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Mixed higher-order topology, and nodal and nodeless flat band topological phases
in a superconducting multiorbital model
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We investigate the topological phases that appear in an orbital version of the Benalcazar-Bernevig-Hughes
(BBH) model in the presence of conventional spin-singlet s-wave superconductivity and with the possibility
of tuning an in-plane magnetic field. We chart out the phase diagram by considering different boundary
conditions, with the topology of the individual phases further examined by considering both the Wannier and
entanglement spectra, as well as the Majorana polarization. For weak to moderate values of magnetic field
and superconducting pairing amplitude, we find a second-order topological superconductor phase with eight
zero-energy corner modes. Further increasing field or pairing, half of the corner states can be turned into
zero-energy edge-localized modes, thus forming what we name hybrid-order phase. Then, we find two different
putative first-order topological phases, a nodal and a nodeless phase, both with zero-energy flat bands localized
along mirror-symmetric open edges. For the nodal phase, the flat bands are, as expected, localized between the
nodes in reciprocal space, while in the nodeless phase, the zero-energy boundary flat band instead spans the
whole Brillouin zone and appears disjoint from the fully gapped bulk spectrum. As a consequence, this model
present several unexpected phases with unusual surface states that can be tuned via an external magnetic field.
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I. INTRODUCTION

The study of topological materials is an extremely active
area of research in condensed matter physics. They present
phases of matter that are not characterized by spontaneous
symmetry breaking but rather by topological invariants. In the
Altland-Zirnbauer classification [1,2], time-reversal, particle-
hole, and chiral symmetries classify ten possible topological
classes with bulk energy gaps, indicating the kind of invari-
ant and the branches of the symmetry-protected boundary
states. The number of possible symmetry-protected topolog-
ical classes of free fermions has further been increased by
including crystalline symmetries to this original classification
[3–7].

In addition to new topological classes, crystalline symme-
tries also allow for the presence of higher-order topological
phases [8–11], where the topological invariant computed in
the bulk is not related to modes appearing on the whole
surface of the material but rather on a smaller set. As an
example, the original model of a higher-order topological
insulator, the two-dimensional (2D) Benalcazar-Benervig-
Hughes (BBH) model [8,9], hosts a second-order topological
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phase with protected zero-energy modes appearing at the
corners of the system. The last years have seen a profusion
of work on higher-order topological insulators [12–23], with
experimental realization in materials [11,24] and a variety of
metamaterials [25–35].

A particularly interesting class of higher-order topolog-
ical systems is higher-order topological superconductors
(HOTSC), both for static and driven Hamiltonians [36–43].
The corner or hinge states in HOTSC appear at zero energy
and can, as such, be Majorana zero modes (MZMs) [44–51]
since they present an equal amount of particle and hole com-
ponents and can thus their own antiparticles, promising for
applications in quantum computing [52]. This however re-
quires tuning the degree of degeneracy for the zero-energy
states, as well as controlling their spatial extent and separa-
tion.

Topologically protected boundary states can also appear in
nodal superconductors [53–63]. Topological nodal supercon-
ductivity is a nontrivial phase that is however not contained
in the Altland-Zirnbauer classification since the bulk of the
system is gapless at the nodal points [55,56,58]. Nevertheless,
the presence of the nodal points is protected by symmetry, and
there also exists a bulk-boundary correspondence between the
topology of the bulk nodal points and boundary-localized flat
bands located between the nodes.

It would be interesting to uncover systems where multi-
ple different superconducting topological phases are readily
realized, including higher-order topology and various nodal
states. This would both provide realizations of different in-
dividual topological phases and possible intriguing combina-
tions thereof, possibly even uncovering previously unknown
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FIG. 1. (a) Schematic realization of the superconducting BBH
model: BBH system with conventional spin-singlet s-wave super-
conducting pairing � induced by proximity effect from a substrate
and an in-plane magnetic field Bx . Different edges are indicated by
Roman numerals. Dashed area represents the region where the entan-
glement spectrum is computed. (b) Summary of phase diagram: Solid
lines represent analytical expressions for the phase boundaries, while
different colors represent different topological phases. See main text
for further definitions.

phases, and also offer tunability between the different phases
and their characteristic properties. To be precise, being moti-
vated by both recent studies on the BBH model in the normal,
i.e., nonsuperconducting, state and already existing HOTSC
[40,64–66], we in this work seek the uncover the different
superconducting phases in the BBH model in the presence
of a tunable magnetic field. We are concerned with mapping
out the full phase diagram, and, in particular, we focus on
unexpected topological superconducting phases generated by
the intricate interplay between the higher-order topology of
the normal state and superconductivity and magnetic field.

Aiming at least for higher-order topology, we choose to
investigate the orbital version of the BBH model in the deep
topological limit with conventional spin-singlet s-wave super-
conductivity induced by proximity effect from a substrate and
using an applied in-plane magnetic field as an additional easily
accessible tunable parameter, all illustrated in Fig. 1(a). The
in-plane magnetic field Bx breaks the C4 symmetry responsi-
ble for protecting the corner states in the BBH model, while
the proximity-induced superconducting order parameter �

transforms these states in electron-hole excitations. Moreover,
we find that the superconducting term in this orbital model
is represented by an unusual matrix structure, giving rise to
a multitude of different topological phases. Using the Wan-
nier spectrum [7,9,11], the entanglement spectrum [67–71]
for a quarter of the lattice indicated as in Fig. 1(a), and the
Majorana polarization [72,73], we completely characterize
the topological phases and obtain the rich phase diagram in
Fig. 1(b).

To briefly summarize the phase diagram, for Bx = 0 and
� ≈ 0 the result is a superconducting version of the second-
order topological phase of the BBH model, characterized
by eight corner states and displayed as the HOTSC phase
(yellow) in Fig. 1(b). The pairing makes the corner states
of the BBH model transform into Andreev bound states,
built up from two degenerate MZMs, located at each corner.
The presence of both finite pairing and an in-plane magnetic
field makes even more interesting and unexpected topological
phases appear. For larger values of both � and Bx we first
find another higher-order topological phase, a type of hybrid

ordered phase (green). In this phase, some (four) of the origi-
nal zero-energy corner states stay, becoming isolated MZMs,
while the rest turn into MZMs localized along on the edges
in the y direction, edges II and IV, in Fig. 1(a). This presents
an intriguing mix, or hybrid, of a second-order and a dipolar
topological phase, but where the number of edge localized
states do not grow with system size, as usually expected.
Further increasing Bx and �, we find two other also interest-
ing topological phases. These are both first-order topological
phases with flat bands at zero energy as their boundary modes.
One of this phases is a traditional nodal phase: a nodal flat
band phase (blue), where the bulk of the system is gapless with
symmetry-protected nodes and the zero-energy flat bands,
localized on the y edge, occur in the region of momentum
space between the nodes, just as expected for a topological
nodal superconductor. In contrast, in the other topological
flat band phase the bulk stays completely gapped, but we
nevertheless still find flat bands at zero energy, now spanning
across the whole Brillouin zone and localized at the edges
along the x direction. We name this latter, unexpected, phase
a nodeless flat band phase (red). The association of these flat
bands to a bulk invariant remains unclear, but we find that
they clearly appear in a quantized Wannier spectrum. Both flat
band phases present four zero-energy states per momenta, two
at each edge, with a large Majorana polarization, such that we
consider them to be MZMs.

Our results show how a seemingly simple model, a
normal state with spin-orbit coupling together with proximity-
induced conventional superconductivity and in-plane mag-
netic field, can generate a plethora of different topological
phases. The different kind of surface states can further be
accessible by tuning physical parameters, in particular the
magnetic field that can be externally controlled. Importantly,
our results establish the existence of both a hybrid-order
phase and a fully gapped (i.e., nodeless) topological phase
with zero-energy flat bands boundary states, in addition to
already known topological phases. Our findings thus increase
the catalog of emergent topological superconducting phases
and establish their microscopic origin.

The rest of this work is structured as follows. In Sec. II, we
briefly summarize the main properties of the BBH model and
discuss the form of the Hamiltonian, especially the supercon-
ducting pairing and the magnetic field term, which we add to
the BBH model. In Sec. III, we introduce the three topological
indicators we use in this work, explaining what aspects of
topological phases can be characterized by each invariant. In
Sec. IV, we report our main results. First, we consider gap
closings as a function of � and Bx, which indicate the phase
boundaries. For each phase, we analyze the behavior of the
energy spectra for different boundary conditions as well as
the different topological invariants, in order to characterize all
phases. In Sec. V, we discuss the dual [74] and surface [37,60]
Hamiltonians for this model, which help us understand the
presence of nodes starting with s-wave pairing and the higher-
order phases of the model. Finally, in Sec. VI, we conclude
and summarize our main results.

II. MODEL

The paradigmatic model of a higher-order topological in-
sulator, the BBH model [8,9], is described by the Bloch
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Hamiltonian

hBBH(k) = d(k) · γ, (1)

where d1 = t sin(kya), d2 = λ + t cos(kya), d3 = t sin(kxa),
d4 = λ + t cos(kxa), γi = σ2 ⊗ si for i = 1, 2, 3, and γ4 =
σ1 ⊗ s0. The model is defined on a square lattice with a
lattice parameter a. In addition to chiral (� = σ3 ⊗ s0) sym-
metry,1 this model is also reflection symmetric along x
(Mx = iσ1 ⊗ s3) and y (My = iσ1 ⊗ s1), besides presenting C2

(r2 = MxMy = −i σ0 ⊗ s2) and C4 [r4 = (σ1 + iσ2)/2 ⊗ s0 −
i(σ1 − iσ2)/2 ⊗ s2] symmetries2 [8]. For λ < t , this model
presents topological corner modes protected by both chiral
and C4 symmetries.

The original BBH model can be considered as the col-
lection of spinless fermions on a square lattice with four
sublattices, being an extension of the two-dimensional (2D)
Su-Schrieffer-Heeger model [75] with a π flux. Here, we
instead interpret σi and si as Pauli matrices (σ0 = s0 = 12)
associated with orbital and spin degree of freedom, respec-
tively. This Hamiltonian then has spin-orbit coupling between
orbital and spin on the same site (terms proportional to λ) and
between different sites (terms proportional to t). This choice is
motivated when considering the proximity effect from a con-
ventional superconductor, where the pairing is s-wave (onsite)
intraorbital (proportional to σ0) spin-singlet (proportional to
sy), which is not possible for spinless fermions. We here fur-
ther consider the deep topological limit of Eq. (1), by setting
λ = 0. This both generates nontrivial topology in the normal
state and removes the on-site spin-orbit coupling.

Since it is known that a conventional superconductor with
spin-orbit coupling can host topological superconductivity in
an in-plane magnetic field [45,46,74], we also add an in-
plane external magnetic field Bx along x, accounted for by
a Zeeman term proportional to sx. An interesting question
then is to investigate the interplay between superconductivity
and magnetic field with the intrinsic higher-order topology of
the BBH model. The resulting Bogoliubov-de Gennes (BdG)
Hamiltonian for this system in the particle-hole basis becomes

hBdG(k) =
(

h(k) −i�
i� −h∗(−k)

)
= D(k) · �, (2)

where h(k) = hBBH(k) + Bx σ0 ⊗ s1 is the total normal-state
Hamiltonian. For the second equality we use the vectors
D = (d1, d2, d3, d4,�, Bx ) and � to write the Hamiltonian in
terms of matrices in the particle-hole, orbital, and spin degrees
of freedom. Using τi as the Pauli matrices in the particle-
hole degrees of freedom, we construct the matrices 	i = τ3 ⊗
γi, 	4 = τ3 ⊗ γ4, 	5 = τ2 ⊗ σ0 ⊗ s2, and 	6 = τ3 ⊗ σ0 ⊗ s1.
Note that by this definition, � = �σ0 ⊗ s2 which represents
an intraorbital spin-singlet pairing, as expected by proximity

1We remark that the original model BBH model is also time-
reversal and particle-hole symmetric. However, since we are dealing
with spinfull fermions instead of spinless ones, the representations
of time-reversal and particle-hole symmetry are different, and these
symmetries are broken by one of the terms in the model.

2This is the case when the hoppings along x are the same as the
hopping along y. When the hoppings are different, only C2 symmetry
is present [8].

effect from an external conventional superconductor. This
model has chiral � = τ1 ⊗ σ0 ⊗ s0 and particle-hole sym-
metry P = τ1 ⊗ σ0 ⊗ s0K . The discussion about crystalline
symmetries is present in Sect. III A.

We remark that in the deep topological limit of the BBH
model, which is the parameter range for λ/t that we focus
on in our work, only the corners are gapless in the normal
state. Therefore, in a more realistic model, in which super-
conductivity is introduced self-consistently in the topological
BBH system, pairing terms would technically only be present
around the corners (or edges) of the system. However, since
our main focus in this work is to understand the variety of
topological phases that arise due to the interplay of the BBH
model with superconductivity, we choose to add s-wave pair-
ing without self-consistent treatment. Our approach follows
similar recent treatments in the literature of higher-order topo-
logical superconductors, see, for instance, Refs. [40,64,65].

Before investigating the different phases of this system in
detail, we next discuss the topological invariants that we use
to characterize them.

III. TOPOLOGICAL CHARACTERIZATION

As already hinted by the phase diagram in Fig. 1(b), the
model in Eq. (2) presents a variety of topological phases
with a mix of first- and second-order, as well as nodal
topological phases. In addition, since we are dealing with
a spinful topological superconductor, we can have different
symmetry-protected boundary states. Therefore we do a thor-
ough analysis of the topology using three different invariants,
which can identify different aspects of the topological phases.

We first use the Wannier spectrum [7,8] to investigate the
presence of a nontrivial polarization in the lattice. Since the
presence of higher-order topological phases is not completely
characterized by the Wannier spectra, we also use a real-
space indicator, the entanglement spectrum [67,71], to verify
whether the boundary modes are of higher-order topological
origin. Finally, to understand whether these boundary states
may be MZMs or ABS, we use the Majorana polarization
[72,73], which indicates how much of a combination of elec-
tron and hole a state in a superconductor is. In addition to
these indicators, we study the energy spectra using different
boundary conditions and the local density of states (LDOS) at
zero energy to further characterize and especially verify the
various phases and the phase transitions inbetween them. Be-
low, we briefly review these tools, all already used in different
previous settings and models, in order to provide a compre-
hensive background to be able to explain the signatures of
each topological phase.

A. Wannier spectrum

In this section, to make this work more self-contained,
we pedagogically review the use of the Wannier spectrum
to characterize first- and higher-order topological phases as
discussed, for instance, in Refs. [7,76,77]. In the modern the-
ory of polarization, the charge polarization is directly related
to the Berry phase [7,76–78] being, therefore, a topological
property of a material. However, the direct numerical calcu-
lation of these quantities is not so practical due to an overall
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ill-definition of the phase of wave functions [7]. A very conve-
nient alternative is based on the use of Wilson loops [7,8,79].
For a 2D system with periodic boundary conditions along
x and open boundary conditions along y, the Wilson loop
components are defined by [7]3

(W )x
mn = 〈um(π )|

π←−π∏
kx

P (kx )|un(−π )〉 , (3)

where P is a projector

P (kx ) =
∑

m

|um(kx )〉 〈um(kx )| (4)

over the occupied eigenstates |um(kx )〉 of the (semi-periodic)
Hamiltonian with momentum kx.

W x is a unitary matrix which can be associated with the
so-called Wannier Hamiltonian Hx

W

W x = ei2πHx
W . (5)

The eigenvalues νx of Hx
W are the Wannier spectrum of the

system with open boundaries along y. A gauge transformation,
associated with the change of phases of the wave functions,
can change νx by integer values, making these quantities, in
general, defined mod 1. We choose a gauge where νx take
values between 0 and 1 [7,8]. The presence of crystalline sym-
metries imposes some constraints in the Wannier spectrum
[7,8]. For instance, symmetry upon reflection along the x axis
makes νx come in (ν, 1 − ν) pairs [8]. In this way, νx = 0.5
are reflection invariant and indicate the presence of boundary
modes protected by this symmetry, created by a nontrivial
polarization along x [7,8]. The same holds, mutatis mutandis,
to periodic boundary conditions along y with boundaries open
along x, obtaining a corresponding νy. Thus, when either νx or
νy presents modes at 0.5, or half-quantized modes, we obtain
a dipolar phase. For a higher-order topological phase, there
are instead half-quantized midgap states in both νx and νy [8].

An illustrative example is the BBH model in Eq. (1). This
model presents reflection symmetry along both x and y, which
restricts νx/y to appear in pairs. For |λ/t | < 1, the system is
in a second-order, or quadrupolar, topological phase charac-
terized by four corner modes at zero energy, corresponding
four 0.5 eigenvalues in both νx and νy [8]. For reference, for
|λ/t | > 1, the model is in a trivial phase, with no midgap
states in both the energy and Wannier spectra [8]. If we further
allow t or λ to be different along x and y, we can obtain a phase
with polarization just along one of the directions showing
first-order topology.

Before moving on, we discuss why we are not using
the nested Wilson loop spectrum [8] to characterize the
higher-order topological phases. The nested Wilson loop is
computed by using the eigenvectors of the Wannier Hamil-
tonian HW , Eq. (5), but for fully periodic boundary conditions

3The Wilson loop, in general, needs to be defined in terms of a
reference point ki [8] from which the loop is made. However, for the
topological invariants considered here, the Wannier spectrum is the
same for all reference points, and we thus choose ki = −π for both
kx and ky.

in the general expression of the Wilson loop in Eq. (3).
It is often taken as a clear indicator of higher-order topol-
ogy, presenting midgap states in its spectrum when there are
symmetry-protected higher-order modes [8]. For example, in
the BBH model, Eq. (1), the nested Wilson loop is a phase,
which is equal to zero in the trivial phase and π in the
quadrupolar phase [8]. However, for the nested Wilson loop
spectrum to present quantized values, one needs inversion
symmetry. But our full system in Eq. (2) breaks mirror sym-
metry along x: MxhBdG(kx, ky)(Mx )−1 �= hBdG(−kx, ky) with
Mx = τ3 ⊗ σ1 ⊗ s3, while it preserves mirror symmetry along
y: MyhBdG(kx, ky)(My)−1 = hBdG(kx,−ky) with My = τ3 ⊗
σ1 ⊗ s1. Consequently, inversion symmetry, generated by
I = MxMy, is broken as IhBdG(kx, ky)I−1 �= hBdG(−kx,−ky ).
Therefore we cannot use the nested Wilson loop as a bulk
invariant to diagnose our topological phases. In fact, we com-
puted the nested Wilson loop for this model, which presents
nonquantized values for any finite �, reinforcing that it is not
a good invariant. We instead revert to the Wannier spectra
along x and y.

B. Entanglement spectrum

Since we cannot use the nested Wilson loop spectrum,
but only the Wannier spectrum along x or y, an alternative
tool to characterize higher-order topological phases is useful.4

One such tool has recently turned out to be the entanglement
spectrum [67–71,83,84]. In the same way that a nontrivial
polarization in the lattice can be determined using the Wannier
spectrum, it can also be diagnozed by the entanglement spec-
trum [67–71,83,84]. To obtain the entanglement spectrum, we
compute the correlation matrix in the occupied state |�〉

Cr,τ,σ,s;r′,τ ′,σ ′,s′ = 〈�|c†
r,τ,σ,scr′,τ ′,σ ′,s′ |�〉 , (6)

where |�〉 represents the (many-body) fermionic ground state
and c†

r,τ,σ,s creates a particle (τ = 1) or hole (τ = −1) in
orbital σ with spin s at position r = (x, y). The entanglement
spectrum ξ consists of the eigenstates of the correlation func-
tion constrained to some finite region in real space. One can
intuitively understand the cut(s) needed to create such as finite
region as creating artificial boundaries in the system, such that
the presence of boundary states may appear in the properties
of the entanglement spectrum. For instance, for a system with
inversion symmetry, the entanglement spectrum of a lattice
cut in half displays modes at 0.5 in the topological phase [68],
analogously to what happens to the Wannier spectrum. A cut
that preserves the symmetries that protect the corner modes
can also be used to diagnose the presence of a higher-order
topological phase [70,71]. Since these modes are protected by
C4 symmetry, we cut the system in half along both x and y,
obtaining a quarter of the original lattice, as indicated by the
dashed area in Fig. 1(a).

4We remark that, in principle, a real space invariant related to a
generalized chiral symmetry could also be used to characterize the
topological phases in our model [80–82].
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C. Majorana polarization

To determine the Majorana nature of the boundary states
the Majorana polarization P is useful, defined as [72,73,85]

Pm(x, y) =
∑
σ,s

2ψx,y,τ=1,σ,s;mψx,y,τ=−1,σ,s;m, (7)

where ψr,τ=1,σ,s;m (ψr,τ=−1,σ,s;m) is the particle (hole) com-
ponent of the wave function of the mth eigenstate at position
r = (x, y) with orbital σ and spin s. This is a tool to character-
ize how much particle-hole symmetric a state is. In particular,
the quantity

Cm =
∣∣ ∑

x,y Pm(x, y)
∣∣∑

x,y,τ,σ,s |ψx,y,τ,σ,s;m|2 , (8)

compares the value P with the usual probability density of a
state m. Therefore C quantifies how much of the wave function
is particle-hole symmetric [73].

For systems that present only one isolated state per bound-
ary, the Majorana polarization becomes an unambiguous
indicator of a MZM. We note that, however, if there are many
putative MZMs per boundary, since they are degenerate in
energy, one may obtain different values of P for different
linear combinations of the states at zero energy. Thus, even if
we numerically find a high value of the Majorana polarization
compared to the probability density, it can still be unclear
whether two such putative MZMs can actually recombine into
a complex fermion. For such recombination to be able to not
occur, different spin and orbital degrees of freedom generally
have to be in play. Such ambiguousness is the case for some
topological phases in our system and we can thus not use P
as a completely unique indicator in these cases. Nevertheless,
we still investigate the midgap states in terms of the Majorana
polarization to provide an additional tool whenever it is dis-
tinctive. Since we always obtain a real P, we use only its real
value to check its sign across the lattice.

D. Spectral characterization

In addition to the topological invariants and indicators
discussed above, it is useful to consider how the energy
spectrum and the wave functions of the system behave in
every phase. Symmetry-protected topological states normally
appear at zero energy at the boundaries for a gapped or nodal
bulk. Since, in our case, we have surface modes localized
both on the edges and corners of the lattice, we extract the
energy spectra for several different boundary conditions. For
the bulk spectrum we apply fully periodic boundary condi-
tions and generally sample the Brillouin zone taking paths
connecting the high-symmetry points of the square lattice 	 =
(0, 0), X = (π/a, 0), Y = (0, π/a), and M = (π/a, π/a).
For phases with edge or corner states, we also apply open
boundary conditions in the appropriate directions. For all
midgap states, we also plot the sum of the Majorana polariza-
tion for states at zero energy and compute C in Eq. (8) to verify
whether these states are MZMs or not. To obtain complete
information on the localization of all low-lying states in the
system, we also show the local density of states (LDOS) at
zero energy or frequency ω = 0.

FIG. 2. Energy gap δ between the highest valence band and
lowest conduction band around zero energy, calculated from Eq. (2),
as a function of superconducting pair amplitude �/t and in-plane
magnetic field Bx/t for (a) fully periodic, (b) x-periodic (open in y),
and (c) y-periodic (open in x) boundary conditions. Parameters used:
λ = 0, system size 32 unit cells in each direction. Dashed lines
represent analytical results, see main text for a description.

IV. TOPOLOGICAL PHASES

In this section, we present our main analysis of the topolog-
ical phases of the model in Eq. (2) using the topological invari-
ants discussed in Sec. III. We focus on the deep topological
limit of the BBH model, setting λ = 0 for simplicity, which
allow us to obtain analytical expressions of the phase bound-
aries, but we remark that the topological phases are present
for |λ/t | < 1. We refer to Appendix A for results on finite
λ. For λ = 0, the topological phase diagram is displayed in
Fig. 1(b). Here, we start by detailing how we obtain the phase
boundaries, followed by a detailed description of each of the
phases.

A. Phase boundaries

A quantum phase transition is accompanied by the closing
of the gap of the system [86]. Therefore the topological phase
boundaries are obtained by considering the energy gap, δ

between the highest valence band and the lowest conduction
band around zero energy. In Fig. 2, we plot δ as a function of
the superconducting order parameter � and magnetic field Bx

for different boundary conditions. For fully periodic bound-
ary conditions, we can additionally obtain the critical lines
analytically using the Bloch Hamiltonian, which we represent
in dashed lines in Fig. 2(a), overlayed on the value of δ for
each � and B numerically computed using a real space Hamil-
tonian. For Bx =

√
2t2 + �(� − 2t ) (magenta dashed line),

the bulk spectrum closes at momenta (kx, ky) = (0, π/2) and
(π, π/2) and for � =

√
2t2 + Bx(Bx − 2t ) (yellow dashed

line) it closes at momentum (π/2, π/2). These two lines
separates the nodal flat bands phase [blue region in Fig. 1(b)]
from the nodeless flat bands phase [red region in Fig. 1(b)]
and hybrid phase. Further, the bulk spectrum also closes at
Bx =

√
2t2 + �(� + 2t ) (green dashed line) at momentum

(kx, ky) = (π, π/2) and at � =
√

2t2 + Bx(Bx + 2t ) (cyan
dashed line) at momentum (π/2, π/2), which separates the
trivial phase from the nodal flat band phase. These results also
establish that the HOTSC [yellow in Fig. 1(b)], hybrid (green),
trivial (white), and nodeless flat band (red) phases are all fully
gapped in the bulk.
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FIG. 3. Main features of the HOTSC phase. Energy spectrum ε for fully periodic (a), x-periodic (b), y-periodic (c), and open (d) boundary
conditions. Inset in (d) a zoom-in on the modes in the middle of the spectrum with energy ε = 0. LDOS at zero energy (e). Wannier spectrum
along x (f) and y (g). Entanglement spectrum ξ (h). Parameters used: Bx = 0.2t , � = 0.1t , λ = 0, system size 32 unit cells for directions with
open boundary conditions and 100 k-points.

To complement the results for fully periodic boundary con-
ditions, we also analyze how the gap closes for open boundary
conditions along y in Fig. 2(b) and along x in Fig. 2(c).
This analysis of different boundary conditions brings three
important additional pieces of information. First, we notice
that there is a new gap-closing line at � = √

2t − Bx (white
dashed line), which indicates the phase boundary between
the HOTSC and hybrid phases in Fig. 1(b). This line just
appears for x-open boundary conditions, see Fig. 2(c), illus-
trating how the gap only closes along the y direction at this
phase transition. Second, we notice that the nodal flat bands
phase [blue in Fig 1(b)] seemingly hosts a small but finite
gap, illustrated by the faint red arclike features in Figs. 2(a)
and 2(c), but it does become completely gapless in Fig. 2(b).
An analysis of the spectrum of this system for semi-periodic
boundary conditions in Sect. IV D show that, in fact, for all
values of Bx and � in this phase, the gap closes at ky = π/2
and different kx. Therefore the spectrum is actually gapless in
all three figures, and the red arcs are just finite-size effects in
Figs. 2(a) and 2(c). This verifies that the nodal flat bands phase
is a bulk nodal phase. Finally, we find that one of the bulk
gapped regions, the nodeless flat band phase [red in Fig. 1(b)]
is also gapped for x-open boundary conditions but notably not
for y-open boundary conditions, as seen in Fig. 2(b). This
indicates zero-energy states localized to edges along the x
direction.

In the next sections, we detail the properties of each of the
nontrivial topological phases, while the trivial phase is dis-
cussed in Appendix B. We characterize the general properties
considering both the energy spectra extracted above and the
topological invariants discussed in Sec. III, for representative
values of Bx and � in all phases.

B. HOTSC phase

For small Bx and �, we find a phase that we call the
HOTSC phase, indicated by the yellow region in Fig. 1(b).
The main features of this phase are summarized in Fig. 3.
First, considering the energy ε spectrum for fully periodic in
Fig. 3(a), x-periodic in Fig. 3(b), y-periodic in Fig. 3(c), and
fully open in Fig. 3(d) boundary conditions, we realize that
the bulk is gapped, while there are eight states at zero energy
present only for fully open boundary conditions, Fig. 3(d).
The system is thus gapped under both x- and y-periodic
boundary conditions in this phase. Plotting the LDOS at zero
energy in Fig. 3(e), we see that these states are corner states,
explaining why they appear just for open boundary conditions.
To further understand the properties of these zero energy
modes, we examine the Wannier spectrum ν along both x in
Fig. 3(f) and along y in Fig. 3(g). The half-integer values of
both νx,y indicate the higher-order character of this phase.5

The higher-order aspect is corroborated by the entanglement
spectrum ξ in Fig. 3(h), which shows distinct isolated half-
quantized modes inside the midgap region.

Finding a total of eight corner modes, two at each cor-
ner, can be thought of as expected since the original BBH
model at Bx = � = 0 host similar corner modes in this char-
acteristic quadrupolar phase [40,87]. To analyze these eight

5We note here that with increasing the value of � and B, but still in
the HOTSC phase, the midgap values of νx deviate from 0.5 due to
the breaking of mirror symmetry along x. Nevertheless, we still have
robust corner modes with properties similar to the ones discussed
below.
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FIG. 4. Sum of the Majorana polarizations P of the HOTSC
phase boundary states. The gray dashed area indicates the region
where C is calculated. For the corner states localized in this corner, C
is small (see text for discussion), indicating that these states are not
MZMs. Parameters same as in Fig. 3.

corner modes in our superconducting system, we consider
the total (i.e., the sum) Majorana polarization for the states
at zero energy in Fig. 4. We see that it is also localized in
the corners of the system with a pattern that changes signs
in the different corners, which is an important signature of
MZMs [73]. However, when computing C [defined in Eq. (8)
and using the grey shaded area in Fig. 4], we obtain a much
smaller than one (maximum of around 0.25, with an overall
increase with increasing �). This indicates that, while these
are zero-energy states, they should be classified as degenerate
zero-energy Andreev bound states and not individual MZMs.
In summary, the HOTSC phase can be viewed as a super-
conducting extension of the quadrupolar phase of the BBH

model at least regarding its surface states, but where the corner
states are now a combination of particles and holes as they are
Bogoliubov quasiparticles, but not still not MZMs.

C. Hybrid phase

With increasing values of � and Bx, the system enters into
what we name the hybrid phase, the green region in Fig. 1(b).
While present only in a narrow region of the phase diagram,
it displays interesting features. We analyze the general prop-
erties of this phase in Fig. 5, with a similar set of data as for
the HOTSC phase earlier. We find that it has energy spectrum
similar to the HOTSC phase: both the bulk, Fig. 5(a), and the
edges, Figs. 5(b) and 5(c), are gapped while there are eight
midgap states at zero energy for open boundary conditions,
Fig. 5(d). These midgap states are still located at the corners,
as shown in the LDOS at zero energy, Fig. 5(e). However,
when inspecting the Wannier spectrum, Figs. 5(f) and 5(g),
we see that νy is still half-quantized, while νx exhibits a gap
around 0.5. Further, the entanglement spectrum in Fig. 5(h)
now shows a continuous array of midgap eigenvalues that are
present symmetrically around ξ = 0.5. Therefore this hybrid-
order phase can be considered to be topologically distinct
from the previous HOTSC phase. We remark that since νx

is also not fully quantized for larger values of � and B in
the HOTSC phase, the topological phase transition between
the HOTSC and the hybrid phases is due to the change of
localization of some of the zero energy states, as we show
below.

In fact, by going back to Figs. 2(a) and 2(b), we see
that there is no change in the energy gap from the phases
HOTSC and hybrid for systems with periodic conditions along

FIG. 5. Main features of the hybrid phase. Energy spectrum ε for fully periodic (a), x-periodic (b), y-periodic (c), and open (d) boundary
conditions. Inset in (d) is a zoom-in on the modes in the middle of the spectrum with energy ε = 0. LDOS at zero energy (e). Wannier spectrum
along x (f) and y (g). Entanglement spectrum ξ (h). Parameters used: Bx = 0.9t , � = 0.8t , λ = 0, system size 32 unit cells for directions with
open boundary conditions and 100 k points.
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FIG. 6. Sum of the Majorana polarizations P of the hybrid phase
boundary states. (a) represents this sum for the states that are local-
ized in the edges, while (b) represents them sum for the corner states.
The gray dashed area indicates the region where C is calculated.
For both the edge and corner states, C = 1 (see text for discussion),
indicating that these states are MZMs. Parameters same as in Fig. 5.

x, indicating that the change from the phase HOTSC to the
hybrid phase is due to properties related to the I and III edges,
along the y direction. As a consequence, only when periodic
boundary conditions are applied along the y direction, the gap
closing, indicating a topological phase transition, is noticed
between the HOTSC and hybrid phases.

Although not very visible6 in the total zero-energy LDOS
in Fig. 5(e), we find that four, i.e., half, of the zero-energy
states in the hybrid phase now have a significant weight not
just at the corners but also partially along the y direction.
To illustrate these localization properties better we plot the
Majorana polarization divided up into two sets in Figs. 6(a)
and 6(b), respectively. Here it is now clear that four of the
states are still corner states, just as in the HOTSC phase, but
four other states are now substantially delocalized along the
y direction. We also find that both sign changing between
different corners and C = 1, provides strong indications that
these states are now MZMs. We thus conclude that with all
eight zero-energy modes now possible to spatially separate
they can become MZMs. As a consequences, the increase
of � and Bx moving from the HOTSC to the hybrid phase
turn the surviving four corner modes in the HOTSC phase
corner-localized, single, MZMs and the other four turn into
edge-extended MZMs.

In summary, we see that in this hybrid phase hosts a com-
bination of edge and corner modes. Since there is no bulk gap
closing [see Fig. 2(a)] between the HOTSC and hybrid phase,
we expect the change between the two phases to be caused by
a change in the properties of the edge, which is similar to what
happens in some other extrinsic higher-order phases [88]. In
fact, when considering the edge theory for this Hamiltonian in
Sec. V B, we see that the magnetic field can change the mass
profile at the edges, delocalizing some of the corner modes.
The delocalized states are now instead localized at the edge
and are still characterized by a quantized νy. These states
appear similar to the ones in the phases with polarization
p px = 0 and py = 0.5 (or vice versa) in the original BBH
model when the hopping along x and y is different [8,19],

6The apparent localization just in the corners at zero energy is
due to the stronger localization (hence, larger values of the wave
function) of the corner states compared with states that spread over
the edge.

named a dipolar phase in Ref. [19], which is an example
of a boundary obstructed atomic insulator [89]. Due to the
intriguing combination of corner and edge boundary modes,
we name this a hybrid-order phase, as it has an inherent mix
of different topologies. However, we note that our use of the
word hybrid should not be confused with the situation where
more standard first- and second-order phases are appearing at
the same time, also recently called a hybrid phase [90–94].
Instead, our hybrid phase is a standard second-order phase
appearing jointly with a dipolar phase. A clear difference is
that in our hybrid phase the number of zero-energy boundary
states remains constant (four corner modes and four edge
modes), independent on system size, while any phase with a
standard first-order character sees the number of edge modes
grow with system size. We remark that the only invariant we
use that can distinguish this phase from the HOTSC phase is
the nested entanglement spectrum, which shows a continuous
array of values in contrast to the HOTSC phase where there
are just modes at 0.5.

D. Nodal flat bands phase

Increasing either � or Bx, we arrive at yet other phase,
a nodal flat band phase, represented in blue in Fig. 1(b).
This phase is characterized by bulk nodal points, i.e., there
exists momenta where the bulk energy gap (superconducting
gap) closes. Between these bulk nodal points, we find flat
bands that appear localized to the boundaries of the system.
We investigate the general properties of this phase in Fig. 7.
Considering the energy dispersion along the high-symmetry
points in Fig. 7(a), the bulk of the system seems to be gapped,
in contradiction to Fig. 2(a). However, analyzing the energy
spectrum for the system with open boundary conditions along
y, in Fig. 7(b) and x in Fig. 7(c), we understand that this
happens because the bulk gap is only zero at specific points
kxa �= 0, π . The bulk gap thus vanishes away from the high-
symmetry line and that is why the gap closing is not visible
in Fig. 7(a). Additionally, there exist zero-energy flat bands
along kx, which connect these bulk nodal points, while all
bands are dispersive along ky. This suggests that the flat bands
are boundary states localized along the edges II and IV in
Fig. 1(a). These flat bands cause the energy spectrum with
fully open boundary conditions in Fig. 7(d) to host a macro-
scopic degeneracy at zero energy, as shown in the inset of
Fig. 7(d).

Further evidence that the zero-energy states are localized
along the II and IV edges is found in the LDOS at zero energy
in Fig. 7(e), which shows weight just at these edges. This
indicates that these are the boundary states of a first-order
topological phase, since the absence of corner modes clearly
discards these phase as any higher-order phase. We find this
fully consistent with the topological invariants: an absence of
midgap modes in νx in Fig. 7(f), while a number of 0.5 modes
in νy appears in Fig. 7(g). We further find that the number of
zero-energy states and 0.5 modes in νy scales with the number
of unit cells along x, which further corroborates that this is an
edge phenomenon along the x direction. Here νy is thus an
invariant that characterizes the presence of these zero-energy
states, which is related by a bulk-boundary correspondence to
the nodes in the bulk [2,56,58]. Another indication that this
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FIG. 7. Main features of the nodal flat band phase. Energy spectrum ε for fully periodic (a), x-periodic (b), y-periodic (c), and open
(d) boundary conditions. Inset in (d) a zoom-in on the modes in the middle of the spectrum with energy ε = 0. LDOS at zero energy (e).
Wannier spectrum along x (f) and y (g). Entanglement spectrum ξ (h). Parameters used: Bx = 1.5t , � = 0.9t , λ = 0, system size 32 unit cells
for directions with open boundary conditions and 100 k points.

is not a second-order phase is the entanglement spectrum in
Fig. 7, which does not show sharply quantized modes at 0.5 as
for, e.g., the HOTSC phase. Instead, we find a discontinuous
array of midgap eigenvalues symmetrically placed around 0.5.

To better understand the overall properties of the zero-
energy flat bands, it is here most convenient to consider a
system with open boundary conditions along y and periodic
boundary conditions along x [corresponding to the spectrum
of Fig. 7(b)] for kx = 0, finding four states with zero en-
ergy. After diagonalization, we then have a wave function
ψ̃ (kx = 0, y). To obtain a complete real space wave function,
we multiply

ψkx=0(x, y) = 1/
√

L exp(ikxx)ψ̃ (kx = 0, y),

which is equivalent to a partial Fourier transform. This is the
wave function we use to compute the Majorana polarization P
in Fig. 8. We find that P changes sign between the two edges
for all modes, and importantly we find C = 1 when summing
over the gray region, indicating that these edge states have
Majorana properties. However, since there is a degeneracy
of two zero-energy modes per edge per momentum in this
phase, we cannot for sure classify these states as MZMs
without considering if a linear combination of them cannot
still recombine into complex fermionic modes. Still, because
these modes both present a strong Majorana polarization and
we have only two possible particle-hole symmetric pairs that
we can build with both spin and orbital degrees of freedom,
we choose call these states flat band MZMs. We note that
these flat band MZMs are extended along the edges, and their
number increases with system size, in contrast to the MZMs

obtained for the hybrid phase that are always just two per edge
and one per corner, as discussed in Sec. IV C.

E. Nodeless flat bands phase

Finally, moving closer to the diagonal of the phase di-
agram, with �/t ≈ Bx/t > 1, we find a nodeless flat band
phase, red in Fig. 1(b). For this phase, the bulk system is
gapped, as seen in Fig. 9(a), as is the semi-infinite spectrum
with the open boundary along x, illustrated in Fig. 9(c). In
Fig. 9(b), we instead find zero-energy flat bands spanning the
whole Brillouin zone along kx. Fully open boundary condi-
tions also generate zero-energy midgap states in Fig. 9(d).

FIG. 8. Sum of the Majorana polarizations P for the four states
with ε = 0 for kx = 0 in the nodal flat band phase, using a partial
Fourier transform, as explained in the main text. The gray dashed
area indicates the region where C is calculated. For all four states,
C = 1, indicating that they are MZMs. Parameters same as Fig. 7.
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FIG. 9. Main features of the phase with nodeless flat bands. Energy spectrum ε for fully periodic (a), x-periodic (b), y-periodic (c), and
open (d) boundary conditions. Inset in (d) a zoom-in on the modes in the middle of the spectrum with energy ε = 0. LDOS at zero energy (e).
Wannier spectrum along x (f) and y (g). Entanglement spectrum ξ (h). Parameters used: Bx = 1.8t , � = 2t , λ = 0, system size 32 unit cells
for directions with open boundary conditions and 100 k points.

Plotting the zero-energy LDOS we find that these flat bands
are localized on the II and IV edges in Fig. 9(e). Further, al-
though νx is completely gapped in Fig. 9(f), νy in Fig. 9(g) has
a finite number of 0.5 modes, which grows with the number of
unit cells along x. This νy profile confirms that the zero-energy
states are an edge phenomenon along the x direction. Finally,
the entanglement spectrum in Fig. 9(h) shows a discontinuous
array of midgap eigenvalues around 0.5, gathering reasonably
close to 0.5. This is qualitatively similar to the nodal flat band
case, however, the discontinuous profile is more asymmetric
around 0.5 in this case compared to the previous case.

We investigate the Majorana polarization of the states at
zero energy in this phase in Fig. 10. We here again focus on

FIG. 10. Sum of the Majorana polarizations P for the four states
with ε = 0 for kx = 0 in the nodeless flat band phase, using a partial
Fourier transform, as explained in the main text. The gray dashed
area indicates the region where C is calculated. For all four states,
C = 1, indicating that they are MZMs. Parameters same as Fig. 9.

the semi-periodic system with kx = 0 [corresponding to the
spectrum of Fig. 9(b)] as done for the nodal phase. Although
the modes present a similar spatial profile, we remark that
these flat bands are here present without any corresponding
nodal points in the bulk. Instead we have a flat zero-energy
edge state entirely separated from the bulk gap spectrum. As
such, they are a very different kind of surface state compared
to those of the nodal flat band phase. We currently actually
do not know how they can be fully classified in terms of
symmetry-protected topological phases. Nevertheless, we still
know that they are topologically protected by symmetry since
the number of states at zero energy is determined by the
number of 0.5 states in νy, which is a topological invariant.
Finally, we note that these flat bands states present C = 1,
which makes us designate them as flat band MZMs, in a
similar way to in the nodal flat band case.

V. ANALYTICAL RESULTS

After having described in detail the properties of all the dif-
ferent topological phases numerically, we also present some
results feasible to achieve analytically in order to enhance the
overall understanding. While a complete analytical treatment
at present seems not feasible, we can still obtain selective
analytical results. Here, we first present analytical calculations
supporting the existence of a nodal phase despite an s-wave
superconducting order parameter. For this purpose, we de-
fine a dual Hamiltonian. In addition to a dual Hamiltonian,
we also extract a low-energy Hamiltonian and are able to
show analytically that corner states exist in its regime of
validity.
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A. Nodal superconductivity

One of the phases, the nodal flat band phase, depicted
in blue in Fig. 1(b) and discussed in detail in Sec. IV D,
hosts bulk nodes. This is despite the model only containing
on-site, or in k-space isotropic s-wave, pairing, which are
usually associated with a fully gap, while nodes are usually
thought of as requiring a k-dependent order parameter. The
presence of nodes in the nodal flat band phase can be un-
derstood as a consequence of the spin-orbit coupling in the
normal state Hamiltonian, as such terms can induce an effec-
tive momentum-dependent pairing. The equivalence between
the spin-orbit coupling and nodal superconductivity can be
seen explicitly by performing the unitary transformation of
the Hamiltonian of Eq. (2) (for λ = 0):

hD(k) = UhBdG(k)U †; U =
(

σ0 ⊗ s0 iσ2 ⊗ s2

iσ2 ⊗ s2 σ0 ⊗ s0

)
, (9)

where we obtain a dual Hamiltonian hD, following the nomen-
clature of Ref. [74], with the form

hD(k) = τ1[−t sin(kya)σ0s3 − t cos(kxa)σ0s1

+Bxσ2s3] + �τ3σ1s0 − t cos(ky)τ0σ2s2, (10)

where we omit the outer product symbol ⊗ for convenience.
In the dual Hamiltonian in Eq. (10), the superconduct-

ing pairing appears in multiple terms. There is pairing with
p-wave intraorbital spin-triplet pairing symmetry given by
−t sin(kya)τ1 ⊗ σ0 ⊗ s3, with extended s-wave intraorbital
spin-singlet symmetry given by −t cos(kxa)τ1 ⊗ σ0 ⊗ s1, and
with s-wave odd-interorbital spin-triplet symmetry given by
Bxτ1 ⊗ σ2 ⊗ s3. The first two terms always present nodes at
some kx and ky coordinates and result in the nodal profile
of the superconducting order parameter. If such nodes in
the superconducting order parameter also overlap with the
normal-state Fermi surface, then the system will have a nodal
energy gap. In the presence of the third term Bx �= 0, the nodal
structure caused by the first two terms can still be retained
with nodes then appearing at different values of kx and kx

in appropriate parameter regimes. This qualitatively explains
why a nodal state at all can be possible and also shows how
it is intricately linked to the � and Bx parameters. We further
note that in the pairing terms, the dependence on kx comes
from a hopping term cos(kxa), while sin(kya) appears due to
the spin-orbit coupling of the normal state. This difference,
together with the fact that the magnetic field is applied along
x, explains the asymmetry seen in the properties of the system
with periodic boundary conditions along x or y. Finally, the
existence of a p-wave term is also an underlying reason for
the existence of MZMs in several of the different phases.

B. Corner states

In addition to the dual Hamiltonian, we can also analyt-
ically study a low-energy continuum Hamiltonian. This is a
technique commonly used to connect the presence of localized
boundary states with a nontrivial mass profile, as first con-
structed by Jackiw and Rebbi [95], and where the mass profile
tells us some properties of the topological phase. For instance,
for a higher-order topological system, the mass profile needs
to change sign between two adjacent edges [8,37], with the

corner in between hosting the localized boundary state. To
obtain the most simple low-energy Hamiltonian, we keep just
terms that are first-order in momentum in hBdG in Eq. (2) and
obtain

h	 (k) = tkya	1 + t	2 + tkxa	3 + t	4 + �	5 + Bx	6.

(11)
Here k = (kx, ky) represents the continuum momentum in re-
lation to the 	 point.

We can obtain the low-energy descriptions of any corner
states of h	 by substituting kx/y → −i∂x/y and looking for
localized solutions. The complete calculation is reported in
detail in Appendix C, and here we comment on the results.
Considering appropriate boundary conditions, the solutions of
h	 localized on the I and III edges are

ψ I/III(x, y) =
∑

l,m=±1

cl,mNxe∓√
2 x

a eikyyχ
I/III
l,m , (12)

where Nx is a normalization factor,
∑ |cl,m|2 = 1, and the

spinors χ
I/III
l,m are given by

χ I
l,m = |l, m〉 |s = 1〉 + (m − √

2) |s = −1〉√
4 − 2m

√
2

(13)

and

χ III
l,m = |l, m〉 |s = 1〉 − (m + √

2) |s = −1〉√
4 + 2m

√
2

, (14)

where l = ±1, m = ±1, and s = ±1 are eigenvalues of τ3, σ3,
and s3, respectively. We further obtain the edge Hamiltonians
by projecting the low-energy Hamiltonian in the subspace of
Eqs. (13) and (14), yielding

hI(ky) = −tkya τ3 ⊗ σ2 − Bx√
2

τ3 ⊗ σ0, (15)

hIII(ky) = −tkya τ3 ⊗ σ2 − Bx√
2

τ3 ⊗ σ0. (16)

These are Dirac-like Hamiltonians with a mass term propor-
tional to Bx. Note that both solutions in Eqs. (13) and (14)
are polarized in the effective particle-hole space, represented
by τ3, while they are a combination of different spin states
with the effective spin degrees of freedom represented by
σ3. Note here that since the edge Hamiltonians are projected
Hamiltonians, the original notion of particle-hole or spin is
replaced by their effective notions. Turning to the localized
solutions on the II and IV edges, we obtain similarly as on the
other edges

ψ II/IV(x, y) =
∑

l,m=±1

c̃l,mNyeikxxe∓√
2 y

a χ
II/IV
l,m , (17)

where Ny is a normalization factor, we have
∑ |c̃l,m|2 = 1,

and the spinors χ
II/IV
lm are given by

χ II
l,m = |l, m〉 |s = 1〉 − m(1 + √

2) |s = −1〉√
4 + 2

√
2

(18)

and

χ IV
l,m = |l, m〉 |s = 1〉 + m(1 − √

2) |s = −1〉√
4 + 2

√
2

, (19)
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where again l = ±1, m = ±1, and s = ±1 are eigenvalues of
τ3, σ3, and s3, respectively.

Again projecting on the solutions of Eqs. (18) and (19), we
obtain the effective Dirac Hamiltonians

hII(kx ) = tkxa τ3 ⊗ σ2 − 1√
2

Bx τ3 ⊗ σ3, (20)

hIV(kx ) = tkxa τ3 ⊗ σ2 − 1√
2

Bx τ3 ⊗ σ3. (21)

Having extracted all four-edge Hamiltonians, Eqs. (15),
(16), (20), and (21), we note that all four edges have a
mass term proportional to Bx. On the I and III edges, it is
proportional to τ3 ⊗ σ0, while on the II and IV edges it is
proportional to τ3 ⊗ σ3. Since eigenvalues of σ0 and σ3 can be
different in terms of their signs, there exists a sign change in
the mass term for adjacent edges. For a given subspace defined
by τ3, we can hence obtain a positive mass Bx on edges II and
IV, while having a negative mass −Bx on edges I and III, when
σ3 is projected on the effective spin-down states. This leads
to the formation of corner modes between adjacent edges.
On the other hand, for the effective spin-up projections, all
the edges have negative mass terms given by −Bx, and hence
corner modes are not expected to appear. The effective spin-
polarized nature of the corner modes can be attributed to the
sign-polarized Majorana polarization for a given corner mode.
This analysis qualitatively explains the emergence of corner
states for our model, Eq. (2), in both the HOTSC and hybrid
phases.

VI. CONCLUDING REMARKS

In this work, we investigate the topological phases of an or-
bital BBH model proximitized to a conventional spin-singlet
s-wave superconductor and in the presence of an in-plane
magnetic field. The interpretation of the BBH model in terms
of orbital and spin degrees of freedom makes the supercon-
ducting pairing have a matrix structure not present in the
original dimerized lattice of the BBH model and allows for
an intriguingly rich topological phase diagram, despite using
only a conventional superconductor. We map out the resulting
phase diagram by considering different boundary conditions
and investigate the topology of each phase by calculating
both the Wannier and entanglement spectra, as well as the
Majorana polarization.

At weak superconducting pairing � and magnetic field Bx,
we find a HOTSC phase [yellow in Fig. 1(b)] with eight zero-
energy corner modes. This phase can be seen as analogous
to the standard second-order topological phase in the BBH
model, at least when considering the surface states, although
the latter now also have particle and hole character since the
system is superconducting, but still not being MZMs. Beyond
this expected HOTSC phase, we also find several other, much
more unexpected, topological phases. First, an unusual hybrid
phase [green in Fig. 1(b)] presents an atypical mix between a
second-order and a dipolar topological phase. Here four zero-
energy corner states from the HOTSC phase are preserved as
expected for a second-order topological phase, while a dipolar
phase contributes another four zero-energy edge states, all
experiencing MZM character. Notably, the number of edge
states does not grow with system size in this hybrid phase, but

the number of zero-energy states remains fixed, at eight states.
Second, two additional first-order phases present symmetry-
protected zero-energy flat bands on opposite edges, with either
nodal or nodeless bulk dispersion. The nodal flat bands phase
[blue in Fig. 1(b)] presents flat bands MZMs that are straight-
forwardly connected by a bulk-boundary correspondence to
the bulk nodes. However, in the nodeless flat bands phase [red
in Fig. 1(b)] the bulk surprisingly remains fully gapped and
the flat bands MZMs now spans the whole edge Brillouin zone
and are protected by a quantized Wannier spectrum. These
results not only establish the rich phase diagram of a super-
conducting BBH model, but also, importantly demonstrate the
existence of an unusual hybrid mixing of topological phases
and shows that a zero-energy edge flat band can exists also for
a nodeless, i.e., fully gapped, bulk, such that the edge states
are not continuously connected to the bulk bands.

In terms of experimental feasibility of the BBH super-
conductor model developed in this work, we can refer to
the atom-optics setup for the realization of lattice tight-
binding topological models [96]. Apart from metamaterials
[34,35,97], higher-order topological insulator phases have
also been experimentally observed in van der Waals stack-
ing of bismuth-halide [24], as well as BixSb1−x alloys [98].
The s-wave superconductor can be, in principle, placed in
proximity to the above materials with appropriate substrates,
such that HOTSC phases are realized in the above material.
It is worth noting that superconductivity can be induced in
the surface states of Bi2Se3, HgTe, etc. via the proximity
effect [99–101], with a superconducting gap even around
�0 ∼ 0.5 meV [101], despite the fully gapped bulk. Given
the above experimental developments in the solid-state topol-
ogy, we believe that the HOTSC phases obtained in our work
are at least within future experimental reach.

We further note that we study the HOTSC model starting
from a higher-order topological insulator limit of the under-
lying BBH model. It would also be interesting to study a
BBH superconductor model starting from a metallic bulk,
where by tuning the chemical potential different topolog-
ical phases may be uncovered in addition to those found
in this work. One can hence investigate the three-parameter
interplay between chemical potential, superconducting gap
function, and magnetic field for engineering of HOTSC
phases. Moreover, the possibility to alternate between topo-
logical states with different spatial localizations by tuning
the magnetic field may lead to interesting applications
where these states are useful, including topological quantum
computation.

Note added. Recently, we became aware of the recent work
Ref. [102], where zero-energy flat bands are also found to
appear as topological boundary states in a nodeless super-
conductor. However, in that case, the flat band is protected
by a bulk invariant in three dimensions (3D). Our flat band
instead appears in a 2D system and is protected by a 1D
edge invariant. It remains to be studied if deeper similarities
between the two exist.
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APPENDIX A: FINITE λ

In the main text, we focus on the properties of Eq. (2) for
λ = 0. Here, we discuss the effect of having a finite λ in the
phases discussed in the main text. For large λ > t , the system
is just a trivial superconductor. For smaller but finite λ, the
phase boundaries of the system change considerably but the
topological phases largely persist. In Fig. 11, we set λ = 0.5t
and we repeat the plot of the energy gap δ as a function of Bx

and � from Fig. 2. We still retain the phases discussed in the
main text, although the phase boundaries change considerably
and now cannot be computed analytically. In addition, we
obtain a new phase, which we call the dipolar phase, described
next.

1. Dipolar phase

With λ finite, but smaller than t , we find a different kind
of first-order topological phase appearing for higher values
of either � and Bx, when one is much larger than the other.
This phase, as shown in Figs. 12(a)–12(d), has a gapped bulk
but with some localized midgap states on the I and III edges,
as also shown in the zero-energy LDOS in Fig. 12(e). The
νx invariant along x is not quantized, see Fig. 12(f), while
the νy presents two half-quantized values, see Fig. 12(g),
indicating that there are four symmetry-protected modes. The
entanglement spectrum shows a symmetric distribution of
eigenvalues excluding 0.5 within the mid gap region, as de-
picted in Fig. 12(h).

In Fig. 13, we show the sum of the Majorana polarization
for these states at zero energy. We see that they are localized
on the edges of the system and also present C = 1, indicating
that they are MZMs. These states are very similar to the edge
localized, or dipolar, states that appear in the hybrid phase,
see Fig. 6(a). Moreover, this phase resembles (a supercon-
ducting version of) the phase with px = 0 and py = 0.5 in

FIG. 11. Energy gap δ derived from Eq. (2) as a function of �/t
and Bx/t for (a) fully periodic, (b) x-periodic (open in y), and (c) y-
periodic (open in x) boundary conditions. Parameters used: λ = 0.5t ,
system size 32 unit cells in each direction.

the BBH model [8] called dipolar phase in Ref. [19], such
that we also call it a dipolar phase. We note that the P of the
zero-energy boundary states appropriately also resembles an
electric dipole.

APPENDIX B: TRIVIAL PHASE

For high values of only � or Bx, we find a topo-
logically trivial phase. For λ = 0, this occurs for � >√

2t2 + Bx(2t + Bx ) or � < −t + √
B2

x − t2, corresponding
to the white region in Fig. 1(b). Although this phase is
topologically trivial, for completeness, we display the main
features of this phase in Fig. 14. The system is gapped for
all boundary conditions, see Figs. 14(a)–14(d), which is sup-
ported by the LDOS at zero energy, see Fig 14(e), which
shows no occupation. Further, all topological invariants indi-
cate a trivial system, see Figs. 14(f)–14(h).

APPENDIX C: DERIVATION OF EDGE HAMILTONIANS

Here we provide the detailed derivation of the edge Hamil-
tonian expressions used in the main text. We continue in the
deep topological limit of the BBH model with λ = 0. Since
the continuum Hamiltonian (11) is composed of linear opera-
tors in x, y, and matrices acting on the particle-hole τ , orbital
σ , and spin s degrees of freedom, we can write a generic wave
function as

ψ (x, y) =
∑

α

cαφα (x)ϕα (y)χα, (C1)

where φα (ϕα) is a complex spatial function of x (y), and χα

are eight component spinors labeled by α. Using this form, we
can obtain solutions that are localized on specific edges (or
corners) by checking how the Hamiltonian acts individually
in each part.

For the I and III edges, we look for localized solutions on
x. We split h	 = h0x + hky, where h0x = t	2 + tkxa	3 + t	4

is the part which determine the zero states localized along
x, while we treat hky = tkya	1 + �	5 + Bx	6 as its pertur-
bation, reasonable given the fact that Bx,� � t . Next we
perform the substitution kx → −i∂x and look for solutions of

h0xψ (x, y) = [t	2 − it∂xa	3 + t	4]ψ (x, y) = 0. (C2)

Using the ansatz φα (x) = exp(qxx/a) and that the χα are
linearly independent, we get the matrix equations

[tτ3σ2s2 − itqxτ3σ2s3 + tτ3σ1s0]χα = 0, (C3)

where we omit the external product for convenience. Multi-
plying the whole equation by τ3 ⊗ σ2 ⊗ s2 and dividing by t ,
we obtain

(τ0σ0s0 + qxτ0σ0s1 − iτ0σ3s2)χα = 0, (C4)

which is diagonal in τ and σ , but not in s. The above equa-
tion has nontrivial solutions when the determinant of the term
between parenthesis is zero:∣∣∣∣ 1 qx − m

qx + m 1

∣∣∣∣ = 2 − q2
x = 0 → qx = ±

√
2. (C5)

where m = ±1 is the eigenstate of σ3. Note that qx does not
depend on the eigenvalue l of τ3. A solution that is localized
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FIG. 12. Main features of the dipolar phase. Energy spectrum ε for fully periodic (a), x-periodic (b), y-periodic (c), and open (d) boundary
conditions. Inset in (d) a zoom-in on the modes in the middle of the spectrum with energy ε = 0. LDOS at zero energy (e). Wannier spectrum
along x (f) and y (g). Entanglement spectrum ξ (h). Parameters used: Bx = 1.5t , � = 0.2t , λ = 0.5, system size 32 unit cells for directions
with open boundary conditions and 100 k points.

on the I edge should have negative qx, while one localized
on the III edge should have a positive qx. Therefore, for the I
edge, qx = −√

2, while for the III edge, qx = √
2.

Focusing first on the I edge, we write the localized solu-
tions as

χl,m = |l, m〉 ⊗ (a |s3 = 1〉 + b |s3 = −1〉),

such that a and b are given by(
1 −√

2 − m
−√

2 + m 1

)(
a
b

)
= 0

∴ b = (m −
√

2)a, a =
√

1

4 − 2m
√

2
, (C6)

FIG. 13. Dipolar phase boundary states features. Same panels as
Fig. 4 for the four states with smallest (negative energy), but where
only the last two states [(c), (d), (g), and (h)] have energy ε = 0−, in
the dipolar phase. Parameters same as in Fig. 12.

where in the last equality, we used that a2 + b2 = 1. Next we
add the other terms in the Hamiltonian of Eq. (11), to obtain
the energy of the modes localized on the I edge by computing
χ

†
l,mhkyχl,m. For that, we notice that

[〈s3 = 1| + (m −
√

2) 〈s3 = −1|]s1

× [|s3 = 1〉 + (m′ −
√

2) |s3 = −1〉]
= m + m′ − 2

√
2, (C7)

[〈s3 = 1| + (m −
√

2) 〈s3 = −1|]s2

× [|s3 = 1〉 + (m′ −
√

2) |s3 = −1〉]
= i(m − m′), (C8)

such that we get

tkyaχ
†
lm	1χl ′m′ = −tkya(τ3)l,l ′ (σ2)m,m′ , (C9)

�χ
†
lm	5χl ′m′ = 0, (C10)

Bxχ
†
lm	6χl ′m′ = − Bx√

2
(τ3)l,l ′ (σ0)m,m′ , (C11)

where we use that the 	6 term vanishes because it is pro-
portional to (m − m′)(σ0)m,m′ = 0. Combining all terms, we
arrive at the edge Hamiltonian

hI(ky) = −tkyaτ3 ⊗ σ2 − Bx√
2
τ3 ⊗ σ0. (C12)

For the III edge, we instead need to use the solution
qx = √

2. Performing an equivalent procedure to above, we
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FIG. 14. Main features of the trivial phase. Energy spectrum ε for fully periodic (a), x-periodic (b), y-periodic (c), and open (d) boundary
conditions. Inset in (d) a zoom-in on the modes in the middle of the spectrum with energy ε = 0. LDOS at zero energy (e). Wannier spectrum
along x (f) and y (g). Entanglement spectrum ξ (h). Parameters used: Bx = 2t , � = 0.5t , λ = 0, system size 32 unit cells for directions with
open boundary conditions and 100 k points.

obtain

χlm = |τ3 = l〉

⊗ |σ3 = m〉 ⊗ |s3 = 1〉 − (m + √
2) |s3 = −1〉√

4 + 2m
√

2

and

hIII(ky) = −tkyaτ3 ⊗ σ2 − Bx√
2
τ3 ⊗ σ0. (C13)

For the II and IV edges, the solutions should instead be
localized on y. Therefore we take h0y = t	2 + tkya	1 + t	4

to look for localized solutions and consider the perturbation
to be hky = tkxa	3 + �	5 + Bx	6, making ky → −i∂y, and
look for solutions of

h0yψ (x, y) = [−it∂ya	1 + t	2 + t	4]ψ (x, y) = 0. (C14)

Again, we use an ansatz ϕα (y) = exp(qyy/a) to obtain the
matrix equation

[qyτ0σ0s0 − τ0σ0s3 + τ0σ3s1]χα = 0, (C15)

after multiplying h0y by i/t τ3σ2s1. In this way, qy is deter-
mined by∣∣∣∣qy − 1 m

m qy + 1

∣∣∣∣ = q2
y − 2 = 0 → qy = ±

√
2. (C16)

The solution localized on the II edge is the one with qy =
−√

2, and the one on the IV edge has qy = √
2. For the II

edge, the solution is given by

χl,m = |l, m〉 ⊗ |s3 = 1〉 − m(1 + √
2) |s3 = −1〉√

4 + 2
√

2
and

hII(kx ) = tkxaτ3 ⊗ σ2 − 1√
2

Bx τ3 ⊗ σ3, (C17)

while for the IV edge, the solution is given by

χl,m = |l, m〉 ⊗ |s3 = 1〉 + m(1 − √
2) |s3 = −1〉√

4 + 2
√

2

and

hIV(kx ) = tkxaτ3 ⊗ σ2 − 1√
2

Bx τ3 ⊗ σ3. (C18)
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