fermi level, chosen at zero energy, corresponds to k = ±kF . The
green areas indicate the region of validity of our tight-binding half-
filling approximation, where the dispersion relation is linear. (b) The
dispersion energy of the helix with spin-orbit coupling in the vicinity
of the half-filling point within the region of the linear approximation.
Here, d = 4λSO/π |ti|.

In order to perform the calculations in the vicinity of the
half-filling point, with the condition kF · R ji = νπ/2, we ex-
pand f (k) and g(k) around the wave vector kF . The parameter
ν = +1(−1) indicates that we carry out the analysis in the
positive (negative) wave-vector side of the Brillouin zone, as
indicated in Fig. 2(a). We define the wave vector in the vicinity
of kF as k′ = k − kF . Since the system is a helical chain, k
and R ji lie in the same direction, so k · R ji is always positive.
In other words, although k is taken as a three-dimensional
vector, only its component parallel to R ji is relevant and this
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FIG. 3. Magnetization vector in a nonorthogonal helical system
with an applied magnetic field along the ζ axis. For the sake of
simplicity, the ρ axis is aligned along the x axis of a Cartesian system,
so the φ axis is in the yz plane. A rotation along the ζ axis does not
change Mζ . H0 is the field strength.

component is on the axis of symmetry in the 1D Brillouin zone
[x axis in Figs. 2(a) and 2(b)]. Then, we expand

f (k) = cos(k · R ji ) ≈ −νk′ · R ji,

g(k) = sin(k · R ji ) ≈ ν

(
1 − (k′ · R ji )2

2

)
. (14)

These expansions are valid in a region 2δkF with δ ≈ 0.25,
as depicted in Fig. 2(a). In this range, the energy is valid

to order k′2:

Es(k′) − επ
2p = −2νtik′ · R ji − 2sνλSO

(
1 − (k′ · R ji )2

2

)
,

(15)

where ti = −|ti| (see the Appendix). Figure 2(b) depicts the
energy dispersion around the half-filling point.

Although the energy spectrum depends on the index ν,
it is in fact the same on both sides of the Brillouin zone
(Kramers degeneracy, the Hamiltonian (12) is invariant under
time reversal). The wave function is the same around each kF

and is not modified by ν. Given the chirality and the choice
of the Brillouin side, as usual in the unperturbed system the
spin-degeneracy is lifted by the spin-orbit interaction.

IV. LONGITUDINAL SPIN SUSCEPTIBILITY

In our 1D system of carbon atoms with half-filled atomic
orbitals we study the stability of the paramagnetic state against
the formation of an antiferromagnetic phase. It is necessary
to look at the sign of the longitudinal spin susceptibility
χ‖(q, 0) [24,25]. For this purpose, we calculate a general
linear response to a small time- and space-dependent exter-
nal magnetic field H0ei(q′ ·r−ωt ) and use the well-known Kubo
correlation function in the (q′, ω) domain [30],

χβγ (q′, ω) = i
(gμB)2

4h̄

∫ ∞

0
dt eiωt

× 〈�pzk′s|[Ŝβ (q′, t ), Ŝγ (−q′, 0)]|�pzk′s〉, (16)

where μB is the Bohr magneton, g is the gyromagnetic ratio,
q′ = q − kF , and the spin density operator

Ŝβ (q′) =
∑
k′s

σβc†
k′+q′sck′s (17)

with σβ given in Eq. (4). As for k, the only relevant component
of q is on the axis of symmetry in the 1D Brillouin zone.

For a magnetic field applied in the ζ direction, the longitu-
dinal magnetization is given by the components χζζ and χφζ

(see Fig. 3). The evaluation of (16) yields the frequency- and
wave-vector-dependent longitudinal spin susceptibility

χ‖(q′, ω) = − (gμB)2

4

∑
k′

[
cos2 α

(
nk′+q′↑ − nk′↓

Ek′+q′↑ − Ek′↓ + (h̄ω − iη)
+ nk′+q′↓ − nk′↑

Ek′+q′↓ − Ek′↑ + (h̄ω − iη)

)

+ (1 + ς ) sin2 α

(
nk′+q′↑ − nk′↑

Ek′+q′↑ − Ek′↑ + (h̄ω − iη)
+ nk′+q′↓ − nk′↓

Ek′+q′↓ − Ek′↓ + (h̄ω − iη)

)

+ ς sin α cos α

(
(1 + ς )(nk′+q′↑ − nk′↑)

Ek′+q′↑ − Ek′↑ + (h̄ω − iη)
− (1 + ς )(nk′+q′↓ − nk′↓)

Ek′+q′↓ − Ek′↓ + (h̄ω − iη)

+ nk′+q′↑ + nk′↓
Ek′+q′↑ − Ek′↓ + (h̄ω − iη)

− nk′+q′↓ + nk′↑
Ek′+q′↓ − Ek′↑ + (h̄ω − iη

)]
. (18)

As opposed to what is obtained in common nonhelical
systems, we now have contributions containing sums of prob-
ability densities with antiparallel spins [the last two terms in
Eq. (18)]. These terms are due to the helical geometry and

not to the nonorthogonality of the reference system (this was
checked with orthogonal-helical calculations).

To discuss the magnetic instabilities of a helical chain
within the half-filling model at T = 0, we analyze the purely
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real static limit (ω = 0) of Eq. (18). The Fermi level is defined
by the highest energy level of the ground state, which in this
case from (15) is 2λSO. In the calculation, for example, the
integral for k′ < 0 and spin down goes from −δkF to −dkF

[see Fig. 2(b)] and is restricted by q′2
4k2

F
> − 2|ti |

πλSO

q′
kF

− 8
π2 + q′2

2k2
F

. This

constraint is satisfied for |ti| > λSO, which is complied in all
known physical systems. Switching to q, an explicit expres-
sion for χ‖(q, 0) at T = 0 is readily obtained:

χ‖(q, 0) = − (gμB)2

8π2λSO

[
(cos α + ς sin α)

(
− cos α√

u − v
tan−1

(
(d + δ)

√
u − v

u − v + (� − d )(δ + �)

)

+ cos α

2
√

u + v
ln

∣∣∣∣ (d + � − √
u + v)(δ − � − √

u + v)

(d + � + √
u + v)(δ − � + √

u + v))

∣∣∣∣
+ (1 + ς ) sin α

2�
ln

∣∣∣∣∣
2|ti|
πλSO

− � + d
2|ti|
πλSO

− � + δ

∣∣∣∣∣ − (1 + ς ) sin α

2�
ln

∣∣∣∣∣
2|ti|
πλSO

+ � + d
2|ti|
πλSO

+ � − δ

∣∣∣∣∣
)

− (cos α − ς sin α)

(
cos α

2
√

u + v
ln

∣∣∣∣ (d + � + √
u + v)(δ + � − √

u + v)

(d + � − √
u + v)(δ + � + √

u + v))

∣∣∣∣
+ cos α√

u − v
tan−1

(
(−d + δ)

√
u − v

u − v + (� − d )(� − δ)

)

− (1 + ς ) sin α

2�
ln

∣∣∣∣∣
2|ti|
πλSO

+ � + d
2|ti|
πλSO

+ � + δ

∣∣∣∣∣ + (1 + ς ) sin α

2�
ln

∣∣∣∣∣
2|ti|
πλSO

− � + d
2|ti|
πλSO

− � + δ

∣∣∣∣∣
)]

, (19)

where we use the dimensionless parameters

� = q

2kF
− 1

2
u = 4|ti|

πλSO

(
q

2kF
− 1

2

)
,

v = 8

π2
−

(
q

2kF
− 1

2

)2

. (20)

The condition that χ‖(q, 0) is real is satisfied when u > v.

V. RESULTS AND DISCUSSION

Equation (19) versus q is plotted in Fig. 4(a) in the vicinity
of kF . Here, we consider that for our model of carbon atoms,
with small spin-orbit coupling, the ratio |ti|/λSO is large (|ti|
is of the order of eV, while λSO is in the μeV–meV range
[31–33]). We observe in Fig. 4(a) that χ‖(q, 0) is negative
for q/2kF < 1, goes through a singularity at q/2kF = 1, and
becomes regular and positive for q/2kF > 1. The divergence
is present as long as the hopping energy remains much larger
than the spin-orbit coupling (that is, for |ti| � λSO), which is
a condition always holding for the systems of interest. More
importantly, spin-orbit interaction has a negligible effect on
the development of the singularity, which can be inferred from
χ‖(q, 0) at different values of λSO and fixed |ti| = 1 eV, as
shown in Fig. 4(a). Furthermore, the behavior exhibited in Fiq.
4(a) is sustained for vanishing λSO, limit at which χ‖(q, 0)
goes as 1/( q

2kF
− 1) in the case ν = 1.

The present result differs markedly from the logarithmic
divergence at q = 2kF observed in a 1D free-electron gas
[see Fig. 4(b)] [30] and in 1D interacting electron systems
developing Peierls instabilities [17], CDW and SDW states
[15,16], and Kohn anomalies and Friedel oscillations in the
charge density [18].

The singularity observed in Fig. 4(a) does imply that
the paramagnetic state is unstable against an antiferromag-
netic phase around q = 2kF , as indicated by the negative
χ‖(q, 0) below this q value [24,25]. As the magnetization
M(q) ∝ eiq·r, at q = 2kF for the half-filled band there is a
sign change at the neighboring lattice sites and the Fermi
surface coincides with the magnetic zone boundary [25]. The
divergence separates the negative and positive regions, as
expected for deformations that increase energy. The insta-
bility is of the SDW type as the Fermi surface satisfies a
nesting property, with wave number Q = 2kF complying with
the condition Es(k + Q) = −Es(k) for all k in the energy
spectrum (12).

The magnetic instability shown in Fig. 4(a) is similar
to those observed and interpreted as SDW behaviors in 3D
systems with strong short-range interactions (delta function)
[34] and with long-range shielded Coulomb interaction at low
densities [24]. Spin-density waves are broken-spin-rotation
symmetry ground states of metal which are believed to arise
from electron-electron interactions. Thus, the lack of elec-
tronic interactions and the negligible contribution of the
spin-orbit coupling may cast doubt on the interpretation of the
singularity as an evidence of an SDW instability. However, it
has been shown that for the special case of one electron per
atom, when the band is half full, an SDW instability occurs
for vanishing small interaction [25].

The instability of the paramagnetic state at the center of
the zone in helical carbon nanostructures is consistent with
the prediction of Ref. [11] that a small variation of q around
half filling leads to a substantial change of the longitudinal
spin susceptibility. Magnetic behaviors in these systems, both
at zero and finite q, may be considered on the basis of the
curvature-induced magnetism previously proposed [1,5–9].
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FIG. 4. Longitudinal spin susceptibility of a helical chain at T = 0. (a) For three different values of λSO and α = 0.25, ς = 1, and |ti| =
1 eV. An almost λSO-independent susceptibility implies that the spin-orbit coupling plays a negligible role in the magnetic properties of a
helical carbon-based systems. (b) A helical chain of carbon-like atoms (red curve) as compared to the 1D free-electron model (blue curve).
Unlike the helical chain, the free-electron model has a logarithmic divergence at q = 2kF . (c) For different values of α and λSO = 0.1 meV,
ς = 1, and |ti| = 1 eV. A larger effect is observed for q/2kF as a function of the helix tightening. (d) The effect of chirality (characterized by
ς ) on the longitudinal spin susceptibility of a helical chain of carbon-like atoms. No influence is observed for q/2kF < 1 (see text). The curves
were obtained for α = 0.25, |ti| = 1 eV, and λSO = 0.1 meV.

The singularity found in this work is also similar to that
found in 3D nickel at temperatures for which local moments
can be established [35]. This case may not be related to our
result, because face-centered cubic nickel is completely dif-
ferent from helical carbon nanostructures.

Regarding our result in the context of DNA molecules,
a paramagnetic to diamagnetic transition as a function of
temperature was found in DNA, which is believed to be a
consequence of electron-electron and electron-vibration in-
teractions [36]. This transition is not connected at all with
the singularity found here, since electron interactions and
finite temperatures are not included. We considered half-filled
bands and spin-orbit interactions for a very different scenario.

The helical geometry affects the divergence of the suscep-
tibility of a helical carbon molecule at q/2kF , as shown in

Fig. 4(c). As the helix stretches (larger b), the phases at both
sides of q/2kF seem to be more stable, more so for q/2kF < 1.
We note here that extrapolating to α = 0, π/2 in the final
expressions seems a nontrivial limit to take, because a change
of symmetry is involved (inversion symmetry is restored and
additional degeneracies arise).

Another relevant result is the sensitivity of the magnetic
instability to chirality [see Fig. 4(d)]. Chirality shows an effect
for wavelength q > 2kF , but no impact for q < 2kF . This is
surprising, although it could simply be another manifestation
of the formation of the SDW state. The paramagnetic state
responds more readily to an external field (is less stable)
when the helical carbon chain is oriented clockwise (positive
chirality) than when it is oriented counterclockwise (negative
chirality). On the other hand, once the antiferromagnetic SDW
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state becomes favorable upon application of a magnetic field
with modulation q < 2kF , the magnetic response is indepen-
dent of the helical chain orientation. This could be due to the
fact that an SDW state is represented by two density waves for
spin up and spin down with modulation of wavelength 2kF and
a phase shift. In the SDW phase the two density waves with
opposite spins can balance their contributions under a chirality
change and thus the system response becomes independent of
it.

Finally, it is worth mentioning that the divergence has
mirror-plane symmetry with respect to the � point of the
Brillouin zone, as expected given the periodicity of the
system.

VI. CONCLUSIONS

We used a linear response approach to calculate at T = 0,
in a helical coordinate system and near the half-filled band,
the magnetic response to a wave-vector-dependent external
field of a helical carbon-based structure. It was assumed that
carbon atoms have intrachain coupling with electrons shared
by atoms in the π cloud contributing to atomic spin-orbit
coupling. The calculations yield a spin susceptibility that
diverges at q = 2kF , pointing to an instability of the paramag-
netic state and the formation of an SDW-type state. Chirality
slightly affects the response in the paramagnetic phase, but
does not influence the antiferromagnetic SDW-type state.
Intrinsic spin-orbit coupling has negligible effects on spin
susceptibility.
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APPENDIX: TIGHT-BINDING AND SPIN-ORBIT
PARAMETERS IN THE HELICAL COORDINATE SYSTEM

We show here that the physics of the tight-binding and
spin-orbit constants are naturally derived in the helical co-
ordinate system. For this, we start with the overlap between
orbitals at i and j sites [27],

Ei, j
μ,μ′ = (n̂(μi ), n̂(μ j ))V π

μμ′

+ (R ji, n̂(μi ))(R ji, n̂(μ j ))
(R ji, R ji )

(
V σ

μμ′ − V π
μμ′

)
, (A1)

and consider all vectors here in helical coordinates. The unit
vectors n̂(μ j ) in the direction of the orbital μ j

n̂(px, i) = cos φix̂ + sin φiŷ,

n̂(py, i) = cos(α)(− sin φix̂ + cos φiŷ) + ς sin αẑ,

n̂(pz, i) = ẑ. (A2)

From Eq. (2) we have that the position vector connecting
nearest neighbors Ri j is given by

R ji = −2ρ sin2

(
�φ

2

)
ρ̂

+
(

ρ sin (�φ) cos α + ςb�φ

2π
sin α

)
φ̂ + b�φ

2π
ζ̂ ,

(A3)

where �φ = θ j − θi is the angle between the neighbors at
sites i and j (see Fig. 1). Therefore, its magnitude is

|R ji| = ρ
√

2(1 − cos �φ) + (�φ tan α)2. (A4)

The overlap components are then

Ei, j
x,x = cos(�φ)|R ji|2V π

pp − 4ρ2 sin4
(

�φ

2

)(
V σ

pp − V π
pp

)
|R ji|2 ,

(A5)

Ei, j
y,y = (cos2 α cos(�φ) + sin2 α)V π

pp

−
(
ρ cos α sin (�φ) + ς

b�φ

2π
sin α

)2(
V σ

pp − V π
pp

)
|R ji|2 ,

(A6)

Ei, j
z,z = V π

pp − (b�φ)2
(
V σ

pp − V π
pp

)
4π2|Ri j |2 , (A7)

Ei, j
x,y = cos α sin �φV π

pp

− 2ρ2 sec α sin �φ cos2 α sin2
(

�φ

2

)(
V σ

pp − V π
pp

)
|R ji|2

− 2ρ2 sec α�φ sin2 α sin2
(

�φ

2

)(
V σ

pp − V π
pp

)
|R ji|2 , (A8)

Ei, j
x,z = −2ρ2�φ tan α sin2

(
�φ

2

)(
V σ

pp − V π
pp

)
|R ji|2 , (A9)

Ei, j
y,z = ς sin(α)V π

pp + ρb�φ sec α sin �φ cos2 α
(
V σ

pp − V π
pp

)
2π |R ji|2

+ ρb�φ sec ας�φ sin2 α
(
V σ

pp − V π
pp

)
2π |R ji|2 . (A10)

From the component Ei, j
z,z (A7) we find the hopping

constant

ti = V π
pp − (�φ tan α)2

(
V σ

pp − V π
pp

)
2(1 − cos �φ) + (�φ tan α)2

, (A11)

and from the component Ei, j
y,z (A10) the helical spin-orbit

coupling

λSO = ξp�φ tan α(1 − cos �φ)
(
V σ

pp − V π
pp

)
(επ

2p − εσ
2p)[2(1 − cos �φ) + (�φ tan α)2]

. (A12)

Usually, |V σ
pp| > |V π

pp| and V π
pp < 1 [29], then ti < 0 and λSO >

0. We see that even though both the hooping constant and
the spin-orbit coupling depend on the helix structure (through
α), they are not influenced by chirality. If α = 0, no helix
(the system is just a stack of rings), the hopping constant
ti becomes equal to the Slater-Koster π overlap V π

pp and the
intrinsic λSO goes to zero.
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